

From Cancer Epidemiology to Prediction Accuracy Measure, and Beyond - a biostatistician's eight years in population health

Yan Yuan, PhD

School of Public Health, U Alberta

April 30, 2019 @U Ottawa

Research Program

- Prediction measures and risk prediction
- Gestational weight
 trajectory modelling
- Relation between association measures

- Health services
- Late effects in survivors
- Rare cancer

NSERC Theme

ERSITY OF ALBERTA DOL OF PUBLIC HEALTH

CIHR Theme

Research Program

- Prediction measures and risk prediction
- Gestational weight trajectory modelling
- Relation between
 association measures

- Health services
- Late effects in survivors
- Rare cancer

NSERC Theme

CIHR Theme (Cancer Epi)

Health Services: Breast cancer screening and diagnostic care

- Use administrative data, e.g. physician claims, to identify mode of cancer detection (screen vs. non-screen)? (Yuan et al. 2015)
- Time to diagnosis in the two pathways? Any care disparities? (Yuan et al. 2016)
- Resolution of cancer screening and rescreening behavior? (Shen et al. 2018)
- Quality of breast cancer screening? (Yuan et al., under review)
- Breast cancer screening/diagnostic care across Canadian provinces? (Winget et al., under review)

Alberta Breast Cancer Screening Program (ABCSP)

Started 2008

88%

Screen Test

 Two clinics: Edmonton, Calgary.

12%

- Mobile units visit rural/remote communities
- Interpreted by sessional radiologists in Edmonton

Fee-for-service Radiologists in Community Practices

Spread through province

Data Sources

 Patient ID Demographics Tumour details Date of cancer diagnosis Method of diagnosis 	 Patient ID Date/<u>results</u> of screening and diagnostic mammograms Date/<u>results</u> of breast ultrasound, MRI and biopsy 	 Patient ID Date/<u>results</u> of screening mammograms Date/<u>results</u> of diagnostic mammogram, breast ultrasound, MRI and biopsy 	 Patient ID Date of screening and diagnostic mammograms Date of breast ultrasound, MRI and biopsy
	Database A	Database A & B	Database B
Alberta Cancer Registry (2007-10)	Alberta Society of Radiologists (2006-10)	Screen Test (2006-10)	Physician Claims (2006-10)

Dataset B: no	test results	Dataset A: with		
Look-back tim	ne	Screen detected <i>n</i> (%)	Symptom detected <i>n</i> (%	Total n (%)
4 months	Screen detected Symptom detected	2893 (41) 186 (3)	213 (3) 3702 (53)	3106 (44) 3888 (56)
6 months	Screen detected Symptom detected	2925 (42) 154 (2)	303 (4) 3612 (52)	3228 (46) 3766 (54)
Total		3079 (44)	3915 (56)	6994

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Failure to rescreen

Shen et al. 2018

Quality of Breast Cancer Screening

Research Program

- Prediction measures and risk prediction
- Gestational weight / fat trajectory
- Relation between
 association measures

- Health services
- Late effects in survivors
 - Rare cancer

NSERC Theme

ERSITY OF ALBERTA

OF PUBLIC HEALTH

$$\begin{split} & -\cos u \ \text{sphere as} \\ & = \frac{\partial [\nabla K_X \leq z \mid T_i < v_i) dz_i}{\int P(T_X = z + T_i < v_i) dz_i} \\ & = \frac{dP(X_X = z + T_i < v_i) dz_i}{P(T_i < v_i)} \\ & = \frac{d\int_{-\infty}^{\infty} P(T_i < v_i) X_i \leq z, X_X = z) dz_i dz_i}{P(T_i < v_i)} \\ & = \int_{-\infty}^{\infty} \frac{dP(T_i < v_i) X_i = z, X_X = z) dz_i}{P(T_i < v_i)} \\ & = \int_{-\infty}^{\infty} \frac{P(T_i < v_i) X_i = z, X_X = z) dz_i}{P(T_i < v_i)} \\ P(T_i < u \mid X_X = z, X_X = z) dz_i z, x_i p dz_i \\ P(T_i < u \mid X_X = z, X_X = z) dz_i z, x_i p dz_i \\ P(T_i < u \mid X_X = z, X_X = z) dz_i z_i z_i) \\ (a) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(T_i < v_i \mid X_X = z, X_X = z) dz_i z_i z_i) \\ & = P(T_i < z + t_X = x, X_X = z) dz_i z_i z_i) \\ & = P(T_i > t_X = t_X = x, X_X = z) dz_i z_i) \end{split}$$

CIHR Theme (Cancer Epi)

Motivating Data – Binary outcome

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Maligna	ancy score	7	6	5	4	3	2	1	Total
Digital	Category	11	29	69	1061	2224	6588	32588	42570
Μ	Cancers	10	18	25	85	49	25	122	334
Film	Category Total	17	29	70	942	2291	6910	32486	42745
	Cancers	13	24	25	74	35	33	131	335

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer by the end of 15 months follow-up.

Performance Evaluation <u>Predicting Low Prevalence Events</u>

- Threshold Dependent Measure (predictor needs to be binary)
 - Misclassification rate
 - Sensitivity (TPF): P(test positive | disease present) = $P(\hat{Y} = 1 | Y = 1)$
 - Specificity (FPF): P(test negative | disease absent) = $P(\hat{Y} = 0 | Y = 0)$
 - Positive Predictive value (PPV): $P(Y = 1 | \hat{Y} = 1)$
 - Negative Predictive Value (NPV): $P(Y = 0 | \hat{Y} = 0)$

- F1 measure:
$$\frac{2}{\frac{1}{PPV} + \frac{1}{TPF}}$$

Threshold-free Summary Measure

• Area Under the ROC Curve (AUC)

$$AUC \equiv \int_{R} TPF(z)dFPF(z)$$

• Area under the Precision-Recall curve

Yuan et al. (2015)

AP Estimator (ordinal risk scores)

Score	x_1	$> x_2$	> >	x_k	>	x_{k+1}	> · · · >	x_K	
Partition	R_1	R_2		R_k		R_{k+1}		R_K	Total
Class-1	Z_1	Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1	\bar{Z}_2		\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1	S_2		S_k		S_{k+1}		S_K	n

Data in the above 2 X K table follow

 $(Z_1, Z_2, ..., Z_K) | n_1 \sim \text{multinomial}(n_1; p_1, p_2, ..., p_K),$ $(\bar{Z}_1, \bar{Z}_2, ..., \bar{Z}_K) | n_1 \sim \text{multinomial}(n - n_1; q_1, q_2, ..., q_K),$ $n_1 \sim \text{binomial}(n, \pi),$

For continuous risk scores

$$p_k = \int_{R_k} f_1(x) dx, \quad q_k = \int_{R_k} f_0(x) dx,$$

Yuan et al. (2015)

MLE and Variance Estimator

$$\widehat{AP} = g(\widehat{p}_k, \widehat{q}_k, \widehat{\pi}) = \sum_{k=1}^{K} \left[\widehat{p}_k \left(\frac{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'}}{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'} + (1 - \widehat{\pi}) \sum_{k' \le k} \widehat{q}_{k'}} \right) \right]$$

Applying the Delta method, the variance estimator is

$$\widehat{var}(\widehat{AP}) \approx (\nabla g)^T \widehat{f}^{-1} (\nabla g)$$

FPR

TPR

Malignanc	y score	7	6	5	4	3	2	1	Total
Digital M	Category Total	11	29	69	1061	2224	6588	32588	42570
	Cancers	10	18	25	85	49	25	122	334
Film	Category Total	17	29	70	942	2291	6910	32486	42745
Μ	Cancers	13	24	25	74	35	33	131	335

Revisiting breast cancer screening example

Table 1 | Prostate cancer example.

Biomarkers			AUC		АР			
		$n_0 \times 1 \ (\pi \approx 0.5)$	<i>n</i> ₀ × 10 (π ≈ 0.09)	<i>n</i> ₀ × 100 (π ≈ 0.01)	$n_0 \times 1 \ (\pi \approx 0.5)$	<i>n</i> ₀ × 10 (π ≈ 0.09)	<i>n</i> ₀ × 100 (π ≈ 0.01)	
A	8355.562	0.849	0.783	0.783	0.856	0.606	0.571	
	7819.751	0.850	0.857	0.857	0.802	0.370	0.062	
В	5074.164	0.886	0.869	0.869	0.833	0.306	0.043	
	9149.121	0.832	0.793	0.793	0.822	0.512	0.225	

A simple thought experiment showing changes in the estimated AUC and AP as a result of artificially inflating the number of control subjects (n_0) to mimic real-life screening settings, where the prevalence (π) of disease is low.

Yuan et al. (2015)

AP – AUC Relationship

- When two risk scores U_1 and U_2 are compared
 - If ROC curve of U_1 dominates that of U_2 everywhere, then PR curve of U_1 dominates that of U_2 everywhere. AUC₁ > AUC₂ and AP₁ > AP₂
 - If ROC curves of U_1 and U_2 crosses, the ranking of U_1 and U_2 based on of AUC and AP may differ.
- Similar to AUC, AP is a semi-proper scoring rule.

Motivating Data – Time to Event outcome

- Late effects of cancer treatments in childhood cancer survivors e.g. Congestive heart failure (Chow et al. 2015, *Journal of Clinical Oncology*)
- Cumulative risk of CHF is ~3% by 35 years post diagnosis

AP_{t_0} for Time-to-Event Outcome

• Time-dependent Average Positive predictive value (AP_{t_0}) for event status

$$AP_{t_0} = \int_{\mathcal{R}} PPV_{t_0}(z) dTPF_{t_0}(z).$$

Nonparametric Estimator for Event Status

Let (X, δ, Z) be the standard time to event data notation, X: the censored event time, δ : the censoring indicator Z: the risk score

$$\widehat{AP}_{t_0} = \frac{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j} \widehat{PPV}_{t_0}(Z_j)}{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j}}.$$

where

$$\widehat{w}_{t_0,i} = \frac{I(X_i < t_0)\delta_i}{\widehat{\mathcal{G}}(X_i)} + \frac{I(X_i \ge t_0)}{\widehat{\mathcal{G}}(t_0)}$$

$$\widehat{\text{PPV}}_{t_0}(z) = \frac{\sum_{i=1}^{n} \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0)}{\sum_{i=1}^{n} \widehat{w}_{t_0,i} I(Z_i \ge z)}$$

Results (n=2000)

	Et.	D' 1			A	Р		AUC
t_0	Event rate	Risk score	TRUE	BIAS	ESE	ASE^{b}	$ECOVP^{b}(\%)$	TRUE
0.5	0.0101	U_1	0.182	0.0361	0.0806	0.0794	92.2	0.920
		U_2	0.124	0.0339	0.0687	0.0679	94.1	0.904
		Δ	0.058	0.0251	0.102	0.116	96.1	0.016
		Ratio	1.47	0.4820	1.470	1.740	92.4	1.02
8	0.0495	U_1	0.364	0.0085	0.0508	0.0499	94.4	0.841
		U_2	0.266	0.0121	0.0435	0.0439	94.8	0.848
		Δ	0.098	-0.0028	0.0707	0.072	96.3	-0.007
		Ratio	1.37	0.0123	0.310	0.322	95.8	0.99
36	0.0991	U_1	0.462	0.0060	0.0416	0.0431	94.2	0.786
		U_2	0.375	0.0074	0.0387	0.0393	96.3	0.824
		Δ	0.087	-0.0045	0.0655	0.0633	95.7	-0.038
		Ratio	1.23	-0.0010	0.189	0.187	94.5	0.95

R package <APtools> and SAS macro for binary and time to event outcome @ https://sites.ualberta.ca/~yyuan/software.html

Incremental Value

- Risk factor & outcome association vs. information/calibration gain in prediction
- Existing metrics
 - Changes in AUC and Brier scores (BS)
 - NRI (net reclassication improvement)
 - IDI (integrated discrimination improvement)

How does AP changes, in comparison to changes in AUC and BS?

Simulation Study

- True model: $logit(\pi) = \beta_0 + \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_1 U_2$,
 - $-\beta_1$ and β_2 range: [0.3, 1.2]
 - $-\beta_3$ range: [-1,1]
 - Independent U1 & U2 ~ iid N(0,1)
 - Event rate: ~5%
- Working model
 - Model 1: $logit(\pi) = \beta_0 + \beta_1 U_1$
 - Model 2: $logit(\pi) = \beta_0 + \beta_1 U_1 + \beta_2 U_2$
- Metrics
 - rAUC, rAP and rBS

			_		

Metrics	Correlation			
Log(ratio of metrics: M2/M1)	Pearson	Spearman		
-In(rBS) and In(rAUC)	0.083	0.30		
-In(rBS) and In(rAP)	0.76	0.89		
In(rAUC) and In(rAP)	0.48	0.51		

 $\beta_1 = 0.9, \beta_2 = 0.3, \beta_3 = 0.6$

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

 $\beta_1 = 1, \beta_2 = 1, \beta_3 = -0.6$

TPR

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Research Program

- Prediction measures and risk prediction
- Gestational weight / fat trajectory
- Relation between
 association measures

Health services

- Late effects in survivors
 - Rare cancer

NSERC Theme

CIHR Theme (Cancer Epi)

Risk Prediction for Ovarian Failure

- Goal
 - Developing risk prediction algorithms for ovarian failure (OF) in childhood cancer survivors (CCS)
- Data source
 - ~6000 females (dx 1970-1999) from the CCSS cohort
- Algorithms
 - Logistic regression; Random Forest; and Support Vector Machines
- Performance
 - AUC 0.82, AP 0.50 for Acute OF (Internal validation)

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH PUBLIC HEALTH

Research Program

- Prediction measures and risk prediction
- Gestational weight / fat trajectory
- Relation between
 association measures

 Health services
 Late effects in survivors

Rare cancer

NSERC Theme

CIHR Theme (Cancer Epi)

Brain Tumour Epidemiology: the Canadian Story

Time (Year)

WIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Capturing Radiological Diagnoses of Brain Tumours in Canada

- Significant underreporting of non-malignant brain tumours (only ~40% expected cases captured)
- Vary by province

Table 2. Method of Diagnosis of Malignant Brain Tumors in 4 Canadian Provinces (2004–2015)									
Province	Microscopic Confirmation n (%)	Radiological Confirmation n (%)	Other* n (%)	Unknown n (%)	Total n				
Alberta	2,600 (83.9)	475 (15.3)	25 (0.8)	0 (0)	3,100				
British Columbia	3,650 (84.4)	305 (7.1)	370 (8.6)	0 (0)	4,325				
Manitoba	885 (79.0)	230 (20.5)	5 (0.5)	0 (0)	1,120				
Ontario	11,265 (84.0)	590 (4.4)	215 (1.6)	1,340 (10.0)	13,410				
Total	18,400 (83.8)	1,600 (7.3)	615 (2.8)	1,340 (6.1)	21,955				

Note: Quebec data is only available up to 2010 and thus is not included in the table. Numbers are randomly rounded in accordance with Statistics Canada requirements.

Yuan et al. 2018

*Other category includes death certificate, clinically confirmed, surgically confirmed, autopsy, and positive lab marker.

Table 3. Pathways to Clinical Care and Cancer Registration When a Brain Tumor is Radiologically Diagnosed								
Clinical Care	Cancer H	Registries						
Follow up/Treatment	Registration	Data Quality						
Surgery and/or seen by oncologist	Yes	Accurate						
Series of MRI studies over time. Diagnosis may or may not change. Surgery and/or oncology care involved during disease course.	Likely registered when pathology confirms diagnosis or oncologist prescribes treatment.	Level of accuracy varies; initial diagnosis delayed in reporting and information may not be accurately recorded						
Series of MRI studies over time only, no surgery.	Not likely	Potential to miss a significant proportion of cases						

MRI, magnetic resonance imaging.

Table 4. Legislation and Responsibility for Reporting and Registering Cancer Cases by Province									
Provin ce	Province Legislation Healthcare professionals		Health Authority						
Alberta	Cancer Act, 2009	"Shall report"	"May request"						
British Columbia	Health Act, 2009	Not mandatory but "must comply with request"	"May request"						
Manitoba	Public Health Act, 2009	"Must report"	"May request"						
Ontario	Cancer Act, 1990	None	Ensure "adequate reporting of cases and the recording and compilation of data"						
Quebec	Public Health Act, 2001	"Must report", "in the manner and within the time limits prescribed in the regulation"	"Record"						

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH Yuan et al. 2018 Best paper award, NCRA

Recommendations

- Algorithmic solution needed (e.g. Natural language processing) for processing the unstructured radiology reports better capture cases
- Synoptic reporting in radiology should be explored

Yuan et al. 2018 Best paper award, NCRA

Funders, Collaborators, and Trainees/Staff

Staff members: Maoji Li, Qian Shi, Dr. Khanh Vu Ye Shen (Health services) Doris Li, Hengrui Cai, Zorina Han (Risk prediction measures) Rebecca Clark, Michael Lu (Late effects in survivors) Jordan Ross, Sana Amjad, Emily Maplethorpe (Rare cancer)

M.S.I. Foundation

LOIS HOLE

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Thank you!

Questions???