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Definition

Example

Yuan et al. (2015)6 defined the average positive predictive values, for the binary 
outcome D7.

where PPV(z) = Pr{D = 1 | Z ≥ z}, TPF(z) = Pr{Z ≥ z | D = 1}, Z is a continuous risk 
score, and D is a disease indicator.
Let the disease status D depend on time t and T be the time to the event of interest, 
i.e. D(t0) = I(T < t0). Time-dependent PPV, TPF and AP are given by

PPV(t0, z) = Pr{T < t0 | Z ≥ z} and TPF(t0, z) = Pr{Z ≥ z | T < t0}

Note that TPF is the distribution function of risk score Z in “cases". It can be shown 
that AP(t0) = EZ1 {PPV (t0, Z1)}, where Z1 denotes the risk score Z in “cases“.
A perfect risk score system would always assign higher values to “cases", individuals 
who experience the event before t0, compared to those “controls", individuals who 
do not experience the event before t0. This leads to AP(t0) = 1. A useless risk score 
system would randomly assign risk scores to both cases and controls. This leads to 
AP(t0) = π(t0), the event rate by time t0 in the target population. 

The theoretical range of AP(t0) is [π(t0) , 1].

Due to censoring, one can only observe X = min{T, C} where C is the censoring time, 
and δ = I(T < C). 
Let {(Xi, δi, Zi), i = 1, · · · , n} be n independent realizations of (X, δ, Z). We use the 
inverse probability weighting to account for censoring. The nonparametric 
estimators of time-dependent PPV and TPF are:

,,

where

is a consistent estimator of the survival function of the censoring time, Pr(C ≥ c). 

The density function of the estimator AP(t0) is unknown, making the variance 
difficult to estimate. We use the standard nonparametric bootstrap for obtaining the 
standard error and confidence interval.

To examine the performance of the proposed estimator and inference 
procedure in finite samples, a simulation study is conducted.
• Generate the risk scores Zi ∼ N(0, 0.5)
• Generate the event times using simulation model log(Ti) = β Zi + ε, 

where β = −2 and ε ∼ N(0, 1.5). 
• Generate the censoring time Ci from a gamma distribution with 

shape=1.7 and rate=1.6 to give an overall censoring rate of 50%. 
• Obtain the observed event time X = min{T, C} and the censoring 

indicator δ = I(T < C). 
• Consider three prediction time points t0 where the corresponding 

event rates are 0.01, 0.05 and 0.1, respectively.
Results are shown in Table 1.

Chow et al. (2015)7 developed and validated several risk score systems for 
predicting congestive heart failure (CHF) in childhood cancer survivors 
(CCS). For the purpose of illustration, we chose two risk score systems, a 
simple model vs. a heart dose model. Compared with the simple model, 
the heart dose model includes detailed clinical information on the average 
radiation dose to the heart and the cumulative dose of the specific 
chemotherapy agent used. The estimated linear predictors, denoted by 
logP, were treated as the continuous risk scores. 

We include in our analysis 11,457 subjects from the Childhood Cancer 
Survivor Study who met the original study inclusion criteria and had the 
both risk scores. The time-dependent prediction accuracy were assessed 
with AP(t0) and AUC(t0) in Figure 1.
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Clinical decisions on disease management and disease prevention have been 
increasingly guided by risk scoring systems. One successful example of clinical 
adoption of risk prediction is the Framingham risk score (FRS). Developed in the 
1990s, it has been adopted by primary care physicians for cardiovascular disease 
prevention in the general population1,2. Patients in the high risk group (FRS>20%) 
were recommended with statin therapy and radical behaviour modification, 
whereas the patients in the low risk group (FRS<10%) are primarily recommended 
with healthy behaviour modification and regular monitoring at 1 to 3 years interval3.

In risk prediction, the goal is to estimate the probability of an adverse event 
within a specific time frame for each individual patient. This is a different concept 
from estimating relative risk which measures effects of risk factors in the form of 
relative risk, odds ratio, hazard ratio, or rate ratio, and does not indicate how likely 
an event of interest will develop. Before a risk scoring system being adopted into 
clinical practice, it is critical to evaluate its accuracy. The receiver operating 
characteristic (ROC) curve is the most popular accuracy measures, which provides a 
summary of two retrospective accuracy metrics, the true positive fraction (TPF) and 
false positive fraction (FPF). The prospective accuracy measures, such as 
positive/negative predictive values (PPV/NPV), provide more appropriate 
assessment of the prediction performance of the risk score4.

The PPV is threshold dependent and different risk score systems could 
outperform at different cut points5. In this project, we developed a threshold-free 
summary measure based on the PPV to evaluate risk score systems for time-
dependent binary outcome (event status), i.e. censored time-to-event data. 

Table 1 (Simulation): Results for the estimator of AP(t0) at three event rates and two sample sizes 
n, based on 1000 replications. “ESD" is the empirical standard deviation of the estimates; “ASE" is the 
average of the standard error obtained from the bootstrap resamples. “Cov” is the coverage 
probability.

Figure 1 (Example): The AP(t0) (left) and AUC(t0) (right) of risk scores predicting CHF in CCS.

Discussion
The estimator and inference procedure for AP(t0) works well, except for 
the under-coverage when AP(t0) is small. Further investigation may be 
warranted to improve its coverage probability.

Between 15 and 35 years post diagnosis, the AUC(t0) didn’t change much 
within each risk score, or differentiate between the two risk scores. These 
observations are typical with the time-dependent AUC(t0) which agrees 
with the criticism of AUC(t0) being insensitive for comparing models.

The proposed AP(t0) provides summaries of both PPV(t0) and TPF(t0) over 
the entire ranges of risk scores. It meets the need for a summary measure 
of prospective prediction accuracy. 

AP is event rate dependent. Thus, it is possible that AP selects different 
risk score systems for different study populations. 
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