Measuring the Prediction Performance of Medical Screening Tests

Yan Yuan
School of Public Health
University of Alberta

May 8, 2015

Brief Biography Yan Yuan

2011- present, Assistant Prof; School of Public Health, University of Alberta

2008-2011, Biostatistician, Population Health Research, Cancer
Control, Alberta Health Services
2003 MMath, 2008 PhD in Statistics, University of Waterloo
1999-2001 Lab manager and research technician in Animal behavior lab, University of Guelph, Canada

1999, MSc in Animal behavior, Michigan State University, USA

1996 BSc in Biochemistry, Nanjing University, China

Outline

- Motivation
- Detecting the Rare Events (low prevalence/incidence)

10-year cancer diagnosis per 1000 person	Colorectal cancer		Breast	Prostate cancer
Age 50 50	6.8	5.2	23	22
Age 60	13	9	35	63

- Metrics for evaluating medical test
- The relation between two single numeric summary metrics
- Variance of AP
- Examples
- Summary and future work

Predicting the Rare Class

- Cancer screening: detect from the asymptomatic population the diseased subjects, who make up a very small proportion (typically < 1\%).
- Risk models (for general population): CVD, diabetes, chronic pulmonary diseases
- Drug discovery: identify potential chemical compounds that are biologically active for some target (typically < 5\%).
- Information retrieval

Medical Screening Tests

- Screening aims at detecting disorders at an early asymptomatic stage
- Its utility is determined by its ability to detect the disorder, measured by positive predictive value (PPV)
- The current evaluation metrics for medical tests
- Sensitivity, Specificity, Diagnostic likelihood ratios, Predictive values
- Receiver operating characteristic (ROC) curve

Motivating Data 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malignancy score	7	6	5	4	3	2	1	Total	
Category Digital Total	11	29	69	1061	2224	6588	32588	42570	
	Cancers	10	18	25	85	49	25	122	334
FilmCategory Total	17	29	70	942	2291	6910	32486	42745	

Motivating Data 2

Mass spectrometry data for prostate cancer (Adam et al. 2002 Cancer Research)

- 779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects.

Performance Measures for Medical tests (classifiers)

- Threshold Dependent Measure
- Misclassification rate
- Sensitivity and Specificity
- Positive and Negative Predictive Value
- Threshold Independent Measure
- Area Under the ROC* Curve (AUC or aROC)
- Average positive predictive value (AP)
*Receiver Operating Characteristic

AP

- Definition
$\left\{Y_{(1)}, Y_{(2)}, Y_{(3)}, \ldots Y_{(m)}, \ldots, Y_{(n)}\right\}$. where Y is the true binary class label.

Positive predictive value at $\mathrm{Y}_{(m)}$:

$$
P P V_{m}=\frac{\sum_{i=1}^{m} Y_{(i)}}{m}
$$

(i.e. the proportion of class 1 subjects in the top m ranked subjects)

$$
\mathrm{AP}=\frac{1}{n_{1}} \sum_{m=1}^{n} Y_{(m)} P P V_{m}
$$

where $n_{1}=\sum_{m=1}^{n} Y_{(m)}$, total number of class 1 subjects

An Illustration Example

Rank	Classifier 1	Classifier 2	Classifier 3
1	1	1	0
2	1	0	0
3	1	1	1
4	0	0	1
5	0	1	1
AP	1	0.76	0.48

Definition of AUC and AP

Notations
$\pi \quad=\mathrm{P}(\mathrm{Y}=1)$
s $\quad=P(X>x)=G_{X}(x)$
$h(s)=P(X>x, Y=1)=\pi F_{1}(x)$

ROC curve

$$
\begin{aligned}
& \pi \quad=\mathrm{P}(\mathrm{Y}=1) \\
& \mathrm{s} \quad=\mathrm{P}(\mathrm{X}>\mathrm{x}) \\
& h(s)=P(X>x, Y=1)=\pi S_{1}(x) \\
& \mathrm{AUC} \equiv \int_{0}^{1} \mathrm{TPF}(s) \mathrm{dFPF}(s) \\
& =\frac{1}{\pi(1-\pi)}\left[\int_{0}^{1} h(s) d s-\frac{\pi^{2}}{2}\right]
\end{aligned}
$$

Hit curve

aROC vs aPR

$$
\log \left(T_{i}\right)=7.2-1.1 U_{i 1}-2.5 U_{i 2}-1.5 \log \left(U_{i 1}^{2}\right)+\epsilon_{T},
$$

Example 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Malignancy score	7	6	5	4	3	2	1	Total	
Category Digital Total	11	29	69	1061	2224	6588	32588	42570	
	Cancers	10	18	25	85	49	25	122	334
FilmCategory Total	17	29	70	942	2291	6910	32486	42745	

Ordinal Data

- Radiologist reading of an image
- Clinical symptom
- Psychology questionnaire

Score	x_{1}	$>$	x_{2}	$>\cdots>$	x_{k}	$>$	x_{k+1}	$>\cdots>$	x_{K}	
Partition	R_{1}	R_{2}	\cdots	R_{k}	R_{k+1}	\cdots	R_{K}	Total		
Class-1	Z_{1}	Z_{2}	\cdots	Z_{k}	Z_{k+1}	\cdots	\bar{Z}_{K}	n_{1}		
Class-0	\bar{Z}_{1}	\bar{Z}_{2}	\cdots	\bar{Z}_{k}	\bar{Z}_{k+1}	\cdots	\bar{Z}_{K}	n_{0}		
Total	S_{1}	S_{2}	\cdots	S_{k}		S_{k+1}	\cdots	S_{K}	n	

$$
\begin{aligned}
\widehat{A P} & =\left[\frac{Z_{1}}{S_{1}}\right]\left[\frac{Z_{1}}{n_{1}}\right]+\underbrace{\left[\frac{Z_{1}+Z_{2}}{S_{1}+S_{2}}\right]}_{w_{2}}\left[\frac{Z_{2}}{n_{1}}\right]+\cdots+\underbrace{\left[\frac{Z_{1}+Z_{2}+\cdots+Z_{K}}{S_{1}+S_{2}+\cdots+S_{K}}\right]}_{w_{K}}\left[\frac{Z_{K}}{n_{1}}\right] \\
& =\sum_{k=1}^{W_{k}}\left[\frac{Z_{k}}{n_{1}}\right] . \\
\widehat{A U C} & =\frac{n}{n_{0}}\{\underbrace{\left\{\frac{\left[S_{1}+S_{2}+\ldots+S_{K}\right.}{n}\right]}_{w_{1}^{\prime}}\left[\frac{Z_{1}}{n_{1}}\right]+\underbrace{\left[\frac{S_{2}+\ldots+S_{K}}{n}\right]}_{w_{2}^{\prime}}\left[\frac{Z_{2}}{n_{1}}\right]+\ldots+\underbrace{\left[\frac{S_{K}}{n}\right]}_{w_{K}^{\prime}}\left[\frac{Z_{K}}{n_{1}}\right]-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right)\}-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right) \\
& =\frac{n}{n_{0}} \sum_{k=1}^{w_{k}^{\prime}}\left[\frac{Z_{k}}{n_{1}}\right]-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right)
\end{aligned}
$$

A Simulated Example

Weights, w_{k} for AP and w_{k}^{\prime} for AUC, in a simulated example. $f_{0}(x) \sim N(0,1)$ and $f_{1}(x) \sim N(\Delta, 1)$ where $\Delta_{A}=1$ and $\Delta_{B}=0.25 ; \pi=0.1$.

MLE of AP

Score	x_{1}	$>$	x_{2}	$>\cdots>$	x_{k}	$>$	x_{k+1}	$>\cdots>$	x_{K}	
Partition	R_{1}	R_{2}	\cdots	R_{k}	R_{k+1}	\cdots	R_{K}	Total		
Class-1	Z_{1}	Z_{2}	\cdots	Z_{k}	Z_{k+1}	\cdots	Z_{K}	n_{1}		
Class-0	\bar{Z}_{1}	\bar{Z}_{2}	\cdots	\bar{Z}_{k}	\bar{Z}_{k+1}	\cdots	\bar{Z}_{K}	n_{0}		
Total	S_{1}	S_{2}	\cdots	S_{k}	S_{k+1}	\cdots	S_{K}	n		

Data in the 2 XK table follow

$$
\begin{aligned}
\left(Z_{1}, Z_{2}, \ldots, Z_{K}\right) \mid n_{1} & \sim \operatorname{multinomial}\left(n_{1} ; p_{1}, p_{2}, \ldots, p_{K}\right) \\
\left(\bar{Z}_{1}, \bar{Z}_{2}, \ldots, \bar{Z}_{K}\right) \mid n_{1} & \sim \operatorname{multinomial}\left(n-n_{1} ; q_{1}, q_{2}, \ldots, q_{K}\right) \\
n_{1} & \sim \operatorname{binomial}(n, \pi)
\end{aligned}
$$

where

$$
p_{k}=\int_{R_{k}} f_{1}(x) d x, \quad q_{k}=\int_{R_{k}} f_{0}(x) d x
$$

Asymptotic Variance of AP

$$
\widehat{\mathrm{AP}}=g\left(\widehat{p_{k}}, \widehat{q_{k}}, \widehat{\pi}\right)=\sum_{k=1}^{K}\left[\widehat{\hat{p}_{k}}\left(\frac{\widehat{\pi} \sum_{k^{\prime} \leq k} \widehat{p}_{k^{\prime}}}{\widehat{\pi} \sum_{k^{\prime} \leq k} \widehat{p}_{k^{\prime}}+(1-\widehat{\pi}) \sum_{k^{\prime} \leq k} \widehat{\hat{q}_{k^{\prime}}}}\right)\right]
$$

Apply the Delta method, we get

$$
\widehat{\operatorname{var}}(\widehat{A P}) \approx(\nabla g)^{T} \hat{J}^{-1}(\nabla g)
$$

Example 1

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

| Malignancy score | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DigitalCategory
 Total | 11 | 29 | 69 | 1061 | 2224 | 6588 | 32588 | 42570 |
| Cancers | 10 | 18 | 25 | 85 | 49 | 25 | 122 | 334 |
| FilmCategory
 Total | 17 | 29 | 70 | 942 | 2291 | 6910 | 32486 | 42745 |
| | 13 | 24 | 25 | 74 | 35 | 33 | 131 | 335 |

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer at 15 months follow-up.

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the prevalence π is 0.00783 .

Remark: Resampling method can be used for the inference of the difference in AP when we have paired data.

Example 2

Mass spectrometry data for prostate cancer (Adam et al. 2002 Cancer Research)

- 779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects.

		Standard Error of AP		
Biomarker	AP	Asymptotic	P-Bootstrap	NP-Bootstrap
3896.641	0.878	0.0345	0.0344	0.0344
8355.562	0.856	0.0336	0.0339	0.0340
8141.232	0.850	0.0319	0.0324	0.0321
8295.641	0.833	0.0328	0.0327	0.0327
5074.164	0.833	0.0403	0.0405	0.0403
4071.184	0.831	0.0368	0.0364	0.0366
6949.220	0.824	0.0414	0.0415	0.0413
9149.121	0.822	0.0378	0.0380	0.0378

Pair B: similar AP scores but different $A \cup C$ scores

A Thought Experiment

- The biomarker study is based on a case-control study with the goal to identify potential screening markers.
- How AUC, AP and the ranking of biomarkers is affected when the prevalence is much lower as in a screening setting?
Inflate the controls by replicating them

	Biomarker	AUC	AP		
		$n_{0} \times 1$	$n_{0} \times 10$	$n_{0} \times 100$	
$\mathbf{8 3 5 5 . 5 6 2}$	$\mathbf{0 . 8 4 9}$	0.856	0.606	0.571	
$\mathbf{7 8 1 9 . 7 5 1}$	$\mathbf{0 . 8 5 0}$	0.802	0.370	0.062	
$\mathbf{5 0 7 4 . 1 6 4}$	0.886	$\mathbf{0 . 8 3 3}$	0.306	0.043	
$\mathbf{9 1 4 9 . 1 2 1}$	$\mathbf{0 . 8 3 2}$	$\mathbf{0 . 8 2 2}$	0.512	0.225	

Table 5 |AUC, AP, DR, and FPF for three tests from Wald and Bestwick [(10), Figure 2].

| | AUC $^{\text {a }}$ | | AP | | DR at
 FPF 0.05a |
| :--- | :---: | :---: | :---: | :---: | :---: | | FPF at |
| :--- |
| |

Continuous Version

$$
\begin{aligned}
\mathrm{s} & =\mathrm{P}(\mathrm{X}>\mathrm{x}) \\
\mathrm{h}(\mathrm{~s}) & =\mathrm{P}(\mathrm{X}>\mathrm{x}, \mathrm{Y}=1) \\
\mathrm{AUC} & \equiv \int_{0}^{1} \operatorname{TPF}(s) \mathrm{dPPF}(s) \\
= & \frac{1}{\pi(1-\pi)}\left[\int_{0}^{1} h(s) d s-\frac{\pi^{2}}{2}\right] \\
\mathrm{AP} & \equiv \int_{0}^{1} \operatorname{PPV}(s) \mathrm{dTPF}(s)=\frac{1}{\pi} \int_{0}^{1} \frac{h(s)}{s} \mathrm{dh}(s) .
\end{aligned}
$$

Hit curve

Approximate the hit curve by a piecewise linear curve, let β be the initial true positive rate of the underlying test

$$
h(r)=\left\{\begin{array}{lr}
\beta r, & r \in[0, \alpha] \\
\frac{\pi-\alpha \beta}{1-\alpha}(r-\alpha)+\alpha \beta, & r \in(\alpha, 1]
\end{array}\right.
$$

Theorem 1: If two hit curves, $h_{1}(r)$ and $h_{2}(r)$, both belong to the piecewise linear family, and are parameterized respectively by (α_{1}, β_{1}) and (α_{2}, β_{2}), then $\operatorname{AUC}\left(h_{1}\right)=\operatorname{AUC}\left(h_{2}\right)$ if and only if

$$
\left(\beta_{1}-\pi\right) \alpha_{1}=\left(\beta_{2}-\pi\right) \alpha_{2}
$$

Theorem 2: If a hit curve, $h(r)$, belongs to the piecewise linear family, then

$$
\widetilde{A P}(h) \approx \beta \times \widetilde{A U C}(h)
$$

where AP and AUC are re-scaled to lie between 0 and 1 for any hit curve h

$$
\begin{gathered}
\widetilde{\mathrm{AP}} \equiv \frac{\mathrm{AP}-\pi}{1-\pi} \\
\widetilde{\mathrm{AUC}} \equiv \frac{\mathrm{AUC}-1 / 2}{1-1 / 2}=2 \mathrm{AUC}-1 .
\end{gathered}
$$

Simulation Study

- Non-diseased subjects $(Y=0), f_{0}(x) \sim N(0,1)$
- Diseased subjects $(Y=1), f_{1}(x) \sim N(\Delta, 1)$
- Simulation settings:
$-\Delta=0.5$ or 1.5
$-\pi=0.001$ and $\mathrm{n}=50,000$ or $\pi=0.1$ and $\mathrm{n}=500$

$$
\widehat{\beta}=\frac{\mathrm{AP}(h)}{\widehat{\operatorname{AUC}}(h)}=\frac{(\mathrm{AP}(h)-\pi) /(1-\pi)}{2 \operatorname{AUC}(h)-1}
$$

Summary

- AP is a single numerical measure measuring prediction performance
- Connection between AP and AUC
- Estimation of AP and its asymptotic variance
- Practical relevance

Future work

- Assessing survival/risk prediction models with AP(t)

