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Abstract
Product lifecycle stages are inter-related and mutually constraining. Due to the sequential nature of the product development processes, some

constraints or conflicts may emerge in a later stage and require modifications to the decisions made in earlier stages. The iterations between stages

are hence unavoidable and must be managed carefully to maintain the consistency, integrity and validity of product information models. Due to the

inter- or intra-stage relations, a chain of changes is very likely to occur as the consequence of an initial change. Modeling and maintaining these

relations are important in collaborative engineering to evolve the state of the whole product model in a consistent manner. This paper introduces a

new method of modeling associative engineering relations in a unified feature modeling scheme and elaborates a change propagation algorithm for

the information consistency control among multiple applications of product lifecycle stages. The algorithm is established on a JTMS-based

dependency network. Two case studies are used to illustrate the proposed dependency network and change propagation algorithm.
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1. Introduction

A product lifecycle can be divided into several stages; they

are design, manufacturing, marketing, use, and recycling.

Along with them are different engineering processes, such as

conceptual design, detail design, CAE analysis, process

planning, machining, assembly, and so on. A later stage needs

the results of the earlier stages as input. At the same time, the

later stage influences decisions made in the earlier stages [1,2].

One stage may also require modifications to the decisions made

in other stages. In other words, these stages are inter-related and

mutually constraining. Therefore, any modification in one stage

can invoke a chain of subsequent intra- and inter-stage checking

and modifications [3]. Modeling and managing the inter- or

intra-stage relations can make change propagation more

efficient and ensure a consistent product information model

in concurrent engineering.

Incompatible data structures and lack of inter-stage associa-

tions are two major obstacles to realize data sharing and

consistency control among lifecycle stages. Features, which can
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associate non-geometric information with geometric entities, are

suitable to be used as information units to overcome these two

obstacles. A unified feature modeling scheme was proposed by

the authors [4,5] to use features as an intermediate information

layer for change propagation and information consistency

control in the product development processes. This scheme is

characterized by a unified feature definition, data association

mechanisms as well as the algorithms for propagating modifica-

tions. Two major extensions to the traditional feature technology

are the embedded knowledge-based reasoning [6] and the

unified, cellular topology based feature modeling mechanisms.

This paper elaborates a change propagation algorithm used

in the unified feature modeling scheme. The paper is organized

as follows: Section 2 reviews some past related research; the

unified feature modeling scheme is introduced in Section 3 to

make the paper self-contained; Section 4 analyzes the workflow

in three lifecycle stages to identify the intra- and inter-stage

relations; Section 5 presents the algorithms for change

propagation; two case studies are described in Section 6;

finally, conclusions are given.

2. Related research

Multiple-view feature modeling approach regards a parti-

cular application feature model as a view of the whole product

information model. De Martino et al. [7] used common faces to
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propagate modifications from one view to another. Subramani

and Gurumoorthy [8] used volumetric intersections to pro-

pagate geometric feature modifications. They only explored the

geometric relations between feature models. Bronsvoort and

Noort [9] proposed a multiple-view feature modeling framework

which integrates the conceptual design, detail design, assembly

design and manufacturing planning views. The non-geometric

relations were identified between the conceptual design view and

other views. In general, semantic relations between different

feature models have not been fully explored yet.

Regarding to the stage of conceptual design, Schulte et al. [10]

proposed using functional features to support the conceptual

design activities. Using functional features to represent design

intent via their relations to the physical effects was described.

Henderson [11] proposed a two-realm framework to link

conceptual and detail design. Product definition units were used

to represent design functionalities. Gui and Mantyla [12]

mentioned the importance of geometric modeling in the

conceptual design stage. The mapping from the required

functions to the product structures and the conversion from

function relations to spatial relations were discussed. Ranta et al.

[13] pointed out the possible correspondences between func-

tional requirements and geometric constraints. Gorti et al. [14]

proposed an object-oriented formalism to represent a design

artifact that includes the information about the required

functions, behaviors and the resulted forms. Chakrabarti and

Bligh [15] analyzed the three major functional reasoning

approaches for conceptual design. They concluded that a

practical functional reasoning model must support designs of any

nature and in any levels of detail. Qin et al. [16] proposed using

behavioral modeling to support conceptual design process.

Aleixos et al. [17] explored using reference datum, axes, curves,

surfaces, coordinate systems, and inter-part relations to model

and control the crucial product characteristics during the

embodiment design stage. Han and Lee [18] proposed a case-

based reasoning method through indexing, retrieving and

adapting virtual function generators for mechanism design.

In the stage of assembly planning, besides the function-

oriented assembly design, assembly planning focuses more on

the product assembling process, such as the assembling

methods, assembly sequence, etc. Van Holland and Bronsvoort

[19] discussed the using of feature concept during assembly

planning stage for the purpose of stability analysis, motion

planning and sequence analysis. Gottipolu and Ghosh [20]

generate feasible assembly sequences through analyzing the

geometric and mobility constraints from the detail design. Kim

et al. [21] analyzed the required spatial relations between joined

parts based on the specified assembling methods.

When considering process planning, Khoshnevis et al. [22]

used a feature completion module to convert design features

into machining features, which are suitable for process

planning. Stage et al. [23] proposed a machining resource-

based, objective driven and hence flexible method for

embedding manufacturing knowledge into a machining feature

generation process. Chu and Gadh [24], Kumar et al. [25], and

Subrahmanyam [26] discussed that fixturing features should be

generated from the considerations of minimizing set-ups,
preventing interferences and providing sufficient clamping

forces and moments. These research works demonstrate that

feature is not a pure geometric concept, feature semantics must

be considered when defining and using application features.

There exist many different intra- or inter-stage relations. Ma

and Tong [27,28] revealed the importance of using and

maintaining the associative nature of features during the design

processes. An associative feature concept was proposed to model

the associated geometric entities via a generic feature class. It

was highlighted that features should be self-contained and

flexible. They should have built-in associative links, different

representation forms and self-validation methods. The consis-

tency of relations has to be managed while the geometric

representations pertaining to various lifecycle stages are evolved.

In the unified feature modeling scheme, this associative feature

concept was extended to include non-geometric relations among

lifecycle stages. Kusiak and Wang [29] proposed a general

dependency network to manage relations between design

variables for modification propagation. Eastman [3] used the

precedence relations between application operations to manage

the validity of product information. Park and Cutkosky [30]

generalized three basic types of relationship in a design process:

precedence relations among tasks, constraint relations among

design elements and different abstraction levels.

The above reviewed research illustrates that:
(1) E
ach product lifecycle stage includes geometric and non-

geometric data. Both of them must be represented in the

product information model.
(2) F
eatures can be modeled as a set of generic geometry-

related objects with levels of abstraction of properties and

methods such that they can be used as information units in

different geometry-related stages.
(3) I
n real applications, a feature is an application-specific

object instance which relates a group of geometric entities

by the means of object polymorphism. Non-geometric

attributes are used in the application’s reasoning processes.
(4) P
roduct lifecycle stages are inherently related. They must

be managed together to maintain the information consis-

tency. Relationship management is crucial to maintain the

validity of a specific feature model as well as the whole

product information model.
3. Unified feature modeling scheme

In the unified feature modeling scheme, a unified feature is

generically defined as a combination of geometric references,

non-geometric attributes as well as explicitly defined inter- or

intra-feature relations. In Fig. 1, the unified feature definition is

shown using a UML class diagram [31]. A unified feature

object keeps references to other relevant information entities,

which include knowledge (via attributes), geometry or other

features. Application features are sub-classes of the unified

feature class and hence inherit the generic characteristics and

methods defined in the unified feature class.

As shown in Fig. 2, each application corresponding

to a particular lifecycle stage consists of four modules,



Fig. 1. Unified feature definition.
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knowledge-based semantic module, application feature module,

unified feature module, and geometric module. In the present

research, a rule-based expert system is used to provide the

knowledge-based reasoning capability. The knowledge-based

semantic module communicates with the application feature

module for invoking feature methods or updating a feature

model. The application feature module uses the methods defined

in the unified feature module, which include manipulating

attributes, accessing geometric module, and solving constraints.

Based on these fundamental mechanisms, unified features

can be used to associate knowledge-oriented reasoning pro-

cesses (mainly analysis and manipulation on non-geometric

entities) and the procedural engineering processes (manipula-

tion on and interactions with geometry models, which consist of

geometric entities).
Fig. 2. Intra-stage associations in the
Furthermore, the proposed unified features can also be used

to associate lifecycle stages via two ways.

Firstly, indirect common geometry based associations can be

established between stages. In the unified feature modeling

scheme, application feature models use a common unified

cellular model. The multi-dimensional, non-manifold, unified

cellular model integrates geometries from all involved

applications. The owning feature attributes of each cell are

used to establish the common geometry based associations and

to propagate geometric modifications across features.

Secondly, direct non-geometric constraint based associa-

tions can be established between stages. As shown in Fig. 3,

product lifecycle stages are inherently related and mutually

constraining. In the figure, GeoM represents geometry model

while CDFM, DDFM, ASFM, APFM and PPFM represent
unified feature modeling scheme.



Fig. 3. Unified feature model.
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conceptual design, detail design, CAE analysis, assembly

planning and process planning feature model, respectively. The

Unified Feature Model object keeps a list of Association

objects, which are stored in a relational database. An

Association object is initiated whenever an association is

established between different applications. Each Association

object has a list of controlled variables, which may belong to

different applications and may be of different types, e.g.

Feature, Attribute, Fact, or Geometry, etc. The references of all

the involved variables are also recorded in the Unified Feature

Model object, i.e. each application registers its relevant data in

the central database. Different types of associations exist

between particular stages. For example, detail design is a

refinement of the conceptual design while the CAE analysis

model is usually a simplification of the detail design.

With these references, the responsibilities of the Unified

Feature Model class (realized through its member functions)

include querying application models for values of variables as

well as propagating modifications to relevant application

feature models. Some base classes are also defined in this level

(Fig. 1), such as Feature Model, Unified Feature, Attribute,

Constraint, KnowledgeBase, etc. For each application feature

model, the corresponding application specific subclasses, such

as AppFeatModel, AppFeature, etc. are derived from, and hence

inherit generic attributes and methods of, these base classes.

The KnowledgeBase class is responsible for emulating

human engineers’ reasoning process and recording their

heuristics (as rules). The application feature model is a

hierarchical model which is divided into several levels, such

as assembly, component, feature, etc. To accommodate the

requirements of the conceptual design stage, the assembly or

component concept is defined here as a functionally

independent unit, such that they correspond to product sub-

functions. They are not necessarily physically realizable

and may have non-manifold geometry. In each level, a local

dependency network is weaved by shared attributes and

common constraints. Attribute and constraint objects can be

initiated in each level, such as assembly or feature constraints.

Each attribute or constraint object maintains a list of used entity

references (rule patterns, assemblies, features, etc.) that refer to

it. This list is used for change propagation and feature/rule

validity check when application variables are modified.

Each specific feature class (AppFeature) is a relatively

independent information unit in the reasoning process of its

owning application, such as functional design, assembly

planning or process planning. Each feature class has some
accessible attributes and executable methods, i.e. clearly

defined interfaces that can be invoked locally or remotely.

The application geometry models may be either two-manifold

or non-manifold according to application specific modeling

requirements. For example, the geometry models of the

conceptual design may be non-manifold. They may also have

mixed dimensionalities.

4. Application feature models

4.1. Conceptual design feature model

Generally, the tasks during the conceptual design stage

include function to behavior mapping and behavior to structure

mapping. They are not one-to-one mappings. The mapping or

selection heuristics are recorded as rules in the corresponding

knowledge bases. Mechanical functions and behaviors of a

product are usually realized through the interactions between

pairs of critical faces. These interactions are specified in the

form of relative positions, orientations, fit relations or relative

motions as well as other critical dimensions/specifications. Each

conceptual design feature instance corresponds to a relatively

independent sub-function. Critical faces are conceptual features’

geometric entities. Other specifications are features’ attributes or

constraints. Each conceptual feature instance records its owning

functions as well as the behaviors it participates in. Conceptual

features associate to each other through their owning functions or

behaviors. The conceptual design can be regarded as a skeleton of

the product, which consists of abstracted critical faces,

constraints, and other specifications (functions and behaviors).

4.2. Detail design feature model

In this stage, the complete product geometry and specifica-

tions are developed according to the skeleton specified during the

conceptual design stage. Traditional form features are applied

mainly in this domain. In the proposed unified feature modeling

scheme, when constructing a detail design feature model,

the specified conceptual design features are associated with the

corresponding detail design features. Relations between the

critical faces of a conceptual design feature instance are usually

converted into multi-level relations across sub-assemblies, parts,

features in the detail design feature model, such as the relative

position, orientation, motion, connection and fit relations. The

detail design can be seen as a refinement and concretization

process, where detail design feature model is enriched gradually
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by the embodiment from critical faces into parts and sub-

assemblies. Each part encloses a set of detailed form features;

and each (sub-) assembly consists of a set of parts with mating

conditions. These corresponding reference or refinement

associations are registered in the UnifiedFeatureModel object.

4.3. Process planning feature model

Process planning feature model is derived from the detail

design feature model according to design specifications,

available manufacturing resources and user-specified objec-

tives, such as cost or time. A single face of a detail design

feature may be associated to a set of machining features

(including intermediate ones), which are derived from the detail

design face according to the process plan.

The geometry entities of a process planning feature may

correspond to one or more faces in the final or intermediate

product geometry. The process planning features associate

to other objects, such as machine, tool, setup and process

planning rules, to represent a feasible process plan. Similarly,

the associations between the detail design features and the

corresponding process planning features are stored in the

UnifiedFeatureModel object.

5. Change propagation

The inherent inter- and intra-stage relations analyzed in the

previous section are represented as associations in the unified

feature modeling scheme. From the perspective of implemen-

tation, there are two basic types of associations: constraint-

based associations and sharing associations.

The constraint-based associations describe the geometric or

non-geometric dependency relations between entities. For

example, besides the traditional geometric or algebraic

constraints, the dependency relations between the antecedent

and consequent facts of a fired rule can also be represented as a

constraint. The constraint-based associations are recorded

using a Justification-based Truth Maintenance System (JTMS)

[32] and handled by the numerical constraint solver or the rule-

based expert system.

The sharing associations represent that two features refer to

the same geometric or topological entities in the product master

geometry. The sharing associations are handled by the unified

cellular model. The sharing associations can be used to

maintain the geometric consistency among lifecycle stages.

These associations are used to construct a dependency

network for change propagation and information consistency

control. Based on these associations, an algorithm for change

propagation within and across stages is presented as follows.

PROCEDURE Check_Local(x)

/* checking the intra-stage associations */
(1) B
ackup the value of the initial modified variable x. Put x

into a local set (set_1, which records modified variables vi

that need to be checked for intra-stage associations). For

each vi in set_1, search the JTMS dependency network

for variables that associate to vi using JTMS attributes
(antecedent or consequent). The variables, which are

antecedents of vi, are driving variables. The variables,

which are consequents of vi, are driven variables.
(2) C
heck the constraints between each vi and its driving or

driven variables one by one:

– If the new value of vi violates the constraints between vi

and any of its related variables:

� If the related variable is a driven variable

� If the value of the driven variable is fixed by the

constraint, i.e. without alternative values, then the

modification is rejected, run Abandon().

� If the driven variable has alternative values, search

one for which the constraint is satisfied:

- If the constraint can be satisfied (and the value of the

driven variable is changed), make a backup of the

old value and put the driven variable into set_1.

- If no alternative value satisfies the constraint, then

Abandon().

� If the related variable is a driving variable, then

Abandon().

– If no constraint has been violated or if some constraints

has been violated but can be re-satisfied, the modification

is locally accepted. Then, further check is carried out for

vi in the database. If vi appears in any inter-stage

associations in the database, move vi from set_1 to set_2

(which records variables that need to be checked for inter-

stage associations). Check_Global().
PROCEDURE Check_Global()

/* checking the inter-stage associations */
(1) F
or each member of set_2, add all associated features or

feature properties in the database to set_3 (which records

associated variables in other applications). An initial

modification in an application may invoke many modifica-

tions in other applications. The members of set_3 are

checked (in the next two steps) one by one until set_3

becomes empty.
(2) T
he values of members of set_3 are temporarily changed in

the database using the constraints recorded in the calling

application.
(3) F
or each member of set_3, execute Check_Local() in the

called application until the modification is found to be

locally accepted or rejected. The corresponding message

(about whether the modification is locally accepted or

rejected in the called application) is sent back to the calling

application that initiates the initial modification.
- I
f all modifications are accepted, the initial modification in the

calling application is globally accepted and committed.
- I
f any of the modifications are rejected, the initial modi-

fication in the calling application is rejected, then Abandon().

PROCEDURE Abandon()

/* retracting all changes temporarily made */
(1) A
ll modifications made in the calling and called applica-

tions are revoked using backup values.
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(2) I
n the database, the data of the called application, whose

values are temporarily changed, are set back to their

original values.
This algorithm aims at improving the efficiency of change

propagation during the product modification process. Without

recording dependency relations within a product model, the

whole product model must be redeveloped when a modification

occurs locally or in other related applications, because it is hard

to identify the influence scope of the modification. With the

proposed JTMS-based dependency network and change

propagation algorithm, it is possible to narrow down the

search scope faster and find out more accurately what other

elements in the product model are affected by this modification.

6. Case study

In this section, two case studies are used to illustrate the

advantages of the proposed dependency network and change

propagation algorithm.

The first case is a cooling system design in an injection mold

assembly (Fig. 4).

The structures and specifications of a cooling system include

circuit type, size, number, position, orientation, etc. The decision

on these design variables is influenced by the consideration of its

functional aspect (cooling effect), assembly aspect (interference

with other mold components or plastic part) and manufacturing

aspect (drilling direction, length and number of drilling

operations). In each aspect, the cooling system has different

geometric representations. For example, in conceptual design

stage, cooling circuits may be preferred to find possible design

candidates. The analysis of cooling effect may need a solid or

mesh representation. Interference checking with other compo-

nents or manufacturing planning stage requires for a solid

representation. Different channels of the same cooling circuit

must be connected. They are associated by the geometric

constraints. Member circuits of the same cooling system are

constrained by the functional requirement, i.e. they are combined

together to reach a required cooling effect. Hence, a change of a

single cooling channel may invoke a chain of changes of the

remaining cooling components. Without an efficient and
Fig. 4. A cooling system design in an injection mold assembly [27].
effective integrity control mechanism, managing these relations

and hence maintaining information consistency will be time-

consuming and error-prone. This case study is implemented

using Unigraphics WAVE technology. Interesting readers may

refer to [27] for details of implementation.

The second case study is an ejection system design in an

injection mold assembly. This case study is implemented using

ACIS [33]. MySQL [34] is used to develop the relational

database, in which the public data of each application as well as

the inter-stage associations are stored.

Along with the conceptual and detail design process, a JTMS

dependency network is established (Fig. 5 is for conceptual

design stage and Fig. 6 for detail design stage).

The inter- and intra-stage associations are established and

stored explicitly in the product model. In Figs. 5 and 6, plain

squares represent entities, such as functions, features or feature

properties. Squares with round corners represent constraints or

rules. Circles represent justifications. Arrows are directed from

antecedents to justifications, and further to consequents. In

Fig. 5, the portion surrounded by the dashed square represents

a primitive reasoning process: based on the input function

‘‘eject the molding’’ and ‘‘Rule2’’ as antecedents, justification

‘‘Just3’’ generates the two sub-functions, ‘‘propel the molding’’

and ‘‘guide the ejector’’ as the consequents. The whole

dependency network is established using these primitive

reasoning blocks. The detail design of the ejection assembly

is shown in Fig. 7.

In this case, the molding is of box-type (Fig. 8(a)). The

original normal ejector pins can provide sufficient contact area

between the pins and the molding (Fig. 8(b)). When the

designer changes the wall thickness of the molding, the detail

design application uses its dependency network to find out the

affected features. The double-lined entities and justifications in

Figs. 5 and 6 represent the change propagation chain. In this

case, the wall thickness is reduced such that the algebraic

constraint of ‘‘sufficient contact area’’ between the walls of the

molding and the pin head faces is violated (Fig. 8(c)).

In general, several counteractions to increase the contact

area between the molding and the ejector pins exist: changing

the positions, diameters, or the type of pins (Fig. 9).

However, in this case, the first two choices are infeasible due

to the pins’ interference with the core insert. Changing the pin

type is a feasible solution. Compared with the normal ejector

pins, commonly used D-shape ejector pins are chosen here

because they can provide bigger contact area (with the same pin

diameter) to eject thin-wall molding. After the designer

changes the pin type from normal to D-shape pin, the system

checks the database and finds the modification (‘‘pin type’’)

associated to an entity (‘‘ejector type’’) in the conceptual

design. The association is established during the detail

design process. This modification is hence transferred to the

conceptual design application for validation. The JTMS

dependency network of the conceptual design is consulted

and an ‘‘Ejector Type Rule’’ (rule4) is found to justify the

‘‘ejector type’’ entity. Since ‘‘D-shape ejector pin’’ is one of the

alternative consequent options of the rule, the modification is

permitted (Fig. 10). As for the detail design application,



Fig. 5. The dependency network for the conceptual design of an ejection system.

Fig. 6. The dependency network for the detail design of an ejection system.
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Fig. 7. The detail design assembly of an ejection system.

Fig. 8. Changing the wall thickness of the molding invalidates the ‘‘sufficient

contact area’’ constraint.

Fig. 9. Choices for re-satisfying the ‘‘sufficient contact area’’ constraint.

Fig. 10. The pin type is change to ‘‘D-shape’’ to increase the contact area.
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changes of the pin head faces as well as the guiding faces (pin

holes) in the core insert are effected according to the new pin

type.

7. Conclusion

Product lifecycle stages are inter-related and mutually

constraining. To achieve an overall satisfied performance of a

product, these stages must be managed as a coherent whole.

Because of the unavoidable iterations among lifecycle stages,

intra- and inter-stage relations must be identified, modeled and

maintained carefully. This paper presents a change propagation

algorithm in a unified feature modeling scheme. In this scheme,

the whole product information model is represented as a

dependency network. Different application feature models

relate to each other through direct constraint-based associations

as well as indirect common geometry-based sharing associa-

tions. Geometric and non-geometric associations are handled

uniformly in the scheme. Modifying a single node (a variable)

in this dependency network may have a sequence of influences.

The proposed algorithm aims at maintaining the validity and

consistency of the product models in the collaborative and

concurrent engineering in a more efficient way.
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