Research Projects in Secondary Cancer Prevention

Yan Yuan, Assistant Professor, SPH Presentation for CRINA July 16, 2015

Brief Biography

Yan Yuan

2011-present, Assistant Prof; School of Public Health, University of Alberta.

2008-2011, Biostatistician, Population Health Research, Cancer Control, Alberta Health Services

2003 MMath-Biostatistics, 2008 PhD-Statistics, U of Waterloo

1999-2001 Lab manager in an Animal behavior lab, University of Guelph, Canada

1999, MSc in Animal Behavior, Michigan State University, USA

1996 BSc in Biochemistry, Nanjing University, China

Outline

1. Predicting/Detecting the **Rare** Events such as cancer

10-year cancer diagnosis	Colorect	al cancer	Breast	Prostate	
per 1000 person	Male	Female	cancer	cancer	
Age 50	6.8	5.2	23	22	
Age 60	13	9	35	63	

2. Secondary Cancer Prevention – health services research

1.1 Motivating Data

779 potential biomarkers were assessed in 83 late-stage prostate cancer patients and 82 normal subjects. (Adam *et al.* 2002 *Cancer Research*)

1.2 Predicting the Rare Events

- Cancer screening
- Risk prediction adverse birth outcomes, diabetes, cancer, cardiovascular disease etc.

1.3 Evaluating Prediction Performance for Rare Events

- <u>Threshold Dependent</u> Measure
 - Misclassification rate
 - Sensitivity and Specificity
 - Positive and Negative Predictive Value
- <u>Threshold Independent</u> Measure (Pre-clinical or pre-application stage)

Area Under the Receiver Operating Characteristic
 Curve (AUC or aROC)

- Average Positive Predictive Value (AP)

Score	x_1	>	x_2	> · · · >	x_k	>	x_{k+1}	> >	x_K	
Partition	R_1		R_2		R_k		R_{k+1}		R_K	Total
Class-1	Z_1		Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1		\bar{Z}_2		\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1		S_2		S_k		S_{k+1}		S_K	\boldsymbol{n}

$$\widehat{AP} = \left[\frac{Z_1}{S_1} \right] \left[\frac{Z_1}{n_1} \right] + \left[\frac{Z_1 + Z_2}{S_1 + S_2} \right] \left[\frac{Z_2}{n_1} \right] + \dots + \left[\frac{Z_1 + Z_2 + \dots + Z_K}{S_1 + S_2 + \dots + S_K} \right] \left[\frac{Z_K}{n_1} \right]$$
$$= \sum_{k=1}^{W_k} \left[\frac{Z_k}{n_1} \right].$$

$$\begin{split} \widehat{AUC} &= \frac{n}{n_0} \underbrace{\left\{ \underbrace{\frac{S_1 + S_2 + \dots + S_K}{n}}_{w_1'} \right\} \left[\underbrace{\frac{Z_1}{n_1}}_{w_2'} \right] + \underbrace{\left[\frac{S_2 + \dots + S_K}{n} \right]}_{w_2'} \left[\underbrace{\frac{Z_2}{n_1}}_{w_1'} \right] + \dots + \underbrace{\left[\frac{S_K}{n} \right]}_{w_K'} \left[\underbrace{\frac{Z_K}{n_1}}_{w_1} \right] - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \right\} - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \\ &= \frac{n}{n_0} \sum_{k=1}^{w_k'} \frac{\left[\frac{Z_k}{n_1} \right]}_{k=1} - \frac{1}{2} \left(\frac{n_1}{n_0} \right) \end{split}$$

A /

Example A: Biomarkers for prostate cancer screening

779 potential biomarkers
were assessed in 83 latestage prostate cancer
patients and 82 normal
subjects. (Adam *et al.*2002 *Cancer Research*)

Example A: Two biomarker similar on AUC scale for prostate cancer screening

1.4 An Experiment and Results

- The biomarker study is based on a case-control study (# disease ≈ # non-disease); its goal is to identify potential screening markers.
- How AP and the ranking of biomarkers is affected when the incidence is much lower as in a screening setting?

Inflate the controls by replicating them

	AUC		AP			
Biomarker	n ₀ X 1	n ₀ X 1	n ₀ X 10	n ₀ X 100		
	$\pi = 0.5$	$\pi = 0.5$	$\pi = 0.1$	$\pi = 0.01$		
8355.562	0.849	0.856	0.606	0.571		
7819.751	0.850	0.802	0.370	0.062		

Example B: Two technology for Breast cancer screening

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer at 15 months follow-up. (Pisano et al. 2005 *New England Journal of Medicine*)

Malign	ancy score	7	6	5	4	3	2	1	Total
Digital M	Category Total	11	29	69	1061	2224	6588	32588	42570
IVI	Cancers	10	18	25	85	49	25	122	334
Film	Category Total	17	29	70	942	2291	6910	32486	42745
Μ	Cancers	13	24	25	74	35	33	131	335

1.4B Results

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the cumulative incidence π is 0.783%.

	Seven-point Malignancy Scale						
	\widehat{AUC} (s.e.) \widehat{AP} (s.e.)						
Film mammography	0.735 (0.012)	0.166 (0.022)					
Digital mammography	0.753 (0.012)	0.144 (0.021)					

Remark: Resampling method can be used for the inference of the difference in AP when we have paired data.

2. Breast Cancer Diagnostic Care in Alberta

- Objectives
 - The proportion of screen vs. symptom-detected breast cancers
 - Time to diagnosis stratified by mode of detection
 - Assess the relationship of several demographic, clinical, and healthcare system factors to the first two objectives
- Study Population

Female residents of Alberta with histologically-confirmed first primary breast cancer, diagnosed between 2004-2010.

2.1 Detection Mode by age and RHA

2.2 Diagnostic interval by detection mode and RHA

Screen-detected

Symptom-detected

2.3 RHA Interact with time period

Cancer Stage

Histological Grade