Area Under the ROC Curve and the Average Precision: A closer look

Yan Yuan
School of Public Health
University of Alberta
Sept. 18, 2013

Outline

- Motivation
- What is average precision
 - The hit curve
- The AP and AUC connection
- AP and its variance
- Examples
- Summary and future work

Motivating Data

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malignancy score		7	6	5	4	3	2	1	Total
	Category	11	29	69	1061	2224	6588	32588	42570
Digital	Total								
	Cancers	10	18	25	85	49	25	122	334
	Category	17	29	70	942	2291	6910	32486	42745
Film	Total								
	Cancers	13	24	25	74	35	33	131	335

Predicting the Rare Class

- Cancer screening: detect from the <u>asymptomatic</u> population the diseased subjects, who make up a very small proportion (typically < 1%).
- Drug discovery: identify potential chemical compounds that are biologically active for some target (typically < 5%).
- Information retrieval

Performance Measures for Classifiers

- Threshold Dependent Measure
 - Misclassification rate
 - Sensitivity and Specificity
 - Positive and Negative Predictive Value
- Threshold Independent Measure
 - Area Under the ROC* Curve (AUC)
 - Average precision

Average Precision

Definition

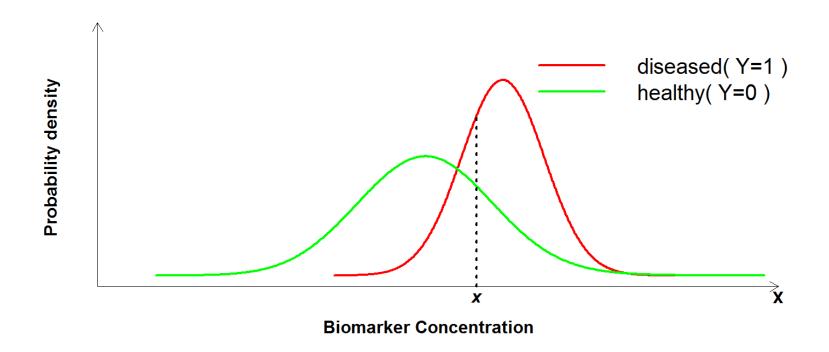
 $\{Y_{(1)}, Y_{(2)}, Y_{(3)}, ...Y_{(m)}, ..., Y_{(n)}\}$. where Y is the class label.

Precision at $Y_{(m)}$: $c_m = \frac{\sum_{i=1}^m Y_{(i)}}{m}$ (i.e. the proportion of class 1 subjects in the top m ranked subjects)

Average Precision =
$$\frac{1}{n_1}\sum_{m=1}^n Y_{(m)}c_m$$
, where $n_1=\sum_{m=1}^n Y_{(m)}$

An Illustration Example

Rank	Classifier 1	Classifier 2	Classifier 3
1	1	1	0
2	1	0	0
3	1	1	1
4	0	0	1
5	0	1	1
AP	1	0.76	0.48



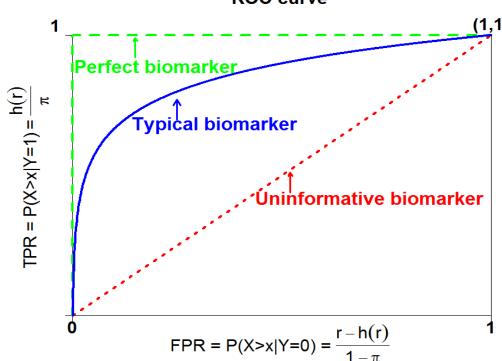
Notations

$$\pi = P(Y=1)$$

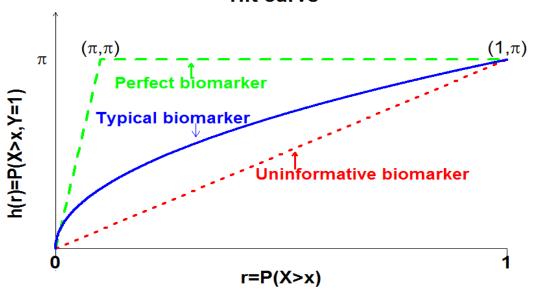
$$r = P(X > x) = F_X(x)$$

$$h(r) = P(X > x, Y=1) = \pi F_1(x)$$

ROC curve



Hit curve



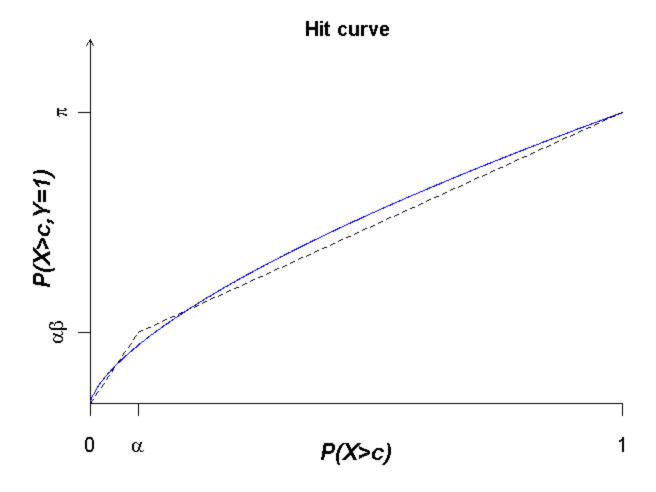
$$\pi = P(Y=1)$$

$$r = P(X > x)$$

$$h(r) = P(X > x, Y=1) = \pi F_1(x)$$

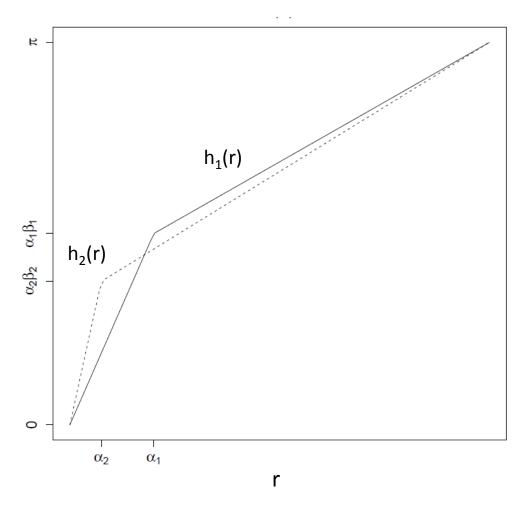
$$AUC \stackrel{\text{def}}{=} \int_0^1 \frac{h(r)}{\pi} d\left[\frac{r - h(r)}{1 - \pi}\right]$$
$$= \frac{1}{\pi(1 - \pi)} \left[\int_0^1 h(r) dr - \frac{\pi^2}{2}\right]$$

$$AP \stackrel{\text{def}}{=} \int_0^1 \frac{h(r)}{r} d\frac{h(r)}{\pi}$$
$$= \frac{1}{\pi} \int_0^1 \frac{h(r)}{r} dh(r)$$



Approximate the hit curve by a quasi-concave curve, let β be the <u>initial true positive rate</u> of the underlying test

$$h(r) = \begin{cases} \beta r, & r \in [0, \alpha] \\ \frac{\pi - \alpha \beta}{1 - \alpha} (r - \alpha) + \alpha \beta, & r \in [\alpha, 1] \end{cases}$$



Theorem 1: If two hit curves, $h_1(r)$ and $h_2(r)$, both belong to the quasi-concave family, and are parameterized respectively by (α_1, β_1) and (α_2, β_2) , then AUC(h_1) = AUC(h_2) if and only if $(\beta_1 - \pi) \ \alpha_1 = (\beta_2 - \pi) \ \alpha_2$

Theorem 2: If a hit curve, h(r), belongs to the quasiconcave family, then

$$\widetilde{AP}(h) \approx \beta \times \widetilde{AUC}(h)$$

where AP and AUC are re-scaled to lie between 0 and 1 for any hit curve h

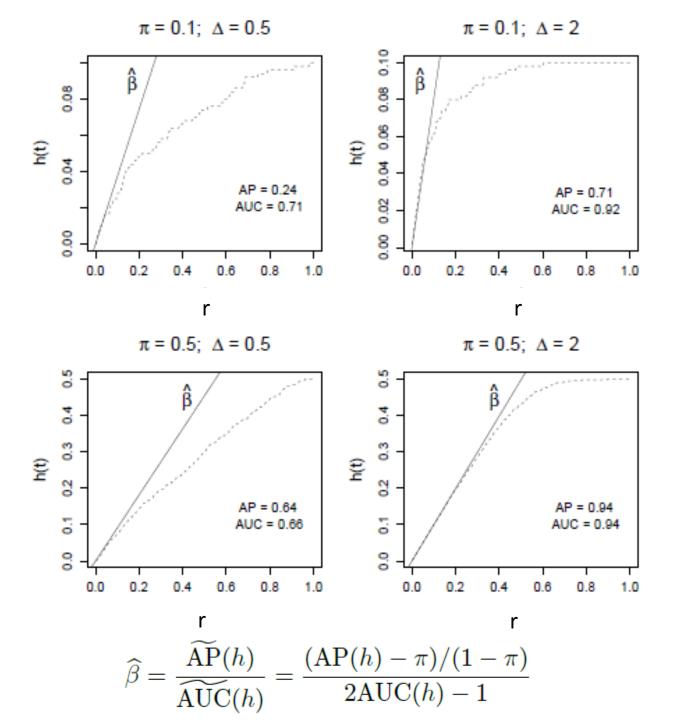
$$\widetilde{AP} \equiv \frac{AP - \pi}{1 - \pi}$$

$$\widetilde{\mathrm{AUC}} \equiv \frac{\mathrm{AUC} - 1/2}{1 - 1/2} = 2\mathrm{AUC} - 1.$$

Simulation Study

- Non-diseased subjects (Y=0), $f_0(x) \sim N(0, 1)$
- Diseased subjects (Y=1), $f_1(x) \sim N(\Delta, 1)$

- Simulation settings:
 - $-\Delta = 0.5 \text{ or } 2$
 - $-\pi = 0.1$ or 0.5
 - -n = 500



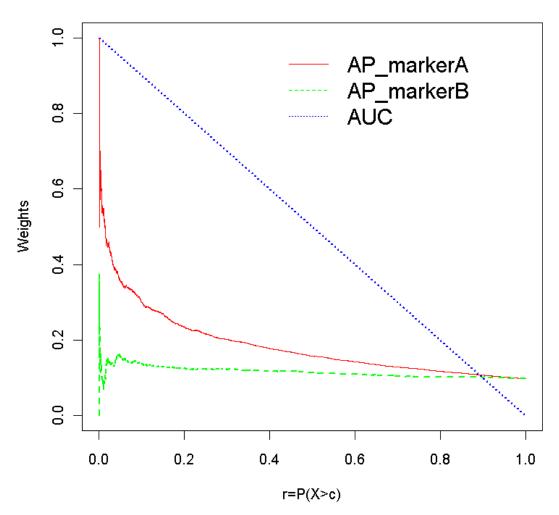
AP vs. AUC in Ordinal Data

- Radiologist reading of an image
- Clinical symptom
- Psychology questionnaire

Score	x_1	> x2	> · · · >	x_k	>	x_{k+1}	> · · · >	x_K	
Partition	R_1	R_2		R_{k}		R_{k+1}		R_K	Total
Class-1	Z_1	Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	$ar{Z}_1$	$ar{Z}_2$	• • • •	$ar{Z}_k$		\bar{Z}_{k+1}	• • • •	$ar{Z}_K$	n_0
Total	S_1	S_2		S_k		S_{k+1}		S_K	n

$$\begin{split} \mathsf{AP} &= \underbrace{\left[\frac{Z_1}{S_1}\right]}_{w_1} \underbrace{\left[\frac{Z_1}{n_1}\right]}_{w_2} + \underbrace{\left[\frac{Z_1 + Z_2}{S_1 + S_2}\right]}_{w_2} \underbrace{\left[\frac{Z_1}{n_1}\right]}_{w_K} + \dots + \underbrace{\left[\frac{Z_1 + Z_2 + \dots + Z_K}{S_1 + S_2 + \dots + S_K}\right]}_{w_K} \underbrace{\left[\frac{Z_K}{n_1}\right]}_{w_K} \\ &= \sum_{k=1} w_k \underbrace{\left[\frac{Z_k}{n_1}\right]}_{w_1} \cdot \dots + \underbrace{\left[\frac{Z_1}{n_1}\right]}_{w_2} + \underbrace{\left[\frac{S_2 + \dots + S_K}{n}\right]}_{w_2'} \underbrace{\left[\frac{Z_2}{n_1}\right]}_{w_K'} + \dots + \underbrace{\left[\frac{S_K}{n}\right]}_{w_K'} \underbrace{\left[\frac{Z_K}{n_1}\right]}_{w_K'} - \frac{1}{2} \left(\frac{n_1}{n_0}\right) \\ &= \frac{n}{n_0} \sum_{k=1} w_k' \underbrace{\left[\frac{Z_k}{n_1}\right]}_{w_1'} - \frac{1}{2} \left(\frac{n_1}{n_0}\right) \end{split}$$

A Simulated Example



Weights, w_k for AP and w_k' for AUC, in a simulated example. $f_0(x) \sim N(0, 1)$ and $f_1(x) \sim N(\Delta, 1)$ where $\Delta_A = 1$ and $\Delta_B = 0.25$; $\pi = 0.1$.

MLE of AP

Score	x_1	>	x_2	> · · · >	x_k	>	x_{k+1}	> · · · >	x_K	
Partition	R_1		R_2		R_k		R_{k+1}		R_K	Total
Class-1	Z_1		Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	$ar{Z}_1$		$ar{Z}_2$		$ar{Z}_k$		\bar{Z}_{k+1}		$ar{Z}_K$	n_0
Total	S_1		S_2		S_k		S_{k+1}		S_K	\boldsymbol{n}

Data in the 2 X K table follow

$$(Z_1, Z_2, ..., Z_K)|n_1 \sim \text{multinomial}(n_1; p_1, p_2, ..., p_K),$$

 $(\bar{Z}_1, \bar{Z}_2, ..., \bar{Z}_K)|n_1 \sim \text{multinomial}(n - n_1; q_1, q_2, ..., q_K),$
 $n_1 \sim \text{binomial}(n, \pi),$

where

$$p_k = \int_{R_k} f_1(x) dx, \quad q_k = \int_{R_k} f_0(x) dx,$$

Asymptotic Variance of AP

$$\widehat{AP} = g(\widehat{p}_k, \widehat{q}_k, \widehat{\pi}) = \sum_{k=1}^K \left[\widehat{p}_k \left(\frac{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'}}{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'} + (1 - \widehat{\pi}) \sum_{k' \le k} \widehat{q}_{k'}} \right) \right].$$

Apply the Delta method, we get

$$\widehat{var}(\widehat{AP}) \approx (\nabla g)^T \widehat{J}^{-1}(\nabla g)$$

Example 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malign	ancy score	7	6	5	4	3	2	1	Total
Digital	Category	11	29	69	1061	2224	6588	32588	42570
	Total								
	Cancers	10	18	25	85	49	25	122	334
Film	Category	17	29	70	942	2291	6910	32486	42745
	Total								
	Cancers	13	24	25	74	35	33	131	335

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer at 15 months follow-up.

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the prevalence π is 0.00783.

	Seven-point Malignancy Scale				
	\widehat{AUC} (s.e.)	\widehat{AP} (s.e.)			
Film mammography	0.735 (0.012)	0.166 (0.022)			
Digital mammography	0.753 (0.012)	0.144 (0.021)			

Remark: Resampling method can be used for the inference of the difference in AP when we have paired data.

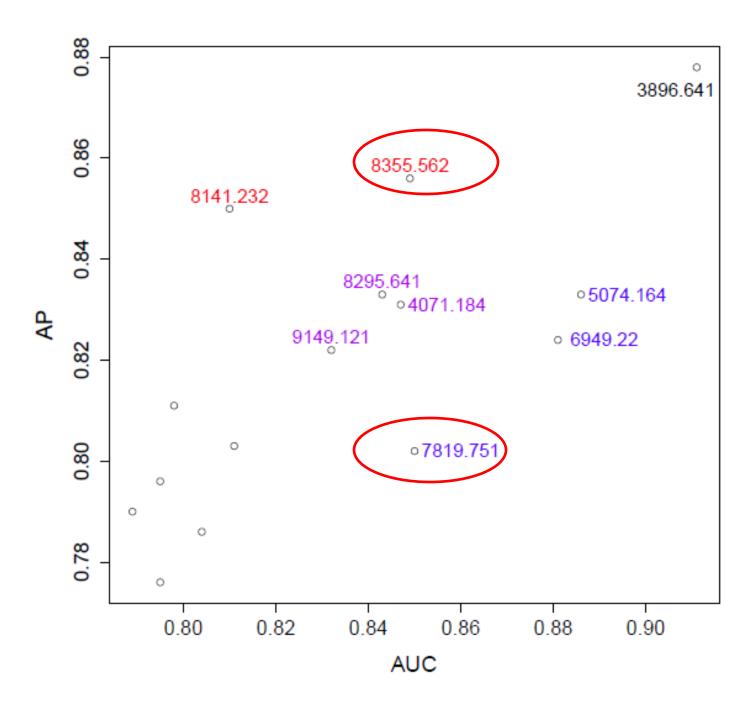
Example 2

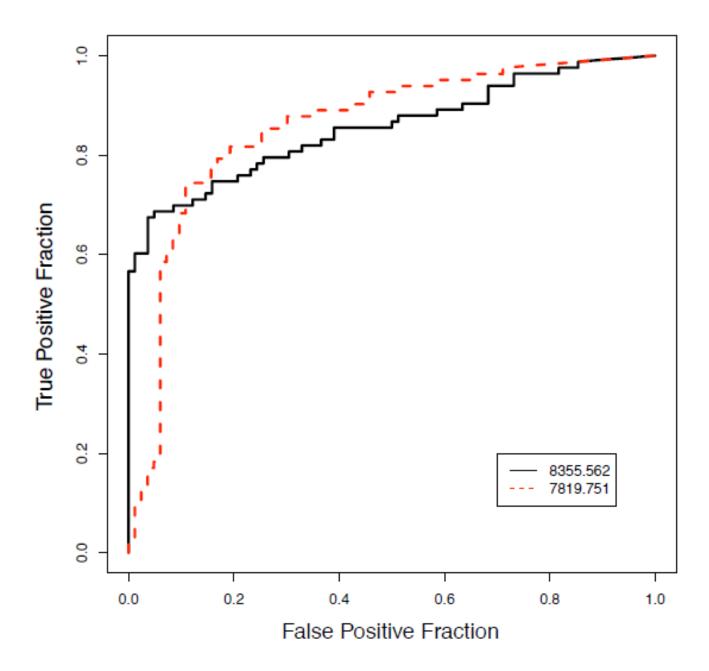
Mass spectrometry data for prostate cancer (Adam et al. 2002 Cancer Research)

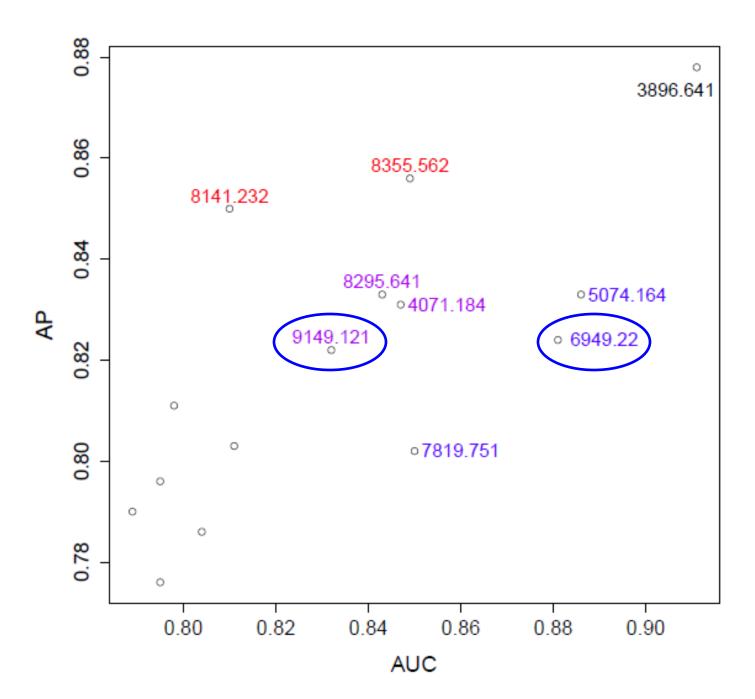
 779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects.

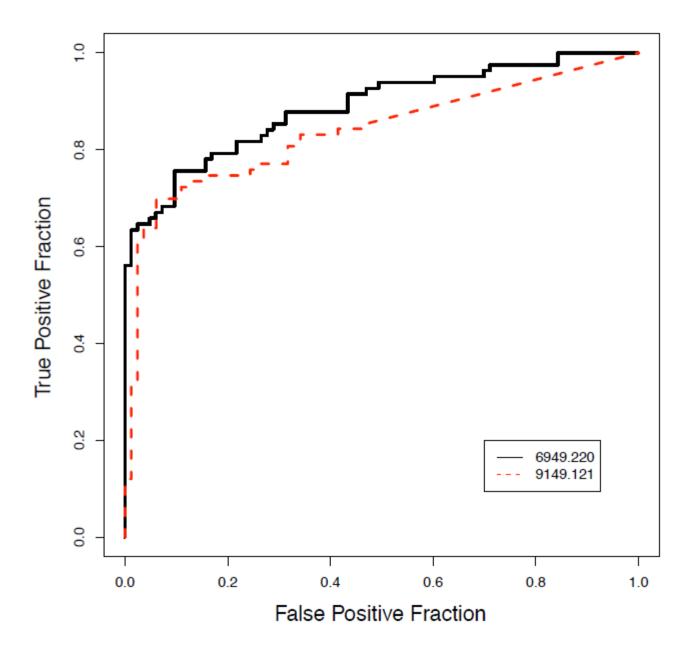
		Standard Error of AP						
Biomarker	AP	Asymptotic	P-Bootstrap	NP-Bootstrap				
3896.641	0.878	0.0345	0.0344	0.0344				
8355.562	0.856	0.0336	0.0339	0.0340				
8141.232	0.850	0.0319	0.0324	0.0321				
8295.641	0.833	0.0328	0.0327	0.0327				
5074.164	0.833	0.0403	0.0405	0.0403				
4071.184	0.831	0.0368	0.0364	0.0366				
6949.220	0.824	0.0414	0.0415	0.0413				
9149.121	0.822	0.0378	0.0380	0.0378				

22/29









A Thought Experiment

- The biomarker study is based on a case-control study with the intention to identify potential screening markers.
- How AP and the ranking of biomarkers is affected when the prevalence is much lower as in a screening setting?

Inflate the controls by replicating them

Diomonton	AUC		AP			
Biomarker	n ₀ X 1	n ₀ X 1	n ₀ X 10	n ₀ X 100		
8355.562	0.849	0.856	0.606	0.571		
7819.751	0.850	0.802	0.370	0.062		
6949.220	0.881	0.824	0.452	0.205		
9149.121	0.832	0.822	0.512	0.225		

Summary

- A single numerical measure, independent of threshold
- Connection between AP and AUC
- Empirical estimation of AP and its asymptotic variance
- Practical relevance

Future work

- Asymptotic variance of AP when test score is continuous
- Assessing risk predictor
- Assessing survival models