

A Summary Index of Prediction Accuracy for Binary and Censored Time to Event Data

Yan Yuan, PhD April 23, 2019

OICR Biostatistics Seminar

Clinical Prediction: Examples of Prevention and Planning

- WHO risk charts for cardiovascular disease for most countries
- Numerous risk score systems (n>40) for diabetes risk in general population
- Sepsis risk prediction (CMAJ 2019)

Risk Score as a Screening Tool

- Characteristics of typical condition that risk scores are developed for
 - seriousness (may result in mortality or significantly affect the quality of life);
 - early detection/intervention <u>can</u> make a difference in disease prognosis but may be expensive or invasive;
 - the event rate is low

Motivating Data – Binary outcome

Digital Mammography Imaging Screening Trial (Pisano et al. 2005 New England Journal of Medicine)

Maligna	ancy score	7	6	5	4	3	2	1	Total
Divital	Category	11	29	69	1061	2224	6588	32588	42570
Digitai M	Total								
	Cancers	10	18	25	85	49	25	122	334
Film	Category	17	29	70	942	2291	6910	32486	42745
FIIM M	Total								
	Cancers	13	24	25	74	35	33	131	335

42,760 screening participants underwent two screening technology, 335 were diagnosed with breast cancer by the end of 15 months follow-up.

Evaluating Model Performance when Predicting Low Prevalence Events

- Threshold Dependent Measure (predictor needs to be binary)
 - Misclassification rate
 - Sensitivity (TPF): P(test positive | disease present) = $P(\hat{Y} = 1 | Y = 1)$
 - Specificity (FPF): P(test negative | disease absent) = $P(\hat{Y} = 0 | Y = 0)$
 - Positive Predictive value (PPV): $P(Y = 1|\hat{Y} = 1)$
 - Negative Predictive Value (NPV): $P(Y = 0 | \hat{Y} = 0)$

When risk score is continuous or ordinal

Threshold-free Summary Measure

• Area Under the ROC Curve (AUC)

$$AUC \equiv \int_{R} TPF(z)dFPF(z)$$

Area under the Precision-Recall curve

MLE of AP

Score	x_1	>	x_2	$> \cdots >$	x_k	>	x_{k+1}	$> \cdots >$	x_K	
Partition	R_1		R_2		R_k		R_{k+1}		R_K	Total
Class-1	Z_1		Z_2		Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1		\bar{Z}_2		\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1		S_2		S_k		S_{k+1}		S_K	n

Data in the above 2 X K table follow

 $(Z_1, Z_2, ..., Z_K) | n_1 \sim \text{multinomial}(n_1; p_1, p_2, ..., p_K),$ $(\bar{Z}_1, \bar{Z}_2, ..., \bar{Z}_K) | n_1 \sim \text{multinomial}(n - n_1; q_1, q_2, ..., q_K),$ $n_1 \sim \text{binomial}(n, \pi),$

^orobability density

 R_k

Biomarker Concentration

Yuan et al. (2015)

diseased(Y=1

healthy(Y=0

For continuous risk scores

$$p_k = \int_{R_k} f_1(x) dx, \quad q_k = \int_{R_k} f_0(x) dx,$$

Asymptotic Variance of AP

$$\widehat{AP} = g(\widehat{p}_k, \widehat{q}_k, \widehat{\pi}) = \sum_{k=1}^{K} \left[\widehat{p}_k \left(\frac{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'}}{\widehat{\pi} \sum_{k' \le k} \widehat{p}_{k'} + (1 - \widehat{\pi}) \sum_{k' \le k} \widehat{q}_{k'}} \right) \right].$$

Applying the Delta method, we get the variance estimator

$$\widehat{var}(\widehat{AP}) \approx (\nabla g)^T \widehat{f}^{-1} (\nabla g)$$

Yuan et al. (2015)

FPR

TPR

Malignanc	y score	7	6	5	4	3	2	1	Total
Digital M	Category Total	11	29	69	1061	2224	6588	32588	42570
	Cancers	10	18	25	85	49	25	122	334
Film	Category Total	17	29	70	942	2291	6910	32486	42745
Μ	Cancers	13	24	25	74	35	33	131	335

Given that 335 breast cancer diagnosed in 42,760 screening participants at 15 months follow-up, the prevalence π is 0.78%.

	Seven-point Malignancy						
	Scale						
	\widehat{AUC} (s.e.)	\widehat{AP} (s.e.)					
Film mammography	0.735 (0.012)	0.166 (0.022)					
Digital mammography	0.753 (0.012)	0.144 (0.021)					

Remark: Resampling method can be used for the inference of the difference in AP if we have paired data.

Table 1 | Prostate cancer example.

Biomarkers			AUC		AP				
		$n_0 \times 1 \ (\pi \approx 0.5)$	$n_0 \times 10 \; (\pi \approx 0.09)$	<i>n</i> ₀ × 100 (π≈0.01)	$n_0 \times 1 \ (\pi \approx 0.5)$	$n_0 \times 10 \; (\pi \approx 0.09)$	<i>n</i> ₀ × 100 (π ≈ 0.01)		
A	8355.562	0.849	0.783	0.783	0.856	0.606	0.571		
	7819.751	0.850	0.857	0.857	0.802	0.370	0.062		
В	5074.164	0.886	0.869	0.869	0.833	0.306	0.043		
	9149.121	0.832	0.793	0.793	0.822	0.512	0.225		

A simple thought experiment showing changes in the estimated AUC and AP as a result of artificially inflating the number of control subjects (n_0) to mimic real-life screening settings, where the prevalence (π) of disease is low.

Score	x_1	$> x_{2}$	>	$> x_k$	>	x_{k+1}	> >	x_K	
Partition	R_1	R	2	R_k		R_{k+1}		R_K	Total
Class-1	Z_1	Z_{i}	2	Z_k		Z_{k+1}		Z_K	n_1
Class-0	\bar{Z}_1	\bar{Z}_{i}	2	\bar{Z}_k		\bar{Z}_{k+1}		\bar{Z}_K	n_0
Total	S_1	S_{2}	2	S_k		S_{k+1}		S_K	\boldsymbol{n}

Yuan e al. (2015)

AP – AUC Relationship

- When two risk scores U_1 and U_2 are compared
 - If ROC curve of U₁ dominates that of U₂ everywhere, then PR curve of U₁ dominates that of U₂ everywhere. AUC₁ > AUC₂ and AP₁ > AP₂
 - If ROC curves of U_1 and U_2 crosses, the ranking of U_1 and U_2 based on of AUC and AP may differ.
- Both AUC and AP are semi-proper scoring rule.

Su et al. 2015 Yuan et al. 2018

Motivating Data – Time to Event outcome

- Late effects of cancer treatments in childhood cancer survivors – e.g. Congestive heart failure (Chow et al. 2015, Journal of Clinical Oncology)
- Cumulative risk of CHF is ~3% by 35 years post diagnosis

AP_{t_0} for Time-to-Event Outcome

• Time-dependent Average Positive predictive value (AP_{t_0})

$$AP_{t_0} = \int_{\mathcal{R}} PPV_{t_0}(z) dTPF_{t_0}(z).$$

Nonparametric Estimator for Event Status

Let (X, δ, Z) be the standard time to event data notation, X: the censored event time, δ : the censoring indicator Z: the risk score

$$\widehat{AP}_{t_0} = \frac{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j} \widehat{PPV}_{t_0}(Z_j)}{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j}}.$$

where

$$\widehat{w}_{t_0,i} = \frac{I(X_i < t_0)\delta_i}{\widehat{\mathcal{G}}(X_i)} + \frac{I(X_i \ge t_0)}{\widehat{\mathcal{G}}(t_0)}$$

$$\widehat{\operatorname{PPV}}_{t_0}(z) = \frac{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0)}{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z)}$$

Results (n=2000)

				AP						
t_0	Event rate	Risk score -	TRUE	BIAS	ESE	ASE^{b}	$ECOVP^{b}(\%)$	TRUE		
0.5	0.0101	U_1	0.182	0.0361	0.0806	0.0794	92.2	0.920		
		U_2	0.124	0.0339	0.0687	0.0679	94.1	0.904		
		Δ	0.058	0.0251	0.102	0.116	96.1	0.016		
		Ratio	1.47	0.4820	1.470	1.740	92.4	1.02		
8	0.0495	U_1	0.364	0.0085	0.0508	0.0499	94.4	0.841		
		U_2	0.266	0.0121	0.0435	0.0439	94.8	0.848		
		Δ	0.098	-0.0028	0.0707	0.072	96.3	-0.007		
		Ratio	1.37	0.0123	0.310	0.322	95.8	0.99		
36	0.0991	U_1	0.462	0.0060	0.0416	0.0431	94.2	0.786		
		U_2	0.375	0.0074	0.0387	0.0393	96.3	0.824		
		Δ	0.087	-0.0045	0.0655	0.0633	95.7	-0.038		
		Ratio	1.23	-0.0010	0.189	0.187	94.5	0.95		

Results (n=5000)

+_	Event rate	Risk score			A	Р		AUC
ι0	Event fate	KISK SCOLE	TRUE	BIAS	ESE	ASE^{b}	$ECOVP^{b}(\%)$	TRUE
0.5	0.0101	U_1	0.182	0.0185	0.0498	0.0503	93.6	0.920
		U_2	0.124	0.0154	0.0415	0.0415	93.6	0.904
		Δ	0.058	0.0056	0.0696	0.0712	94.2	0.016
		Ratio	1.47	0.1490	0.709	0.756	92.9	1.02
8	0.0495	U_1	0.364	0.0041	0.0327	0.0324	94.0	0.841
		U_2	0.266	0.0043	0.0285	0.0280	95.5	0.848
		Δ	0.098	-0.0005	0.0473	0.0460	96.3	-0.007
		Ratio	1.37	0.0099	0.209	0.204	94.5	0.99
36	0.0991	U_1	0.462	0.0023	0.0273	0.0275	95.0	0.786
		U_2	0.375	0.0015	0.0247	0.0251	95.5	0.824
		Δ	0.087	0.0003	0.0398	0.0402	95.1	-0.038
		Ratio	1.23	0.0058	0.117	0.120	95.0	0.95

Time to event outcome: CCSS CHF Risk

 $PPV_{t_0}^{CHF}(z) = Pr\{T < t_0, \Delta = 1 \mid Z \ge z\} \text{ and } PPF_{t_0}^{CHF}(z) = Pr\{Z \ge z \mid T < t_0, \Delta = 1\}.$

$$\widehat{\mathsf{PPV}}_{t_0}^{\mathsf{CHF}}(z) = \frac{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0) I(\Delta_i = 1)}{\sum_{i=1}^n I(Z_i \ge z)}$$

$$\widehat{\text{TPF}}_{t_0}^{\text{CHF}}(z) = \frac{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0) I(\Delta_i = 1)}{\sum_{i=1}^n \widehat{w}_{t_0,i} I(X_i < t_0) I(\Delta_i = 1)}$$

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

 $AP_{t_0} vs.t_0$

 $AUC_{t_0}vs.t_0$

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Incremental Value

- Risk factor & outcome association vs. information/calibration gain in prediction
- Existing metrics
 - Changes in AUC and Brier scores (BS)
 - NRI (net reclassication improvement)
 - IDI (integrated discrimination improvement)

How does AP changes, in comparison to changes in AUC and BS?

Simulation Study

- True model: $logit(\pi) = \beta_0 + \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_1 U_2$,
 - $-\beta_1$ and β_2 range: [0.3, 1.2]
 - $-\beta_3$ range: [-1,1]
 - Independent U1 & U2 ~ iid N(0,1)
 - Event rate: ~5%
- Working model
 - Model 1: $logit(\pi) = \beta_0 + \beta_1 U_1$
 - Model 2: $logit(\pi) = \beta_0 + \beta_1 U_1 + \beta_2 U_2$
- Metrics
 - rAUC, rAP and rBS

Metrics	Correlation			
Log(ratio of metrics: M2/M1)	Pearson	Spearman		
-In(rBS) and In(rAUC)	0.083	0.30		
-In(rBS) and In(rAP)	0.76	0.89		
In(rAUC) and In(rAP)	0.48	0.51		

 $\beta_1 = 0.9, \beta_2 = 0.3, \beta_3 = 0.6$

 $\beta_1 = 1, \beta_2 = 1, \beta_3 = -0.6$

TPR

Risk Prediction for Ovarian Failure

- Goal
 - Developing risk prediction model for ovarian failure (OF) in childhood cancer survivors (CCS)
- Data
 - About 6000 female CCS (dx 1970-1999)
- Methods
 - Logistic regression; Random Forest; and Support Vector Machines
- Results
 - AUC 0.82 and AP 0.50 for Acute OF (Internal validation)

PUBLIC HEALTH

Discussion

- AP is a single numerical measure, in this respect it is similar to AUC.
- A summary measure of positive predictive value, useful for evaluating and comparing prospective prediction performance of risk scores.
- More sensitive than AUC.
- Better aligned with the strict proper scoring rule Brier score than AUC (under misspecificed working models)
- Event rate dependent, AP should be estimated in a prospective cohort or population-based study
- R package <APtools> and SAS macro for binary and survival time data https://sites.ualberta.ca/~yyuan/software.html

Acknowledgement

Students and staff Maoji Li, Dr. Khanh Vu Doris Li, Hengrui Cai, Zorina Han, Rebecca Clark, Michael Lu

Thank you!

Questions???