Research Projects in Secondary Cancer Prevention

Yan Yuan, Assistant Professor, SPH
Presentation for CRINA
July 16, 2015

Brief Biography

Yan Yuan

2011-present, Assistant Prof; School of Public Health, University of Alberta.

2008-2011, Biostatistician, Population Health Research, Cancer
Control, Alberta Health Services
2003 MMath-Biostatistics, 2008 PhD-Statistics, U of Waterloo
1999-2001 Lab manager in an Animal behavior lab, University of
Guelph, Canada
1999, MSc in Animal Behavior, Michigan State University, USA

1996 BSc in Biochemistry, Nanjing University, China

Outline

1. Predicting/Detecting the Rare Events such as cancer

10-year cancer diagnosis per 1000 person	Colorectal cancer		Breast cancer	Prostate cancer
	6.8	Female	5.2	23
Age 60	13	9	35	63

2. Secondary Cancer Prevention - health services research

1.1 Motivating Data

779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects. (Adam et al. 2002 Cancer Research)

1.2 Predicting the Rare Events

- Cancer screening
- Risk prediction - adverse birth outcomes, diabetes, cancer, cardiovascular disease etc.

1.3 Evaluating Prediction Performance for Rare Events

- Threshold Dependent Measure
- Misclassification rate
- Sensitivity and Specificity
- Positive and Negative Predictive Value
- Threshold Independent Measure (Pre-clinical or pre-application stage)
- Area Under the Receiver Operating Characteristic

Curve (AUC or aROC)

- Average Positive Predictive Value (AP)

Score	x_{1}	$>$	x_{2}	$>\cdots>$	x_{k}	$>$	x_{k+1}	$>\cdots>$	x_{K}	
Partition	R_{1}	R_{2}	\cdots	R_{k}	R_{k+1}	\cdots	R_{K}	Total		
Class-1	Z_{1}	Z_{2}	\cdots	Z_{k}	Z_{k+1}	\cdots	\bar{Z}_{K}	n_{1}		
Class-0	\bar{Z}_{1}	\bar{Z}_{2}	\cdots	\bar{Z}_{k}	\bar{Z}_{k+1}	\cdots	\bar{Z}_{K}	n_{0}		
Total	S_{1}	S_{2}	\cdots	S_{k}		S_{k+1}	\cdots	S_{K}	n	

$$
\begin{aligned}
\widehat{A P} & =\left[\frac{Z_{1}}{S_{1}}\right]\left[\frac{Z_{1}}{n_{1}}\right]+\underbrace{\left[\frac{Z_{1}+Z_{2}}{S_{1}+S_{2}}\right]}_{w_{2}}\left[\frac{Z_{2}}{n_{1}}\right]+\cdots+\underbrace{\left[\frac{Z_{1}+Z_{2}+\cdots+Z_{K}}{S_{1}+S_{2}+\cdots+S_{K}}\right]}_{w_{K}}\left[\frac{Z_{K}}{n_{1}}\right] \\
& =\sum_{k=1}^{W_{k}}\left[\frac{Z_{k}}{n_{1}}\right] . \\
\widehat{A U C} & =\frac{n}{n_{0}}\{\underbrace{\left\{\frac{\left[S_{1}+S_{2}+\ldots+S_{K}\right.}{n}\right]}_{w_{1}^{\prime}}\left[\frac{Z_{1}}{n_{1}}\right]+\underbrace{\left[\frac{S_{2}+\ldots+S_{K}}{n}\right]}_{w_{2}^{\prime}}\left[\frac{Z_{2}}{n_{1}}\right]+\ldots+\underbrace{\left[\frac{S_{K}}{n}\right]}_{w_{K}^{\prime}}\left[\frac{Z_{K}}{n_{1}}\right]-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right)\}-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right) \\
& =\frac{n}{n_{0}} \sum_{k=1}^{w_{k}^{\prime}}\left[\frac{Z_{k}}{n_{1}}\right]-\frac{1}{2}\left(\frac{n_{1}}{n_{0}}\right)
\end{aligned}
$$

Example A: Biomarkers for prostate cancer screening

779 potential biomarkers

Example A: Two biomarker similar on AUC scale

 for prostate cancer screening

1.4 An Experiment and Results

- The biomarker study is based on a case-control study (\# disease \approx \# non-disease); its goal is to identify potential screening markers.
- How AP and the ranking of biomarkers is affected when the incidence is much lower as in a screening setting?
Inflate the controls by replicating them

Biomarker	AUC	AP		
	$\mathrm{n}_{0} \times 1$	$\mathrm{n}_{0} \times 1$	$\mathrm{n}_{0} \times 10$	$\mathrm{n}_{0} \times 100$
	$\pi=0.5$	$\pi=0.5$	$\pi=0.1$	$\pi=0.01$
8355.562	$\mathbf{0 . 8 4 9}$	0.856	0.606	0.571
$\mathbf{7 8 1 9 . 7 5 1}$	$\mathbf{0 . 8 5 0}$	0.802	0.370	0.062

Example B: Two technology for Breast cancer screening

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer at 15 months follow-up.
(Pisano et al. 2005 New England Journal of Medicine)

Malignancy score	7	6	5	4	3	2	1	Total	
Digital MCategory Total	11	29	69	1061	2224	6588	32588	42570	
	Cancers	10	18	25	85	49	25	122	334
Fim	Category M	17	29	70	942	2291	6910	32486	42745
	Total								

1.4B Results

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the cumulative incidence π is 0.783%.

Seven-point Malignancy Scale

Film mammography	$0.735(0.012)$	$0.166(0.022)$
Digital mammography	$0.753(0.012)$	$0.144(0.021)$

Remark: Resampling method can be used for the inference of the difference in AP when we have paired data.

2. Breast Cancer Diagnostic Care in Alberta

- Objectives
- The proportion of screen vs. symptom-detected breast cancers
- Time to diagnosis stratified by mode of detection
- Assess the relationship of several demographic, clinical, and healthcare system factors to the first two objectives
- Study Population

Female residents of Alberta with histologically-confirmed first primary breast cancer, diagnosed between 20042010.

2.1 Detection Mode by age and RHA

2.2 Diagnostic interval by detection mode and RHA

2.3 RHA Interact with time period

Cancer Stage

Histological Grade

