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Abstract
The present paper is devoted to the investigation of population dynamics under climate
change. The evolution of species is modelled by a reaction-diffusion equation in a
spatio-temporally heterogeneous environment described by a climate envelope that
shifts with a time-dependent speed function. For a general almost-periodic speed
function, we establish the persistence criterion in terms of the sign of the approximate
top Lyapunov exponent and, in the case of persistence, prove the existence of a unique
forced wave solution that dominates the population profile of species in the long run.
In the setting for studying the effects of fluctuations in the shifting speed or location
of the climate envelope, we show by means of matched asymptotic expansions and
numerical simulations that the approximate top Lyapunov exponent is a decreasing
function with respect to the amplitude of fluctuations, yielding that fluctuations in the
shifting speed or location have negative impacts on the persistence of species, and
moreover, the larger the fluctuation is, the more adverse the effect is on the species.
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In addition, we assert that large fluctuations can always drive a species to extinction.
Our numerical results also show that a persistent species under climate change is
invulnerable to mild fluctuations, and becomes vulnerable when fluctuations are so
large that the species is endangered. Finally, we show that fluctuations of amplitude
less than or equal to the speed difference between the shifting speed and the critical
speed are too weak to endanger a persistent species.

Keywords Population dynamics · Climate change · Reaction-diffusion equation ·
Persistence criterion · Approximate top Lyapunov exponent · Forced wave solution ·
Fluctuations

Mathematics Subject Classification 92D25 · 92D40 · 35K57 · 35C07
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1 Introduction

Climate change is known to have a great impact on the evolution of species. It alters
and shifts the habitat that species reside in, and thus, forces species to shift/expand
their range accordingly in order to remain persistent. Understanding whether a species
can keep up with the shifting habitat and how the answer to this question depends on
the species and shifting habitat are fundamental questions, which have been attracting
a lot of attention in biological and ecological literature [see Walther et al. (2002),
Parmesan (2006), Lenoir et al. (2008), Menendez et al. (2014) and references therein].
Mathematically, reaction–diffusion equations of the form

ut = duxx + f (x − ct, u), x ∈ R (1.1)

123



Population dynamics under climate change: persistence... Page 3 of 42    30 

have been proposed to study the effects of climate change on evolving species, where
c ≥ 0 is the shifting speed of the habitat, and f is the growth rate function taking for
example the form

f (x, u) =
{
Ru

(
1 − u

K

)
, x ∈ (− L

2 , L
2

)
,

−Du, x ∈ R\ (− L
2 , L

2

) (1.2)

for some L > 0 standing for the size of the climate envelope (Potapov and Lewis 2004;
Berestycki et al. 2009) within which species can grow. In terms of (1.1), studying
aforementioned fundamental questions is more or less equivalent to ask about the
long term dynamics of non-negative solutions, representing the evolution of the spatial
distribution of the species, as well as their dependence on c, L and the shape of f . In
the paper by Berestycki et al. (2009), the authors established the persistence criterion
for (1.1) with amore general growth rate function of logistic type.More precisely, they
proved that solutions vanish as time elapseswhen the net reproduction number, defined
to be the generalized principal eigenvalue of the operator u �→ duxx+cux+ fu(x, 0)u,
is non-positive. When the net reproduction number crosses zero, a unique travelling
wavewith speed c exists and attracts solutions. They also studied the dependence of the
net reproduction number on the shifting speed c and the size of the climate envelope
L . The genetic consequences of climate change have been studied in Garnier and
Lewis (2016), where the authors separate the population profile into neutral fractions
and study the dynamics of each fraction to show that range shifts under slow climate
change preserve genetic diversity.

Thework (Berestycki et al. (2009)) has been extended inmany aspects [seeBeresty-
cki and Rossi (2008), Berestycki and Rossi (2009), Bouhours and Nadin (2015), Vo
(2015) and references therein] to

ut = d�u + f (t, x − ct, y, u), (x, y) ∈ R × � ⊂ R × R
N−1, (1.3)

where f is periodic in t , and for fixed t and y, the function (x, u) �→ f (t, x, y, u)

maintains key features of (1.2). When � is a bounded domain in R
N−1 with smooth

boundary, the equation (1.3) is equipped with homogeneous Neumann boundary con-
dition onR×∂�. When� = R

N−1, the periodicity of f in y is assumed. Comparable
results have been established for integrodifference equations (Zhou and Kot 2011,
2013; Phillips and Kot 2015; Bouhours and Lewis 2016; Lewis et al. 2018), and non-
local dispersal equations (De Leenheer et al. 2020). Also, there exist relevant works
when the habitat is growing or receding due to climate change [see Li et al. (2014), Hu
and Li (2015), Fang et al. (2016), Hu and Zou (2017), Berestycki and Fang (2018), Li
et al. (2018), Bouhours and Giletti (2019), Fang et al. (2021) and references therein].

In all aforementioned works, the climate envelope is assumed to have fixed size
and shifts with a constant speed, and therefore, its location is predetermined. However,
changes in environments driven by climate change are rather fluctuating and unpre-
dictable [see e.g. Saltz et al. (2006); Kreyling et al. (2011)], resulting in fluctuations
in the size, shifting speed and location of the climate envelope, which are respectively
characterized by L , c and ct in the model (1.1) and (1.2). The purpose of the present
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paper is to study the effects of almost-periodic fluctuations in the shifting speed and
location, two closely related components of the climate envelope, by considering the
following model:

ut = duxx + f

(
x −

∫ t

0
c(s)ds, u

)
, x ∈ R, (1.4)

where c : R → R is an almost-periodic function. In themodel (1.4), c(t) and
∫ t
0 c(s)ds

are respectively the shifting speed and location of the climate envelope. Choosing
special c(t) allows us to discuss about the effects of fluctuations in the shifting speed
and location. Indeed, setting c(t) = c + σ(t) for some constant c �= 0 and almost-
periodic function σ(t) in (1.1) results in

ut = duxx + f

(
x − ct −

∫ t

0
σ(s)ds, u

)
, x ∈ R.

Assuming σ(t) has zero average in the sense that limt→∞ 1
t

∫ t
0 σ(s)ds = 0 so that

σ(t) has lower order than that of c, we can consider σ(t) as fluctuations around the
shifting speed c. If, in addition, the function t �→ ∫ t

0 σ(s)ds is an almost-periodic
function [if and only if it is bounded; see e.g. Fink (1974)] and has zero average,
then we can regard

∫ t
0 σ(s)ds as fluctuations around the location ct . Note that any

continuously differentiable almost-periodic fluctuation �(t) with �(0) = 0 (which
is not a restriction) around the location ct can be written in this form, that is, �(t) =∫ t
0 σ(s)ds, where σ = �′.
Our analysis and results are divided into two parts. In the first part, we conduct

mathematical analysis of (1.4) in order to establish the criterion for extinction and
persistence and study the global dynamics to capture the asymptotic population profile
of the species when persistence happens. In the second part, we study the effects of
fluctuations in the shifting speed and location of the climate envelope on this criterion
to understand population extinction or persistence as the outcome of such fluctuations.
Persistence criterion To establish the persistence criterion and study the global
dynamics, we consider the model (1.4) and make the following assumptions. Denote
R+ = [0,∞).

(H) The diffusion coefficient d > 0 is fixed. The function c : R → R is Hölder
continuous and almost-periodic. The growth rate function f : R × R+ → R

is given by f (x, u) = ug(x, u), where g : R × R+ → R is continuously
differentiable, and is uniformly continuous and bounded on R × [0, δ] for any
δ > 0, and satisfies the following conditions:

(i) gu(x, u) ≤ 0 for all (x, u) ∈ R × R+, and there is an open interval I0 ⊂ R

such that u �→ g(x, u) is decreasing on R+ for each x ∈ I0,
(ii) lim sup|x |→∞ g(x, 0) < 0,
(iii) there is M0 > 0 such that supx∈R g(x, u) < 0 for all u ≥ M0.

The assumptions on f in (H) are standard. The condition in (i) says that the local
growth rate decreases as the population size increases, and hence, f is of generalized
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logistic type. By (ii), the favorable habitat where species can grow is contained in a
bounded region. The numberM0 in (iii) gives an upper bound for the carrying capacity.

It is convenient to consider (1.4) in the moving frame by introducing the change of
variable v(t, x) = u(t, x + ∫ t

0 c(s)ds). Then, v(t, x) satisfies

vt = dvxx + c(t)vx + f (x, v), x ∈ R. (1.5)

Obviously, v ≡ 0 is a solution of (1.5), and its stability is expected to determine
the extinction or persistence dynamics of (1.5). To study the stability of v ≡ 0, we
examine the linearization of (1.5) at v ≡ 0, namely,

wt = dwxx + c(t)wx + g(x, 0)w, x ∈ R. (1.6)

Denote by λL the top Lyapunov exponent of (1.6) restricted on (−L, L) and equipped
with zero Dirichlet boundary condition on ±L . We refer the reader to Sect. 2 for
more details. In the case that c(t) is a periodic function, λL is nothing but the prin-
cipal eigenvalue of the periodic parabolic operator −∂t + d∂2xx + c(t)∂x + g(x, 0)
restricted on (−L, L) and equippedwith zeroDirichlet boundary condition at x = ±L .
It is shown in Lemma 2.2 that λL is non-decreasing in L and bounded above by
supx∈R g(x, 0) < ∞, and hence, λ∞ := limL→∞ λL is well-defined and called the
approximate top Lyapunov exponent of (1.6) as suggested by its definition. We refer
the reader to Sects. 3.3 and 4.4 for some characterizations ofλ∞. In particular, we show
in Proposition 3.1 (2) that λ∞ always has the same sign as that of the top Lyapunov
exponent λ of (1.6) (see Definition 3.2 for the definition of λ).

The approximate top Lyapunov exponent λ∞ is essentially a non-autonomous ver-
sion of the generalized principal eigenvalue for (1.6) with a constant shifting speed
c(t) ≡ c. Because of the success in using the generalized principal eigenvalue in
Berestycki et al. (2009) to establish the persistence criterion, the approximate top
Lyapunov exponent λ∞ is expected to do a similar job in the current situation. To state
the results, we let

X = {u ∈ C(R) : u is bounded and uniformly continuous}

be equipped with the supremum norm ‖u‖∞ = supx∈R |u(x)|. Set

X+ = {u ∈ X : u ≥ 0}.

For each initial data u0 ∈ X+, (1.4) admits a unique solution, denoted by u(t, x; u0),
satisfying u(t, ·; u0) ∈ X+ for all t ≥ 0. Our persistence criterion reads as follows.

Theorem A (Persistence criterion) Assume (H).

(1) If λ∞ < 0, then for any u0 ∈ X+, there holds ‖u(t, ·; u0)‖∞ → 0 as t → ∞.
(2) If λ∞ > 0, then for any u0 ∈ X+\{0}, there holds

lim inf
t→∞ inf

x∈[−L,L] u
(
t, x +

∫ t

0
c(s)ds; u0

)
> 0, ∀L > 0.
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TheoremA establishes the sharp threshold for extinction and persistence of (1.4) in
terms of the sign of the approximate top Lyapunov exponent λ∞. When λ∞ > 0, the
result clearly says that the species is well-adapted to the climate change by keeping
pace with the shifting habitat, and therefore, persists in the long run. However, when
λ∞ < 0, the species is unable to keep pace with the shifting habitat, leading to the
eventual extinction. Therefore, λ∞ can be seen as the “integrated” per capita growth
rate when the population density is very low. In literature, the persistence criterion for
a species whose evolution is modelled by an evolutionary equation is often stated by
means of the basic reproduction number R0, which can be defined as R0 = eλ∞ here.
In terms of the basic reproduction number, the persistence criterion becomes R0 < 1
and R0 > 1 implying extinction and persistence, respectively.

We point out that the infimum over an arbitrary [−L, L] can not be replaced by that
over R as u(t, x; u0) → 0 as |x | → ∞ due to the adverse environment away from
the climate envelope.

To better characterize the persistence dynamics of (1.4) that sheds light on the
asymptotic population profile of species, we study the existence, uniqueness and sta-
bility of forced wave solutions when λ∞ > 0. A forced wave solution of (1.4) is
defined as follows.

Definition 1.1 (Forced wave solution) An entire solution u of (1.4) is called a forced
wave solution if there is a bounded, positive and almost-periodic entire solution v of
(1.5) such that

u(t, x) = v

(
t, x −

∫ t

0
c(s)ds

)
, (t, x) ∈ R × R.

In the next result, we show that in the case of persistence, a unique forced wave
solution is found to govern the asymptotic population profile.

Theorem B (Forced wave solution) Assume (H). If λ∞ > 0, then (1.4) has a unique
forced wave solution u∗. Moreover, for any u0 ∈ X+\{0}, there holds ‖u(t, ·; u0) −
u∗(t, ·)‖∞ → 0 as t → ∞.

When c(t) is a periodic function, we obtain the following result.

Theorem C Assume (H) and that c(t) is periodic.

(1) If λ∞ ≤ 0, then for any u0 ∈ X+, there holds ‖u(t, ·; u0)‖∞ → 0 as t → ∞.
(2) If λ∞ > 0, then (1.4) has a unique forced wave solution u∗. Moreover, for any

u0 ∈ X+\{0}, there holds ‖u(t, ·; u0) − u∗(t, ·)‖∞ → 0 as t → ∞.

Remark 1.1 We make some comments on Theorem C. Suppose c(t) is T -periodic.

• It is shown in Proposition 4.1 that if the approximate top Lyapunov exponent
λ∞ satisfies the condition λ∞ > lim sup|x |→∞ g(x, 0), then it is the principal
eigenvalue of the T -periodic parabolic operator −∂t + d∂2xx + c(t)∂x + g(x, 0)
considered in the space of T -periodic functions in X . Moreover, this condition can
not be removed in general as pointed out in Remark 4.1.
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• The extinction dynamics in the critical case λ∞ = 0 is established.
• When λ∞ > 0, the unique forced wave solution u∗ has a T -periodic profile

function, that is, u∗
(
t, x + ∫ t

0 c(s)ds
)
is the unique bounded, positive and T -

periodic solution of (1.5).

In Theorems A–C, we have established the persistence criterion and asymptotic
population profile, in terms of the approximate top Lyapunov exponent λ∞, for a
species whose evolution is modelled by (1.4). To have a better understanding of the
effects that the climate change has on the evolution of the species, it is natural to
ask about the dependence of λ∞ on the climate envelope. This is well studied in
Berestycki et al. (2009) when the climate envelope is assumed to shift with a constant
speed c(t) ≡ c. In particular, provided the species persists in the absence of climate
change, there exists a critical shifting speed c∗ > 0 such that the species persists if
and only if the climate envelope shifts with a slower speed. Moreover, a semi-explicit
formula for λ∞ as a function of c is found by the Liouville transform.

Assuming that the climate envelope shifts with a constant speed c ∈ [0, c∗) so that
the species persists, we are interested in the effects that fluctuations on the shifting
speed c have on the evolution of the species. More precisely, if the shifting speed
function c(t) = c + σ(t) for some fluctuation σ(t), we would like to examine the
dependence of λ∞ on σ(t). In particular, we would like to see if the fluctuation σ(t)
can drive the species to extinction and how large it needs to be in order to make this
happen. Theorems A–C lay the solid foundation for investigating these issues. Now,
we state the questions in details and present our findings.
Effects of fluctuations We investigate effects of fluctuations on the shifting speed and
location of the climate envelope. To do so, we consider the following specified model:

ut = duxx + f

(
x − ct − A

∫ t

0
σ(s)ds, u

)
, x ∈ R, (1.7)

where d and f are as in (H), c ≥ 0, A ≥ 0 and σ : R → R is Hölder continuous. The
linearization of (1.7) in the moving frame around the extinction state 0 reads

wt = dwxx + [c + Aσ(t)]wx + g(x, 0)w, x ∈ R. (1.8)

Here, we focus on periodic fluctuations, that is, σ(t) is a periodic function and has
zero average. Hence, Aσ(t) is the fluctuation on the shifting speed c. Since σ(t) is
periodic and has zero average, A

∫ t
0 σ(s)ds is the periodic fluctuation on the location

ct . The parameter A therefore characterizes the amplitude of fluctuations. We study
the influence of A on the approximate top Lyapunov exponent λA∞ of (1.8) in three
aspects:

• effects of large fluctuations, namely, properties of λA∞ for large A;
• the monotonicity of λA∞ with respect to A;
• the (unique) solution of λA∞ = 0 (as an equation of A) and its relation to the speed
difference c∗ − c, where c∗ > 0 is the critical shifting speed in the absence of
fluctuations and c ∈ [0, c∗).
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Denote by λA the top Lyapunov exponent of (1.8) and by λA
L restricted on (−L, L)

and equippedwith zeroDirichlet boundary condition on±L . Then,λA∞ = limL→∞ λA
L

for any A ≥ 0. Trivially, λA∞ ≤ λA.
We first give some characterizations of the effects of large fluctuations.

Theorem D (Effects of large fluctuations) Suppose (H) and σ is periodic and has zero
average. The following hold.

(1) λA∞ ≥ − c2
4d + inf x∈R g(x, 0) for all A > 0.

(2) If σ has only isolated zeros, then

lim sup
A→∞

λA ≤ lim sup
|x |→∞

g(x, 0).

Moreover, if the limits g(±∞, 0) := limx→±∞ g(x, 0) exist and coincide, then

lim
A→∞ λA = g(±∞, 0).

(3) If σ is continuously differentiable and has only isolated and non-degenerate zeros,
then for each L > 0 there exist C1 = C1(L) > 0 and C2 = C2(L) > 0 such that

λA
L ≤ −C1A + C2, ∀A > 0.

Since lim sup|x |→∞ g(x, 0) < 0 by (H)(ii), Theorem D (2) implies that λA∞ < 0
for all A � 1, saying that large fluctuations can always drive a species to extinction.
The biological mechanism behind this can be made clear. When there are periodic
large fluctuations, the climate envelope shifts regularly between the regions {x ∈ R :
x � −1} and {x ∈ R : x � 1}, resulting in the regular exposure of species to
detrimental environments, where the drop of the number of species happens quickly
and is eventually dominated by the per capita growth rate g(x, 0) in {x ∈ R : |x | � 1}.
As λA∞ can be seen as the “integrated” per capita growth rate when the number of
species is very low as mentioned earlier, it must be connected with g(±∞, 0) in
the large fluctuation limit A → ∞. Theorem D(1) says that the adverse effects of
large fluctuations are limited, that is, large fluctuations can not make λA∞ arbitrarily
negative. This seemingly counterintuitive result is a consequence of the facts that, in the
model, thewhole environment is unbounded, allowing species tomigrate to anywhere,
and its unfavorableness is uniformly limited with respect to spatial locations. For a
species living in a finite whole environment, large fluctuations are likely to have great
negative impacts. This is more or less reflected in the result of Theorem D(3), yielding
in particular limA→∞ λA

L = −∞. Such a result is expected as species can hardly
keep pace with the shifting climate envelope and die immediately when arriving at
the boundary of the habitat. Note that Theorem D(1) and (3) imply that the limit
λA∞ = limL→∞ λA

L is NOT uniform in A � 1.
Next, we study the monotonicity of λA∞ with respect to A. We focus on the case

that the species persists when there is no fluctuation, namely, λ0∞ > 0. Using matched
asymptotic expansion and numerical simulations, we find the following properties of
λA∞ in terms of A:
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(P1) there is C0 > 0 such that

λA∞ = λ0∞ − C0A
2 + o(A2) as A → 0+;

(P2) for each A0 ∈ (0,∞) such that λ
A0∞ > lim sup|x |→∞ g(x, 0), there is CA0 > 0

such that

λA∞ = λA0∞ − CA0(A − A0) + o(|A − A0|) as |A − A0| → 0;

(P3) the function A �→ λA∞ is non-increasing on (0,∞). Hence, there is A∗ ∈ (0,∞]
such that λA∞ > lim sup|x |→∞ g(x, 0) if and only if A ∈ [0, A∗).

Formulas for C0 and CA0 are derived to numerically determine their signs. (P1)
yields a quadratic dependence of λA∞ on A for small A. (P1)–(P3) together imply in
particular that the function A �→ λA∞ is decreasing on [0, A∗) and non-increasing on
[A∗,∞), saying that the larger the fluctuation in the shifting speed or location is, the
harder the species can keep up with the shifting habitat, and therefore, the harder the
species can survive or persist. Besides, our numerical simulations show the existence
of two windows [0, A1] and [A1, A2] (where λA∞ crosses 0) such that λA∞ decreases
slowly for A ∈ [0, A1] and much faster for A ∈ [A1, A2] (see Figs. 3, 4), saying that a
persistent species under climate change is adapted to mild fluctuations in the shifting
speed or location of the climate envelope, while the dependence becomes somewhat
sensitive once the species is endangered by fluctuations.

Finally, we examine the solution of λA∞ = 0 and its relation to the speed difference
c∗ − c under the assumption that the critical shifting speed c∗ > 0 and c ∈ [0, c∗)
so that the species persists in the absence of fluctuations. To fix the idea, we assume
mint∈R σ(t) = −1 and maxt∈R σ(t) = 1 such that A is indeed the amplitude of
fluctuations. For each c ∈ [0, c∗), properties (P1)–(P3) ensure that the equation λA∞ =
0 admits a unique solution Ac. We show

(P4) Ac > c∗ − c for all c ∈ [0, c∗), or equivalently, λc∗−c∞ > 0 for all c ∈ [0, c∗).

The property (P4) says that fluctuations of amplitude less than or equal to the speed
difference c∗ − c can not drive a species to extinction. Our numerical results (see
Fig. 5) actually show that much larger fluctuations are required. To understand this,
we first note that with A = c∗ −c, the speed function c+ Aσ(t) oscillates periodically
between 2c − c∗ and c∗. In consideration of the facts that σ(t) has zero average, and
at least in the absence of fluctuations, the faster the climate envelope shifts the smaller
λA∞ is, fluctuations of amplitude A = c∗ − c are too weak to endanger a persistent
species.

The rest of the paper is organized as follows. In Sect. 2, we study the Eqs. (1.5) and
(1.6) truncated on bounded domainswith zeroDirichlet boundary in preparation for the
investigation of (1.5) or equivalently (1.4). In particular, we define the top Lyapunov
exponent and study its monotonicity with respect to the domain size. Section 3 is
devoted to the establishment of the persistence criterion and global dynamics for (1.5).
Theorems A and B are proven in this section. Besides, we establish the connection
between the approximate top Lyapunov exponent and the top Lyapunov exponent of
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(1.6). In Sect. 4, we first prove Theorem C, then perform numerical simulations to
support our theoretical study, and finally, give a characterization of the approximate
top Lyapunov exponent. In Sect. 5, we study the effects of fluctuations in the shifting
speed and location of the climate envelope. In particular, we prove Theorem D and
justify (P1)–(P4).

2 Truncated equations

In this section, we study top Lyapunov exponents of (1.6) truncated on bounded
domains with zero Dirichlet boundary condition. For each L > 0, we consider the
following linear problem:

{
wt = dwxx + c(t)wx + g(x, 0)w, x ∈ (−L, L),

w(t,−L) = 0 = w(t, L).
(2.1)

As c(t) is almost-periodic, it is more convenient to consider the following family:

{
wt = dwxx + c̃(t)wx + g(x, 0)w, x ∈ (−L, L),

w(t,−L) = 0 = w(t, L),
(2.2)

where c̃ ∈ H := {c(· + t) : t ∈ R}. The closure is taken under the topology of local
uniform convergence. For c̃ ∈ H, we write c̃ · t for c̃(· + t).

Let

XL = {v ∈ C([−L, L]) : v(−L) = v(L) = 0}

be equipped with the maximum norm, namely, ‖v‖∞ = max[−L,L] |v|. Denote by
	L(t, c̃)w0 the unique classical solution of (2.2) with initial condition 	L(0, c̃)w0 =
w0 ∈ XL . The operator norm of 	L(t, c̃) is denoted by ‖	L(t, c̃)‖ :=
supw∈XL ,‖w‖∞=1 ‖	L(t, c̃)w‖∞.

Definition 2.1 (Top Lyapunov exponent) The number

λL := sup
c̃∈H

lim sup
t→∞

ln ‖	L(t, c̃)‖
t

is called the top Lyapunov exponent of (2.1).

Note that

ln ‖	L(t + s, c̃)‖ = ln ‖	L(t, c̃ · s) ◦ 	L(s, c̃)‖ ≤ ln ‖	L(t, c̃ · s)‖ + ln ‖	L(s, c̃)‖
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for any c̃ ∈ H and t, s ≥ 0. It then follows from the almost-periodicity of c(t) and the
subadditive ergodic theorem [see e.g. Kingman (1973)] that

lim
t→∞

ln ‖	L(t, c̃)‖
t

= λL , ∀c̃ ∈ H (2.3)

See also Mierczyński and Shen (2008, Corollary 3.2.2) or Shen and Yi (1998, Remark
4.3) for the limit (2.3). In the next lemma, we collect some well-known results related
to the top Lyapunov exponent λL . Set X

+
L = {w ∈ XL : w ≥ 0}.

Lemma 2.1 There is a continuous functionwL : H → X+
L \{0} such that the following

hold for any c̃ ∈ H:

(1) ‖wL(c̃)‖∞ = 1,
(2) 	L(t, c̃)wL(c̃) = ‖	L(t, c̃)wL(c̃)‖∞wL(c̃ · t),
(3) limt→∞

ln ‖	L(t, c̃)wL(c̃)‖∞
t

= λL ,

(4) For any w0 ∈ X+
L \{0}, limt→∞

ln ‖	L(t, c̃)w0‖∞
t

= λL .

Proof (1)–(3) can be found in Shen and Yi (1998, Theorem II.4.4 and Proposition
II.4.10) [see also the arguments in Hutson et al. (2001, Theorem 3.14)]. (4) follows
from (3), the comparison principle and Hopf’s lemma. ��
Remark 2.1 Lemma 2.1 was originally established for 	L(t, c̃) acting on a fractional
power space X̃ L related to −∂2xx that is compactly embedded into C1([−L, L]). We
refer the reader to Henry (1981) and Pazy (1983) for more details about the fractional
power space. Lemma 2.1 then follows because of the fact that the top Lyapunov
exponents of 	L(t, c̃) acting on X̃ L and XL coincide.

Lemma 2.2 λL is non-decreasing in L. Moreover, λL ≤ max[−L,L] g(·, 0).
Proof For L > 0, let wL be as in Lemma 2.1. Fix 0 < L1 < L2 and c̃ ∈ H. Then,
there exists ε0 ∈ (0, 1) such that ε0wL1(c̃) < wL2(c̃) on [−L1, L1]. It follows from
the comparison principle that

ε0	L1(t, c̃)wL1(c̃) ≤ 	L2(t, c̃)wL2(c̃) in [−L1, L1].

Hence,

λL2 = lim
t→∞

ln ‖	L2(t, c̃)wL2(c̃)‖∞
t

≥ lim
t→∞

ln ‖ε0	L1(t, c̃)wL1(c̃)‖∞
t

= lim
t→∞

ln ε0 + ln ‖	L1(t, c̃)wL1(c̃)‖∞
t

= λL1 .

Let gL = max[−L,L] g(·, 0). Then, egL t is a supersolution of (2.2), and thus,
	L(t, c̃)wL(c̃) ≤ egL t in [−L, L] for all t ≥ 0. It follows that λL ≤ limt→∞ ln egL t

t =
gL . This completes the proof. ��
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Observe that the top Lyapunov exponent of (2.1) plays an important role in the
study of the dynamics of the following Dirichlet boundary value problem

{
vt = dvxx + c̃(t)vx + f (x, v), x ∈ (−L, L),

v(t,−L) = 0 = v(t, L).
(2.4)

In fact, assumptions on f and a priori estimates for parabolic equations [see e.g. Henry
(1981), Hess (1991)] ensure the local well-posedness of (2.4) in XL . This together
with the comparison principle yields the globally well-posedness of (2.4) in X+

L . For
each v0 ∈ X+

L , we denote by v(t, ·; v0, c̃) the unique global solution of (2.4) with
v(0, ·; v0, c̃) = v0. The following result can be found in Zhao (2003, Theorem 3.1)
and the claims in its proof.

Proposition 2.1 Assume (H). Let λL be the top Lyapunov exponent of (2.1). Then, the
following hold.

(1) If λL < 0, then limt→∞ ‖v(t, ·; v0, c̃)‖∞ = 0 for all v0 ∈ X+
L and c̃ ∈ H.

(2) If λL > 0, then (2.4) admits a unique positive almost-periodic solution v∗(t, c̃).
Moreover, for any v0 ∈ X+

L \{0} and c̃ ∈ H, there holds limt→∞ ‖v(t, ·; v0, c̃) −
v∗(t, c̃)‖∞ = 0.

3 Persistence criterion and forced waves

In this section, we study the global dynamics of (1.4) and prove Theorems A and B .
We assume (H) throughout this section. Recall that λL is the top Lyapunov exponent
of (2.1). Since supR g(·, 0) < ∞, Lemma 2.2 ensures that

λ∞ := lim
L→∞ λL

is well-defined and finite, and is called the approximate top Lyapunov exponent of
(1.6).

3.1 Spectral criterion for persistence

Recall from Sect. 1 that X+ is the set of non-negative, bounded and uniformly con-
tinuous functions on R. The theory of semigroups and comparison principles ensure
that for any initial data v0 ∈ X+, (1.5) admits a unique global solution, denoted by
v(t, x; v0), satisfying v(t, ·; v0) ∈ X+ for all t ≥ 0.

Theorem 3.1 The following statements hold.

(1) If λ∞ < 0, then limt→∞ ‖v(t, ·; v0)‖∞ = 0 for all v0 ∈ X+.
(2) If λ∞ > 0, then

lim inf
t→∞ inf

x∈[−L,L] v(t, x; v0) > 0, ∀L > 0 and v0 ∈ X+\{0}.

123



Population dynamics under climate change: persistence... Page 13 of 42    30 

Theorem A follows directly from Theorem 3.1, whose proof needs the following
lemma.

Lemma 3.1 Let v0 ∈ X+. For any ε > 0, there exist T (ε), L(ε) > 0 such that

v(t, x; v0) < ε, ∀t > T (ε), |x | > L(ε).

In particular, lim t→∞|x |→∞ v(t, x; v0) = 0.

Proof Fix v0 ∈ X+, and write v(t, x) for v(t, x; v0). Suppose on the contrary that the
conclusion fails. Then there are ε0 > 0, {tn} ⊂ [0,∞) satisfying tn → ∞ as n → ∞,
and {xn} ⊂ R satisfying |xn| → ∞ such that v(tn, xn) ≥ ε0 for all n. We may assume
without loss of generality that xn → ∞ as n → ∞.

For each n, let vn(t, x) = v(t + tn, x + xn). Obviously, vn satisfies

vnt = dvnxx + c(t + tn)v
n
x + f (xn + x, vn).

Due to a priori estimates for parabolic equations and the almost-periodicity of c(t),
we may assume without loss of generality that there are v∗ and c∗ such that

lim
n→∞ vn(t, x) = v∗(t, x) locally uniformly in (t, x) ∈ R × R,

lim
n→∞ c(t + tn) = c∗(t) uniformly in t ∈ R.

Then, v∗ satisfies v∗(0, 0) ≥ ε0 and is a sub-solution of the following linear equation

wt = dwxx + c∗(t)wx − αw, ∀(t, x) ∈ R × R, (3.1)

where α > 0 is such that lim supx→∞ g(x, 0) ≤ −α.
Note that M := supR×R v∗ < ∞. Clearly, for any fixed t0 ∈ R, w(t, x) =

e−α(t−t0)M is a solution of (3.1). The comparison principle then yields v∗(t, x) ≤
e−α(t−t0)M for all (t, x) ∈ [t0,∞) × R, which implies v∗(0, x) ≤ eαt0M for any
x ∈ R and t0 < 0. If we choose t0 � −1 such that eαt0M < ε0, then v∗(0, x) < ε0
for all x ∈ R, which contradicts the fact v∗(0, 0) ≥ ε0. This completes the proof. ��

We now prove Theorem 3.1.

Proof of Theorem 3.1 (1) Fix v0 ∈ X+, and write v(t, x) for v(t, x; v0). Clearly,

vt = dvxx + c(t)vx + f (x, v) ≤ dvxx + c(t)vx + g(x, 0)v.

By Lemma 3.1, for any δ > 0, there are T ≥ 0 and L̃ > 0 such that

v(t, x) < δ, ∀t ≥ T , |x | ≥ L̃

2
. (3.2)

Replacing v0 by v(T , ·), we may assume without loss of generality that T = 0.
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Obviously, vδ := v − δ satisfies

vδ
t ≤ dvδ

xx + c(t)vδ
x + g(x, 0)vδ + δg(x, 0), ∀t ≥ 0, x ∈ R. (3.3)

Since λ∞ < 0, there exists L > L̃ such that λL < 0. Let η : R → [0, 1] be a
smooth function satisfying η(x) = 1 for |x | ≤ L

2 and η(x) = 0 for |x | ≥ 3L
4 . Set

m0 := min[−L,L] v0 and vδ
0 := η(v0 − m0). Clearly, vδ

0 ∈ X+. Let v(t, x; vδ
0) be

the unique solution of the following problem:

⎧⎪⎨
⎪⎩

vt = dvxx + c(t)vx + g(x, 0)v + δg(x, 0), t > 0, −L < x < L,

v(t,−L) = v(t, L) = 0, t > 0,

v(0, x) = vδ
0(x), x ∈ [−L, L].

Then, the variation of constants formula yields

v(t, ·; vδ
0) = 	L(t, c)vδ

0 + δ

∫ t

0
	L(t − s, c · s)g(·, 0)ds,

where we recall that 	L(t, c) is the solution operator of (2.2) with c̃(t) = c(t). It
follows from the fact λL ≤ λ∞ < 0 and (2.3) that there is M > 0 (independent
of L) such that

v(t, ·; vδ
0) ≤ 	L(t, c)vδ

0 + δM in (−L, L), ∀t ≥ 0. (3.4)

Observe that vδ(t,±L) < 0 for all t ≥ 0 and vδ(0, x) = v0(x) − δ ≤ vδ
0(x)

for all x ∈ [−L, L]. It follows from (3.3) and the comparison principle that
vδ(t, x) ≤ v(t, x; vδ

0) for all t ≥ 0 and −L < x < L , which together with (3.4)
yields

vδ(t, ·) ≤ 	L(t, c)vδ
0 + δM in (−L, L), ∀t ≥ 0.

Since λL < 0 and (2.3) ensure the existence of Tδ > 0 such that 	L(t, c)vδ
0 ≤ δ

in (−L, L) for all t ≥ Tδ , we find vδ(t, x) ≤ (1 + M)δ for all t ≥ Tδ and
−L < x < L . This together with (3.2) and v = vδ + δ implies that v(t, x) ≤
(2 + M)δ for all t ≥ Tδ and x ∈ R. Since δ > 0 is arbitrary, we conclude
limt→∞ supx∈R v(t, x) = 0. This proves (1).

(2) Since λ∞ > 0, there holds λL > 0 for all L � 1. Since non-negative solutions
of (1.5) give rise to super-solution of (2.4) with c̃(t) = c(t), the result follows
directly from Proposition 2.1 (2). ��

3.2 Forced wave solutions

In this subsection, we study the existence and uniqueness of forced wave solutions of
(1.4). Again, we focus on the Eq. (1.5).
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Definition 3.1 An entire solution v(t, x) of (1.5) is called a profile function if it is
bounded, positive and almost-periodic in t for any fixed x .

Theorem 3.2 Assume λ∞ > 0.

(1) The Eq. (1.5) admits a unique profile function v∗. It is also unique in the class of
bounded positive entire solutions v of (1.5) satisfying infR×[−L,L] v > 0 for all
L > 0.

(2) For any v0 ∈ X+\{0}, there holds limt→∞ ‖v(t, ·; v0) − v∗(t, ·)‖∞ = 0.

Theorem B follows directly from Theorem 3.2. We prove several lemmas before
proving Theorem 3.2. The next result follows from arguments as in the proof of
Lemma 3.1.

Lemma 3.2 Letv beaboundedpositive entire solutionof (1.5). Then, lim|x |→∞ supt∈R
v(t, x) = 0.

We need the following uniqueness result.

Lemma 3.3 For each i = 1, 2, let vi be a bounded positive entire solution of (1.5)
and satisfy infR×[−L,L] vi > 0 for all L > 0. Then, v1 = v2.

Proof Switching the role of v1 and v2, we only need to show v1 ≤ v2. For any ε > 0,
let Kε = {κ ≥ 1 : v1 − ε ≤ κv2}. By Lemma 3.2,

lim|x |→∞ sup
t∈R

vi (t, x) = 0, i = 1, 2. (3.5)

This together with the uniform positivity of v2 on R × [−L, L] for all L > 0 implies
that Kε �= ∅. Set κε := inf{κ : κ ∈ Kε}. It is clear that κε is non-increasing in ε > 0,
and thus, κ0 := limε→0 κε exists and belongs to [1,∞]. We show

κ0 = 1, (3.6)

which clearly yields v1 ≤ v2.
For each ε > 0, the definition of κε ensures infR×R (κεv2 − v1 + ε) = 0. Thus,

there is a sequence {tεn } ⊂ R such that limn→∞ infx∈R
[
κεv2(tεn , x) − v1(tεn , x) + ε

] =
0.Wemayassumewithout loss of generality that there arevε

i (t, x), i = 1, 2 and cε ∈ H
such that

vε
i (t, x) = lim

n→∞ vi (t + tεn , x) locally uniform in (t, x) ∈ R × R, i = 1, 2,

cε(t) = lim
n→∞ c(t + tεn ) uniformly in t ∈ R.

Then, vε
i , i = 1, 2 are bounded positive entire solutions of (1.5) with c replaced by

cε . Moreover, there hold κεv
ε
2 ≥ vε

1 − ε and infx∈R
[
κεv

ε
2(0, x) − vε

1(0, x) + ε
] = 0.

It follows from (3.5) that there is xε ∈ R such that κεv
ε
2(0, xε) = vε

1(0, xε) − ε. In
particular, the function t �→ κεv

ε
2(t, xε) − vε

1(t, xε) + ε attains its minimum value at
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0, and the function x �→ κεv
ε
2(0, x) − vε

1(0, x) + ε attains its minimum value at xε .
Hence,

0 = κεv
ε
2,t (0, xε) − vε

1,t (0, xε)

= d
[
κεv

ε
2,xx (0, xε) − vε

1,xx (0, xε)
] + c̃ε(0)

[
κεv

ε
2,x (0, xε) − vε

1,x (0, xε)
]

+ κεv
ε
2(0, xε)g(xε, v

ε
2(0, xε)) − vε

1(0, xε)g(xε, v
ε
1(0, xε)

≥ κεv
ε
2(0, xε)g(xε, v

ε
2(0, xε)) − vε

1(0, xε)g(xε, v
ε
1(0, xε))

≥ κεv
ε
2(0, xε)g(xε, κεv

ε
2(0, xε)) − vε

1(0, xε)g(xε, v
ε
1(0, xε))

= κεv
ε
2(0, xε)g(xε, κεv

ε
2(0, xε)) − vε

1(0, xε)g(xε, κεv
ε
2(0, xε))

+ vε
1(0, xε)g(xε, κεv

ε
2(0, xε)) − vε

1(0, xε)g(xε, v
ε
1(0, xε))

= [
κεv

ε
2(0, xε) − vε

1(0, xε)
] [g(xε, κεv

ε
2(0, xε)) + vε

1(0, xε)gu(xε, ηε)],

where we used the monotonicity of v �→ g(xε, v) in the second inequality, and the
first order Taylor’s expansion of the function v �→ g(xε, v) in the last equality. Hence,
ηε is between κεv

ε
2(0, xε) and vε

1(0, xε). Since κεv
ε
2(0, xε)−v1(0, xε) < 0, we deduce

from gu ≤ 0 that

g(xε, 0) ≥ g(xε, κεv
ε
2(0, xε)) + vε

1(0, xε)gu(xε, ηε) ≥ 0.

As lim sup|x |→∞ g(x, 0) < 0, there must hold the boundedness of {xε}ε . Since κε =
vε
1(0,xε )−ε

vε
2(0,xε )

, we conclude the boundedness of {κε}, and thus, κ0 ∈ [1,∞).

Then, there is a sequence {εn} satisfying εn → 0 as n → ∞, a point x∗ ∈ R and
functions v∗

i , i = 1, 2 and c∗ such that

x∗ = lim
n→∞ xεn ,

v∗
i (t, x) = lim

n→∞ v
εn
i (t, x) locally uniformly in (t, x) ∈ R × R,

c∗(t) = lim
n→∞ cεn (t) uniformly in t ∈ R.

Clearly, v∗
i , i = 1, 2 are bounded positive entire solutions of (1.5) with c replaced by

c∗. Moreover, κ0v∗
2 ≥ v∗

1 and κ0v
∗
2(0, x

∗) − v∗
1(0, x

∗) = 0.
Note that w := κ0v

∗
2 − v∗

1 satisfies w(0, x∗) = 0 and

wt = dwxx + c∗(t)wx + κ0v
∗
2g(x, v

∗
2) − v∗

1g(x, v
∗
1)

≥ dwxx + c∗(t)wx + κ0v
∗
2g(x, κ0v

∗
2) − v∗

1g(x, v
∗
1)

= dwxx + c∗(t)wx + κ0v
∗
2g(x, κ0v

∗
2) − v∗

1g(x, κ0v
∗
2)

+ v∗
1g(x, κ0v

∗
2) − v∗

1g(x, v
∗
1)

= dwxx + c∗(t)wx + [g(x, κ0v∗
2) + v∗

1gu(x, η)]w, ∀t ∈ R,

where η = η(t, x) is a function between κ0v
∗
2(t, x) and v∗

1(t, x). The strongmaximum
principle then implies w ≡ 0. This together with the fact that both v∗

1 and v∗
2 satisfy
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(1.5)with c replaced by c∗ yields g(x, v∗
1(t, x)) = g(x, v∗

2(t, x)) for all (t, x) ∈ R×R,
and hence,

g(x, v∗
2(t, x)) = g(x, v∗

1(t, x)) = g(x, κ0v
∗
2(t, x)), ∀(t, x) ∈ R × R,

leading to (3.6). This completes the proof. ��
To indicate the dependence of v(t, x; v0) on the almost-periodic function c, we

write v(t, x; v0, c) for v(t, x; v0). We use both notations interchangeably whenever
needed. For each t0 ∈ R, we write c · t0 = c(· + t0). It follows from the uniqueness of
solutions that

v(t + s, ·; v0, c · τ) = v(t, ·; v(s, ·; v0, c · τ), c · (s + τ)), ∀t, s ≥ 0, τ ∈ R,

(3.7)

where v(·, ·; v0, c · t0) denotes the unique solution of (1.5) with c replaced by c · t0
and initial condition v(0, ·; v0, c · t0) = v0.

Proof of Theorem 3.2 (1) The proof is broken into two steps.
Step 1 We show the existence of a unique bounded positive entire solution v∗ of
(1.5) satisfying infR×[−L,L] v∗ > 0 for all L > 0.
Let v(t, x; v0, c) be a solution of (1.5) with initial condition v(0, ·; v0, c) = v0 ∈
X+\{0}. Since c is an almost-periodic function, there exists tn → ∞ such that
c · tn → c uniformly as n → ∞. By a priori estimates for parabolic equations,
we may assume without loss of generality the existence of v∗ such that v(t +
tn, x; v0, c) converges to v∗(t, x) locally uniformly in (t, x) ∈ R × R as n → ∞.
It follows from Theorem 3.1(2) and Lemma 3.3 that v∗ is the unique bounded
positive entire solution of (1.5) satisfying infR×[−L,L] v∗ > 0 for all L > 0.
Step 2 We show that v∗ is almost-periodic in t uniformly for x in bounded sets.
Hence, it is a profile function.
Since c is an almost-periodic function, for any given sequences {α′

n}, {β ′
n} ⊂ R,

there are subsequences {αn} ⊂ {α′
n} and {βn} ⊂ {β ′

n} such that

lim
n→∞ lim

m→∞ c(t + αn + βm) = lim
n→∞ c(t + αn + βn), ∀t ∈ R.

See Fink (1974, Theorem 1.17).
We write v∗(t, x; c) for v∗(t, x) to indicate the dependence on c. Schauder esti-
mates ensure that v∗(t, x; c) is uniformly continuous in (t, x) ∈ R × R. To show
that v∗(t, x; c) is almost-periodic in t uniformly for x in bounded sets, we only
need to prove that the limit

lim
n→∞ lim

m→∞ v∗(t + αn + βm, x; c) = lim
n→∞ v∗(t + αn + βn, x; c) (3.8)

holds for all t ∈ R and uniformly for x in bounded subsets of R.
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We may assume without without loss of generality

c′ = lim
m→∞ c · βm, c′′ = lim

n→∞ c · (αn + βn),

v′(x) = lim
m→∞ v∗(βm, x; c) locally uniformly in x ∈ R,

v′′(x) = lim
n→∞ v∗(αn + βn, x; c) locally uniformly in x ∈ R.

Therefore,

v(t, x; v′, c′) = lim
m→∞ v∗(t + βm, x; c) locally uniformly in (t, x) ∈ R × R,

v(t, x; v′′, c′′) = lim
n→∞ v∗(t+αn + βn, x; c) locally uniformly in (t, x)∈R × R.

(3.9)

where v(t, x; v′, c′) and v(t, x; v′′, c′′) are bounded positive entire solutions of
(1.5) with c replaced by c′ and c′′, respectively. Moreover, arguments as in Step
1 ensure that infR×[−L,L] v(·, ·; v′, c′) > 0 and infR×[−L,L] v(·, ·; v′′, c′′) > 0 for
all L > 0.
Let

v′(t, x) := lim
n→∞ v(t + αn, x; v′, c′) locally uniformly in (t, x) ∈ R × R.

Since limn→∞ c′ · αn = c′′, we conclude that v′(t, x) is a bounded positive entire
solutions of (1.5) with c replaced by c′′ and satisfies infR×[−L,L] v′(t, x) > 0 for
all L > 0. Hence, Lemma 3.3 guarantees that

v′(t, x) = v(t, x; v′′, c′′), ∀(t, x) ∈ R × R.

It follows from (3.9) that

lim
n→∞ lim

m→∞ v∗(t + αn + βm, x; c)
= lim

n→∞ v(t + αn, x; v′, c′) = v(t, x; v′′, c′′) = lim
n→∞ v∗(t + αn + βn, x; c)

holds for all t ∈ R and uniformly for x in bounded subsets. This proves (3.8), and
hence, v∗(t, x; c) is almost-periodic in t uniformly for x in bounded sets. This
proves (1)

(2) Let v0 ∈ X+\{0} and suppose on the contrary that the conclusion fails. Then,
there exist ε0 > 0, and sequences {xn} ⊂ R and {tn} ⊂ (0,∞) satisfying tn → ∞
as n → ∞ such that

|v(tn, xn; v0, c) − v∗(tn, xn; c)| ≥ ε0, ∀n. (3.10)

Wemay assumewithout loss of generality that c · tn → c′ as n → ∞. We consider
two cases.
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Case (i) {xn} is bounded. We may assume that xn → x ′ as n → ∞. By a prior
estimates, we may assume that

v(t + tn, x; v0, c) → v1(t, x; c′) locally uniformly in (t, x) ∈ R × R,

v∗(t + tn, x; c) → v2(t, x; c′) locally uniformly in (t, x) ∈ R × R,

where for each i = 1, 2, vi (t, x; c′) is a bounded positive entire solution of (1.5) with
c replaced by c′ and satisfies infR×[−L,L] vi (·, ·; c′) > 0 for all L > 0. Note that
the positivity of v1(t, x; c′) follows from Theorem 3.1 (2). Hence, by Lemma 3.3,
v1(t, x; , c′) = v2(t, x; c′) for all (t, x) ∈ R × R, which contradicts the fact that
|v1(0, x ′; c′) − v2(0, x ′; c′)| ≥ ε0.
Case (ii) {xn} is unbounded. By Lemma 3.1, limn→∞ v∗(tn, xn; c) = 0 and
limn→∞ v(tn, xn; v0, c) = 0. This is in contradictory to (3.10).

This proves (2), and hence, completes the proof of the theorem. ��

3.3 Characterization of the approximate top Lyapunov exponent: I

In this subsection, we study the connections between λ∞ and the top Lyapunov expo-
nent of (1.6).

Consider the following family of equations:

wt = dwxx + c̃(t)wx + g(x, 0)w, x ∈ R, (3.11)

where c̃ ∈ H. Let X and X+ be as in Sect. 1, that is, X is the space of bounded
and uniformly continuous functions on R and is equipped with the supremum norm
‖u‖∞ = supx∈R |u(x)|, and X+ = {u ∈ X : u ≥ 0}. Denote by 	(t, c̃)w0 the unique
classical solution of (3.11) with initial condition 	(0, c̃)w0 = w0 ∈ X . The operator
norm of 	(t, c̃) is denoted by ‖	(t, c̃)‖ := supw∈X ,‖w‖∞=1 ‖	(t, c̃)w‖∞.

Definition 3.2 (Top Lyapunov exponent) The number

λ := sup
c̃∈H

lim sup
t→∞

ln ‖	(t, c̃)‖
t

is called the top Lyapunov exponent of (1.6).

Note that

ln ‖	(t + s, c̃)‖ = ln ‖	(t, c̃ · s) ◦ 	(s, c̃)‖ ≤ ln ‖	(t, c̃ · s)‖ + ln ‖	(s, c̃)‖

for any c̃ ∈ H and t, s ≥ 0. It follows from the almost-periodicity of c(t) and the
subadditive ergodic theorem [see e.g. Kingman (1973)] that limt→∞ ln ‖	(t,c̃)‖

t = λ

for all c̃ ∈ H.
It is clear that λ∞ ≤ λ. Thanks to Theorem 3.1 (1), we are able to prove the

following connections between λ∞ and λ.
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Proposition 3.1 The following hold.

(1) If λ∞ ≥ lim sup|x |→∞ g(x, 0), then λ∞ = λ.
(2) λ∞ and λ have the same sign, that is, λ∞ > 0, λ∞ = 0 and λ∞ < 0 if and only

if λ > 0, λ = 0 and λ < 0, respectively.

Proof Wewrite λ∞(a) and λ(a) for λ∞ and λ, respectively to indicate the dependence
on a = g(·, 0).
(1) Assume that λ∞(a) < λ(a). Without loss of generality, we may assume that

λ∞(a) < 0 < λ(a).

For otherwise, we can take λ0 ∈ (λ∞, λ) and replace a(x) by a0(x) = a(x)−λ0.
Thenλ∞(a0) = λ∞(a)−λ0 < 0 < λ−λ0 = λ(a0), and lim sup|x |→∞ a0(x) < 0.
Let v∗

0 ≡ 1 and ã(t, x) = g(x, v(t, ·; v∗
0)), where v(t, x; v∗

0) denotes the
solution of (1.5) with v(0, ·; v∗

0) = v∗
0 ∈ X+. Theorem A (1) ensures that

limt→∞ ‖v(t, ·; v∗
0)‖∞ = 0. This together with the uniform continuity of g on

R × [0, δ] for any δ > 0 implies the existence of some T > 0 such that

a(x) ≤ ã(t, x) + λ(a)

2
, ∀ t ≥ T , x ∈ R.

It follows from the comparison principle for parabolic equations that

	(t, c · T )v(T , ·; v∗
0) ≤ e

λ(a)
2 tv(t + T , ·; v∗

0), ∀t ≥ 0.

Note that infx∈R v(T , x; v∗
0) > 0, which is guaranteed by the uniform positivity

of v∗
0 and the lower boundedness of g : R × [0, δ) → R for any δ > 0. Hence,

there is M > 0 such that for any v0 ∈ X with ‖v0‖∞ = 1,

−Mv(T , ·; v∗
0) ≤ v0 ≤ Mv(T , ·; v∗

0).

Then by the comparison principle for parabolic equations again,

−M	(t, c · T )v(T , ·; v∗
0) ≤ 	(t, c · T )v0 ≤ M	(t, c · T )v(T , ·; v∗

0), ∀t ≥ 0.

This implies that ‖	(t, c · T )‖ ≤ M‖	(t, c · T )v(T , ·; v∗
0)‖. It then follows that

0 < λ(a) ≤ λ(a)
2 , which is a contradiction. Therefore, λ∞(a) = λ(a).

(2) Given (1), it suffices to show λ < 0 when λ∞ < lim sup|x |→∞ g(x, 0). Suppose
on the contrary that λ ≥ 0. Then, there is λ0 > 0 such that

λ∞(a) + λ0 < lim sup
|x |→∞

g(x, 0) + λ0 < 0 < λ(a) + λ0.

Let a0(x) = g(x, 0) + λ0. Then, λ∞(a0) < lim sup|x |→∞ a0(x) < 0 < λ(a0).

Arguments as in the proof of (1) gives λ(a0) <
λ(a0)
2 , which is a contradiction.

Hence λ < 0. ��

123



Population dynamics under climate change: persistence... Page 21 of 42    30 

We end this section with the following remark.

Remark 3.1 The analysis conducted for the model (1.4) can be adapted to treat the
following more general one:

ut = duxx + f (t, x −
∫ t

0
c(s)ds, u), x ∈ R, (3.12)

where (x, u) �→ f (t, x, u) satisfies (H) uniformly in t ∈ R, and t �→ f (t, x, u) is
almost periodic (or even uniquely ergodic) locally uniformly in (x, u) ∈ R × [0,∞).

Indeed, in the moving frame, (3.12) becomes

vt = dvxx + c(t)vx + f (t, x, v), x ∈ R. (3.13)

Its linearization at v ≡ 0 reads

wt = dwxx + c(t)wx + fu(t, x, 0)w, x ∈ R. (3.14)

Then, the approximate top Lyapunov exponent can be defined by considering (3.14)
and its truncated equations.

Note that for (3.13), the almost-periodicity also appears in the nonlinear term and
this is basically the only point where (3.13) differs from (1.5). But, the mathematical
analysis reacts insensitively to this difference. Therefore, modifying the arguments
in a straightforward way, we can prove the persistence criterion and global dynamics
for (3.13) as well as the characterization of the approximate top Lyapunov exponent.
These information then carries over to (3.12).

4 Persistence criterion and forced waves: the periodic case

In this section, we study the global dynamics of (1.4) in the periodic case, and prove
Theorem C. We also perform numerical simulations to support our theoretical study.

4.1 Persistence and forced waves

Recall that v(t, x; v0) denotes the solution of (1.5) with v(0, ·; v0) = v0 ∈ X+.
Theorem C follows from the following result.

Theorem 4.1 Suppose that c(t) is T -periodic for some T > 0. The following state-
ments hold.

(1) If λ∞ ≤ 0, then limt→∞ ‖v(t, ·; v0)‖∞ = 0 for all v0 ∈ X+.
(2) If λ∞ > 0, then (1.5) admits a unique bounded positive T -periodic solution v∗.

Moreover, there holds

lim
t→∞ ‖v(t, ·; u0) − v∗(t, ·)‖∞ = 0, ∀u0 ∈ X+\{0}.
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We present the following result on exponential separations before proving Theo-
rem 4.1. Let

�(t, s)w0 = w(t, ·; s, w0),

where w(t, ·; s, w0) is the solution of (1.6) with w(s, ·; s, w0) = w0 ∈ X . We write
w(t, ·; 0, w0) as w(t, ·;w0).

Lemma 4.1 If λ∞ > lim sup|x |→∞ g(x, 0), then there exist complementary closed
subspaces X1(t) and X2(t) of X such that

(1) X = X1(t)⊕X2(t), where X1(t) = span{w1(t, ·)} for somepositive entire solution
w1 of (1.6) and any w2 ∈ X2(t)\{0} changes sign on R, and X2 is invariant in
the sense:

�(t, s)X1(s) = X1(t), t ≥ s,

�(t, s)X2(s) ⊂ X2(t), t ≥ s;

(2) there are C, γ > 0 such that for any w2 ∈ X2(s), there holds

‖�(t, s)w2‖∞
‖w1(t − s, ·)‖∞

≤ Ce−γ (t−s) ‖w2‖∞
‖w1(s, ·)‖∞

, t ≥ s.

Proof We write λ∞(a) for λ∞ to indicate the dependence on a := g(·, 0). Note that
for any λ0 ∈ R, λ∞(a+λ0) = λ∞(a)+λ0.Without loss of generality, wemay assume
that λ∞(a) > 0. For otherwise, wemay choose λ0 ∈ (−λ∞(a),− lim sup|x |→∞ a(x))
and replace a(x) by a0(x) = a(x) + λ0. It is clear that λ∞(a0) > 0 and
lim sup|x |→∞ a0(x) < 0. Then by Lemma 2.1, the conditions in Húska and Poláčik
(2008, Theorem 9.2) are satisfied and the lemma then follows fromHúska and Poláčik
(2008, Theorem 9.2). ��
Proof of Theorem 4.1 By Theorems 3.1 and 3.2 , we only need to prove the theorem
when λ∞ = 0.

Suppose on the contrary that the conclusion fails. Then, we can follow the proof of
Theorem B to find a maximal bounded positive T -periodic solution v∗ of (1.5). Write
v∗(t) for v∗(t, x). By the variation of constants formula,

v∗(0) = v∗(nT ) = �(nT , 0)v∗(0)

+
∫ nT

0
�(nT , s)

[
g(·, v∗(s)) − g(·, 0)] v∗(s)ds. (4.1)

Let w1 ∈ X1(0) and w2 ∈ X2(0) be such that v∗(0) = w1 + w2. It follows from
(4.1), g(x, v) ≤ g(x, 0) for all x ∈ R and v ≥ 0, and Lemma 4.1 (2) that

v∗(0) ≤ �(nT , 0)v∗(0) = �(nT , 0)w1 + �(nT , 0)w2

= w1 + �(nT , 0)w2 → w1 as n → ∞,
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leading to v∗(0) ≤ w1, and hence, w2 ≤ 0. This implies that w2 = 0 for otherwise
w2 must change its sign due to Lemma 4.1(1). Hence, v∗(0) = w1 ∈ X1(0), which
together with (4.1) implies that g(·, v∗(s)) = g(·, 0), leading to a contradiction. ��

4.2 Numerical simulations for extinction and persistence

In this subsection,we performnumerical simulations to complement theoretical results
for extinction and persistence proven in earlier subsections. To do so, we first fix d,
f and c(t) appearing in the model (1.4). We set d = 1, let f be given in (1.2) with
parameters K = 2, D = 2 and R = 10, and choose c(t) = c + A sin π t with
period 2, where c ∈ R and A ≥ 0 are control parameters. We also fix the initial data

u0(x) = 2e− x2
20 .

We actually simulate the solution v(t, x) of (1.5) with initial data v0 = u0. Then,

u(t, x) = v

(
t, x −

∫ t

0
c(s)ds

)
, (t, x) ∈ [0,∞) × R.

To simulate v(t, x), we truncate (1.5) and consider it on (−L, L) = (−40, 40) with
zero Dirichlet boundary condition on ±L . We compute the solution of this initial-
boundary value problem by the finite difference method in space and Runge–Kutta
method in time. In all numerical simulations, the space step size and time step size are
respectively taken as 0.05 and 0.001.

Figures 1 and 2 provide two typical behaviors of u(t, x) in the case c = 6. Figure 1
shows when A = 10, the species persists and approaches a forced wave solution
exhibiting the 2-periodicity in the moving frame. In Fig. 1a, shapes of u(t, x) at
odd time points t = 7, 21, 35 are similar; so are the shapes at even time points
t = 14, 28, 42. The 2-periodicity in the moving frame is clearly reflected in Fig. 1b,
where shapes of u(t, x) at t = 41 and t = 42 look exactly the same as that at t = 39
and t = 40, respectively. Figure 2 shows when A = 70, the species is not able to keep
pace with the shifting climate envelope and eventually becomes extinct.
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Fig. 1 Numerical simulation of u(t, x) with c = 6 and A = 10
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Fig. 2 Numerical simulation of u(t, x) with c = 6 and A = 70

4.3 Numerical simulations for the approximate top Lyapunov exponent

In this subsection, we calculate the approximate top Lyapunov exponent λ∞. Consider
the following problem:

{
wt = wxx + c(t)wx + a(x)w, x ∈ (−L, L),

w(t,−L) = 0 = w(t, L),
(4.2)

where c(t) = c + A sin π t , L = 40, a(x) = fu(x, 0) (with the same f as used in
Sect. 4.2) is given by

a(x) =
{
10, |x | ≤ 20,

−2, |x | > 20.
(4.3)

Denote by w(t, x) the solution of (4.2) with initial condition w(0, ·) given by

w(0, ·) = w0 =
{
1, |x | ≤ 10,

0, |x | > 10.

WewriteλA∞ in place ofλ∞ to indicate the dependenceon A. Because ofLemma2.1(4),
we can use w(t, x) to calculate the approximate top Lyapunov exponent λA∞ (approx-
imated by the top Lyapunov exponent λA

40), that is, we calculate ln ‖w(t,·)‖∞
t for

sufficiently large t .
Due to possible exponential growth of the solution, Matlab would process w(t, x)

as infinity or negative infinity if we compute it for a large t . To overcome this overflow
issue, we compute w(t, x) by a piece-by-piece approach following Benettin et al.
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(1980a, b). The theoretical foundation is as follows. Denote by �(t, s) the evolution
family generated by (4.2). Fix some T∗ > 0, the periodmultiplied by a positive integer.
Then, �(t + T∗, s + T∗) = �(t, s). Writing wnT∗ = w(nT∗, ·) for each n ∈ N, we
find

wnT∗ = �(T∗, 0)w(n−1)T∗ =
[
�(T∗, 0)

w(n−1)T∗
‖w(n−1)T∗‖∞

]
‖w(n−1)T∗‖∞.

Taking the norm ‖ · ‖∞ and then ln on both sides leads to

ln ‖wnT∗‖∞ = ln

∥∥∥∥�(T∗, 0)
w(n−1)T∗

‖w(n−1)T∗‖∞

∥∥∥∥∞
+ ln ‖w(n−1)T∗‖∞.

Iterating the above identity gives

ln ‖wnT∗‖∞ =
n−1∑
i=1

ln

∥∥∥∥�(T∗, 0)
wiT∗

‖wiT∗‖∞

∥∥∥∥∞
+ ln ‖wT∗‖∞, n ∈ N.

The approximate top Lyapunov exponent is approximated by ln ‖wnT∗‖∞
nT∗ for a suffi-

ciently large n. Note that in each step, we only need to solve (4.2) on [0, T∗] with the
normalized initial data.

We calculate the approximate top Lyapunov exponent λA∞ by fixing c = 6 and
varying A from 0 to 80. Figure 3a plots the curve of λA

40 in terms of A, showing that
the approximate top Lyapunov exponent decreases with respect to A ≥ 0. We study
this in details in Section 5. Moreover, Figure 3a shows the existence of two windows
[0, A1] and [A1, A2] (where the approximate top Lyapunov exponent crosses 0) such
that λA

40 decreases slowly for A ∈ [0, A1] and much faster for A ∈ [A1, A2]. Similar
patterns are found for different choices of c(t) (seeFigs. 3b and4). These patterns imply
that (i) mild fluctuations have almost no effect on a persistent species under climate
change, showing the adaptability of the species; (ii) the species becomes sensitive to
fluctuations that are large enough to drive it to extinction.

We point out that when A is very large, the approximate of λA∞ by λA
40 is invalid

according to Theorem D(1) and (3), and there are substantial errors in numerical
simulations.

4.4 Characterization of the approximate top Lyapunov exponent: II

Consider

L := −∂t + d∂2xx + c(t)∂x + g(x, 0) (4.4)

as an unbounded operator in the space of T -periodic functions in X . Denote byLL the
operatorL restricted on (−L, L) and equipped with zero Dirichlet boundary condition
on±L . It is considered as an unbounded operator in the space of T -periodic functions
in XL .
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Fig. 3 a Numerical calculation of the approximate top Lyapunov exponent with c = 6 and A varying from
0 to 80. b Numerical calculation of the approximate top Lyapunov exponent with c = 5.5, 6, 6.2 and A
varying from 0 to 80
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Fig. 4 a Numerical calculation of the approximate top Lyapunov exponent with c(t) = 6 +
A sin(π t)+sin(2π t)
maxt [sin(π t)+sin(2π t)] and A varying from 0 to 120. b Numerical calculation of the approximate top

Lyapunov exponent with c(t) = 6 + A sin(π t)+sin(2π t)+sin(4π t)
maxt [sin(π t)+sin(2π t)+sin(4π t)] and A varying from 0 to 120

Proposition 4.1 Suppose that c(t) is T -periodic. If λ∞ > lim sup|x |→∞ g(x, 0), then
λ∞ is the principal eigenvalue of L.
Proof Note that for L > 0, λL is the principal eigenvalue of LL . Thus, there exists a
bounded positive T -periodic function wL solving

{
wL
t = dwL

xx + c(t)wL
x + (g(x, 0) − λL)wL , x ∈ (−L, L),

wL(t,−L) = 0 = wL(t, L).
(4.5)

We normalize wL so that maxR×(−L,L) wL = 1. By the parabolic regularity, we may
assume the existence of w∞ such that wL(t, x) → w∞(t, x) locally uniformly in
(t, x) ∈ R × R as L → ∞. Therefore, w∞ is bounded, non-negative and T -periodic,
and satisfies Lw∞ = λ∞w∞.
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To see w∞ > 0, let (tL , xL) ∈ [0, T ] × (−L, L) be such that wL(tL , xL) = 1.
Examining (4.5) at the point (tL , xL) yields 0 = dwL

xx (tL , xL) + (g(xL , 0) − λL) ≤
g(xL , 0) − λL . Since lim sup|x |→∞ g(x, 0) < λ∞, we deduce the boundedness of
{xL}L�1. Thus, we may assume without loss of generality that (tL , xL) → (t∗, x∗) as
L → ∞, leading to w∞(t∗, x∗) = 1. Harnack’s inequality then yields w∞ > 0.

By Lemma 4.1, λ∞ is simple and isolated, and hence, is the principal eigenvalue.
��

Remark 4.1 We point out that the condition λ∞ > lim sup|x |→∞ g(x, 0) is sharp in
the following sense: if c(t) ≡ c �= 0 and the limits limx→±∞ g(x, 0) = g± are
exponential, then

max{g+, g−} = sup σess(d∂2xx + c∂x + g(x, 0)).

In fact, it is easy to see from the arguments in Kapitula and Promislow (2013, Section
3.1.1.4) that σess(d∂2xx + c∂x + g(x, 0)) is the closure of the region in C bounded by
the curves {−dk2 + ick + g− : k ∈ R} and {−dk2 + ick + g+ : k ∈ R}. From which,
the conclusion follows.

5 Effects of fluctuations

In this section, we study the effects of fluctuations on the shifting speed or location
of the climate envelope. In particular, we prove Theorem D and use analytic methods
(mainly,matched asymptotic expansions) and performnumerical simulations to justify
(P1)–(P3) described in Sect. 1.

Consider (1.7) and assume that σ is non-zero and T -periodic for some T > 0, and
has zero average, namely,

∫ T
0 σ(s)ds = 0. Thus, Aσ and A

∫ t
0 σ(s)ds are respectively

fluctuations on the shifting speed c and the location ct of the climate envelope. The
parameter A is the amplitude of fluctuations.

In preparation for the analysis, we consider the following T -periodic parabolic
operator

LA = −∂t + d∂2xx + [c + Aσ(t)] ∂x + g(x, 0).

Denote by λA
L the principal eigenvalue of LA,L , which is LA restricted on (−L, L)

and equipped with the zero Dirichlet boundary condition on ±L . By Lemma 2.2, the
approximate top Lyapunov exponent λA∞ := limL→∞ λA

L is well-defined and finite.
By Theorem C, λA∞ is a criterion for extinction and persistence of (1.7).

If A0 is such that λA0∞ > lim sup|x |→∞ g(x, 0), Proposition 4.1 ensures that λA0∞ is
the principal eigenvalue ofLA0 with the principal eigenfunctionψA0 , namely, a unique
(up to multiplication by constants) positive, bounded and T -periodic eigenfunction.
Classical analytic perturbation theory (see e.g. Kato (1995, Chapter 7, Section 2) or
Reed and Simon (1978, TheoremXII.9)) ensures that for all A in a small neighborhood
of A0, λA∞ is the principal eigenvalue of LA with the principal eigenfunction ψA.
Moreover, λA∞ and ψA have asymptotic expansions in A near A0.
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5.1 Proof of TheoremD

(1) Fix A > 0. Obviously, λA
L ≥ �L + infx∈R g(x, 0), where �L is the principal

eigenvalue of the T -periodic operator −∂t + d∂2xx + [c + Aσ(t)] ∂x restricted on
(−L, L) and equipped with zero Dirichlet boundary condition on ±L . Denote by
φL the positive eigenfunction associated to �L .
Set 	L(t, y) = φL(t, x), where y = x + A

∫ t
0 σ(s)ds. Obviously, 	L is a T -

periodic function on the T -periodic domain DT := ⋃
t∈R

(
{t} ×

[
−L + A

∫ t
0

σ(s)ds, L + A
∫ t
0 σ(s)ds

])
and satisfies

⎧⎪⎨
⎪⎩

−∂t	L + d∂2yy	L + c∂y	L = �L	L in int(DT ),

	L = 0 on ∂DT ,

	L > 0 in int(DT ).

Let L̃ > 0 be the largest number such that R × [−L̃ − 1, L̃ + 1] ⊂ DT . Such a
L̃ always exists as long as L is sufficiently large. Moreover, L̃ → ∞ as L → ∞.
Clearly, restricted on R × [−L̃, L̃], 	L is T -periodic and satisfies inf 	L > 0
and

−∂t	L + d∂2yy	L + c∂y	L = �L	L in R × (−L̃, L̃).

It follows from the comparison principle for parabolic equations that �L ≥ �̃,
where �̃ is the principal eigenvalue of the operator d d2

dy2
+ c d

dy restricted on

(−L̃, L̃) and equippedwith zero Dirichlet boundary condition on±L̃ . Elementary
calculations yield �̃ = − 1

4d (c2 + π2d2

L̃2 ), and hence, λA
L ≥ − 1

4d (c2 + π2d2

L̃2 ) +
infx∈R g(x, 0). Letting L → ∞, we conclude that λA∞ ≥ − c2

4d + inf x∈R g(x, 0).
(2) For clarity, we provide a proof for the case that d = 1, c = 0, and σ(t) has only

one zero in (0, T ). The general case can be proven in the same manner.
Let t∗ ∈ (0, T ) be the zero of σ(t) in (0, T ). We may assume without loss of
generality that σ > 0 on (0, t∗). So, σ < 0 on (t∗, T ).
Set a = g(·, 0). For any given 0 < ε � 1, let a∞ < 0 be such that
lim sup|x |→∞ a(x) < a∞ < lim sup|x |→∞ a(x) + ε. Clearly, there is L∗ � 1
such that a(x) ≤ a∞ for all |x | ≥ L∗. Then, there exists a smooth function
a∗ : R → R satisfying a∗ ≥ a and a∗(x) = a∞ for all |x | ≥ L∗. We claim that

Claim 1 There are δ > 0 and a continuous T -periodic function φ : R × R → R such
that

0 < inf φ ≤ supφ < ∞ (5.1)
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and, for all A � 1,

−φt + φxx + Aσ(t)φx + a∗(x)φ ≤ (a∞ + 4ε)φ in

((0, T )\{δ, t∗ − δ, t∗ + δ, T − δ}) × R. (5.2)

In the case that the limits a(±∞) := limx→±∞ a(x) exist and coincide, for given
0 < ε � 1, there are L∗ > 0 and a smooth function a∗(x) such that a∗(x) = a∞ :=
a(±∞) − ε for |x | ≥ L∗ and a∗(x) ≤ a(x) for x ∈ R. We claim that

Claim 2 There are δ > 0 and a continuous T -periodic function φ̃ : R × R → R such
that

0 < inf φ̃ ≤ sup φ̃ < ∞ (5.3)

and, for all A � 1,

−φ̃t + φ̃xx + Aσ(t)φ̃x + a∗(x)φ̃ ≥ (a∞ − 4ε)φ̃ in

((0, T )\{δ, t∗ − δ, t∗ + δ, T − δ}) × R. (5.4)

Claim 1 together with the comparison principle for parabolic equations implies that
λA∞ ≤ a∞ + 4ε for all A � 1. Hence, lim supA→∞ λA ≤ lim sup|x |→∞ a(x).

Claim 2 together with the comparison principle for parabolic equations implies
that, if the limits a(±∞) := limx→±∞ a(x) exist and coincide, then λA ≥ a∞ − 4ε
for all A � 1. Hence, lim inf A→∞ λA ≥ a(±∞). It then follows that limA→∞ λA

exists and limA→∞ λA = a(±∞).
It remains to prove Claims 1 and 2. We first prove Claim 1, that is, we construct

a continuous T -periodic function φ satisfying (5.1) and (5.2). Such a function φ is
constructed to be of the form γ (t)β(t, x) such that (5.2) holds for t near 0, t∗, and T
due to γ (t) and for other t’s due to β(t, x).

We first construct the function β, which is a T -periodic extension of β : [0, T ) ×
R → R defined as follows:

• for t ∈ {0, t∗}, β(t, x) = 1 for all x ∈ R,
• for t ∈ (0, t∗),

β(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 + e

− 1
(t∗)2
4 −(t− t∗

2 )2 · e− 1
16(L∗)4 , x ≤ −L∗,

1 + e
− 1

(t∗)2
4 −(t− t∗

2 )2 · e− 1
16(L∗)4−(x+L∗)4 , x ∈ (−L∗, L∗),

1, x ≥ L∗,

• for t ∈ (t∗, T ),

β(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x ≤ −L∗,

1 + e
− 1

(T−t∗)2
4 −(t− T+t∗

2 )2 · e− 1
16(L∗)4−(x−L∗)4 , x ∈ (−L∗, L∗),

1 + e
− 1

(T−t∗)2
4 −(t− T+t∗

2 )2 · e− 1
16(L∗)4 , x ≥ L∗.
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By the properties of the standard smoothmollifer, it is easy to see that β ∈ C1,2(R×R)

satisfies 0 < inf β ≤ supβ < ∞ and sup(|βt | + |βx | + |βxx |) < ∞. Note that

σ(t)βx (t, x) < 0, ∀ t ∈ (0, t∗) ∪ (t∗, T ), x ∈ (−L∗, L∗) (5.5)

and for any δ1, δ2 > 0,

sup
t∈[δ1,t∗−δ1]∪[t∗+δ1,T−δ1]

x∈(−L∗+δ2,L∗−δ2)

σ (t)βx (t, x) < 0. (5.6)

Note also that, for any 0 < ε � 1, there is a δ2 > 0 such that

⎧⎪⎨
⎪⎩
a∞ − a∗(x) ≥ −ε, x ∈ [−L∗,−L∗ + δ2] ∪ [L∗ − δ2, L∗]
βt (t, x) ≥ −εβ(t, x), t ∈ (0, t∗) ∪ (t∗, T ), x ∈ [−L∗,−L∗ + δ2] ∪ [L∗ − δ2, L∗]
βxx (t, x) ≤ εβ(t, x), t ∈ (0, t∗) ∪ (t∗, T ), x ∈ [−L∗,−L∗ + δ2] ∪ [L∗ − δ2, L∗].

(5.7)

Next, for any 0 < ε � 1, let δ1 > 0 and γ : R → R be a T -periodic function such
that

γ (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ekt , t ∈ [0, δ1),
e−ε(t−δ1)ekδ1 , t ∈ [δ1, t∗ − δ1),

ek(t−t∗+δ1)ekδ1e−ε(t∗−2δ1), t ∈ [t∗ − δ1, t∗ + δ1),

e−ε(t−t∗−δ1)e3kδ1e−ε(t∗−2δ1), t ∈ [t∗ + δ1, T − δ1),

ek(t−T+δ)e3kδ1e−ε(T−4δ1), t ∈ [T − δ1, T ),

where k is a positive constant satisfying δ1 = εT
4k+4ε and

k > sup
t∈[0,T ],x∈R

(
a∞ − a∗(x) + βt (t, x) − βxx (t, x)

)
.

It is easy to see that γ satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf t∈[0,T ] γ (t) > 0,

γt (t) ≥ −εγ (t) for t ∈ (0, T )\{δ1, t∗ − δ1, t∗ + δ1, T − δ1},
γt (t) ≥ supt∈[0,T ],x∈R

(
a∞ − a∗(x) + βt (t, x) − βxx (t, x)

)
γ (t)

for t ∈ (0, δ1) ∪ (t∗ − δ1, t∗ + δ1) ∪ (T − δ1, T ).

(5.8)

Now, for any 0 < ε � 1, let φ(t, x) = γ (t)β(t, x). It follows from (5.5) to (5.8)
that there is A∗ > 0 such that for any A ≥ A∗, there holds
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φt − φxx − Aσ(t)φx − a∗(x)φ(t, x)

= −a∞φ(t, x) + (a∞ − a∗(x))φ(t, x) + γt (t)β(t, x) + γ (t)βt (t, x)

− γ (t)βxx (t, x) − Aσ(t)βx (t, x)

≥ −(a∞ + 4ε)φ(t, x), ∀ t ∈ (0, T )\{δ1, t∗ − δ1, t
∗ + δ1, T − δ1}, x ∈ R.

Claim 1 is thus proven.
Next, we prove Claim 2. We construct a continuous T -periodic function φ̃, which

satisfies (5.3) and (5.4) and is of the form γ̃ (t)β̃(t, x) such that (5.4) holds for t near 0,
t∗, and T due to γ̃ (t) and for other t’s due to β̃(t, x). The idea to construct β̃(t, x) and
γ̃ (t) is similar to the idea to construct β(t, x) and γ (t), but changing the monotonicity.
To bemore precise, we define β̃(t, x) to be β(t,−x), that is, β̃ restricted on [0, T )×R

reads as follows:

• for t ∈ {0, t∗}, β̃(t, x) = 1 for all x ∈ R,
• for t ∈ (0, t∗),

β̃(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x ≤ −L∗,

1 + e
− 1

(t∗)2
4 −(t− t∗

2 )2 · e− 1
16(L∗)4−(x−L∗)4 , x ∈ (−L∗, L∗),

1 + e
− 1

(t∗)2
4 −(t− t∗

2 )2 · e− 1
16(L∗)4 , x ≥ L∗,

• for t ∈ (t∗, T ),

β̃(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 + e

− 1
(T−t∗)2

4 −(t− T+t∗
2 )2 · e− 1

16(L∗)4 , x ≤ −L∗,

1 + e
− 1

(T−t∗)2
4 −(t− T+t∗

2 )2 · e− 1
16(L∗)4−(x+L∗)4 , x ∈ (−L∗, L∗),

1, x ≥ L∗.

For any 0 < ε � 1 and k̃ � 1, let γ̃ : R → R be a T -periodic function such that

γ̃ (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−k̃t , t ∈ [0, δ̃1),
eε(t−δ̃1)e−k̃δ̃1 , t ∈ [δ̃1, t∗ − δ̃1),

e−k̃(t−t∗+δ̃1)e−k̃δ̃1eε(t∗−2δ̃1), t ∈ [t∗ − δ̃1, t∗ + δ̃1),

eε(t−t∗−δ̃1)e−3k̃δ1eε(t∗−2δ̃1), t ∈ [t∗ + δ̃1, T − δ̃1),

e−k̃(t−T+δ̃1)e−3k̃δ̃1eε(T−4δ̃1), t ∈ [T − δ̃1, T ),

where δ̃1 = εT
4k̃+4ε

. Then, by arguments as in Claim 1, both (5.3) and (5.4) hold with

φ̃(t, x) = β̃(t, x)γ̃ (t) when A � 1. Claim 2 is thus proven.

(3) Fix L > 0. Shifting σ slightly if necessary, we may assume without loss of
generality that σ(0) �= 0 so that σ(nT ) �= 0 for all n ∈ Z. Let N ∈ N be the
number of zeros of σ in (0, T ), which are labeled as 0 < t1 < t2 < · · · < tN < T .
Note that N is at least 2. Set t0 = tN − T and tN+1 = t1 + T .
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Fix δ > 0 so small that the intervals [ti − δ, ti + δ], i ∈ {1, . . . , N } are disjoint and
all contained in (0, T ), and σ ′ admits no zero in the union of these intervals.

For i ∈ {0, 1, . . . , N + 1}, we set

Li =
{
L + 1 if σ ′(ti ) > 0,

−L − 1 if σ ′(ti ) < 0,

and define

	(t, x) = e− c+Aσ(t)
2d (x−Li ), (t, x) ∈ [ti − δ, ti + δ] × (−L, L).

This in particular defines 	 on ∪N
i=1[ti − δ, ti + δ] × (−L, L). We extend 	 to

[0, T ] × (−L, L) by linear interpolation in the spatial variable as the time variable
changes. More precisely, for i ∈ {0, 1, . . . , N }, we define

	(t, x) = e
− c+Aσ(t)

2d

[
t−(ti+δ)

ti+1−δ−(ti+δ)
(x−Li+1)+ ti+1−δ−t

ti+1−δ−(ti+δ)
(x−Li )

]
,

(t, x) ∈ (ti + δ, ti+1 − δ) × (−L, L).

Thus, we have defined 	 on [0, T ] × (−L, L). Clearly, inf 	 > 0 and 	(0, ·) =
	(T , ·).

It is straightforward to check that for i ∈ {1, . . . , N },

LA,L	(t, x) =
{
Aσ ′(t)
2d

(x − Li ) − [c + Aσ(t)]2
4d

+ g(x, 0)

}
	(t, x)

≤ [−αi A + g(x, 0)]	(t, x), ∀(t, x) ∈ (ti − δ, ti + δ) × (−L, L),

where αi = 1
2d inf(t,x)∈(ti−δ,ti+δ)×(−L,L) σ ′(t)(Li − x) > 0. For i ∈ {0, 1, . . . , N },

LA,L	(t, x)

=
{
Aσ ′(t)
2d

[
t − (ti + δ)

ti+1 − δ − (ti + δ)
(x − Li+1) + ti+1 − δ − t

ti+1 − δ − (ti + δ)
(x − Li )

]

+ c + Aσ(t)

2d

Li − Li+1

ti+1 − δ − (ti + δ)
− [c + Aσ(t)]2

4d
+ g(x, 0)

}
	(t, x)

≤
{
βi A − γi A

2 + κi

}
	(t, x), ∀(t, x) ∈ (ti + δ, ti+1 − δ) × (−L, L),

where βi = βi (L) > 0, γi = 1
4d inf t∈(ti+δ,ti+1−δ) σ (t)2 > 0 and κi = κi (L) > 0.

Hence, there are C1 = C1(L) > 0 and C2 = C2(L) > 0 such that LA,L	 ≤
(−C1A + C2)	 a.e. in (0, T ) × (−L, L). It follows from the comparison principle
for parabolic equations that λA

L ≤ −C1A + C2.
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5.2 Justification of (P1)

Recall that we focus on the case that the species persists in the absence of fluctuations,
namely, λ0∞ > 0. Since lim sup|x |→∞ g(x, 0) < 0, λA∞ is the principal eigenvalue of
LA with the principal eigenfunction ψA for all small A. Moreover, λA∞ and ψA have
asymptotic expansions in A near 0.

For 0 < A � 1, we set ε = A. Then,

− ∂tψε + d∂xxψε + [c + εσ (t)] ∂xψε + g(x, 0)ψε = λε∞ψε. (5.9)

Consider asymptotic expansions of λε∞ and ψε at ε = 0:

λε∞ = λ0 + ελ1 + ε2λ2 + · · · ,

ψε = φ0 + εφ1 + ε2φ2 + · · · ,

whereλ0, λ1, λ2, . . . are real numbers andφ0, φ1, φ2, . . . are T -periodic in t . Inserting
these expansions into (5.9) and collecting terms of orders ε0, ε1 and ε2, we find

order ε0 : L0φ0 − λ0φ0 = 0,

order ε1 : L0φ1 − λ0φ1 = λ1φ0 − σ(t)∂xφ0,

order ε2 : L0φ2 − λ0φ2 = λ1φ1 + λ2φ0 − σ(t)∂xφ1.

From the equation of order ε0, we see that (λ0, φ0) is the principal eigenpair of
L0, and of the elliptic operator d∂2xx + c∂x + g(x, 0). Hence, (λ0, φ0) = (λ0∞, ψ0)

and ψ0(t, x) = ψ0(x) is independent of t . Denote by L∗
0 the adjoint operator of L0,

namely,L∗
0 = −∂t +d∂2xx −c∂x +g(x, 0). Then, λ0∞ is also the principal eigenvalue of

L∗
0 as well as the elliptic operator d∂2xx − c∂x + g(x, 0). Denote by ψ∗

0 (t, x) = ψ∗
0 (x)

the associated positive eigenfunction.
Since φ1 solves the equation of order ε1, there must hold due to the Fredholm

alternative that

∫ T

0

∫
R

ψ∗
0 (x) [λ1ψ0(x) − σ(t)∂xψ0(x)] dxdt = 0,

which together with
∫ T
0 σ(t)dt = 0 and the positivity of ψ0 and ψ∗

0 yields
λ1 = 0. Similarly, since φ2 solves the equation of order ε2, there must be true that∫ T
0

∫
R

ψ∗
0 (x) [λ2ψ0(x) − σ(t)∂xφ1(t, x)] dxdt = 0, where we used λ1 = 0. It fol-

lows that

λ2 =

∫ T

0

∫
R

σ(t)ψ∗
0 (x)∂xφ1(t, x)dxdt

T
∫
R

ψ∗
0 (x)ψ0(x)dx

=
−

∫ T

0

∫
R

σ(t)∂xψ
∗
0 (x)φ1(t, x)dxdt

T
∫
R

ψ∗
0 (x)ψ0(x)dx

.

(5.10)
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Table 1 Numerical calculation of λ2

c 2 3 4 5 6 7 8

λ2 −0.9080 −0.8971 −1.5982 −1.9851 −2.2876 −0.0549 −12.3161

Note that
∫
R

ψ∗
0 (x)ψ0(x)dx > 0. Due to the cancellation in the integral

∫ T
0

∫
R

σ(t)

ψ∗
0 (x)∂xφ1(t, x)dxdt or

∫ T
0

∫
R

σ(t)∂xψ∗
0 (x)φ1(t, x)dxdt , it is in general hard to

determine the sign of λ2 analytically. We show numerically that λ2 < 0, and hence,

λε∞ = λ0∞ + ε2λ2 + · · · for 0 < ε � 1.

This justifies (P1).
For numerical simulations, we use the same parameters as in the previous cases,

that is, σ(t) = sin π t , g(x, 0) = a(x) is given in (4.3) and L = 40, and treat c as
the control parameter. We numerically calculate λ2 by choosing several c. Results are
listed in Table 1.

Below, we mention some considerations for the numerical calculations of λ2.

(i) Whileψ0,ψ∗
0 and φ1 are not uniquely determined, λ2 is independent of particular

choices of them. Indeed,ψ0 andψ∗
0 are unique up to multiplication by constants.

Denote by 	 a particular T -periodic solution of the equation of order ε1 with
φ0 = ψ0. Then, all possible φ1 are given by {c1ψ0 + 	 : c1 ∈ R}. If we solve
the same equation with φ0 = cψ0 for some arbitrarily fixed c ∈ R, all possible
φ1 are given by {c1ψ0 + c	 : c1 ∈ R}. It follows from ∫ T

0 σ(s)ds = 0 that

∫ T

0

∫
R

σ(t)[c∗ψ∗
0 (x)]∂x [c1ψ0(x) + c	(t, x)]dxdt

T
∫
R

[c∗ψ∗
0 (x)][cψ0(x)]dx

=

∫ T

0

∫
R

σ(t)ψ∗
0 (x)∂x	(t, x)dxdt

T
∫
R

ψ∗
0 (x)ψ0(x)dx

is independent of c, c∗ and c1.
(ii) The computation of ψ0 and ψ∗

0 are conducted by the Matlab eigenfunction com-
mand.

(iii) The computation of φ1 needs extra attention, as the homogeneous equation asso-
ciated to the equation for φ1 is at a critical state. More precisely, since 0 is
the largest eigenvalue of the operator L0 − λ0∞, direct computation could cause
exponentially large errors as time elapses. We proceed by approximation. Let
0 < δ � 1 and consider the following inhomogeneous linear equation:

L0φ1 − (λ0∞ + δ)φ1 = −σ(t)∂xψ0.
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It admits a unique T -periodic solution given by

φδ
1(t, ·) =

∫ t

−∞
σ(s)eLδ

e(t−s)∂xψ0ds, t ∈ R, (5.11)

where {eLδ
et }t≥0 is the semigroup on X generated byLδ

e := d∂2xx+c∂x+g(x, 0)−
(λ0∞ + δ), where we recall from Section 1 that X is the space of bounded and
uniformly continuous functions on R equipped with the supremum norm ‖ · ‖∞.
The subscript “e” stands for “elliptic”. Then,

{φδ
1}0<δ�1 is uniformly bounded, (5.12)

which we justify immediately. Applying the regularity theory for parabolic equa-
tions, φδ

1 converges to some φ1 as δ → 0 along subsequences. Based on this, we
calculate φδ

1 for a small δ that gives an approximation of φ1. The calculation of

φδ
1 is much more stable as the semigroup {eLδ

et }t≥0 is exponentially stable.

It remains to verify (5.12). Note that there is C1 > 0 such that

‖eLδ
et‖ ≤ C1e

−δt , ∀t ≥ 0 (5.13)

for all 0 < δ � 1, where ‖eLδ
et‖ := supφ∈X ,‖φ‖∞=1 ‖eLδ

etφ‖∞. Set Le := d∂2xx +
c∂x + g(x, 0) − λ0∞ and denote by {eLet }t≥0 the semigroup on X generated by Le.

Clearly, eLδ
et = e−δt eLet for all t ≥ 0. Let P be the projection onto span{ψ0} (the

eigenspace corresponding to theprincipal eigenvalue0 ofLe) andQbe its complement.
Then, there are C2 > 0 and γ > 0 such that

‖eLet |ranQ‖ ≤ C2e
−γ t , ∀t ≥ 0. (5.14)

For t ∈ R, let Nt be the largest integer such that NtT ≤ t . Then, we can rewrite
(5.11) as

φδ
1(t, ·) =

Nt∑
n=−∞

∫ nT

(n−1)T
σ(s)eLδ

e(t−s)P∂xψ0ds

+
∫ t

Nt T
σ(s)eLδ

e(t−s)P∂xψ0ds +
∫ t

−∞
σ(s)eLδ

e(t−s)Q∂xψ0ds

=:
Nt∑

n=−∞
In(t, δ) + I (t, δ) + I I (t, δ).
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Since0 ≤ t−NtT ≤ T , it is easy to see from (5.13) that sup0<δ�1 supt∈R ‖I (t, δ)‖∞ <

∞. Set σ∗ = maxR |σ |. By (5.14), we deduce

‖I I (t, δ)‖∞ ≤ C2σ∗‖∂xψ0‖∞
∫ t

−∞
e−γ (t−s)ds = C2σ∗

γ
‖∂xψ0‖∞,

∀t ∈ R, 0 < δ � 1.

Note that eLδ
etP = e−δt eLetP = e−δtP . For each n ≤ Nt ,

‖In(t, δ)‖∞ =
∣∣∣∣
∫ nT

(n−1)T
σ(s)e−δ(t−s)ds

∣∣∣∣ ‖P∂xψ0‖∞

≤
∣∣∣∣
∫ nT

(n−1)T
σ(s)

[
e−δ(t−s) − e−δ(t−(n−1)T )

]
ds

∣∣∣∣ ‖∂xψ0‖∞

≤ σ∗‖∂xψ0‖∞
∫ nT

(n−1)T

(∫ t−(n−1)T

t−s
δe−δτdτ

)
ds

≤ σ∗‖∂xψ0‖∞δT
∫ nT

(n−1)T
e−δ(t−s)ds,

where we used the fact that σ has zero average in the first inequality. It follows that

∥∥∥∥∥
Nt∑

n=−∞
In(t, δ)

∥∥∥∥∥
∞

≤ σ∗‖∂xψ0‖∞δT
∫ Nt T

−∞
e−δ(t−s)ds

≤ σ∗‖∂xψ0‖∞δT
∫ t

−∞
e−δ(t−s)ds = σ∗T ‖∂xψ0‖∞, ∀t ∈ R, 0 < δ � 1.

Hence, (5.12) follows.
Analytical justification in a special case In the case that c = 0 and g(x, 0) is

symmetric with respect to x = 0 (or x = x0 by spatial translation), we are able to
justify λ2 < 0 analytically. In this case, ψ∗

0 can be chosen to be ψ0, and thus, (5.10)
gives

λ2 = − 1

T

∫ T

0

∫
R

σ(t)∂xψ0(x)φ1(t, x)dxdt,

where we normalizedψ0 so that
∫
R

|ψ0(x)|2dx = 1.Multiplying the equation of order
ε1 by φ1 and integrating the resulting equation over [0, T ] × R, we find from λ1 = 0
that

λ2T =
∫ T

0

[
−d

∫
R

|∂xφ1(t, x)|2dx +
∫
R

g(x, 0)|φ1(t, x)|2dx − λ0∞
∫
R

|φ1(t, x)|2dx
]
dt .

We then conclude λ2 < 0 from the following facts:
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(1) Note that the functional

φ �→ −d
∫
R

|∂xφ(x)|2dx +
∫
R

g(x, 0)|φ(x)|2dx − λ0∞
∫
R

|φ(x)|2dx

has maximal value 0, which is attained only on span{ψ0}.
(2) φ̂1 := 1

T

∫ T
0 φ1(t, ·)dt ∈ span{ψ0}. Indeed, taking the time average of the equa-

tion of order ε1 leads to d∂2xx φ̂1 + a(x)φ̂1 − λ0φ̂1 = 0.
(3) It follows from (1), (2) and φ1 �≡ φ̂1 that there is I ⊂ [0, T ] with |I | > 0 such

that

− d
∫
R

|∂xφ1(t, x)|2dx +
∫
R

g(x, 0)|φ1(t, x)|2dx

− λ0∞
∫
R

|φ1(t, x)|2dx ≤ 0, t ∈ [0, T ]\I ,

− d
∫
R

|∂xφ1(t, x)|2dx +
∫
R

g(x, 0)|φ1(t, x)|2dx

− λ0∞
∫
R

|φ1(t, x)|2dx < 0, t ∈ I .

Hence, λ2 < 0.

5.3 Justification of (P2)

Fix A0 ∈ (0,∞) such that λ
A0∞ > lim sup|x |→∞ g(x, 0). For A ≈ A0, we set ε =

A − A0. Then, LAψA = λA∞ψA can be written as

− ∂tψA + d∂2xxψA + [c + A0σ(t) + εσ (t)] ∂xψA + g(x, 0)ψA = λA∞ψA. (5.15)

Consider asymptotic expansions of λA∞ and ψA at A = A0:

λA∞ = λ0 + ελ1 + · · · ,

ψA = φ0 + εφ1 + · · · ,

where λ0, λ1, . . . are real numbers and φ0, φ1, . . . are T -periodic functions. Inserting
these expansions into (5.15) and collecting terms of orders ε0 and ε1, we find

order ε0 : LA0φ0 − λ0φ0 = 0,

order ε1 : LA0φ1 − λ0φ1 = λ1φ0 − σ(t)∂xφ0,

It follows from the equation of order ε0 that (λ0, φ0) is the principal eigenpair of LA0 ,
namely, (λ0, φ0) = (λ

A0∞ , ψA0).
Denote by L∗

A0
the adjoint operator of LA0 . Then, λ

A0∞ is also the principal
eigenvalue of L∗

A0
. Denote by ψ∗

A0
the positive eigenfunction of L∗

A0
associated
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Table 2 Numerical calculation of λ1

A 10 20 30 40 50 60 70

λ1 −2.7343(10)−4 −7.3638(10)−4 −0.0077 −0.0885 −0.0955 −0.0948 −0.1331

to λ
A0∞ . Since φ1 solves the equation of order ε1, the Fredholm alternative gives∫ T

0

∫
R

ψ∗
A0

(t, x)
[
λ1ψA0(t, x) − σ(t)∂xψA0(t, x)

]
dxdt = 0, leading to

λ1 =

∫ T

0

∫
R

σ(t)ψ∗
A0

(t, x)∂xψA0(t, x)dxdt∫ T

0

∫
R

ψ∗
A0

(t, x)ψA0(t, x)dxdt

.

Note that
∫ T
0

∫
R

ψ∗
A0

(t, x)ψA0(t, x)dxdt > 0. However, it is in general hard to
determine the sign of λ1 analytically thanks to the cancellation in the integral∫ T
0

∫
R

σ(t)ψ∗
A0

(t, x)∂xψA0(t, x)dxdt . We show numerically that λ1 < 0, and hence,

λA∞ = λA0∞ + ελ1 + · · · for |ε| � 1.

This justifies (P2).
For numerical simulations, we use the same parameters as in the previous cases,

that is, σ(t) = sin π t , g(x, 0) = a(x) is given in (4.3) and L = 40, fix c = 6 and
treat A as the control parameter. We numerically calculate λ1 by choosing several A.
Results are listed in Table 2.

We make some comments on the numerical calculations of λ1. Since ψA0 and ψ∗
A0

are unique up to multiplication by constants, λ1 is independent of particular choices of
ψA0 and ψ∗

A0
. Our calculation of ψA0 is guided by the following well-known fact [see

e.g. Poláčik and Tereščák (1993)]: if w(t, x) solves wt = dwxx + [c + A0σ(t)]wx +
g(x, 0)w with initial condition w0 � 0, then for any t ∈ [0, T ],

w(t + nT , ·)
‖w(nT , ·)‖∞

→ ψA0(t, ·)
‖ψA0(0, ·)‖∞

as n → ∞. (5.16)

We then compute w(t + nT , x) for t ∈ [0, T ] and a sufficiently large n to obtain an
approximation ofψA0 aswell as its spatial partial derivative on [0, T ]. The computation
of ψ∗

A0
is done in the same way.

A formal justification of (5.16) is straightforward. In fact, considering the time-T
map and using the projection onto span{ψA0(0, ·)} and its complement, it is not hard

to see that w(nT , ·) = Ceλ
A0∞ nTψA0(0, ·) + Rn for all n ≥ 0, where C > 0 (due to

the non-negativity of w0) and Rn satisfies e−λ0∞nT ‖Rn‖∞ → 0 exponentially fast as
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Fig. 5 Plot of c �→ Ac (the curve) and c �→ c∗ − c (the straight line)

n → ∞ (due to the spectral gap). Then,

w(nT , ·)
‖w(nT , ·)‖∞

= CψA0(0, ·) + e−λ
A0∞ nT Rn

‖CψA0(0, ·) + e−λ
A0∞ nT Rn‖∞

→ ψA0(0, ·)
‖ψA0(0, ·)‖∞

as n → ∞.

This leads to (5.16).

5.4 Justification of (P3)

The justification done in Sect. 5.3 for λA∞ carries over to λA
L . Hence,

dλA
L

d A < 0 on
(0,∞). It follows that for any 0 < A1 < A2 < ∞,

λ
A2
L − λ

A1
L =

∫ A2

A1

dλA
L

d A
d A < 0,

implying that A �→ λA
L is decreasing on (0,∞). Since the function A �→ λA∞ is the

pointwise limit of decreasing functions {A �→ λA
L }L�1, it is non-increasing.

5.5 Justification of (P4)

Recall that we assume that mint∈R σ(t) = −1 and maxt∈R σ(t) = 1 such that A is
indeed the amplitude of fluctuations. To highlight the dependence of λA∞ on c, we write
λA∞(c). We further assume that λ0∞(0) > 0 so that the species persists in the absence
of climate change and fluctuations. It is shown in Berestycki et al. (2009, Eq. (46)) by
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means of the Liouville transform that

λ0∞(c) = λ0∞(0) − c2

4d
, (5.17)

which implies the existence of a unique c∗ > 0 such that λ0∞(c) > 0 for c ∈ [0, c∗)
and λ0∞(c) < 0 for c > c∗. If we allow c to take negative values, then λ0∞(c) > 0 for
|c| < c∗ and λ0∞(c) < 0 for |c| > c∗.

For each c ∈ [0, c∗), properties (P1)–(P3) ensure that the equation λA∞(c) = 0
admits a unique solution Ac such that λA∞(c) > 0 for A ∈ [0, Ac) and λA∞(c) < 0 for
A > Ac. We show numerically that Ac > c∗ − c for all c ∈ [0, c∗), justifying (P4).

To perform numerical simulations, we consider (4.2) and choose c(t), L , a(x) and
w(0, ·) to be the same as those used in Sect. 4.3. We calculate λ0∞(0) ≈ 9.9940, which
together with the formula (5.17) with d = 1 gives the critical speed c∗ ≈ 6.3227. In
Fig. 5, we plot the curve c �→ Ac and the straight line c �→ c∗ − c for c ∈ [0, c∗),
showing Ac > c∗ − c for all c ∈ [0, c∗), or equivalently λc

∗−c∞ > 0 for all c ∈ [0, c∗).
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