
Towards a Feature-Based and Fine-Grain Product Repository for Heterogeneous
Computer-Aided Systems

M. M. Uddin
1
, Y.-S. Ma

2

1
 Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, mdmoin@ualberta.ca

2
 Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, yongsheng.ma@ualberta.ca

Abstract

Sharing and integrating product and process information among different computer aided applications is inevitable to

follow the pace of industrial competition. Heterogeneous representations of data and knowledge utilized among different

applications are major barriers to achieve engineering information system integration. This paper introduces a concept

of a feature based product repository where database table schemas have been designed based on a neutral format

scheme and uses unified features to maintain consistent relationship with parts’ application specific features. The

repository is designed to store nongeometric engineering information in addition to traditional geometric information.

This paper contributes to the framework design of the proposed neutral repository system and the significance is that

the neutral data structures and the fine-grain information modeling method help overcome the bottleneck interoperability

problem of engineering systems.

Keywords:

Fine-Grain Product Repository; Unified Feature; Engineering Informatics

4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2011), Montreal, Canada 2011

1 INTRODUCTION

Organizations have been using various computer aided tools for

different product lifecycle stages to make the process faster in

realizing the end product, such as computer aided design (CAD),

process planning (CAPP), manufacturing (CAM), engineering

analysis (CAE) and other tools (CAx). Besides, many organizations

work collaboratively for product development and manufacturing,

and they usually do not use the same software tools. This situation

makes integration or sharing of product and process information

among different systems inevitable. The heterogeneous

representations of data and knowledge utilized among these

applications create a major barrier to achieve the integration among

such systems.

Feature based application has the potential capability to integrate

and share necessary information among CAx applications [1].

Traditionally, partial transfer of product information has been

achieved by translating from one proprietary format to another or

extracting and converting features from one system to another. For

example, features are extracted from CAD models for process

planning. These approaches involve flat files that store the product

information in ASCII or binary format. Such flat files suffer from

drawbacks of data redundancy, wastage of storage space, lack of

data integrity and potential data conflicts. File based information

sharing also has the difficulty in searching, indexing, access control

and multi-view representation due to the rigid information grain size

[2][3]. A database repository has the potential to overcome these

limitations [4].

This paper explores the feasibility of a product repository, which is

feature based and neutral in nature, to store information from

different applications and to integrate them through unified features

[5]. A case study has been provided illustrating the product feature

modeling and database schemas for a typical design mechanism.

2 LITERATURE REVIEW

Engineering systems have not yet made full utilization of the

advantages offered by the current database technology to manage

the large amounts of data. Hoffman et al. [6] proposed an

architecture in which a product master model is used to integrate

CAD systems with downstream applications. The client subsystems

such as CAD, process planning and other downstream processes

deposit some of their information to the master model as well as

maintain their private data repository. Thus the master model

contains the net shape of the product and some other process

information and informs the clients after any change of information

is made in master model. This architecture suffers from data

redundancy by storing the same information in both the master

model and client subsystems. Bronsvoort et al. [1] presented a

multiple view feature modeling approach to integrate product

development activities, e.g. conceptual design, assembly design,

part detail design and manufacturing planning. They also mentioned

some mechanisms for consistency maintenance among the views.

However, all of the above works are flat file based, and the

information grain size is large which makes data sharing among

different applications difficult. Sun et al. [7] proposed a methodology

for building a database for reusing past design knowledge in

developing new products by archiving technical documents on

robotic design, but they did not consider product information from

sketches, drawings and CAD models.

Researchers at NIST [8] developed representations for core product

knowledge which are then implemented in a design repository to

store design attributes in relational databases for web-based

collaboration among product development teams. Xue el al. [9]

reported a concurrent engineering oriented design database

representation model (CE-DDRM) by incorporating NIST’s

Function-Behavior-Form based design modeling approach. The

model represents the concepts of database components in three

levels, i.e. concepts and behaviors of modeling components,

generic design libraries, and specific design cases. Bohm et al. [4]

described the development of a data schema to archive basic

design concepts into a repository called UMR Design Repository to

support reuse of design knowledge in concept generation and risk

assessment. The repository is artifact centric and designed by a

PostgreSQL relational database. Although these works used

databases as the repositories for design related properties for

standalone tools, but they are not integrated across different other

applications such as CAD, CAM and process planning. Their

geometric information is still kept as CAD files linked to the

repository. Therefore, the information grain size is coarse (in fact

the whole file) that the features and lower-level geometric

information entities cannot be accessed or modified within

database. Since those repositories are not feature based, feature

level interoperability cannot be achieved. Kim et al. [10] proposed a

CAD data exchange method to maintain design intents captured by

model history, features, parameters and constraints that justifies

features’ use to share high level product information. Zhou et al.

[11] discussed a STEP enabled generic product modeling

framework which uses STEP exchange file, VC++ working form and

DBMS to store product model. But the database does not store

product lower level geometric information. Regli et al. [12]

discussed the challenges of interpretability of digital geometric

model such as file formats, logical object encodings, object

metadata and organizational workflows over the long lifespan. The

authors observe that potentially, the data types and data structures

of a SQL database could be interpreted easily by diverse

applications.

In this work, the authors propose the design of a product repository

implemented by SQL database which allows feature level

interoperability of product data based on an extended STEP

framework and represents both nongeometric and geometric

information of the product.

3 PROPOSED APPROACH

Ideally, database repository can overcome the limitations of flat-

files; stores and retrieves data, information and knowledge at

various levels of abstraction, including low-level geometric

information of components, sub-assemblies and assemblies,

feature information, as well as other non-geometric information

such as materials, functions and designer’s intents. Therefore, a

unified feature-based fine-grain product repository [5] has been

proposed as a solution to the problem of interoperability among

engineering applications. With a cluster of well defined generic

features, a multi-view product database is defined generically and

brings together the attributes and methods of all the supported

applications. Theoretically, unified feature-based database is

capable of removing redundant information and establishing

persistent relations among different feature elements. Different

application feature models for the diverse engineering aspects

capture the vertically organized product information in the form of

specific application features which are mapped to neutral

application feature model to support data sharing among different

applications.

Ma et al. [3][13] have introduced a fine-grain and feature based

product database; neutral features can represent the complete

product data model and be implemented in a commonly available

SQL database via its API. Feature relationships are then mapped

into database schemas. The reported effort needs more research

because the tables in the database have to be created manually

which restricts the creation of new user defined feature types in the

database. Further, the validation of feature types and propagation

of changes cannot be achieved. The authors continued the effort

[3][13] to design a product repository storing fine grain product

information, both geometric and semantic, based on a neutral

format and unified features.

Based on the object-oriented approach, product and process

attributes and methods of different application features generated

by heterogeneous systems can be integrated through the structure

of a database repository. The system architecture of the proposed

product repository has been shown in Figure 1. The system

consists of five layers. The top layer is specific application tools or

modeling systems. Generally, a user interacts with the system

making use of certain application tools such as CAD, CAM or CAE

systems to generate application models. Thus this layer provides

the user scope to provide application specific input to the repository

system. The second layer is application programming interfaces

(APIs) that gives the facility to capture geometric information as well

as design intent using user-defined attributes and features along

with the traditionally available features. The APIs can be used to

customize the application tools according to user needs and to

incorporate additional engineering knowledge and rules to cycle the

geometric and feature information for the feature based integration.

The third layer supports feature based integration of heterogeneous

systems by taking the output from the API applications and creates

specific application feature models, e.g. design features,

manufacturing features and so on. The specific application features

are then mapped and associated to a neutral application feature

model on the basis of an extended STEP framework which can be

similar to STEP 224 for machining features, and thus facilitates

interoperability among different applications. Unified features

support the neutral application feature model in a generic form in

order to establish relationship among application features from

different tools/domains to achieve integration and to maintain

consistency by propagating changes made in one application to the

related entities at different levels. In the fourth layer, database

representation schemas are created according to unified feature

types and neutral features to store product data in the repository via

database interfaces. This work adopts a relational database to

represent the neutral format to maintain consistent product

information in the repository. Those schemas are then implemented

using database application interface, e.g. MySQL API. The

application interface works as a common development environment

for creating the functions to pump the product information into the

repository and retrieve from it.

The bottom layer in the system is the physical storage. The

granularity of product information is scalable from the assembly, to

Figure 1: System architecture of the proposed repository

CAD Systems
Application Tools/
Modeling Systems

CAM Systems CAE Systems

User

CAD API
Interfaces for Two-

Way Interactions

CAM API CAE API

Design
Features

Feature Based
Integration of

Heterogeneous
Systems

Manufacturing
Features

CAE
Features

Unified
Features

Specific
Application

Feature Model

Neutral
Application

Feature Model

Database
Schemas

Repository Application
Interfaces

DB Administrator

Product
Repository

DBMS

Physical Storage/
Feature-Based

Fine-Grain
Product

Repository

Database Mapping/
Implementation

the high level features and further to the low level topological and

geometric entities. Thus the repository completely represents

product model to serve as a hub of all types of information. It is the

authors’ intention to support multi-view feature domains and generic

process modeling approach, like IDEF; but due to the space

limitation, this aspect is left out for future work. Once the repository

is set up, the multi-facet system integrity has to be maintained by a

dynamic database agent system. Since all of the information is now

in the repository, different sets of information for specific purposes

can be retrieved, modified or updated based on the user profiles.

Ideally, from modifications done in the repository, the agent system

can update the CAD models, CAE models or other models

reflecting the changes in an associative manner. The agent system

is another future research topic.

4 FEATURE MAPPING AND ROLE OF UNIFIED FEATURE

4.1 Mapping between application feature and neutral feature

Feature modeling has become popular in using CADCAM tools;

features can potentially act as generic information units and carry

enormous engineering information in addition to geometric and

topological information. Such advanced use of feature is not

common yet in available engineering systems because in different

CADCAM systems, proprietary feature definitions are used.

Mapping from specific application features to a neutral format is

necessary in order to share feature level information. In this work,

STEP 224 is referred to represent manufacturing features.

Currently, design feature representation is not yet standardized.

The design features used in this work have been taken from the

representation of CSG primitives and manufacturing features of

STEP and commercial software NX. For example, the mapping of

slot design feature from NX to STEP format is shown in Figure 2.

It is seen that the location of origin and orientation of coordinate

axes are at the middle of the top face of the slot in NX whereas it is

situated at the bottom face and at one end of the STEP feature.

slot_direction is defined by y-axis in NX, but by z-axis in STEP. NX

defines rectangular slot mainly by three parameters, i.e., width,

depth and distance whereas STEP uses a sweep_shape which is

an open profile and a course_of_travel. Thus width and depth must

be mapped together to sweep_shape in STEP and distance to

course_of_travel. It seems clear that considerable works are to be

involved in the mapping from one application feature to neutral

feature and vice versa.

4.2 Relations between unified feature and application feature

The unified feature scheme generically defines the common

attributes and methods of application features and establishes

relationship among them by keeping references to the relevant

object entities. A detailed discussion on unified feature definition

and change propagation can be found in [5]. An example of

attributes and methods defined in unified feature and the

relationship with application features are shown in Figure 3.

The application features inherit the generic attributes and methods

of unified features as subclasses. In the case of database

implementation of features, the members of unified features and

specific application features are kept in separate tables and the

entries in unified feature table are referenced by using foreign keys

(fk). It thus avoids duplication of the same data in several tables. In

Figure 3, definitions of slot design feature and slot manufacturing

feature are shown. Both of them reference to the corresponding

unified feature information by using uni_feat_id. Associations

between different domain features can be supported by one or

more foreign keys. For example, if a manufacturing slot feature

uses the same geometry of a design slot feature, it can be realized

by referencing slot_dg_id as a foreign key in addition to its own

attributes such as machining operation, cutting tool, and surface

finish to complete its definition.

The methods defined in unified feature class are createGeometry(),

saveInformation(), queryInformation() and checkValidity(). They are

generic virtual functions suitable for all application features.

createGeometry() retrieve data from the database and uses

create_api() function to generate the application models; in which,

for this slot example, NX API uf_modl_create_rec_slot() can be

used for NX feature creation. saveInformation() cycles attributes

from application models and stores into database tables.

queryInformation() executes query to get feature specific

information from the database. checkValidity() verifies whether the

data satisfies the constraints specified such as data type, relation

between variables, and generation of valid application models and

propagates any change made by the user. More similar methods

can be defined within the unified feature class definition.

5 DATABASE SCHEMA OF FINE-GRAIN PRODUCT

REPOSITORY

Database schema defines what types of product information can be

stored into the database tables and the relationship among the

tables to represent the product completely in the repository. Fine-

Design

Features

Manufacturing

Features

Other Application

Features

Unified Feature

 uni_feat_id; --pk

 name;

 domain;

 location[];

 orientation[];

 feature_type;

 feature_sign;

 constraints;

 part_id; --fk

 createGeometry();

 saveInformation();

 queryInformation();

 checkValidity();

Design_slot_feature

slot_dg_id; --pk
tool_axis[3] ;
sweep_shape;
course_of_travel;
radius;

uni_feat_id; --fk

Mfg_slot_feature

slot_mfg_id; --pk
machining_operation;
cutting_tool;
surface_finish;
uni_feat_id; --fk
slot_dg_id; --fk

Legend

Pk: primary key

Fk: foreign key
 : inheritance

Figure 2: Mapping between NX and STEP feature

Figure 3: Relationship of unified feature with application features

grain product information means that the granularity of information

is small enough to store, index and access to the lower level

topological and geometric entities so that the repository does not

depend on external applications for the actual geometric data

manipulation, validation, and inquiries. The design of database

schema for the proposed fine-grain product repository is shown in

Figure 4. The product repository design has referred STEP

framework.

The elements of the database tables and their data types are

defined as a neutral data structure and based on unified feature

definitions. A table can have only one primary key (pk) which

uniquely references to a particular record in that table. A primary

key can be used as a foreign key (fk) in another table to establish a

parent-child relationship between tables. The product repository has

been designed based on features and has different levels to

represent a product fully. The three tables, i.e.

product_assembly_table, subassembly_table and part_table,

together represent the assembly tree structure of a product. The

product assembly table identifies every product uniquely using

primary key, product_id and stores those attributes which are

related to the overall product description. With each new entry into

the product_assembly_table, the repository will store all the data

needed by the subsequent tables. The components of an assembly

comprises of part_table and subassembly_table. A subassembly

consists of parts and may also have another subassembly which

can be denoted by referencing to the parent_subassembly using

parent_subassem_id field. Product_assembly, subassembly and

part are connected to unified_feature table through

physical_encapsulation feature table. Physical encapsulation

features capture the engineering attributes of a product such as

functions, design intent, and material requirements.

The assembly_features and conceptual_design_features make

another level in the database. Assembly features represent the

component list, their locations, orientations, configurations of

components, and constraints applied to the components.

Conceptual design features are used to capture design

requirements such as materials, strengths, surface finish and initial

design output. Geometric form features are the basic shapes which

are used to model a CAD part using Boolean operations.

Application domain features form another level which has different

sublevels such as design_domain_features,

manufacturing_domain_features, and other

application_domain_features. The design features are those

features using basic geometric features such as slot, hole, pocket,

chamfer, blend, extrude, sweep, free-form features etc. The

manufacturing features may use the same design features for

representing the shape of part referenced by foreign keys and

include some additional information such as machining operation,

cutting tool, surface finish required etc. The geometric form features

NonGeometric Data

Structure Table

… … …

 Design Domain Features

 Design Slot

Feature Table

… … …

Dg. Compound

Feature Table

… … …

Design Slot

Feature Table

… … …

Other Design

Feature Table

… … …

 Manufacturing Domain Features

 Mjg Slot

Feature Table

… … …

Mfg Compound

Feature Table

… … …

Mfg Slot

Feature Table

… … …

Other Mfg

Feature Table

… … …

 Geometric Form Features

 Block Feature

Table

… … …

Cone Feature

Table

… … …

Cylinder

Feature Table

… … …

Other Form

Feature Table

… … …

 Other Application Domain Features

 CAE Mesh

Feature Table

… … …

Other CAE

Feature Table

… … …

Unified Feature Table

uni_feat_id

name

domain

location

orientation

feature_type

feature_sign

part_id

Assembly Feature

Table

assem_feat_id

component_list

comp_location

comp_orientation

constraint_list

uni_feat_id

product_id

Conceptual Design

Feature Table

concept_feat_id

function_desc

design_requirements

uni_feat_id

product_id

Subassembly Table

… … …

Product Assembly

Table

product_id

product_name

product_description

product_unit

part_list

subassembly_list

assembly_feature_list

Part Table

… … …

Physical Encapsulation

Feature Table

… … …

 Geometric Entities

 Topological Entities

 Body Table

Vertex Table

Solid Table

Edge Table

Shell Table

Face Table

Point Table Curve Table Surface Table

Figure 4: Partial schema of database tables for the fine-grain product repository

support design domain, manufacturing domain and other

application domain features.

Each of these features represents feature level information of a

product and has its own specific attributes and parameters, and

thus can be implemented using a database table. These features

share the common attributes and methods defined in the unified

feature by referencing to it using uni_feat_id foreign key. The

unified feature relates the features to the part they belong to by

referencing back to the part entry in the part_table. The methods of

unified features can be used to send SQL statements to the server

to activate triggers in the associated table when a particular event

occurs for that table such as to check the validity of the values

entered.

The lowest level in the repository deals with the topological and

geometric entities of the product that actually represents the shape

and nongeometric data structures. The topological entities include

body, solid/sheet, shell, face, edge, and vertex. Topological entities

have their corresponding geometric entities such as surface, curve

and point respectively. The low level information is referenced by

the corresponding features and parts to which they belong to. Thus

the repository stores all the detailed data of a product which is

named as fine-grain product information. The unified features link

the features from different domains to the part table and eliminate

redundancy of information.

6 PRODUCT MODELLING USING API FOR THE TWO-WAY

INTERACTIONS

The proposed repository requires cycling feature and geometric

information from the application systems to store it and also to

regenerate application model by taking information back from the

repository after any modification is performed by the user. Thus the

system needs an interface for two-way communication between

application tool (such as CAD software) and the repository. In this

work, NX Open C API is used to cycle information from NX

proprietary files. The API programming also offers users more

control on the CAD system to customize it depending on user

requirements such as defining user defined features, and user

defined attributes. Figure 5 illustrates code snippets showing API

functions for cycling product information from NX CAD model,

pumping them into repository and using user defined attributes to

capture product information such as part material and designer’s

intent.

The product modeled in this work is a slider mechanism of plastic

injection mould assembly. The slider mechanism is an assembly of

subassemblies and parts with twelve parts in total. These parts

have many interdependencies in terms of locations, orientations

and dependent parameters. This is why, the modeling has been

carried out parametrically using expression file to capture all the

parameters required and to establish relationship among

parameters. Expression file is especially useful to calculate

parameter values from complicated equations. Figure 6

demonstrates partial view of an expression file that shows part

location relationship in an assembly, part driving parameters,

detailed parameter values and dependencies for groove feature.

7 CASE STUDY – SLIDER MECHANISM

A case study of slider mechanism which is a part of plastic injection

mould assembly has been chosen to model the product using CAD

API and to implement the product repository system. The assembly

and its exploded view with the subassemblies and parts are shown

in Figure 7.

a) Assembly view b) Exploded view

The slider mechanism has been modeled by adopting both top-

down and bottom-up assembly approaches. It has two

subassemblies such as stopper plate subassembly and slide

adjustment plate subassembly. In the product repository, the

product data is stored by implementing product assembly table,

subassembly table, part table and some of the feature tables

related to the design domain. Database inquiry results are

reproduced in Figure 8 showing SQL commands and the

associated database contents. Product assembly table,

//cycling product info from CAD model

t_part = UF_PART_ask_display_part();

t_root_occ = UF_ASSEM_ask_root_part_occ(t_part);

UF_OBJ_cycle_objs_in_part(t_part,UF_ftype,&feat);

...

//storing product info into database

mysql_real_connect(conn,"ma-server","moin",

 "passwrd","moin_part_db1",0,NULL,0);

sprintf(msg,"INSERT INTO Body_Tab(body_id,

 part_id) VALUES(NULL,'%d')",part_id);

mysql_query(conn, msg);

...

//recreating part model/attributes

UF_PART_new(“d:\\nx_parts”,1, &t_part);

UF_MODL_create_block1(NULL,origin,edges,&t_blk);

UF_MODL_create_rect_slot(loc,tool_axis,dir,width,

depth,length,face_link,nullt,nullt,&t_slot);

... UF_ATTR_value_t

att_value;//attribute data struct

att_value.value.string="AISI 1040";//attrib value

UF_ATTR_assign(t_wpart,"part_materl", att_value);

Figure 5: Code snippets to cycle, store and recreate product model

// assembly configuration expressions

AP_pos_x=APR_pkt_loc_x

AP_pos_y=APR_pkt_loc_y

AP_pos_z=(APR_pkt_loc_z-APR_pkt_height)

/*part position is associated to the

accommodating feature on another part;

here an angular pin is located according to the

pocket on the retainer where an assembly relation

is created */

...

//part driving expressions for “Stopper Plate”

SP_W_width=16.0

SP_L_len=32.0

SP_P_centr_to_centr=23.0

...

// detailed feature expressions

AP_D_cyl2_dia=10

AP_rect_groove_dia=(AP_D_cyl2_dia-1)

AP_rect_groove_width=2

Figure 6: Partial view of an expression file

angular pin retainer

locking block

slide adjustment

plate
slide core

stopper plate

angular pin

Figure 7: Slider mechanism modeled using NX Open API

subassembly table and part table together stores the product tree

structure into the repository. Unified feature table (as shown in

Figure 8) keeps all the features of the product and relates the

features with their related view using domain and part_id. Here the

features are for design view of stopper plate piece part (part_id = 3).

The slot table shows some of the parameter values of slot features.

These specific feature tables are connected to geometric entity

tables to store lower level geometric data. Thus the repository

represents a product completely by containing its feature level

information and lower level geometric information and does not

depend on any external CAD applications. Multiple views of the

product can be achieved by extracting view specific feature and

geometric information from the repository and regenerating the view

model using API functions. Similarly, different applications can be

integrated by first pumping product information from one application

to the repository and then recreating it in another application by

extracting information from the repository. In the prototype system,

only features from design domain have been implemented.

Features from manufacturing domain and other application domain

are yet to be implemented.

This work is only at the very preliminary stage. Until now, the

functions of extracting product information from the CAD model and

storing the information into database have been achieved. The

extraction of database contents to recreate CAD model has been

achieved partially.

8 CONCLUSIONS

This research explores the feasibility of a fine grain and multi-facet

product repository which can store complete product information,

including features and the lower level geometric data, using neutral

data structures. The significance of this work is that the suggested

repository can be used to integrate and update associative

application feature views. Thus it can integrate application feature

models generated by different software tools. Since the repository is

based on database technology, by designing appropriate table

schemas, dangling and redundant engineering data can be

avoided. The repository can also impose “need to know” view

restrictions on “roles” or users to ensure data security by controlling

profiles. The potential benefits of the proposed repository are

envisaged as its capability to independently represent product

information completely, to integrate different applications and to

create multiple views of the same product. By using the agent

technology, the proposed repository can control data integrity and

consistency more effectively. Future works include the development

of algorithms for checking product information validation and

smooth change propagation in the repository using the agent

technology, the representation of constraints in the database and

the development of methods for generation of multi view product

model from the repository.

9 ACKNOWLEDGMENTS

The authors would like to thank NSERC for its Discovery grant

(355454-09) and the University of Alberta for startup grant.

10 REFERENCES

[1] Bronsvoort, W.F., Noort, A. (2004): Multiple-View Feature

Modeling for Integral Product Development, CAD, Vol. 36,

No. 10, pp. 929-946.

[2] Connolly, T., Begg, C (2004): Database solutions – A Step-

by-Step Guide to Building Databases, Pearson.

[3] Ma, Y.-S., Tang, S.-H., Au, C.K., Chen, J.-Y. (2009):

Collaborative Feature-Based Design via Operations with a

Fine-Grain Product Database, CiI, Vol. 60, No. 6, pp. 381-91.

[4] Bohm, M.R., Stone, R.B., Simpson, T.W., Steva, E.D. (2008):

Introduction of a Data Schema to Support a Design

Repository, CAD, Vol. 40, No. 7, pp. 801-11.

[5] Ma, Y.-S., Chen, G., Thimm, G. (2008): Change Propagation

Algorithm in a Unified Feature Modeling Scheme, CiI, Vol. 59,

No. 2-3, pp. 110-118.

[6] Hoffman, C.M., Joan-Arinyo, R. (1998): CAD and the Product

Master Model, CAD, Vol. 6, No. 1, pp. 85-116.

[7] Sun, J., Lu, W.F., Loh, H.T. (2008): Building a database for

product design knowledge retrieval - A case study in robotic

design database, Robotics and Computer-Integrated

Manufacturing, Vol. 26, No. 3, pp. 224-229.

[8] Szykman S. and Sriram, R.D. (2006): Design and

implementation of the Web-enabled NIST design repository,

ACM Transactions on Internet Technology, Vol. 33, No. 7, pp.

545-59.

[9] Xue, D., Yang, H. (2004): A Concurrent Engineering-Oriented

Design Database Representation Model, CAD, Vol. 36, No.

10, pp. 947-965.

[10] Kim, J., Pratt, M.J., Iyer, R.G., Sriram, R.D. (2008):

Standardized data exchange of CAD models with design

intent, CAD, Vol. 40, No. 7, pp. 760-777.

[11] Zhou, Z.D., Xie, S.Q., Yang, Y.Z. (2008): A case study on

STEP-enabled generic product modelling framework,

International Journal of Computer Integrated Manufacturing,

Vol. 21, No. 1, pp. 43-61.

[12] Regli, W.C., Kopena, J.B., Grauer, M. (2011): On the long-

term retention of geometry-centric digital engineering

artifacts, CAD, Vol. 43, No. 7, pp. 820-837.

[13] Ma, Y.-S. (2009): Towards Semantic Interoperability of

Collaborative Engineering in Oil Production Industry, CERA,

Vol. 17, No. 2, pp. 111-119.

Select part_id, name, description from Part_Tab;

Part_id Part_name Part_description

1 Adjust_plate.prt Adjusts slide core

2 Locking_block.prt Limits slider movement

3 Stopper_plate.prt Fixes angular pin

...

Select feat_id,name,domain,part_id from

Unified_Feat_Tab where part_id = 3;

Feat_id Name Domain Part_id

43 Block Design 3

44 Chamfer Design 3

45 Simple hole Design 3

...

Select slot_id,loc_x,width,depth from Slot_Tab;

Slot_id Loc_x Width Depth

1 0.0 9.0 5.5

2 32.00 9.0 5.5

Figure 8: Database inquiry results showing the parts and features

stored (reproduced)

