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Abstract. We consider small noise perturbations to an ordinary differential equation (ODE) that

have a uniform absorbing state and exhibit transient dynamics in the sense that interesting dynamical

behaviors governed by transient states display over finite time intervals and the eventual dynamics

is simply controlled by the absorbing state. To capture the transient states, we study the noise-

vanishing concentration of the so-called quasi-stationary distributions (QSDs) that describe the

dynamics before reaching the absorbing state. By establishing concentration estimates based on

constructed uniform-in-noises Lyapunov functions, we show that QSDs tend to concentrate on the

global attractor of the ODE as noises vanish, and that each limiting measure of QSDs, if exists,

must be an invariant measure of the ODE. Overcoming difficulties caused by the degeneracy and

singularity of noises at the absorbing state, we further show the tightness of the family of QSDs under

additional assumptions motivated by applications, that not only validates a priori information on the

concentration of QSDs, but also asserts the reasonability of using QSDs in the mathematical modeling

of transient states. Our approaches to the concentration and tightness of QSDs are purely analytic

without probabilistic heuristics. Applications to diffusion approximations of chemical reactions and

birth-and-death processes of logistic type are also discussed. Rigorously studying the transient

dynamics and characterizing the transient states, our study is of both theoretical and practical

significance.
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1. Introduction

The present paper aims at making some theoretical understanding of an important class of transient

dynamics described by quasi-stationary distributions (QSDs) [12] in randomly perturbed dynamical

systems. While QSDs have been widely observed as transient states controlling long transient dy-

namical behaviors in many applications such as chemical oscillations [63, 61], ecology [56], etc., there

have not been many rigorous studies of the phenomena perhaps due to technical difficulties caused

by the degeneracy and singularity of noises at the absorbing state in a typical model. In the present

paper, we study the concentration of QSDs for a commonly adopted one-dimensional model, namely,

the following stochastic differential equation (SDE)

dXt = b(Xt)dt+ ε
√
a(Xt)dWt, X0 ∈ [0,∞), (1.1)

where 0 < ε� 1 is a small parameter, b : [0,∞)→ R, a : [0,∞)→ [0,∞) and Wt is the standard one-

dimensional Wiener process on some probability space. SDEs of the form (1.1) arise in many scientific

areas such as ecology, epidemiology, chemical kinetics and population genetics, in which solutions

of (1.1) describe the evolution of certain species. They are also derived as diffusion approximations

of scaled Markov jump processes that model the evolution of species of large numbers [44, 19, 1].

Following the pioneering work of Feller [21, 22], the investigation of the SDE (1.1) from either a

mathematical or scientific viewpoint has attracted a vast amount of attention that results in a huge

number of literature.

Our main interest in (1.1) lies in the situations where small noises cause dramatic effects on the

deterministic dynamics. Not only does our study serve as a significant step to rigorously understand

transient dynamics that commonly exist and play important roles in multi-scale systems, but also

it is well-motivated by applications in population dynamics. To be more specific, let us make the

following assumptions on the coefficients. Throughout this paper, for a (not necessarily open) interval

I ⊂ [0,∞), we denote by C(I) the space of continuous functions on I, and by Ck(I), k ∈ N the space

of k times continuously differentiable functions on the interior I̊ with all derivatives of order ≤ k

having continuous extensions to I.

(A1) The functions b : [0,∞) → R and a : [0,∞) → [0,∞) are assumed to satisfy the following

conditions:

(1) b ∈ C([0,∞)) ∩ C1((0,∞)), b(0) = 0, b(x) > 0 for all 0 < x � 1, and b(x) < 0 for all

x� 1;

(2) a ∈ C([0,∞)) ∩ C2((0,∞)), a(0) = 0, and a > 0 on (0,∞).

By (A1), the state 0, often referred to as the extinction state, is an absorbing state of (1.1) for each

0 < ε � 1. Additional assumptions can be easily imposed on a and b to ensure that the processes

generated by the solutions of (1.1) are absorbed at the extinction state in finite time almost surely.

This is in sharp contrast to the asymptotic dynamics of the following unperturbed ordinary differential
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equation (ODE):

ẋ = b(x), x ∈ [0,∞), (1.2)

whose solutions with positive initial data are attracted by the attractor in (0,∞), and hence, remain

bounded and away from the extinction state over an infinite time period. In other words, the unstable

equilibrium 0 and the attractor of (1.2) are respectively stabilized and de-stabilized by the small

noises. Such a dynamical disagreement between a deterministic model and its stochastic counterpart

is well-known as Keizer’s paradox, which was originally raised in the modeling of chemical reactions

(see e.g. [38, 39, 61, 10]). But, this does not mean the triviality of the dynamics of (1.1). In fact,

due to the sample path large deviation theory [26, 15] guaranteeing the closeness between solutions of

(1.1) and that of (1.2) over any given finite time interval, solutions of (1.1) typically first approach to

the attractor of (1.2), then follow the dynamics of (1.2) on the attractor, and finally deviate from the

deterministic trajectories and relax to the extinction state. That is, the equation (1.1) exhibits multi-

scale dynamics, and the interesting ones display over finite time periods and can not be observed

in the classical long-time limits. Such dynamics are often referred to as transient dynamics. The

corresponding states, characterizing the interesting dynamics, are called transient states. Metastable

states and quasi-stationary states are also used in literature. In terms of (1.1), transient states are

closely related to the attractor of the unperturbed ODE (1.2).

Transient dynamics arise naturally in population dynamics (see e.g. [29, 30, 56]) and chemical

reactions (see e.g. [59, 63]). Modeling the evolution of species by the ODE (1.2), species are forced

to survive over an infinite time horizon. However, the extinction of species in finite time is inevitable

due to limited resources, finite population sizes, mortality, etc. This makes (1.1) a more appropriate

model than (1.2). Nevertheless, species typically persist for a long period before eventually going to

extinction, and thus, their evolution is transient in nature. Moreover, the states of species that are

observed in practice are actually the transient states rather than the extinction state. Hence, transient

states are the true physical states.

Consequently, the investigation of transient dynamics is of both theoretical and practical impor-

tance. A key step towards the understanding of transient dynamics is to properly define, study and

interpret the corresponding transient states. The notion, quasi-stationary distribution, has been used

to capture transient states from a distributional viewpoint. Recall that

Lεu =
ε2

2
(au)′′ − (bu)′ on (0,∞) (1.3)

is the Fokker-Planck operator associated to (1.1), where ′ stands for the spatial derivative. Denote by

Lεu =
ε2

2
au′′ + bu′ on (0,∞) (1.4)

the formal L2-adjoint operator of Lε. It is the generator of (1.1). Quasi-stationary distributions of

(1.1) can be defined using the “principal eigenfunction” of the operator Lε as follows. Denote by

C2
0 ((0,∞)) the space of twice continuously differentiable functions on (0,∞) with compact support.

Definition 1.1 (Quasi-stationary distribution). A Borel probability measure νε on (0,∞) is called a

quasi-stationary distribution (QSD) of (1.1) if there exists a (unique) λε > 0 such that Lενε = −λενε
in the sense that ∫ ∞

0

(Lε + λε)φdνε = 0, ∀φ ∈ C2
0 ((0,∞)).
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We remark that in the case that the diffusion process {Xε
t }t≥0 generated by the solutions of (1.1)

is well-defined, a commonly used but equivalent probabilistic definition of QSD reads as follows (see

[53, Proposition 4]): a Borel probability measure νε on (0,∞) is called a QSD of (1.1) if

Pενε {X
ε
t ∈ A|T ε0 > t} = νε(A), ∀t ≥ 0, A ∈ B((0,∞)),

where T ε0 = inf{t > 0 : Xε
t = 0}, Pεν is the law of the process {Xε

t }t≥0 with initial distribution ν, and

B((0,∞)) is the Borel σ-algebra of (0,∞). Moreover, there is a unique λε > 0 such that if Xε
0 ∼ νε,

then T ε0 ∼ exp(λε). For this reason, λε is often called the extinction rate associated with the QSD νε.

This definition clearly says that QSDs of (1.1) are indeed initial distributions on (0,∞) such that Xε
t

conditioned on the non-extinction or survival up to time t is independent of t ≥ 0. In light of such

time variance, QSDs are expected to describe the asymptotic dynamics of (1.1) in the distributional

sense before the extinction happens. It is certainly the case under additional assumptions [12]. Hence,

QSDs have the capability of capturing the transient states.

The existence, uniqueness of QSDs and convergence to QSDs for one-dimensional diffusion processes

of the form (1.1) with fixed ε have been extensively studied. Existing literatures usually focus on the

canonical form:

dXt = −q(Xt)dt+ dWt, X0 ∈ [0,∞), (1.5)

when 0 is an accessible (i.e., regular or exit) boundary and ∞ is an inaccessible (i.e., natural or

entrance) boundary according to Feller’s classification [22], and distinguish between the regular case

q ∈ C1([0,∞)) and the singular case q ∈ C1((0,∞)). Transforming (1.1) into the form of (1.5)

with q = qε, it is not hard to see from the assumption (A1) that 0 is an exit boundary and qε ∈
C1((0,∞)) is singular near 0 as qε(x) ∼ Cε

x as x → 0+ for some Cε > 0. We refer the reader to

[50, 11, 52, 60, 42, 65, 5, 6, 7] and references therein for studies in the regular case. The theory in

the singular case is only recently developed in [2] and subsequent works [48, 55, 31]. It is referred to

the survey article [53] and the book [12] for related topics and extensive remarks. Similar studies of

QSDs in the singular case for higher dimensional systems have attracted a lot of attention in recent

years (see [3, 5, 7, 8, 32] and references therein).

The present paper aims at rigorously analyzing the connection between the QSDs of (1.1) and

the deterministic attractor of (1.2). This amounts to investigating the concentration of the QSDs as

ε→ 0+, which also provides information about the distributions of the QSDs when 0 < ε� 1. By the

assumption (A1)(1), the ODE (1.2) is indeed dissipative in (0,∞), and therefore, it admits a global

attractor A in (0,∞), which is the largest compact invariant set of the flow {ϕt}t∈R generated by the

solutions of (1.2) with initial data in (0,∞) and has bounded dissipation property in the sense that

lim
t→∞

distH
(
ϕt(B),A

)
= 0, ∀B ⊂⊂ (0,∞),

where distH denotes the Hausdorff semi-distance on (0,∞), that is, distH(E,F ) := supx∈E dist(x, F )

for E,F ⊂ (0,∞), and ⊂⊂ denotes the compact inclusion, that is, E ⊂⊂ F if E is compact, F is open

and E ⊂ F .

Our results concerning the concentration of QSDs state as follows.

Theorem A. Assume (A1) and let {νε}ε be a family of QSDs of (1.1). Then the following statements

hold.
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(1) For each 0 < ε� 1, νε admits a positive density vε ∈ C2((0,∞)). Moreover, for any open set

O ⊂⊂ (0,∞) \ A, there exist constants γO > 0 and 0 < εO � 1 such that

sup
O
vε ≤ e−

γO
ε2 , ∀ε ∈ (0, εO].

(2) Each limiting measure of {νε}ε as ε → 0, if exists, is supported on A and is an invariant

measure of {ϕt}t∈R.

Remark 1.1. (i) The assumption (A1) guarantees neither the existence nor uniqueness of QSDs of

(1.1). In the absence of coming down from infinity [2] (or equivalently,∞ being an entrance boundary),

for each 0 < ε� 1, (1.1) could admit infinitely many QSDs that can be described as follows:

• if λ∗ε := inf σ(−Lε) > 0, where the spectral theory of Lε is considered in the usual weighted L2

space, then for any λε ∈ (0, λ∗ε ], there is a unique QSD νλε having λε as the extinction rate;

• the QSDs {νλε : λε ∈ (0, λ∗ε ]} are partially ordered in the sense that 0 < λ1
ε < λ2

ε ≤ λ∗ε implies

νλ1
ε
((0, x]) ≤ νλ2

ε
((0, x]) or νλ1

ε
((x,∞)) ≥ νλ2

ε
((x,∞)) for all x ∈ (0,∞). For this reason, νλ∗ε

is often called the minimal QSD.

Such a scenario of infinitely many QSDs is known in many situations (see e.g. [51, 49, 12, 64] for

one-dimensional diffusion processes, and [4, 23, 24] for jump processes). We show in Proposition 2.1

that limε→0 λ
∗
ε = 0. It can be easily seen from the proof that the constant Λ appearing in Proposition

2.1 is independent of QSDs.

(ii) In Theorem A, we assume that QSDs of (1.1) exist for each 0 < ε � 1, and νε is any one of

them if there are indeed multiple ones. Then the theorem asserts that for any open set O ⊂⊂ (0,∞)\A,

there are constants γO > 0 and 0 < εO � 1, independent of the particular choice of QSDs, such that

sup
λε∈(0,λ∗ε ]

sup
O
vλε ≤ e

− γO
ε2 , ∀ε ∈ (0, εO], (1.6)

where vλε is the density of νλε .

We refer the readers to Remark 2.3 for the reasoning of the independence of γO and εO on the

particular choice of QSDs.

(iii) Observe that if for each 0 < ε� 1, (1.1) admits infinitely many QSDs {νλε : λε ∈ (0, λ∗ε ]}, then

tails of QSDs can become flatter as λε → 0. Our concentration estimates (1.6) does not contradict

such an observation. Indeed, the condition that O stays away from 0 and ∞ can not be dropped in

general. As inf O approaches 0, or supO approaches ∞, γO and εO may decay to 0 due to the possible

concentration of QSDs near 0 and ∞. Though (1.6) implies that, for any O ⊂⊂ (0,∞) \A whose left

or right boundary can be sufficiently close to 0 or ∞, we always have limε→0 νλε(O) = 0 for any QSD

νλε , this limit as ε → 0 is however not uniform in O. In general, it is well possible to have QSDs

{νλε}ε and large numbers Mε →∞ such that

lim inf
ε→0

νλε([Mε,∞)) > 0.

In consideration of the partial order of QSDs, it is also possible to have small numbers δε → 0 such

that

lim inf
ε→0

νλ∗ε ((0, δε]) > 0,

that is, the minimal QSDs {νλ∗ε }ε have positive concentration near 0.

In fact, the general non-uniformity with respect to O suggested in our concentration estimate (1.6)

would provide a mechanism of possible flatter tails of multiple QSDs. We note that if conditions

(A2)-(A4) below hold, then this estimate becomes uniform in O away from A (see the paragraph
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below Theorem B for details), implying that, under these conditions, for any 0 < ε � 1, no QSD

(though there can be infinitely many of them) can have a flat tail.

Note that for each fixed QSD νε, there is a unique λε as in Definition 1.1. In what follows, λε is

always the unique number associated with a given QSD νε.

As the ODE (1.2) is one-dimensional, the global attractor A is either a single equilibrium, or

a compact interval consisting of equilibria, or a compact interval consisting of equilibria and their

connecting orbits. As invariant measures of {ϕt}t∈R can not have positive measure on any connecting

orbit, any limiting measure of {νε}ε as ε → 0, if exists, must be supported on the set of non-zero

equilibria of (1.2).

The noise-vanishing concentration of QSDs has been investigated in several situations. The first

work dates back to [33], where the author studied the stochastic Ricker model. This work was gen-

eralized in [41, 58] to randomly perturbed interval maps that apply to density-dependent branching

processes. Further generalizations were considered in [37, 20], where the authors studied general ran-

domly perturbed dynamical systems, and applied their abstract results to various population models.

The approaches taken in the aforementioned works are probabilistic and based on large deviation

arguments. A detailed analysis of the QSDs has been done in [9] for scaled one-dimensional birth-

and-death processes of logistic type, in which the concentration of QSDs on the Dirac delta measure

at the stable equilibrium of the mean field ODE in the Gaussian fashion is directly shown.

Our approach to the concentration of QSDs of (1.1) is based on the construction of Lyapunov-type

functions. More precisely, we construct uniform-in-ε Lyapunov-type functions using the dynamics of

(1.2) and prove pointwise estimates for {vε}ε as stated in Theorem A (1) on regions where Lyapunov-

type conditions are satisfied. It turns out that such regions can be constructed to exhaust (0,∞) \A.

As a result, locally uniform pointwise estimates of {vε}ε are established on (0,∞) \ A. Our approach

has at least two features. (i) It gives quantitative estimates of QSDs that are not restricted to the

domain (0,∞) \ A. In fact, if J is a local attractor and Ω is its domain of attraction, then locally

uniform pointwise estimates for {vε}ε as stated in Theorem A (1) can be established on Ω \ J . By

constructing anti-Lyapunov-type functions, similar estimates could be established for local repellers.

(ii) Since the construction of Lyapunov-type functions only utilizes the dynamics of the ODE (1.2),

our approach has the potential to be generalized to treat problems in higher dimensions that even

exhibit chaotic behaviors.

We remark that the constant γO appearing in Theorem A (1) depends in particular on constructed

uniform-in-ε Lyapunov-type functions. Therefore, it is unclear how to determine the minimal one. A

promising approach to this issue is to establish the large deviation principle [15] for the QSDs {νε}ε,
that is, to study the limit limε→0+ ε2 ln νε(·) or limε→0+ ε2 ln vε. This interesting problem is left for

future work.

Theorem A only provides a priori information on the concentration of the QSDs {νε}ε as ε→ 0. A

valid description of the concentration requires the tightness of the family {νε}ε. This is a challenging

problem as we have to handle the troubles caused by the behaviors of coefficients near 0 and ∞. To

address this issue, we make the following additional assumptions.

(A2) There exists a C2 function U∞ defined on [x∞,∞) for some x∞ � 1 such that

(1) 0 < inf U∞ < supU∞ <∞;

(2) limx→∞ U∞(x) = supU∞;

(3) there is γ∞ > 0 such that LεU∞ ≤ −γ∞ on [x∞,∞) for all 0 < ε� 1.
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(A3) a ∈ C2([0,∞)) and
∫ 1

0
1√
a(s)

ds <∞.

(A4) b ∈ C1([0,∞)) and b′(0) > 0.

The assumption (A2) is a uniform-in-ε Lyapunov-type condition for the SDE (1.1) near ∞, which

ensures the dissipativity of its solutions near ∞ that leads to concentration estimates of {νε}ε near

∞. The assumptions (A3) and (A4) are motivated by applications (see Section 4), and guarantee

the existence of uniform-in-ε integrable upper bounds near 0 for the densities {vε}ε of the QSDs {νε}ε.
This is far-reaching due to a(0) = 0 and the singularity of x 7→

√
a(x) at 0. We would like to point out

that Lyapunov-type conditions near 0 do NOT exist under these assumptions. Indeed, if U satisfies

the Lyapunov-type condition near 0, then it is necessary that U ′(x) → −∞ and U ′′(x) → ∞ as

x→ 0+. In this case, it is generally true that limx→0+
U ′(x)
U ′′(x) = 0. As the limit limx→0+

a(x)
b(x) exists and

is a positive number due to (A3) and (A4), there holds lim infx→0+ LεU(x) ≥ 0, which contradicts

the Lyapunov-type condition. Hence, a new approach independent of Lyapunov-type functions has to

be developed to treat {νε}ε near 0.

Our result concerning the tightness of the family of QSDs {vε}ε is stated in the following theorem.

Theorem B. Assume (A1)-(A4) and let {νε}ε be a family of QSDs of (1.1). Then, any sequence

{νεn}n of {νε}ε with εn → 0 as n → ∞ is tight. Consequently, as ε → 0, any sequence of {νε}ε has

a convergent subsequence in the topology of weak convergence whose limit is an invariant measure of

{ϕt}t∈R and is supported in A. In particular, if A = {xe} is a singleton set, then

lim
ε→0+

νε = δxe in the topology of weak convergence,

where δxe is the Dirac delta measure at xe.

The tightness in Theorem B follows from studying concentration estimates of {vε}ε near 0 and ∞.

Using the Lyapunov-type condition (A2), we show in Proposition 3.1 the existence of some γ > 0

such that

νε((x∞ + 1,∞)) ≤ e−
γ

ε2 , ∀0 < ε� 1,

where x∞ is given in (A2). Establishing the concentration estimates of {νε}ε near 0 is a tricky task

due to the degeneracy and singularity of the noises at the absorbing state 0. By examining the densities

{vε}ε of the QSDs {νε}ε in the new coordinate system obtained from applying the standard change

of variables for one-dimensional diffusion processes (see the proof of Lemma 3.1 for more details), we

show in Corollary 3.1 the boundedness of vε near 0 with an ε-dependent upper bound. Arguments in

the spirit of proving a maximum principle then allow us to establish in Proposition 3.2 the following

uniform-in-ε integrable upper bounds near 0: for each κ ∈ (0, 1) there are 0 < x∗ � 1 and 0 < ε∗ � 1

such that

vε(x) ≤ 1

xκ
, ∀x ∈ (0, x∗), ε ∈ (0, ε∗).

Assumptions (A3) and (A4) ensure the successfulness of such arguments.

As mentioned earlier, QSDs describe the asymptotic dynamics of the SDE (1.1) before extinction for

each fixed ε. Theorem B yields that such asymptotic dynamics have uniform-in-ε properties that are

governed by the dynamics of the ODE (1.2) on the global attractor A. Therefore, information about

the transient states is essentially contained in A. Moreover, Theorem B implies the compatibility, up

to observables, of the ODE (1.2) and the SDE (1.1), as models for the evolution of the same species.

This validates the ODE model (1.2) if the global attractor A is interpreted as observed states instead

of eventual states of the species. A clearer picture can be drawn in the case that A = {xe} is a
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singleton set as follows: if for each 0 < ε � 1, Xε
t conditioned on the survival up to time t (denoted

by X̃ε
t ) converges to the QSD νε as t→∞, then the diagram

X̃ε
t νε

xt δxe

t→∞

ε→0 ε→0

t→∞

commutes, where the solution {xt}t≥0 of (1.2) is considered in the distributional sense.

As applications of Theorem A and Theorem B, we study diffusion processes related to chemical

reactions and birth-and-death processes (BDPs) of logistic type. In particular, we give a rigorous

justification of Keizer’s paradox [38]. The corresponding results are presented in Section 4.

We would like to highlight some novelties of the present paper. (i) Inspired by the work [34] in

which measure estimates of stationary measures under Lyapunov conditions are treated, we establish

the framework for estimating QSDs against Lyapunov functions (see Subsection 2.2). To apply such

a framework, we develop a way of constructing uniform-in-ε Lyapunov-type functions in domains of

interest using the dynamical properties of the unperturbed ODE (see Subsection 2.3). Both methods

are not tailored for one-dimensional problems, and have potential analogues in higher-dimensions.

(ii) The most challenging issue is to deal with difficulties caused by the degeneracy and singularity

of noises at the absorbing state in order to derive an uniform-in-ε integrable upper bound of QSDs

near 0, leading to the tightness of the QSDs. This is accomplished by a two-step approach: a careful

analysis of eigen-equations satisfied by QSDs in new coordinates produces ε-dependent upper bounds

(see Lemma 3.1 and Corollary 3.1); it is followed by a result of maximum principle type giving rise to

the expected upper bound. As it is indicated, our approaches are purely analytic without probabilistic

heuristics.

To end this section, we comment on the possibilities and difficulties in the extension to higher-

dimensions. For clarity, we focus on the following stochastic system:

dXi,t = Xi,tfi(Xt)dt+ ε
√
Xi,tdW

i
t , i ∈ {1, . . . , d}, X0 ∈ [0,∞)d, (1.7)

where Xt = (X1,t, . . . , Xd,t), 0 < ε� 1, d ∈ N and W i
t , i ∈ {1, . . . , d} are independent standard one-

dimensional Wiener processes on some probability space. Such a system, often arising from biology

and ecology, is used to model the evolution of interacting species in a community. The functions

fi : [0,∞)d → R, i ∈ {1, . . . , d}, often called per-capita growth rates, are sufficiently regular and

ensure that the system of ODEs:

ẋi = xifi(x), i ∈ {1, . . . , d}, x = (x1, . . . , xd) ∈ (0,∞)d (1.8)

is dissipative, that is, there exists a compact set K ⊂ (0,∞)d such that for any solution x(t) of (1.8)

with initial condition x(0) = x0 ∈ (0,∞)d, there exists tx0
> 0 such that x(t) ∈ K for all t ≥ tx0

.

Then, (1.8) admits a global attractor Asys contained in K.

Suppose now the stochastic system (1.7) admits QSDs {ν̃ε}ε on (0,∞)d with extinction rates

{λε}ε. If we can show λε → 0 as ε→ 0+, then it is possible to construct uniform-in-ε Lyapunov-type

functions, using the dynamical properties of (1.8), to derive the concentration estimates: for any

O ⊂⊂ (0,∞)d \ Asys, there are γO > 0 and 0 < εO � 1 such that

ν̃ε(O) ≤ e−
γO
ε2 , ∀ε ∈ (0, εO].
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Pointwise estimates for the densities of {ν̃ε}ε are also possible. Each limit measure of {ν̃ε}ε, if exists,

must be an invariant measure of (1.8). However, our approach can be barely adapted to show the

tightness of the QSDs {ν̃ε}ε, which could be an extremely difficult problem. The reason is that our

approach more or less relies on the fact that the one-dimensional diffusion (1.1) is reversible, or the

generator Lε given in (1.4) extends to a self-adjoint operator in L2((0,∞), uε(x)dx), where

uε(x) =
1

a(x)
exp

{
2

ε2

∫ x

0

b(s)

a(s)
ds

}
, x ∈ (0,∞).

But, the stochastic system (1.7) is irreversible in general.

To have a better understanding of the system (1.7) in regard to the extinction or the loss of the

population diversity, we need to acquire relevant knowledge about the noise-vanishing asymptotic of

the extinction event or exit event

(T εΓ, X
ε
T εΓ

),

where Γ is the boundary of [0,∞)d, {Xε
t }t≥0 is the diffusion process generated by solutions of (1.7),

and T εΓ is the first time that {Xε
t }t≥0 reaches Γ. The noise-vanishing asymptotic of the exit event for

randomly perturbed dynamical systems is a classical topic, has attracted a lot of attention and finds

many applications (see e.g. [13, 14, 26]). Recently, exploring very fine asymptotic of the QSD and its

associated extinction rate, the authors obtain in [46, 17, 18, 45] very fine asymptotic of the exit event

from a smooth bounded open domain Ω for the overdamped Langevin equation

dXt = −∇f(Xt)dt+ εdWt, X0 ∈ Rd, (1.9)

where f : Rd → R is sufficiently smooth and Wt is the standard d-dimensional Wiener process. A

typical case treated in these works assumes that f has a unique critical point x∗ in Ω and satisfies
∂f
∂n |∂Ω > 0. These conditions imply that Ω is positively invariant under the flow generated by

ẋ = −∇f(x), (1.10)

and contained in the basin of attraction of x∗.

When the global attractor Asys is a singleton set, the dynamics of (1.8) is as simple as that of

(1.10) in Ω under the aforementioned conditions on f . However, (1.8) generally has equilibria on the

boundary Γ. In addition, the stochastic system (1.7) is degenerate on the boundary Γ and irreversible

in general. In consideration of these essential differences, results and approaches for (1.9) do not apply

to (1.7). Nonetheless, the works [46, 17, 18, 45] ignite the light of hope and would for sure guide the

study of the asymptotic of (T εΓ, X
ε
T εΓ

), especially when tackling the problem from the perspective of

the asymptotic of the QSD and its associated extinction rate.

The rest of the paper is organized as follows. In Section 2, we study the concentration of QSDs

and prove Theorem A. In Section 3, we investigate the tightness of QSDs and prove Theorem B.

Applications of Theorem A and Theorem B are discussed in Section 4. We include a Harnack’s

inequality in Appendix A.

2. Concentration estimates of QSDs

Throughout this section, let {νε}ε be the QSDs of (1.1) and {λε}ε be the unique numbers corre-

sponding to {νε}ε as given in Definition 1.1. The purpose of this section is to derive concentration

estimates of {νε}ε and prove Theorem A. We first study the asymptotics of λε as ε→ 0+ in Subsection

2.1. In Subsection 2.2, we provide concentration estimates of the QSDs {νε}ε assuming the existence

of Lyapunov-type functions. The proof of Theorem A is given in Subsection 2.3.
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2.1. Asymptotic of λε as ε→ 0+. The following result gives the regularity of the QSDs {νε}ε. Its

proof follows from the standard regularity theory of second-order ODEs.

Lemma 2.1. Assume (A1). For each 0 < ε � 1, νε admits a positive density vε ∈ C2((0,∞)). In

particular, vε satisfies

Lεvε = −λεvε on (0,∞). (2.1)

The asymptotic behaviors of λε as ε→ 0 is stated in the following result.

Proposition 2.1. If (A1) holds, then there is Λ > 0 such that λε ≤ e−
Λ
ε2 for all 0 < ε� 1.

Proof. Set vGε (x) := 1
a(x)e

− 2
ε2

∫ x
1
b(s)
a(s)

ds for x ∈ (0,∞). It is just the Gibbs density of (1.1). Given

(2.1), it is straightforward to check that φε := vε
vGε

satisfies

Lεφε = −λεφε on (0,∞).

By (A1), there are 0 < x1 < x2 <∞ such that b(x1) > 0 and b(x2) < 0. Note that Lε is uniformly

elliptic on [x1, x2]. Denote by Λε > 0 the principal eigenvalue of −Lε restricted on (x1, x2) with zero

Dirichlet boundary conditions on x1 and x2. It is well known (see e.g. [25]) that there is Λ > 0 such

that Λε ≤ e−
Λ
ε2 for all 0 < ε� 1. The conclusion then follows from the standard comparison principle

(see e.g. [16, Lemma 4.1]) that ensures λε ≤ Λε. �

We point out that the fact λε → 0 as ε → 0+ implied by Proposition 2.1 plays important roles in

the sequel.

2.2. Abstract concentration estimates. In this subsection, we derive abstract concentration esti-

mates of QSDs {νε}ε assuming the existence of Lyapunov-type functions.

We start with the definition of compact functions and uniform Lyapunov functions. Let 0 ≤ α <

β ≤ ∞ be given.

Definition 2.1 (Compact function). A continuous, non-negative and non-zero function U on (α, β)

is called a compact function if

ρM := sup
(α,β)

U = lim
x→α+

U(x) = lim
x→β−

U(x).

We call ρM the essential upper bound of U .

For a compact function U on (α, β), we define its sub-level sets:

Ωρ := {x ∈ (α, β) : U(x) < ρ} , ρ ∈ (0, ρM ).

Clearly, ΩρM = (α, β). For each ρ ∈ (0, ρM ], we denote

αρ := inf Ωρ and βρ := sup Ωρ.

Note that (αρM , βρM ) = (α, β).

For each 0 < ε� 1, we define the operator Mε by setting

Mεu := Lεu+ λεu =
ε2

2
au′′ + bu′ + λεu.
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Definition 2.2 (uniform Lyapunov function). A C2 compact function U on (α, β) is called a uniform

Lyapunov function with respect to the family {Mε}ε if there exist ρm ∈ (0, ρM ) and γ > 0 such that

MεU ≤ −γ on ΩρM \ Ωρm (2.2)

for all 0 < ε � 1. We call ρm the essential lower bound of U , γ the Lyapunov constant of U and

ΩρM \ Ωρm the essential domain of U .

Remark 2.1. We comment on Definition 2.2.

• Ignoring λε in the operator Mε, such defined uniform Lyapunov functions have been used in

[35] to treat stationary measures for general diffusion processes. As we are dealing with QSDs,

it is natural to include the extinction rate λε in the definition.

• The definition of uniform Lyapunov functions more or less follows those used in [40] to study

the existence of stationary distributions for SDEs (also see [54]). Except, we work with

compact functions that appropriately generalize continuous and non-negative functions on

R with pre-compact sub-level sets. This plays an important role in deriving concentration

estimates for the QSDs.

• Since λε → 0 as ε → 0+ by Proposition 2.1, passing to the limit ε → 0+ in (2.2) yields

bU ′ ≤ −γ on ΩρM \Ωρm . In particular, U is a Lyapunov function of the ODE (1.2) in (α, β).

This is the starting point of the construction of uniform Lyapunov functions (see Subsection

2.3).

We make the following assumption.

(A5) There exists a uniform Lyapunov function U on (α, β) with respect to {Mε}ε with essential

upper bound ρM , essential lower bound ρm and Lyapunov constant γ.

Our results on the abstract concentration estimates of the QSDs {νε}ε are stated as follows.

Proposition 2.2. Assume (A1) and (A5).

(1) There hold

νε(ΩρM \ Ωρ) ≤ e−
2γ

ε2

∫ ρ
ρm

1
H(t)

dtνε(ΩρM \ Ωρm), ∀ρ ∈ (ρm, ρM ], 0 < ε� 1,

where

H(ρ) = max
{
a(αρ) (U ′(αρ))

2
, a(βρ) (U ′(βρ))

2
}
> 0, ρ ∈ (ρm, ρM ). (2.3)

(2) For each open set O ⊂⊂ ΩρM \ Ωρm , there exist γO > 0 and 0 < εO � 1 such that

sup
O
vε ≤ e−

γO
ε2 , ∀ε ∈ (0, εO].

Before proving Proposition 2.2, we first prove two lemmas. The first one gives an integral identity.

Lemma 2.2. Assume (A1) and (A5).

(1) Ωρ = (αρ, βρ) for all ρ ∈ (ρm, ρM ]. Moreover, if ρ ∈ (ρm, ρM ), then U ′(αρ) < 0 and U ′(βρ) >

0.

(2) For each ρ ∈ (ρm, ρM ], there holds∫ βρ

αρ

vεMεUdx = ρλε

∫ βρ

αρ

vεdx+
ε2

2
(avεU

′)
∣∣∣βρ
αρ
.
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Proof. (1) Since

ε2

2
aU ′′ + bU ′ + λεu =MεU ≤ −γ on ΩρM \ Ωρm

for all 0 < ε � 1, we conclude from Proposition 2.1 that bU ′ ≤ −γ2 on ΩρM \ Ωρm , which implies

that U ′ admits a constant sign on each component of ΩρM \Ωρm . As ΩρM = (α, β) = (αρM , βρM ) and

Ωρm ⊂ (αm, βm), there holds

(αρM , αρm) ∪ (βρm , βρM ) ⊂ ΩρM \ Ωρm .

It then follows from the definition of U that U ′ < 0 on (αρM , αρm) and U ′ > 0 on (βρm , βρM ). In

particular, U ′(αρ) < 0 and U ′(βρ) > 0 for each ρ ∈ (ρm, ρM ).

Let ρ ∈ (ρm, ρM ). If Ωρ $ (αρ, βρ), then U admits a local maximum value at some point x0 ∈
(αρ, βρ) \Ωρ. Hence, U ′(x0) = 0. But, (αρ, βρ) \Ωρ ⊂ ΩρM \Ωρm yields that U ′(x0) 6= 0, which leads

to a contradiction. Consequently, Ωρ = (αρ, βρ).

(2) Multiplying (2.1) by U and integrating the resulting equation over Ωρ, we obtain from integra-

tion by parts that

ε2

2
[(avε)

′U ]
∣∣∣βρ
αρ
− ε

2

2
(avεU

′)
∣∣∣βρ
αρ

+
ε2

2

∫ βρ

αρ

avεU
′′dx−(bvεU)

∣∣∣βρ
αρ

+

∫ βρ

αρ

bvεU
′dx = −λε

∫ βρ

αρ

vεUdx. (2.4)

Since U(αρ) = ρ = U(βρ), we find

ε2

2
[(avε)

′U ]
∣∣∣βρ
αρ
− (bvεU)

∣∣∣βρ
αρ

= ρ

[
ε2

2
(avε)

′
∣∣∣βρ
αρ
− (bvε)

∣∣∣βρ
αρ

]
.

Moreover, integrating (2.1) over Ωρ, we obtain

ε2

2
(avε)

′
∣∣∣βρ
αρ
− (bvε)

∣∣∣βρ
αρ

= −λε
∫ βρ

αρ

vεdx.

It follows that

ε2

2
[(avε)

′U ]
∣∣∣βρ
αρ
− (bvεU)

∣∣∣βρ
αρ

= −ρλε
∫ βρ

αρ

vεdx.

Substituting the above equality into (2.4), we arrive at

−ρλε
∫ βρ

αρ

vεdx−
ε2

2
(avεU

′)
∣∣∣βρ
αρ

+
ε2

2

∫ βρ

αρ

avεU
′′dx+

∫ βρ

αρ

bvεU
′dx = −λε

∫ βρ

αρ

vεUdx,

which leads to the result. �

In the second lemma, we use the Harnack’s inequality, Lemma A.1, to derive some estimates of

{vε}ε.

Lemma 2.3. Assume (A1). For any open interval I ⊂⊂ (0,∞), if x,R > 0 are such that (x −
4R, x+ 4R) ⊂ I, then

sup
(x−R,x+R)

vε ≤ C
supI a
infI a

+
ε2C1R
infI a

0 inf
(x−R,x+R)

vε, ∀0 < ε� 1,

where C0 > 0 is a universal constant and C1 = C1(ε) =

√
supI

(
ε2

2 a
′ − b

)2
+ ε2λε

2 infI a.
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Proof. We apply Lemma A.1 in the case α = ε2

2 a, β = ε2

2 a
′ − b and κ = λε so that Lu = ε2

2 (au)′′ −
(bu)′ + λεu is in the form of interest.

Let

λ =
ε2

2
inf
I
a, Λ =

ε2

2
sup
I
a, and ν =

√
supI

(
ε2

2 a
′ − b

)2
λ2

+
λε
λ
.

Then, for any R > 0,

Λ

λ
+ νR =

supI a

infI a
+
ε2C1R

infI a
,

where C1 = C1(ε) is as in the statement of the lemma. Applying Lemma A.1, we find the result. �

Now, we prove Proposition 2.2.

Proof of Proposition 2.2. (1) Let ρ∗ ∈ (ρm, ρM ). Applying Lemma 2.2 (2), we find for any ρ ∈
(ρm, ρ∗] that

−
∫

(αρ∗ ,βρ∗ )\(αρ,βρ)

vεMεUdx

= ρλε

∫ βρ

αρ

vεdx− ρ∗λε
∫ βρ∗

αρ∗

vεdx+
ε2

2
(avεU

′)
∣∣∣βρ
αρ
− ε2

2
(avεU

′)
∣∣∣βρ∗
αρ∗

≤ ε2

2
(avεU

′)
∣∣∣βρ
αρ
,

where we used the facts ρ
∫ βρ
αρ
vεdx ≤ ρ∗

∫ βρ∗
αρ∗

vεdx and (avεU
′) |βραρ ≥ 0 due to the positivity of a and

vε on (0,∞)

Denote

f(ρ) :=

∫
(αρ∗ ,βρ∗ )\(αρ,βρ)

vεdx.

As MεU ≤ −γ on ΩρM \ Ωρm for all 0 < ε� 1, we have

f(ρ) ≤ ε2

2γ
(avεU

′)
∣∣∣βρ
αρ
, ∀ρ ∈ (ρm, ρ∗], 0 < ε� 1. (2.5)

Since U(αρ) = ρ = U(βρ), we have from Lemma 2.2 (1) that

dαρ
dρ

=
1

U ′(αρ)
and

dβρ
dρ

=
1

U ′(βρ)
.

It follows that

f ′(ρ) =
d

dρ

∫
(αρ∗ ,βρ∗ )\(αρ,βρ)

vεdx =
vε(αρ)

U ′(αρ)
− vε(βρ)

U ′(βρ)
.

For the term on the right-hand side of (2.5), we have

(avεU
′)
∣∣∣βρ
αρ

= a(βρ) (U ′(βρ))
2 vε(βρ)

U ′(βρ)
− a(αρ) (U ′(αρ))

2 vε(αρ)

U ′(αρ)

≤ −H(ρ)

[
vε(αρ)

U ′(αρ)
− vε(βρ)

U ′(βρ)

]
= −H(ρ)f ′(ρ),
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where H(ρ) is as in (2.3) and is positive due to (A1)(2) and Lemma 2.2 (1). Hence, we have from

(2.5) that

ε2H(ρ)

2γ
f ′(ρ) + f(ρ) ≤ 0, ∀ρ ∈ (ρm, ρ∗], 0 < ε� 1.

It follows that

f(ρ) ≤ e−
2γ

ε2

∫ ρ
ρm

1
H(t)

dtf(ρm), ∀ρ ∈ (ρm, ρ∗], 0 < ε� 1,

that is,∫
(αρ∗ ,βρ∗ )\(αρ,βρ)

vεdx ≤ e−
2γ

ε2

∫ ρ
ρm

1
H(t)

dt

∫
(αρ∗ ,βρ∗ )\(αρm ,βρm )

vεdx, ∀ρ ∈ (ρm, ρ∗], 0 < ε� 1.

Letting ρ∗ → ρM , we prove (1).

(2) We assume, without loss of generality, that O is an interval. Let δ > 0 be such that Oδ ⊂⊂
ΩρM \Ωρm , where Oδ is the δ-neighborhood of O. We see from (1) that there exist γδ > 0 and εδ > 0

such that

νε(Oδ) ≤ e−
γδ
ε2 , ∀ε ∈ (0, εδ]. (2.6)

Suppose for contradiction that the conclusion fails. Then there exist sequences {xn}n ⊂ O and

{εn}n ⊂ (0,∞) satisfying xn → x∞ for some x∞ ∈ O and εn → 0 as n→∞ such that

vεn(xn) > e
− γδ

2ε2n , ∀n.

Applying Lemma 2.3 with I = Oδ, we have

sup
(x−R,x+R)

vε ≤ C
supOδ

a

infOδ
a +

C1(ε)R
infOδ

a
1
ε2

0 inf
(x−R,x+R)

vε, ∀x ∈ O, R ∈
(

0,
δ

4

)
, 0 < ε� 1, (2.7)

where C0 > 0 is a universal constant and

C1(ε) =

√
sup
Oδ

(
ε2a′

2
− b
)2

+
ε2λε infOδ a

2
.

Setting x = xn, R = ε2n and ε = εn in (2.7) yields

sup
(xn−ε2n,xn+ε2n)

vεn ≤ C
supOδ

a

infOδ
a +

C1(εn)
infOδ

a

0 inf
(xn−ε2n,xn+ε2n)

vεn , ∀n.

Denote C2 := supn C1(εn) <∞. Then

sup
(xn−ε2n,xn+ε2n)

vεn ≤ C2 inf
(xn−ε2n,xn+ε2n)

vεn , ∀n.

It follows that

νεn((xn − ε2n, xn + ε2n)) =

∫ xn+ε2n

xn−ε2n
vεndx ≥

2ε2n
C2

sup
(xn−ε2n,xn+ε2n)

vεn ≥
2ε2n
C2

e
− γδ

2ε2n , ∀n.

However, the inclusion
(
xn − ε2n, xn + ε2n

)
⊂ Oδ and (2.6) yield that

νεn((xn − ε2n, xn + ε2n)) ≤ e−
γδ
ε2n , ∀n� 1,

which leads to a contradiction. This proves (2). �
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2.3. Proof of Theorem A. We derive concentration estimates for the QSDs {νε}ε by constructing

uniform Lyapunov functions and applying Proposition 2.2. In particular, we prove Theorem A in this

subsection.

We recall the definition of limiting measures.

Definition 2.3 (Limiting measure). A Borel probability measure ν on (0,∞) is called a limiting

measure of {νε}ε as ε→ 0 if there exists a sequence {εn}n with εn → 0 as n→∞ such that

lim
n→∞

νεn = ν in the topology of weak convergence,

i.e., limn→∞
∫∞

0
φdνεn =

∫∞
0
φdν for any bounded and continuous function φ : (0,∞)→ R.

Recall that the global attractor A of (1.2) in (0,∞) is a compact closed interval. More precisely, if

we set

αA : = min {x ∈ (0,∞) : b(x) = 0} ,
βA : = max {x ∈ (0,∞) : b(x) = 0} ,

then A = [αA, βA].

We first prove Theorem A (1).

Proof of Theorem A (1). The regularity of νε follows from Lemma 2.1. We prove the concentration

estimates.

For clarity, we first give the proof under the stronger condition that b ∈ C2((0,∞)). It is followed

by a sketch on how to proceed under the conditions on b using approximation techniques.

We first construct a candidate of uniform Lyapunov functions. Recall that {ϕt}t∈R is the flow

generated by the solutions of (1.2) in (0,∞). Let θ : (0,∞)→ [0,∞) be a smooth function satisfying

the following conditions:

• θ vanishes exactly on A;

• lim infx→0+ θ(x) > 0 and lim infx→∞ θ(x) > 0;

• θ(x) → 0 so fast as x → α−A and x → β+
A that the integral

∫∞
0
θ(ϕt(x))dt is well-defined for

any x ∈ (0,∞) \ A, and the function x 7→
∫∞

0
θ(ϕt(x))dt is C2 on (0,∞).

The existence of such a function θ with the focus on the fast convergence θ(x)→ 0 as x→ α−A or β+
A

can be seen as follows. We note that

• if x ∈ A = [αA, βA], then ϕt(x) ∈ A and hence θ(ϕt(x)) = 0 for all t ≥ 0, leading to∫∞
0
θ(ϕt(x))dt = 0;

• if x ∈ (0, αA), then ϕt(x) is increasing in t and limt→∞ ϕt(x) = αA; if the convergence

θ(x)→ 0 as x→ α−A is sufficiently fast, then the integral
∫∞

0
θ(ϕt(x))dt is well-defined;

• if x ∈ (βA,∞), then ϕt(x) is decreasing in t and limt→∞ ϕt(x) = βA; if the convergence

θ(x)→ 0 as x→ β+
A is sufficiently fast, then the integral

∫∞
0
θ(ϕt(x))dt is well-defined.

The required fast convergence θ(x) → 0 as x → α−A or β+
A in general depends on how fast ϕt(x)

converges to αA or βA as t → ∞ for x ∈ (0,∞) \ A. Given the regularity of x 7→ ϕt(x), we can

certainly make the convergence θ(x) → 0 as x → α−A or β+
A faster if necessary to ensure the C2

regularity of x 7→
∫∞

0
θ(ϕt(x))dt.

Consider the function U : (0,∞)→ [0,∞) defined by

U(x) =

∫ ∞
0

θ(ϕt(x))dt, x ∈ (0,∞). (2.8)
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By the choice of θ, the function U is well-defined and C2. Moreover, it satisfies the following properties:

(i) U vanishes exactly on A;

(ii) U is decreasing on (0, αA) and satisfies U(x)→∞ as x→ 0+;

(iii) U is increasing on (βA,∞) and satisfies U(x)→∞ as x→∞;

(iv) bU ′ = −θ on (0,∞). In particular, U ′ < 0 on (0, αA) and U ′ > 0 on (βA,∞).

Properties (i)-(iii) are obvious. The property (iv) holds because

b(x)U ′(x) =
d

dt
U(ϕt(x))

∣∣∣
t=0

= lim
h→0

1

h

[∫ ∞
0

θ(ϕt+h(x))dt−
∫ ∞

0

θ(ϕt(x))dt

]
= lim
h→0

1

h

[∫ ∞
h

θ(ϕt(x))dt−
∫ ∞

0

θ(ϕt(x))dt

]
= − lim

h→0

1

h

∫ h

0

θ(ϕt(x))dt = −θ(x).

Next, we claim that for any ρ∗ < ρ∗, there exist γ∗ > 0 and 0 < ε∗ � 1 such that U is a uniform

Lyapunov function in Ωρ∗ with respect to {Mε}ε∈(0,ε∗] with essential upper bound ρ∗, essential lower

bound ρ∗ and Lyapunov constant γ∗.

Note that U is a C2 compact function on Ωρ∗ . By the construction of U , we see that

MεU =
ε2

2
aU ′′ − θ + λεU.

Clearly, there hold infΩρ∗\Ωρ∗
θ > 0 and ε2

2 supΩρ∗\Ωρ∗
(a|U ′′|) → 0 as ε → 0. Moreover, Proposition

2.1 ensures that λε supΩρ∗\Ωρ∗
U → 0 as ε → 0. Thus, setting γ∗ := 1

2 infΩρ∗\Ωρ∗
θ, we find some

0 < ε∗ � 1 such that

MεU ≤ −γ∗ on Ωρ∗ \ Ωρ∗

for all ε ∈ (0, ε∗]. This proves the claim.

To finish the proof, we let {ρ∗,n}n and {ρ∗n}n be two sequences such that 0 < ρ∗,n < ρ∗n <∞, and

ρ∗,n → 0 and ρ∗n →∞ as n→∞. Obviously,⋃
n

(
Ωρ∗n \ Ωρ∗,n

)
= (0,∞) \ A.

The proof in the case b ∈ C2((0,∞)) is now completed by applying Proposition 2.2 with the uniform

Lyapunov function U in Ωρ∗n for each n.

In the case that b only satisfies the regularity condition stated in (A1) (1), we still let U be defined

as in (2.8). Again, U satisfies properties (i)-(iv), but now it is only a C1 function. Let {Uδ}0<δ�1

be a family of C2 functions on (0,∞) such that Uδ → U and U ′δ → U ′ locally uniformly in (0,∞) as

δ → 0+. Then,

bU ′δ = −θ + b(U ′δ − U ′) on (0,∞).

As a result, we obtain a family of uniform Lyapunov functions. The union of their essential domains

exhaust (0,∞) \ A. This completes the proof of Theorem A (1). �

Remark 2.2. The construction of the function U in the proof of Theorem A (1) is motivated by the

converse Lyapunov theorem (see e.g. [62, Theorem 5.7.24] and [47, Theorem 4.3.1]) for a system of

ODEs in the basin of an attracting equilibrium, which says that a smooth, strict, entire Lyapunov
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function exists in the basin of such an equilibrium, and can be constructed to have an integral form

similar to (2.8).

The main idea of the integral construction of U is to integrate solutions against the function θ

so that U must be non-increasing along solutions. The main feature of θ is to make sure that U is

well-defined and has required regularity.

Recall that a Borel probability measure µ on (0,∞) is called an invariant measure of (1.2) if

µ(ϕtB) = µ(B), ∀t ∈ R, B ∈ B((0,∞)),

where B((0,∞)) is the Borel σ-algebra of (0,∞). Under the condition (A1)(1), it follows from [35,

Proposition 2.8] that µ is an invariant measure of (1.2) if and only if∫ ∞
0

bφ′dµ = 0, ∀φ ∈ C1
0 ((0,∞)). (2.9)

Now, we prove Theorem A (2).

Proof of Theorem A (2). Let ν be a limiting measure of {νε}ε as ε → 0, that is, ν is a Borel

probability measure on (0,∞) and there exists a sequence {εn}n with εn → 0 as n → 0 such that

νεn → ν in the topology of weak convergence as n→∞.

We see from Theorem A (1) that ν(A) = 1, that is, ν is supported on A. Indeed, for any open set

O ⊂⊂ (0,∞) \ A, let Õ be an open set satisfying O ⊂⊂ Õ ⊂⊂ (0,∞) \ A and f : (0,∞)→ [0, 1] be a

continuous function satisfying 1O ≤ f ≤ 1Õ. Then

ν(O) ≤
∫ ∞

0

fdν = lim
n→∞

∫ ∞
0

fdνεn ≤ lim
n→∞

νεn(Õ) = 0.

If {Ok}k are open sets satisfying Ok ⊂⊂ (0,∞) \ A for all k and ∪kOk = (0,∞) \ A, then

ν((0,∞) \ A) ≤
∑
k

ν(Ok) = 0,

which leads to ν(A) = 1.

It remains to show that ν is an invariant measure of the ODE (1.2). Passing to the limit n→∞ in∫ ∞
0

(
ε2n
2
aφ′′ + bφ′ + λεnφ

)
dνεn = 0, ∀φ ∈ C2

0 ((0,∞)),

we conclude that ∫ ∞
0

bφ′dν = 0, ∀φ ∈ C2
0 ((0,∞)).

Indeed, since νεn → ν in the topology of weak convergence as n→∞ and φ ∈ C2
0 ((0,∞)), we find

lim
n→∞

∫ ∞
0

aφ′′dνεn =

∫ ∞
0

aφ′′dν, lim
n→∞

∫ ∞
0

bφ′dνεn =

∫ ∞
0

bφ′dν and lim
n→∞

∫ ∞
0

φdνεn =

∫ ∞
0

φdν.

It follows from limn→∞ εn = 0 and limn→∞ λεn = 0 that

0 =

∫ ∞
0

(
ε2n
2
aφ′′ + bφ′ + λεnφ

)
dνεn

=
ε2n
2

∫ ∞
0

aφ′′dνεn +

∫ ∞
0

bφ′dνεn + λεn

∫ ∞
0

φdνεn

→
∫ ∞

0

bφ′dν as n→∞.
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A density argument then ensures that∫ ∞
0

bφ′dν = 0, ∀φ ∈ C1
0 ((0,∞)),

that is, ν satisfies (2.9). Hence, ν is an invariant measure of (1.2). �

This section is ended up with the following remark.

Remark 2.3. We point out that the constants γO and εO appearing in the statement of Theorem A

are independent of the particular choice of the QSDs {νε}ε for the following reasons.

(i) The upper bound of λε given in Proposition 2.1 is independent of the particular choice of the

QSDs {νε}ε. This is clear from its proof.

(ii) The abstract concentration estimates of the QSDs {νε}ε presented in Proposition 2.2 depend on

the assumed uniform Lyapunov function U . In the proof of Theorem A, the uniform Lyapunov

function U , which is constructed in (2.8), uses only the dynamical properties of the ODE (1.2)

in (0,∞), and hence, is independent of the QSDs {νε}ε.

3. Tightness of QSDs

Throughout the section, let {νε}ε and {λε}ε be as in Section 2. In this section, we study the tightness

of the QSDs {νε}ε and prove Theorem B. In Subsection 3.1, we study concentration estimates of {νε}ε
near 0 and ∞ that yield Theorem B. In Subsection 3.2, we provide the proof of a technical and key

result that is used in the proof of concentration estimates of {νε}ε near 0.

3.1. Proof of Theorem B. We first study the concentration estimates of the QSDs {νε}ε near ∞.

Proposition 3.1. Assume (A1) and (A2). Then there exists γ > 0 such that

νε((x∞ + 1,∞)) ≤ e−
γ

ε2 , ∀0 < ε� 1.

Proof. It follows from (A2)(3) that

bU ′∞ ≤ −
γ∞
2

on [x∞,∞).

This together with (A1)(1) and (A2)(1)(2) implies that U ′∞ > 0 on [x∞,∞). In particular, U∞ is

increasing on [x∞,∞).

Set ρm := U∞(x∞) and ρM := limx→∞ U∞(x) < ∞. Let U be defined as in (2.8). Then there

exists a unique x0 ∈ (0, αA) such that U(x0) = ρM . Let W : (x0,∞) → [0, ρM ) be a C2 function

satisfying

W (x) = U(x), x ∈ (x0, αA),

W (x) ∈ [0, ρm), x ∈ [αA, x∞),

W (x) = U∞(x), x ∈ [x∞,∞).

We claim that there exist γW > 0 and 0 < εW � 1 such that W is a uniform Lyapunov function in

(x0,∞) with respect to {Mε}ε∈(0,εW ] with essential upper bound ρM , essential lower bound ρm and

Lyapunov constant γW .

Indeed, it is easy to see that W is a compact function on (x0,∞). To verify the Lyapunov condition,

we let x1 ∈ (x0, αA) be the unique point satisfying U(x1) = ρm. Then an argument similar to that in

the proof of Theorem A (1) yields the existence of some γ1 > 0 and 0 < ε1 � 1 such that

MεW =MεU ≤ −γ1 on (x0, x1), ∀ε ∈ (0, ε1].
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Moreover, the boundedness of U∞, (A2)(3) and Proposition 2.1 imply the existence of 0 < ε2 � 1

such that

MεW =MεU∞ = LεU∞ + λεU∞ ≤ −
γ∞
2

on (x∞,∞), ∀ε ∈ (0, ε2].

Thus, setting γW := min
{
γ1,

γ∞
2

}
and εW := min{ε1, ε2}, we find that

MεW ≤ −γW on (x0, x1) ∪ (x∞,∞), ∀ε ∈ (0, εW ].

Since (x0, x1) ∪ (x∞,∞) = ΩρM \ Ωρm , where

Ωρ := {x ∈ (x0,∞) : W (x) < ρ} , ρ > 0

are sub-level sets of W , the claim follows.

Now, it is easy to see that for each ρ ∈ [ρm, ρM ], Ωρ is an open interval, denoted by (αρ, βρ). Using

Proposition 2.2 (1), we conclude that

νε(ΩρM \ Ωρ) ≤ e−
2γW
ε2

∫ ρ
ρm

1
H(t)

dt, ∀ρ ∈ (ρm, ρM ], ε ∈ (0, εW ],

where

H(ρ) = max
{
a(αρ) (U ′(βρ))

2
, a(αρ) (U ′(βρ))

2
}
> 0, ρ ∈ (ρm, ρM ).

This completes the proof. �

Next, we study the concentration estimates of the QSDs {νε}ε near 0, which is rather tricky thanks

to the degeneracy of the diffusion (namely, a(0) = 0) and the singularity of x 7→
√
a(x) at x = 0. Let

{vε}ε be the densities of {νε}ε.

Proposition 3.2. Assume (A1), (A3) and (A4). Then for each κ ∈ (0, 1), there exist 0 < x∗ � 1

and 0 < ε∗ � 1 such that

vε(x) ≤ 1

xκ
, ∀x ∈ (0, x∗]

for all ε ∈ (0, ε∗]. Consequently, for each 0 < δ � 1, there exists 0 < xδ � 1 such that

νε((0, xδ)) ≤ δ, ∀0 < ε� 1.

The next technical lemma is the key to the proof of Proposition 3.2. We have stated it in the form

that is more general than needed.

Lemma 3.1. Assume (A1). Suppose in addition that a ∈ C1([0, 1)) satisfies

a(x) ≥ C∗x1+κ∗ , ∀x ∈ (0, 1)

for some C∗ > 0 and κ∗ ∈ [0, 1). Then, for each 0 < ε� 1, there exists Cε > 0 such that

vε(x) ≤ Cε
xκ∗

, ∀x ∈ (0, 1).

As the proof of Lemma 3.1 is long, we defer it to Subsection 3.2.

Corollary 3.1. Assume (A1) and (A3). Then, for each 0 < ε� 1, there exists Cε > 0 such that

vε(x) ≤ Cε, ∀x ∈ (0, 1).
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Proof. By (A1)(2), (A3) and the second-order Taylor expansion, we find

a(x) = a′(0)x+
a′′(0)

2
x2 + h(x)x2,

where h satisfies h(x) → 0 as x → 0+. It follows from the integral condition in (A3) that a′(0) > 0,

which implies the existence of some C∗ > 0 such that a(x) ≥ C∗x for all x ∈ (0, 1). The corollary

then follows from applying Lemma 3.1 with κ∗ = 0. �

Now, we prove Proposition 3.2. The arguments are in the spirit of proving a maximum principle.

Proof of Proposition 3.2. Let κ ∈ (0, 1) be fixed. We claim that there exist 0 < x∗ � 1 and

0 < ε∗ � 1 such that

(Lε + λε)

[
1

xκ

]
< 0 on (0, x∗), ∀ε ∈ (0, ε∗]. (3.1)

In fact, direct calculations yield that

(Lε + λε)

[
1

xκ

]
=
ε2

2

( a
xκ

)′′
−
(
b

xκ

)′
+
λε
xκ

=
ε2

2

[
a′′

xκ
− 2κa′

xκ+1
+
κ(κ+ 1)a

xκ+2

]
−
[
b′

xκ
− κb

xκ+1

]
+
λε
xκ

=
ε2a′′ − 2b′ + 2λε

2xκ
+
κb− ε2κa′

xκ+1
+
ε2κ(κ+ 1)a

2xκ+2
.

By (A1), (A3), (A4) and Taylor expansions,

a(x) = a′(0)x+
a′′(0)

2
x2 + h1(x)x2, x ∈ (0, 1),

a′(x) = a′(0) + a′′(0)x+ h2(x)x, x ∈ (0, 1),

b(x) = b′(0)x+ h3(x)x,

where hi(x)→ 0 as x→ 0+ for i = 1, 2, 3. It follows from the fact a′(0) > 0 (see the proof of Corollary

3.1) that

κb− ε2κa′

xκ+1
+
ε2κ(κ+ 1)a

2xκ+2

=
4κ [b′(0) + h3(x)]− 4ε2κ [a′′(0) + h2(x)] + ε2κ(κ+ 1) [a′′(0) + 2h1(x)]

4xκ

− ε2 [2κ− κ(κ+ 1)] a′(0)

2xκ+1

≤ 4κ [b′(0) + h3(x)]− 4ε2κ [a′′(0) + h2(x)] + ε2κ(κ+ 1) [a′′(0) + 2h1(x)]

4xκ
on (0, 1).

Hence,

(Lε + λε)

[
1

xκ

]
≤ ε2h4 + 4λε − 4b′ + 4κ [b′(0) + h3]

4xκ
on (0, 1),

where

h4(x) = 2a′′(x)− 4κ [a′′(0) + h2(x)] + κ(κ+ 1) [a′′(0) + 2h1(x)] .

As b′(x) = b′(0) +h5(x) with h5(x)→ 0 as x→ 0+, we find 0 < x∗ � 1 and 0 < ε∗ � 1 such that the

claim (3.1) holds.
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For each ε ∈ (0, ε∗], consider

wε(x) = vε(x)− 1

xκ
, x ∈ (0, x∗].

We claim that

wε ≤ 0 on (0, x∗], ∀ε ∈ (0, ε∗]. (3.2)

Indeed, making ε∗ smaller if necessary, we can apply Corollary 3.1 and Theorem A (1) to conclude

that

lim sup
x→0+

wε(x) < 0, wε(x∗) < 0, ∀ε ∈ (0, ε∗].

Thus, if (3.2) fails, then there is some ε0 ∈ (0, ε∗] such that w := wε0 has a positive maximum attained

at some point in (0, x∗). Let x0 ∈ (0, x∗) be such that

w(x0) = max
(0,x∗]

w > 0.

Then, w′(x0) = 0 and w′′(x0) ≤ 0.

As (Lε0 + λε0)vε0 = 0, (3.1) yields that

(Lε0 + λε0)w > 0 on (0, x∗).

But, making ε∗ and x∗ smaller if necessary, we have

(Lε0 + λε0)w(x0) =
ε20
2

[a(x0)w′′(x0) + 2a′(x0)w′(x0) + a′′(x0)w(x0)]

− [b(x0)w′(x0) + b′(x0)w(x0)] + λε0w(x0)

≤
[
ε20
2
a′′(x0)− b′(x0) + λε0

]
w(x0) < 0,

which leads to a contradiction. Thus, the claim (3.2) follows. This completes the proof. �

In Proposition 3.1 and Proposition 3.2, concentration estimates of {νε}ε near ∞ and 0 are respec-

tively established. The proof of Theorem B now follows readily.

Proof of Theorem B. Let {νεn}n be a sequence of {νε}ε, where εn → 0 as n→∞. For any δ > 0,

we see from Proposition 3.1 and Proposition 3.2 that there exists a compact set K1
δ ⊂ (0,∞) and an

integer nδ � 1 such that

νεn(K1
δ ) ≥ 1− δ, ∀n ≥ nδ.

Clearly, there exists a compact set K2
δ ⊂ (0,∞) such that

νεn(K2
δ ) ≥ 1− δ, ∀n ∈ {1, . . . , nδ}.

Setting Kδ := K1
δ ∪K2

δ , we find

νεn(Kδ) ≥ 1− δ, ∀n.

Hence, the family of QSDs {νεn}n is tight.

The rest of the conclusions in the statement follow from Theorem A. �
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3.2. Proof of Lemma 3.1. The idea is to use the standard change of variable for one-dimensional

problems (see e.g. [21]) to rewrite the densities {vε}ε of the QSDs {νε}ε in the new coordinate system.

A delicate analysis of {vε}ε in the new coordinate system near 0 then gives required information about

{vε}ε near 0.

Throughout the rest of this subsection, the conditions in the statement of Lemma 3.1 are assumed,

that is, we assume (A1) and a ∈ C1([0, 1)) with

a(x) ≥ C∗x1+κ∗ , ∀x ∈ (0, 1) (3.3)

for some C∗ > 0 and κ∗ ∈ [0, 1).

We see from (3.3) that
∫ 1

0
1√
a(x)

dx < ∞. This together with (A1)(2) implies that for each 0 <

ε� 1, the function ξε : [0,∞)→ [0,∞), defined by

ξε(x) =

∫ x

0

1

ε
√
a(s)

ds, x ∈ [0,∞),

is well-defined and increasing on [0,∞) with range [0,Ξε), where

Ξε =

∫ ∞
0

1

ε
√
a(s)

ds.

It is worthwhile to mention that ξε introduces the canonical transform converting the SDE satisfied by

Xε
t (namely, the SDE (1.1)) to the one with the simplest noise coefficient. More precisely, Y εt := ξε(X

ε
t )

satisfies

dY εt = Lεξε(ξ−1
ε (Y εt ))dt+ dWt, Y ε0 ∈ [0,Ξε).

Set

qε(x) = −Lεξε(ξ−1
ε (x)), x ∈ (0,Ξε)

and

Qε(x) =

∫ x

1

2qε(s)ds, x ∈ (0,Ξε).

Lemma 3.2. The following hold.

(1) For each 0 < ε� 1,

e−Qε(x) =
ηε(ξ

−1
ε (x))√

a(ξ−1
ε (x))

, x ∈ (0,Ξε),

where ηε : (0,∞)→ (0,∞) is a continuous function satisfying

0 < inf
(0,A)

ηε ≤ sup
(0,A)

ηε <∞, ∀A > 0.

(2) For each 0 < ε� 1,

eQε(x) = ζε(ξ
−1
ε (x))

√
a(ξ−1

ε (x)), x ∈ (0,Ξε),

where ζε : (0,∞)→ (0,∞) is a continuous function satisfying

0 < inf
(0,A)

ζε ≤ sup
(0,A)

ζε <∞, ∀A > 0.

(3) For each 0 < ε� 1,
∫ 1

0
e−Qε(x)dx =∞.
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Proof. (1) A straightforward calculation yields

Lεξε = − ε
4

a′√
a

+
b

ε
√
a
.

Thus, for any x ∈ (0,Ξε),

Qε(x) = −2

∫ x

1

Lεξε(ξ−1
ε (s))ds = −2

∫ ξ−1
ε (x)

ξ−1
ε (1)

Lεξε(s)ξ′ε(s)ds

=

∫ ξ−1
ε (x)

ξ−1
ε (1)

[
1

2

a′(s)

a(s)
− 2

ε2
b(s)

a(s)

]
ds

=
1

2
ln a(ξ−1

ε (x))− 1

2
ln a(ξ−1

ε (1))− 2

ε2

∫ ξ−1
ε (x)

ξ−1
ε (1)

b(s)

a(s)
ds.

Note that we may assume, without loss of generality, that Ξε > 1 for all 0 < ε � 1 so that ξ−1
ε (1) is

well-defined. Setting

ηε(x) := exp

{
1

2
ln a(ξ−1

ε (1)) +
2

ε2

∫ x

ξ−1
ε (1)

b(s)

a(s)
ds

}
, x ∈ (0,∞),

we find the desired expression for e−Qε . By (A1) and (3.3), the integral
∫ x
ξ−1
ε (1)

b(s)
a(s)ds is finite for all

x > 0. This yields the desired properties of ηε.

(2) Setting

ζε(x) := exp

{
−1

2
ln a(ξ−1

ε (1))− 2

ε2

∫ x

ξ−1
ε (1)

b(s)

a(s)
ds

}
, x ∈ (0,∞),

the results follow from arguments as in the proof of (1).

(3) We see from (1) that∫ 1

0

e−Qε(x)dx =

∫ ξ−1
ε (1)

0

ηε(x)√
a(x)

ξ′ε(x)dx =
1

ε

∫ ξ−1
ε (1)

0

ηε(x)

a(x)
dx ≥ cε

ε

∫ ξ−1
ε (1)

0

1

a(x)
dx,

where cε = inf(0,ξ−1
ε (1)) ηε > 0. The result then follows from (A1)(2) and a ∈ C1([0, 1)). In fact, Taylor

expansion gives a(x) = a′(0)x + h(x)x with h(x) → 0 as x → 0+. If a′(0) > 0,
∫ ξ−1

ε (1)

0
1

a(x)dx = ∞

follows readily. If a′(0) = 0, then h(x) > 0 near x = 0, which implies
∫ ξ−1

ε (1)

0
1

a(x)dx =∞ as well. �

For each 0 < ε� 1, consider the function

uε(x) =
vε(ξ

−1
ε (x))

ξ′ε(ξ
−1
ε (x))

eQε(x), x ∈ (0,Ξε). (3.4)

Lemma 3.3. For each 0 < ε� 1, uε satisfies the following properties:

(1)
∫ Ξε

0
uε(x)e−Qε(x)dx = 1;

(2) there holds
1

2
u′′ε − qεu′ε = −λεuε in (0,Ξε); (3.5)

(3) the function x 7→ u′ε(x)e−Qε(x) is decreasing on (0,Ξε), and has finite limit as x→ 0+.
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Proof. (1) The property holds because∫ Ξε

0

uε(x)e−Qε(x)dx =

∫ Ξε

0

vε(ξ
−1
ε (x))

ξ′ε(ξ
−1
ε (x))

dx =

∫ ∞
0

vε(x)dx = 1.

(2) Since ξ′ε = 1
ε
√
a

on (0,∞), we have

wε(x) :=
vε(ξ

−1
ε (x))

ξ′ε(ξ
−1
ε (x))

= ε

√
a(ξ−1

ε (x))vε(ξ
−1
ε (x)), x ∈ (0,Ξε).

We claim that wε satisfies
1

2
w′′ε + (qεwε)

′ = −λεwε on (0,Ξε). (3.6)

Let y = ξ−1
ε (x), or x = ξε(y). Then,

wε(x)ξ′ε(y) = vε(y).

Since

[a(y)vε(y)]y = [a(y)wε(x)ξ′ε(y)]y

= w′ε(x)ξ′ε(y)a(y)ξ′ε(y) + wε(x) [a(y)ξ′ε(y)]y

=
w′ε(x)

ε2
− wε(x)a(y)ξ′′ε (y),

it follows that

ε2

2
[a(y)vε(y)]yy − [b(y)vε(y)]y =

1

2
w′′ε (x)ξ′ε(y)− ε2

2
[wε(x)a(y)ξ′′ε (y)]y − [b(y)wε(x)ξ′ε(y)]y

=
1

2
w′′ε (x)ξ′ε(y)−

[(
ε2

2
a(y)ξ′′ε (y) + b(y)ξ′ε(y)

)
wε(x)

]
y

=
1

2
w′′ε (x)ξ′ε(y)− [Lεξε(y)wε(x)]y

=
1

2
w′′ε (x)ξ′ε(y) + [qε(x)wε(x)]y

=
1

2
w′′ε (x)ξ′ε(y) + [qε(x)wε(x)]x ξ

′
ε(y).

Hence by (2.1), we deduce

1

2
w′′ε (x) + [qε(x)wε(x)]x =

1

ξ′ε(y)

{
ε2

2
[a(y)vε(y)]yy − [b(y)vε(y)]y

}
= −λε

vε(y)

ξ′ε(y)
= −λεwε(x),

that is, the claim holds.

Now, we find from wε = uεe
−Qε that w′ε = u′εe

−Qε − 2qεwε and

w′′ε = u′′ε e
−Qε − 2qεu

′
εe
−Qε − 2(qεwε)

′,

that is,
1

2
w′′ε + (qεwε)

′ =
1

2
u′′ε e
−Qε − qεu′εe−Qε .

This together with (3.6) gives

−λεwε =
1

2
w′′ε + (qεwε)

′ =
1

2
u′′ε e
−Qε − qεu′εe−Qε ,

which leads to the desired equality for uε.
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(3) Multiplying (3.5) by e−Qε , we find(
u′εe
−Qε

)′
= −2λεuεe

−Qε ,

which leads to

u′ε(x)e−Qε(x) = u′ε(x0)e−Qε(x0) − 2λε

∫ x

x0

uε(s)e
−Qε(s)ds, ∀x0, x ∈ (0,Ξε). (3.7)

Note that if x > x0, then u′ε(x)e−Qε(x) < u′ε(x0)e−Qε(x0), that is, the function x 7→ u′ε(x)e−Qε(x) is de-

creasing on (0,Ξε). Letting x0 → 0+ in (3.7), we conclude from (1) that the limit limx→0+ u′ε(x)e−Qε(x)

exists and is finite. �

We are ready to prove Lemma 3.1.

Proof of Lemma 3.1. According to (3.4), the definition of ξε, and Lemma 3.2 (1), we have

vε(x) = uε(ξε(x))e−Qε(ξε(x))ξ′ε(x) =
uε(ξε(x))

ε

ηε(x)

a(x)
, x ∈ (0,∞).

To examine the behaviors of uε(ξε(x)) as x→ 0+, we first note that

lim
x→0+

uε(x) = 0. (3.8)

In fact, Lemma 3.2 (3) and Lemma 3.3 (1) imply that lim infx→0+ uε(x) = 0. If lim supx→0+ uε(x) > 0,

then u′ε is unbounded on (0, 1). But Lemma 3.2 (1) implies that limx→0+ e−Qε(x) =∞, which together

with Lemma 3.3 (3) implies that limx→0+ u′ε(x) = 0, a contradiction. Hence, (3.8) holds.

The limit (3.8) ensures that

uε(x) =

∫ x

0

u′ε(s)ds, x ∈ (0,Ξε).

Setting `ε := limx→0+ u′ε(x)e−Qε(x), we find from Lemma 3.3 (3) and Lemma 3.2 (2) that

uε(ξε(x)) =

∫ ξε(x)

0

u′ε(s)ds

=

∫ ξε(x)

0

u′ε(s)e
−Qε(s)eQε(s)ds

≤ `ε
∫ ξε(x)

0

eQε(s)ds

= `ε

∫ ξε(x)

0

ζε(ξ
−1
ε (s))

√
a(ξ−1

ε (s))ds

= `ε

∫ x

0

ζε(s)
√
a(s)ξ′ε(s)ds

=
`ε
ε

∫ x

0

ζε(s)ds, ∀x ∈ (0,∞).

It follows that

vε(x) ≤ `ε
ε2
η(x)

a(x)

∫ x

0

ζε(s)ds ≤

[
`ε
ε2
ηε(x) sup

(0,1)

ζε

]
x

a(x)
, ∀x ∈ (0, 1).

The lemma then follows from Lemma 3.2 (1)(2) and (3.3). �
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4. Applications

In this section, we discuss applications of Theorem A and Theorem B to models arising from

chemical reactions and population dynamics. Due to the similarity, we study a class of chemical

reactions in details in Subsection 4.1 and roughly discuss the application to diffusion approximations

of birth-and-death processes in Subsection 4.2.

4.1. Keizer’s paradox. We consider the following simple chemical reactions:

A+X
k1



k−1

2X, X
k2−→ C, (4.1)

where the positive numbers k1, k−1 and k2 are reaction rate constants. The concentration of the

chemical substance A is assumed to remain constant, and is denoted by xA. We consider in particular

the case with k1xA > k2.

Let V be the total volume of the system and {XV
t }t≥0 be the continuous-time Markov jump

process counting the number of the substance X. By the law of large numbers [19, 1], the scaled

process
{
XVt
V

}
t≥0

converges to the solutions of the following ODE:

ẋ = b(x), x ∈ [0,∞), (4.2)

on any given finite time interval as the volume V grows to infinity, where

b(x) = −k−1x
2 + k1xAx− k2x = k−1x

(
k1xA − k2

k−1
− x
)
.

The ODE (4.2) is the classical mean field model for the concentration of the substance X. It is clear

that (4.2) admits two equilibria: an unstable one at 0 and a globally asymptotically stable one at

xe :=
k1xA − k2

k−1
.

The fluctuation of
{
XVt
V

}
t≥0

around the solutions of (4.2) for V � 1 is captured by the central

limit theorem [44, 19, 1]. More precisely, for sufficiently large V , the process
{
XVt
V

}
t≥0

stays close to

the solutions of the following SDE

dXt = b(Xt)dt+ ε
√
a(Xt)dWt, X0 ∈ [0,∞), (4.3)

on any given finite time interval, where ε = 1√
V

and

a(x) = k−1x
2 + k1xAx+ k2x.

The SDE (4.3) is often referred to as the diffusion approximation of the process
{
XVt
V

}
t≥0

. The follow-

ing result, being indeed a special case of those contained in [43, 44], provides a rigorous justification

of the diffusion approximation.

Theorem 4.1 ([43, 44]). Let {ZVt }t≥0 be the diffusion process given by

ZVt = ZV0 +

∫ t

0

b(ZVs )ds+
1

V

[
W 1

(
V

∫ t

0

k1xAZ
V
s ds

)
−W−1

(
V

∫ t

0

(
k−1(ZVs )2 + k2Z

V
s

)
ds

)]
,

where W 1(t) and W−1(t) are independent standard one-dimensional Wiener processes. Then, the

following hold.

(1) {ZVt }t≥0 has the same distribution as the diffusion process generated by solutions of (4.3).



CONCENTRATION OF QUASI-STATIONARY DISTRIBUTIONS 27

(2) For any L > 0 and T > 0, there is a random variable K satisfying E{eλK} < ∞ for some

λ > 0 such that if ZV0 =
XV0
V → x0 ∈ (0, L) as V →∞, then

sup
0≤t≤T∧τVL

∣∣∣∣XV
t

V
− ZVt

∣∣∣∣ ≤ K lnV

V
a.s for all V � 1,

where τVL = inf
{
t ≥ 0 :

XVt
V 6∈ (0, L) or ZVt 6∈ (0, L)

}
. Moreover, if L > xe, then limV→∞ P{τVL >

T} = 1.

It is not hard to show that the solutions of (4.3) almost surely reach 0 in finite time, while the

solutions of (4.2) with positive initial data converge to the equilibrium xe. This gives rise to the

so-called Keizer’s paradox [38], which is often formulated in terms of the chemical master equation

(CME) satisfied by the distributions of {XV
t }t≥0 or

{
XVt
V

}
t≥0

(see e.g. [39, 61, 10]). In [61], the

authors numerically showed that the QSD of the CME tends to the Dirac delta measure at xe as the

volume V → ∞, and calculated the first passage time to the extinction as well as to the QSD to

exhibit the multi-scale nature. The multi-scale nature of Keizer’s paradox was further investigated

in [10], where the authors used a slow manifold reduction method to estimate the spectral gaps of

relevant operators that quantify the first passage time to the extinction and to the QSD.

The purpose of this subsection is to give a rigorous justification of Keizer’s paradox in term of the

diffusion approximation (4.3). More precisely, we prove the following theorem.

Theorem 4.2. Assume k1xA > k2. Then the following hold.

(1) For each 0 < ε� 1, the SDE (4.3) admits a unique QSD νε on (0,∞).

(2) limε→0+ νε = δxe in the topology of weak convergence, where δxe is the Dirac delta measure at

xe.

The rest of this subsection is devoted to the proof of Theorem 4.2. We first apply the theory

developed in [2] (also see [48, 31]) to study the existence and uniqueness of QSDs for (4.3) for fixed ε.

In particular, we prove Theorem 4.2 (1).

For each 0 < ε� 1, consider the function ξε : [0,∞)→ [0,∞):

ξε(x) : =

∫ x

0

1

ε
√
a(s)

ds

=
1

ε
√
k−1

∫ x

0

1√
s2 + 2c0s

ds

=
1

ε
√
k−1

∫ x

0

1√
(s+ c0)2 − c20

ds

=
1

ε
√
k−1

cosh−1

(
x+ c0
c0

)
,

where c0 =
k1xA + k2

2k−1
. Clearly, ξε is increasing with range [0,∞). Simple calculations lead to

ξ−1
ε (x) = c0

[
cosh

(
x

ε
√
k−1

)
− 1

]
=
c0
2

(
e
ε
√
k−1
2 x − e−

ε
√
k−1
2 x

)2

.

Define Yt = ξε(Xt). Itô’s formula yields

dYt = LXε ξε(ξ−1
ε (Yt))dt+ dWt, (4.4)
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where LXε is the generator of (4.3), namely,

LXε =
ε2

2
a(x)

d2

dx2
+ b(x)

d

dx
.

Hence,

LXε ξε(x) =
ε2

2
a(x)ξ′′ε (x) + b(x)ξ′ε(x) =

b(x)
ε −

εk−1

2 (x+ c0)√
k−1x2 + k1xAx+ k2x

.

Let

qε(y) = −LXε ξε(ξ−1
ε (y)), y ∈ [0,∞).

The SDE (4.4) can be rewritten as

dYt = −qε(Yt)dt+ dWt. (4.5)

Lemma 4.1. The following hold for each 0 < ε� 1:

y → 0+ : ξ−1
ε (y) ∼ ε2c0k−1

2
y2, qε(y) ∼ 1

2y
,

y →∞ : ξ−1
ε (y) ∼ c0

2
eε
√
k−1y, qε(y) ∼

c0
√
k−1

2ε
eε
√
k−1y.

Proof. The asymptotic behaviors of ξ−1
ε (y) as y → 0+ and y → ∞ follow readily. The asymptotic

behaviors of qε(y) as y → 0+ and y →∞ follow from those of ξ−1
ε (y) and

x→ 0+ : LXε ξ(x) ∼ −
ε
√
c0k−1

2
√

2

1√
x
,

x→∞ : LXε ξ(x) ∼ −
√
k−1

ε
x.

�

Let

Qε(y) =

∫ y

1

2qε(s)ds, y ∈ (0,∞).

Lemma 4.2. The following hold for each 0 < ε� 1:

y → 0+ : Qε(y) ∼ ln y,

y →∞ : Qε(y) ∼ c0
ε2
eε
√
k−1y.

Proof. It follows immediately from Lemma 4.1. �

Denote by τ ε the explosion time for the solution of (4.3). Let

T ε0 = lim
n→∞

inf

{
0 ≤ t < τ ε : yε(t) =

1

n

}
,

T ε∞ = lim
n→∞

inf {0 ≤ t < τ ε : yε(t) = n} .

Since qε is regular on (0,∞), there holds τ ε = min {T ε0 , T ε∞}.
It is not hard to check that assumptions (H1), (H2), (H4) and (H5) in [2] hold. More precisely, we

have the following result.

Lemma 4.3. The following statements hold for each 0 < ε� 1.

(1) For all y > 0, Pεy(T ε0 < T ε∞) = 1.
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(2) infy>0

[
q2
ε (y)− q′ε(y)

]
> −∞ and limy→∞

[
q2
ε (y)− q′ε(y)

]
=∞.

(3)
∫∞

1
e−Qε(s)ds <∞ and

∫ 1

0
se−

Qε(s)
2 ds <∞.

(4)
∫∞

1
e−Qε(s)

∫ s
1
eQε(t)dtds <∞, or equivalently,

∫∞
1
eQε(s)

∫∞
s
e−Qε(t)dtds <∞.

Proof. It follows from Lemma 4.1 and Lemma 4.2. �

It is well-known (see e.g. [36, Chapter VI, Theorem 3.2]) that Lemma 4.3 (1) is equivalent to the

following elementary conditions:

Λε(∞) =∞ and κε(0
+) <∞,

where Λε(y) =
∫ y

1
eQε(s)ds and κε(y) =

∫ y
1
eQε(s)

∫ s
1
e−Qε(t)dtds.

Let

dµYε (y) = e−Qε(y)dy on (0,∞),

and

LYε :=
1

2

d2

dy2
− qε(y)

d

dy

be the generator of (4.5). It is straightforward to check that the operator LYε is formally self-adjoint

in L2(µYε ). We can construct a self-adjoint extension of LYε in L2(µYε ), still denoted by LYε , as follows.

Consider the symmetric form EYε : C∞0 ((0,∞))× C∞0 ((0,∞))→ [0,∞) defined by

EYε (φ, ψ) =

∫ ∞
0

φ′ψ′dµYε , ∀φ, ψ ∈ C∞0 ((0,∞)).

It can be shown that EYε is Markovian and closable following the proof of [27, Theorem 2.1.4]. Its

smallest closed extension, still denoted by EYε , is a Dirichlet form with domain D(EYε ) being the closure

of C∞0 ((0,∞)) under the norm ‖φ‖2D(EYε ) := ‖φ‖2L2(µYε ) +EYε (φ, φ). Then, the non-negative self-adjoint

operator associated with EYε is a self-adjoint extension of −LYε .

Proposition 4.1. For each 0 < ε � 1, the SDE (4.5) admits a unique QSD on (0,∞) given by

ηYε dµ
Y
ε , where ηYε ∈ C2((0,∞)) ∩ L2(µYε ) ∩ L1(µYε ) is positive on (0,∞) and is the unique (up to

constant multiplication) eigenfunction associated to the first eigenvalue λε of −LYε , which has a purely

discrete spectrum contained in (0,∞) with the only accumulation point ∞.

Proof. It follows from Lemma 4.3 and [2]. �

Let

vε := (ηYε ◦ ξε)e−Qε◦ξεξ′ε and dνε(x) := vε(x)dx. (4.6)

Clearly, vε is positive and C2 on (0,∞). Moreover,∫ ∞
0

vεdx =

∫ ∞
0

ηYε (y)e−Qε(y)dy =

∫ ∞
0

ηYε dµ
Y
ε = 1.

Theorem 4.2 (1) is a special case of the following corollary.

Corollary 4.1. For each 0 < ε� 1, the SDE (4.3) admits a unique QSD given by νε. Moreover, its

density vε satisfies

ε2

2
(avε)

′′ − (bvε)
′ = −λεvε on (0,∞).
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Proof. As the transformation ξε is invertible, the QSDs of (4.3) and that of (4.5) are in one-to-one

correspondence. Hence, applying Proposition 4.1, we conclude that (4.3) admits a unique QSD for

each 0 < ε � 1. Arguments as in the proof of Lemma 3.3 (2) ensure that vε satisfies the desired

equation. �

It remains to prove Theorem 4.2 (2).

Proof of Theorem 4.2 (2). The proof amounts to the verification of conditions (A1)-(A4). It is

trivial to see that conditions (A1), (A3), and (A4) are satisfied.

To verify (A2), we need to construct a C2 function U∞ defined on [x∞,∞) for some x∞ � 1 such

that

(1) 0 < inf [x∞,∞) U∞ < sup[x∞,∞) U∞ <∞;

(2) limx→∞ U∞(x) = sup[x∞,∞) U∞;

(3) there is γ∞ > 0 such that LXε U∞ ≤ −γ∞ on [x∞,∞) for all 0 < ε� 1.

To do so, we first consider function w : (xe,∞)→ [0,∞):

w(x) = −
∫ x

x∗

b(s)ds, x ∈ (x∗,∞),

It is easy to see that w ∈ C2((xe,∞)) and satisfies

w′ > 0 on (xe,∞), lim
x→x−e

w(x) = 0, and lim
x→∞

w(x) =∞.

Next, we modify w to obtain U∞. For fixed ρM � 1, consider

φ(x) = ρM −
2ρM
3 lnx

, x > 0.

Obviously, φ is monotonically increasing, smooth, and concave on (0,∞). We now fix x∞ � 1 and

define U∞ : [x∞,∞)→ [0,∞) by setting

U∞(x) = φ(w(x)), x ∈ [x∞,∞).

Clearly, U∞ is C2, monotonically increasing, positive, and bounded. In particular, U∞ satisfies (1)

and (2).

It remains to verify (3). By using the concavity of φ on [x∞,∞) and the fact that φ′(w)ab′ < 0 on

[x∞,∞), we have

LXε U∞ =
ε2

2
aU ′′∞ + bU ′∞

= φ′(w)

(
ε2

2
aw′′ + bw′

)
+

1

2V
aφ′′(w)(w′)2

≤ φ′(w)

(
ε2

2
aw′′ + bw′

)
= φ′(w)

(
ε2

2
ab′ − b2

)
≤ −φ′(w)b2 on [x∞,∞).

By the definitions of φ and w, it is straightforward to check that φ′(w(x))b2(x) → ∞ as x → ∞. As

a result, there is γ∞ > 0 such that

−φ′(w)b2 ≤ −γ∞ on [x∞,∞).

Hence, U∞ satisfies (3), and (A2) holds.
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As xe is the globally asymptotically stable equilibrium of the ODE (4.2) in (0,∞), the result follows

from Theorem B. �

4.2. BDPs and their diffusion approximations. In this subsection, we roughly discuss the appli-

cation of our main results on the concentration of QSDs to diffusion approximations of birth-and-death

processes (BDPs). Let N be the set of positive integers and N0 = N∪{0}. Consider a continuous-time

birth-and-death process {ZKt }t≥0 on the state space N0 with birth rates

λK0 = 0, λKn = nλ̃
( n
K

)
, n ∈ N,

and death rates

µKn = nµ̃
( n
K

)
, n ∈ N,

where K > 1 is the scaling parameter, often referred to as the carrying capacity, and λ̃ and µ̃ are

positive functions on [0,∞), and satisfy λ̃(0) > µ̃(0). A typical example is the logistic BDP whose

birth and death rates are respectively given by

λK0 = 0, λKn = λ̃n and µKn = n
(
µ̃+

n

K

)
, n ∈ N,

where λ̃ > µ̃ > 0.

Let

λ(x) = xλ̃(x), µ(x) = xµ̃(x), x ∈ [0,∞).

By the central limit theorem (see e.g. [43, 44, 19]), for sufficiently large K, the process
{
ZKt
K

}
t≥0

stays close to solutions of the following SDE

dXt = [λ(Xt)− µ(Xt)] dt+

√
λ(Xt) + µ(Xt)

K
dWt, X0 ∈ [0,∞) (4.7)

on any given finite time interval. The SDE (4.7) is the diffusion approximation of
{
ZKt
K

}
t≥0

. Ap-

propriate conditions on λ̃(x) and µ̃(x) can be imposed to ensure that for each K > 1, the SDE (4.7)

admits a unique QSD νK on (0,∞), and assumptions (A1)-(A4) are satisfied, and hence, conclusions

of Theorem A and Theorem B hold for νK . For the logistic case,

lim
K→∞

νK = δλ̃−µ̃ in the topology of weak convergence.
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Appendix A. Harnack’s inequality

Let I ⊂ R be an open interval and consider the differential operator

Lu := (αu′ + βu)′ + κu on I,

where α, β and κ are measurable and bounded functions on I. The following result is a special case

of [28, Theorem 8.20].
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Lemma A.1 (Harnack’s inequality). Suppose that there are constants λ > 0, Λ > 0 and ν ≥ 0 such

that for any x ∈ I,

λ ≤ α(x) ≤ Λ and
β2(x)

λ2
+
κ(x)

λ
≤ ν2.

If u ∈W 1,2(I) be a nonnegative solution of Lu = 0 on I, then for any interval (y− 4R, y+ 4R) ⊂ I,

there holds

sup
(y−R,y+R)

u ≤ C( Λ
λ+νR)

0 inf
(y−R,y+R)

u,

where C0 > 0 is a universal constant.
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