Measuring the Prediction Performance of Medical Screening Tests

Yan Yuan School of Public Health University of Alberta

May 8, 2015

Joint work with Dr. Wanhua Su and Dr. Mu Zhu

Brief Biography Yan Yuan

2011- present, Assistant Prof; School of Public Health, University of Alberta

2008-2011, Biostatistician, Population Health Research, Cancer Control, Alberta Health Services

2003 MMath, 2008 PhD in Statistics, University of Waterloo

1999-2001 Lab manager and research technician in Animal behavior lab, University of Guelph, Canada

1999, MSc in Animal behavior, Michigan State University, USA

1996 BSc in Biochemistry, Nanjing University, China

Outline

- Motivation
 - Detecting the Rare Events (low prevalence/incidence)

10-year cancer diagnosis	Colorect	al cancer	Breast	Prostate	
per 1000 person	Male	Female	cancer	cancer	
Age 50	6.8	5.2	23	22	
Age 60	13	9	35	63	

- Metrics for evaluating medical test
- The relation between two single numeric summary metrics
- Variance of AP
- Examples
- Summary and future work

Predicting the Rare Class

- Cancer screening: detect from the <u>asymptomatic</u> population the diseased subjects, who make up a very small proportion (typically < 1%).
- Risk models (for general population): CVD, diabetes, chronic pulmonary diseases
- Drug discovery: identify potential chemical compounds that are biologically active for some target (typically < 5%).
- Information retrieval

Medical Screening Tests

- Screening aims at detecting disorders at an early <u>asymptomatic</u> stage
- Its utility is determined by its ability to detect the disorder, measured by positive predictive value (PPV)
- The current evaluation metrics for <u>medical tests</u>
 - Sensitivity, Specificity, Diagnostic likelihood ratios,
 Predictive values
 - Receiver operating characteristic (ROC) curve

Motivating Data 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malign	ancy score	7	6	5	4	3	2	1	Total
	Category	11	29	69	1061	2224	6588	32588	42570
Digital	Total								
	Cancers	10	18	25	85	49	25	122	334
	Category	17	29	70	942	2291	6910	32486	42745
Film	Total								
	Cancers	13	24	25	74	35	33	131	335

Motivating Data 2

Mass spectrometry data for prostate cancer (Adam *et al*. 2002 Cancer Research)

• 779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects.

Performance Measures for Medical tests (classifiers)

- Threshold Dependent Measure
 - Misclassification rate
 - Sensitivity and Specificity
 - Positive and Negative Predictive Value
- Threshold Independent Measure
 - Area Under the ROC* Curve (AUC or aROC)
 - Average positive predictive value (AP)

AP

• Definition

 $\{Y_{(1)}, Y_{(2)}, Y_{(3)}, ..., Y_{(m)}, ..., Y_{(n)}\}$. where Y is the true binary class label.

Positive predictive value at $Y_{(m)}$: $PPV_m = \frac{\sum_{i=1}^m Y_{(i)}}{m}$ (i.e. the proportion of class 1 subjects in the top m ranked subjects) $AP = \frac{1}{n_1} \sum_{m=1}^n Y_{(m)} PPV_m$, where $n_1 = \sum_{m=1}^n Y_{(m)}$, total number of class 1 subjects

An Illustration Example

Rank	Classifier 1	Classifier 2	Classifier 3
1	1	1	0
2	1	0	0
3	1	1	1
4	0	0	1
5	0	1	1
AP	1	0.76	0.48

Definition of AUC and AP

Notations

 $\pi = P(Y=1)$

$$s = P(X > x) = G_X(x)$$

$$h(s) = P(X > x, Y=1) = \pi F_1(x)$$

aROC vs aPR

 $\log(T_i) = 7.2 - 1.1U_{i1} - 2.5U_{i2} - 1.5log(U_{i1}^2) + \epsilon_T,$

13/33

Example 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malign	ancy score	7	6	5	4	3	2	1	Total
	Category	11	29	69	1061	2224	6588	32588	42570
Digital	Total								
	Cancers	10	18	25	85	49	25	122	334
	Category	17	29	70	942	2291	6910	32486	42745
Film	Total								
	Cancers	13	24	25	74	35	33	131	335

Ordinal Data

- Radiologist reading of an image
- Clinical symptom
- Psychology questionnaire

Score	x_1	>	x_2	> · · · >	x_k	>	x_{k+1}	> >	x_K	
Partition	R_1		R_2		R_k		R_{k+1}		R_K	Total
Class-1	Z_1		Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1		\bar{Z}_2		\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1		S_2		S_k		S_{k+1}		S_K	\boldsymbol{n}

$$\widehat{AP} = \left[\frac{Z_1}{S_1} \right] \left[\frac{Z_1}{n_1} \right] + \left[\frac{Z_1 + Z_2}{S_1 + S_2} \right] \left[\frac{Z_2}{n_1} \right] + \dots + \left[\frac{Z_1 + Z_2 + \dots + Z_K}{S_1 + S_2 + \dots + S_K} \right] \left[\frac{Z_K}{n_1} \right]$$
$$= \sum_{k=1}^{W_k} \left[\frac{Z_k}{n_1} \right].$$

$$\begin{split} \widehat{AUC} &= \frac{n}{n_0} \underbrace{\left\{ \underbrace{\frac{S_1 + S_2 + \dots + S_K}{n}}_{w_1'} \right\} \left[\underbrace{\frac{Z_1}{n_1}}_{w_2'} \right] + \underbrace{\left[\frac{S_2 + \dots + S_K}{n} \right]}_{w_2'} \left[\underbrace{\frac{Z_2}{n_1}}_{w_1'} \right] + \dots + \underbrace{\left[\frac{S_K}{n} \right]}_{w_K'} \left[\underbrace{\frac{Z_K}{n_1}}_{w_1} \right] - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \right\} - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \\ &= \frac{n}{n_0} \sum_{k=1}^{w_k'} \frac{\left[\frac{Z_k}{n_1} \right]}_{k=1} - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \end{split}$$

A /

A Simulated Example

Weights, W_k for AP and W'_k for AUC, in a simulated example. $f_0(x) \sim N(0, 1)$ and $f_1(x) \sim N(\Delta, 1)$ where $\Delta_A = 1$ and $\Delta_B = 0.25$; $\pi = 0.1$.

MLE of AP

Score	x_1	>	x_2	> · · · >	x_k	>	x_{k+1}	> >	x_K	
Partition	R_1						R_{k+1}		R_K	Total
Class-1	Z_1		Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1		\bar{Z}_2		\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1		S_2		S_k		S_{k+1}		S_K	n

Data in the 2 X K table follow

 $(Z_1, Z_2, ..., Z_K) | n_1 \sim \text{multinomial}(n_1; p_1, p_2, ..., p_K),$ $(\bar{Z}_1, \bar{Z}_2, ..., \bar{Z}_K) | n_1 \sim \text{multinomial}(n - n_1; q_1, q_2, ..., q_K),$ $n_1 \sim \text{binomial}(n, \pi),$

where

$$p_k = \int_{R_k} f_1(x) dx, \quad q_k = \int_{R_k} f_0(x) dx,$$

Asymptotic Variance of AP

$$\widehat{AP} = g(\widehat{p}_k, \widehat{q}_k, \widehat{\pi}) = \sum_{k=1}^K \left[\widehat{p}_k \left(\frac{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'}}{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'} + (1 - \widehat{\pi}) \sum_{k' \le k} \widehat{q}_{k'}} \right) \right]$$

Apply the Delta method, we get

$$\widehat{var}(\widehat{AP}) \approx (\nabla g)^T \widehat{J}^{-1} (\nabla g)$$

Example 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malign	ancy score	7	6	5	4	3	2	1	Total
Digital	Category	11	29	69	1061	2224	6588	32588	42570
	Total								
	Cancers	10	18	25	85	49	25	122	334
Film	Category	17	29	70	942	2291	6910	32486	42745
	Total								
	Cancers	13	24	25	74	35	33	131	335

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer at 15 months follow-up.

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the prevalence π is 0.00783.

	Seven-point Malignancy Scale					
	\widehat{AUC} (s.e.)	\widehat{AP} (s.e.)				
Film mammography	0.735 (0.012)	0.166 (0.022)				
Digital mammography	0.753 (0.012)	0.144 (0.021)				

Remark: Resampling method can be used for the inference of the difference in AP when we have paired data.

Example 2

Mass spectrometry data for prostate cancer (Adam *et al*. 2002 Cancer Research)

 779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects.

		Standard Error of AP						
Biomarker	AP	Asymptotic	P-Bootstrap	NP-Bootstrap				
3896.641	0.878	0.0345	0.0344	0.0344				
8355.562	0.856	0.0336	0.0339	0.0340				
8141.232	0.850	0.0319	0.0324	0.0321				
8295.641	0.833	0.0328	0.0327	0.0327				
5074.164	0.833	0.0403	0.0405	0.0403				
4071.184	0.831	0.0368	0.0364	0.0366				
6949.220	0.824	0.0414	0.0415	0.0413				
9149.121	0.822	0.0378	0.0380	0.0378				

AUC

Pair B: similar AP scores but different AUC scores

A Thought Experiment

- The biomarker study is based on a case-control study with the goal to identify potential screening markers.
- How AUC, AP and the ranking of biomarkers is affected when the prevalence is much lower as in a screening setting?

Inflate the controls by replicating them

Diomonkon	AUC		AP						
Biomarker		n ₀ X 1	n ₀ X 10	n ₀ X 100					
8355.562	0.849	0.856	0.606	0.571					
7819.751	0.850	0.802	0.370	0.062					
5074.164	0.886	0.833	0.306	0.043					
9149.121	0.832	0.822	0.512	0.225					

Example 3

Table 5 | AUC, AP, DR, and FPF for three tests from Wald and Bestwick [(10), Figure 2].

	AUC ^a		AP			FPF at DR 50% ^a
		$\pi = 0.5$	$\pi \approx 0.09$	$\pi \approx 0.01$		
$SD_A = SD_U$	0.75	0.74	0.26	0.04	0.24	0.17
$SD_A = 1.5SD_U$	0.75	0.79	0.42	0.16	0.39	0.11
$SD_A = 2SD_U$	0.75	0.81	0.51	0.29	0.47	0.07

Continuous Version

$$s = P(X > x)$$

$$h(s) = P(X > x, Y=1)$$

AUC =
$$\int_0^1 \text{TPF}(s) d\text{FPF}(s)$$

= $\frac{1}{\pi(1-\pi)} \left[\int_0^1 h(s) ds - \frac{\pi^2}{2} \right]$
AP = $\int_0^1 \text{PPV}(s) d\text{TPF}(s) = \frac{1}{\pi} \int_0^1 \frac{h(s)}{s} dh(s).$

Approximate the hit curve by a piecewise linear curve, let β be the <u>initial true positive rate</u> of the underlying test

$$h(r) = \begin{cases} \beta r, & r \in [0, \alpha] \\ \frac{\pi - \alpha \beta}{1 - \alpha} (r - \alpha) + \alpha \beta, & r \in (\alpha, 1] \end{cases}$$

Theorem 1: If two hit curves, $h_1(r)$ and $h_2(r)$, both belong to the piecewise linear family, and are parameterized respectively by (α_1, β_1) and (α_2, β_2) , then AUC(h_1) = AUC(h_2) if and only if $(\beta_1 - \pi) \ \alpha_1 = (\beta_2 - \pi) \ \alpha_2$

Theorem 2: If a hit curve, h(r), belongs to the piecewise linear family, then

$$\widetilde{AP}(h) \approx \beta \times \widetilde{AUC}(h)$$

where AP and AUC are re-scaled to lie between 0 and 1 for any hit curve *h*

$$\widetilde{\rm AP} \equiv \frac{\rm AP - \pi}{1 - \pi}$$

$$\widetilde{\text{AUC}} \equiv \frac{\text{AUC} - 1/2}{1 - 1/2} = 2\text{AUC} - 1.$$

Simulation Study

- Non-diseased subjects (Y=0), $f_0(x) \sim N(0, 1)$
- Diseased subjects (Y=1), $f_1(x) \sim N(\Delta, 1)$

- Simulation settings:
 - $-\Delta = 0.5 \text{ or } 1.5$

 $-\pi$ = 0.001 and n = 50,000 or π = 0.1 and n = 500

Summary

- AP is a single numerical measure measuring prediction performance
- Connection between AP and AUC
- Estimation of AP and its asymptotic variance
- Practical relevance

Future work

Assessing survival/risk prediction models with AP(t)