
3

Fine Grain Feature Associations in Collaborative Design
and Manufacturing – A Unified Approach

Y.-S. Ma1, G. Chen2 and G. Thimm2

1 Department of Mechanical Engineering, Faculty of Engineering
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
Email: yongsheng.ma@ualberta.ca
2 School of Mechanical and Aerospace Engineering
Nanyang Technological University, Singapore
Emails: chengang66@pmail.ntu.edu.sg, mgeorg@ntu.edu.sg

Abstract
In the context of concurrent and collaborative engineering, the validity and consistency of
product information become important. However, it is difficult for the current computer-aided
systems to check the information validity and consistency because the engineers’ intent is not
fully represented in a consistent product model. This chapter consolidates a theoretic unified
product modelling scheme with fine grain feature-based methods for the integration of
computer-aided applications. The scheme extends the traditional feature concept to a flexible
and enriched data type, unified feature, which can be used to support the validity maintenance
of product models. The novelty of this research is that the developed unified feature scheme is
able to support entity associations and propagation of modifications across product lifecycle
stages.

3.1 Introduction

Product development comprises several lifecycle stages, such as conceptual design,
detailed design, process planning, machining, assembly, etc. Commonly, computer-
aided tools (called ‘CAx systems’ hereafter) are used to support activities associated
to these stages. Traditionally, stand-alone CAx systems for individual stages
produce separate models, such as a product design or a process plan. The existing
CAx technologies have difficulties in maintaining the integrity of the comprehensive
product model as inter-stage data transfer or sharing is insufficiently supported,
especially for non-geometric data. Furthermore, validity checking of product models
is difficult as the engineering knowledge applied in product designs or process plans
is usually not stored with the product model as the existing technology does not
allow for this. Recently, due to the drive for industrial globalisation and mass
customisation, the trend of concurrent and collaborative engineering has led to tight
integration of product and process domains as well as CAx systems [3.1].

72 Y.-S. Ma, G. Chen and G. Thimm

This research accommodates product model validity and consistency by
proposing a comprehensive product model consisting of linked geometric and non-
geometric data throughout all product lifecycle stages based on feature technology
with consideration of knowledge engineering, system integration, and collaboration.
The goal of this research is to establish a paradigm in product modelling across
multiple lifecycle stages. The multiple aspects of product modelling are integrated in
a systematic and scalable manner. The paradigm is expected to allow multiple
applications to share a consistent product model with supporting mechanisms and to
maintain its integrity and validity.

3.2 Literature Review

Traditional application integration approaches focus on geometric data sharing. For
example, system integration between design and reverse engineering, rapid
prototyping, co-ordinate measuring machine, mesh generation for CAE, and virtual
reality has been widely studied [3.2–3.7]. The most common approach to support
application integration is using geometric data file exchange via a set of neutral
formats, such as the Initial Graphics Exchange Specification (IGES) or the STandard
for the Exchange of Product model data (STEP) [3.8]. This situation is no longer
satisfactory to support modern product lifecycle management [3.1]. To support
application integration fully, more comprehensive data sharing is needed than
provided by the existing IGES or STEP standards.

Features combine geometric and non-geometric entities. Therefore, compared
with geometric models, more complex relations exist in feature models. Managing
these relations, especially the non-geometric ones, is essential for the validity of a
product model. Relations in a feature-based product model can be classified as
shown in Table 3.1.

Table 3.1. Summary of research on relations in a feature-based application

Relation Related entity Representation Source
Geometric
relations

Between geometric entities Geometric constraints [3.9, 3.10]
Between features Interaction constraints [3.11, 3.12]

Non-
geometric
relations

Between features and the
corresponding geometric entities

Features referred to the
corresponding geometric
entities

[3.13–3.15]

Between features and other non-
geometric entities, such as
functions, behaviours, assembly
methods, machines, cutting tools

Tables, graph, rules, etc. [3.16–3.25]

3.2.1 Geometric Relations

Many publications focus on geometric relations in a feature model [3.9]. All these
relations are explicitly declared and represented as geometric constraints, which
maintain the geometric integrity of features. However, unintentional feature

Fine Grain Feature Associations in Collaborative Design and Manufacturing 73

interactions, may also affect the validity of features [3.11, 3.12]. These interactions
usually cannot be prevented by geometric or algebraic constraints. This work will
show that the geometric feature interactions can only be managed through the
associations between the feature model and the geometric model.

3.2.2 �on-geometric Relations

Non-geometric relations refer to dependency relations involving non-geometric
entities. For example, in process planning, the clamping faces or accessing faces are
required and are to be preserved when machining a feature and they are associated to
the machining processes and sequence used. Furthermore, two features, which do
not spatially overlap, even belong to different product lifecycle stages, may interact
with each other. How to represent these non-geometric feature relations has not been
fully investigated.

Non-geometric relations also exist among features and non-geometric entities.
For example in functional design stage, functional-form matrixes, bipartite function-
feature graphs, design flow chain and key characteristics, and mapping hierarchy are
used to link features to product functions [3.17, 3.20, 3.21, 3.24, 3.26]. In the
process planning stage, features are also related to non-geometric entities, such as
machines, cutting tools, and machining processes [3.22]. The methods of using non-
geometric relations to validate product models have not been developed.

A product model has to be constructed or analysed iteratively using engineering
knowledge from different aspects of expertise to fulfil requirements, such as
functional or manufacturing requirements. In addition, lifecycle stages are inter-
related and mutually constraining. Any modification in one stage may provoke a
chain of subsequent modifications to entities of the same or other stages. This
propagation of changes requires the management of inherent relations within and
among these stages. In other words, a product model must have a sound mechanism
to check its validity. Compared to the strict validity maintenance mechanisms of B-
rep or CSG, current feature-based modelling schemes are weak in this aspect.

Laakko and Mantyla [3.14], and Rossignac [3.27] suggested that a feature’s
validity should be defined in terms of the referenced geometric entities and of their
existence, shape, and relations to other geometric elements of the model. A feature
model is valid if the geometric and algebraic constraints specified on features are
satisfied. However, with the introduction of associative features [3.28], the validity
of features must be checked in more complex scenarios. The associative feature
concept expands feature definitions of specific application-related shapes into a set
of well-constrained geometric entities. By using an object-oriented approach, a
feature type can be modelled in a declarative manner that basically consists of the
properties and behaviours. Feature properties define the geometric entities whose
behaviours define the related constraints and logics in functioning methods
throughout the lifecycle of any feature instance. With the built-in object
polymorphism capability, a systematic modelling scheme for a generic and
abstractive parent feature class, with levels of specification as per application
domain requirements, can be developed. Such a generic feature definition scheme
unifies many traditionally defined, application-oriented feature definitions and
supports XML representation and fine grain database repository. Under the

74 Y.-S. Ma, G. Chen and G. Thimm

associative feature concept, where the associative constraints across multiple phases
of applications of a product lifecycle, complicated engineering features (patterns)
and engineering intent can be implemented. An example associative feature, cooling
channel pattern in plastic injection mould design, was given in [3.28]. An initial
sketch-based conceptual pattern in the early mould design stage is implemented and
its downstream cooling hole features are derived from the pattern; and then the
related assembly interfacing features and associated standard components at the
manufacturing and assembly stages are associatively generated and managed via a
well-defined feature class model.

Feature validity is concerned with a feature’s internal semantic characteristic
properties, logics, constraints and attributes. This validity aspect is largely
categorised as the constraint satisfaction problem, which has been partly addressed
to a wide extent.

Feature consistency refers to the tally relations between related features or more
abstracted semantic entities. Feature consistency is related to the semantic relations.
The consistency requirement can have different types. Some researchers suggest that
feature consistency means that the feature concerned is agreeable to the engineering
intent [3.29]. In their publications, engineering intent must be transformed into a set
of geometric, algebraic or preliminary semantic constraints, such as the boundary or
interaction constraints [3.15]. However, during the transformation process,
engineering intent may be lost because it has not been modelled explicitly so far.
Others emphasise that non-geometric constraints, such as a dependency constraint,
specified on the features have to be satisfied. For example, the presence of features,
or the values of feature parameters, may be determined by functional requirements
[3.18]. For another example, different machining sequences may influence the
presence, form, volume, and validity of machining features. Hence, the presence of a
machining feature is coupled with a machining process. Currently the representation,
checking and maintenance methods of inter-feature non-geometric constraints are
immature. Few researchers have touched on the feature consistency aspect although
they are equally important for product modelling. A more detailed literature review
by the authors is available [3.30]. This work introduces a solution framework that
entails major class definitions, association structures, as well as integration and
reasoning mechanisms based on a unified feature concept.

3.3 Unified Feature

Unified feature is a feature class definition that can generically represent the
common properties as well as the required methods throughout product lifecycle
stages. A unified feature is defined as a set of constrained associations among a
group of geometric and non-geometric entities. The commonalities of application
features, such as conceptual design features, detailed design features, and process
planning features, are defined in the unified feature class as generic fields and
methods. A brief publication can be found in [3.31]. Table 3.2 gives the major fields
and methods defined in the unified feature class.

Figure 3.1 gives the generic definition using a UML diagram [3.32]. The UML
symbols used in the figure are explained here. Rectangles represent classes, such as

Fine Grain Feature Associations in Collaborative Design and Manufacturing 75

Table 3.2. Major fields and methods of the unified feature class

 Name Description
Fields Attributes Association

attributes
Identities of the associated objects, such as
functions and behaviours in a conceptual
design, machines and cutters in a process
plan, other features, etc.

Self-describing
attributes

Material, surface finish, belonging
application, etc.

Parameters Variables used as input to geometry
creation methods

Constraints Geometric
constraints

Identities of geometric constraints that the
feature’s topological entities participate in

Algebraic
constraints

Identities of algebraic constraints that the
feature’s self-describing attributes or
parameters participate in

Rule-based
constraints

Identities of rules that the feature or its self-
describing attributes, parameters, numerical
constraints participate in

Geometric references Topological entities
Methods Geometry

construction
createGeometry() Generate the feature geometry

Interface to
geometric
model

getCell() Find out the feature’s member topological
entities

setCell() Assign a topological entity as the feature’s
identity

insertGeometry() Notify the geometric model to insert the
feature geometry

deleteGeometry() Notify the geometric model to delete the
feature geometry

Interface to
expert system

getFact(), setFact() Retrieve or create the corresponding facts
getRule(), setRule() Retrieve or assign the corresponding rules
checkRule() Check whether the related rules are

satisfied or not
Interface to
relation
manager

addToJTMS() Add the feature or its self-describing
attributes, parameters to the relation
manager as nodes

validityChecking() Call the relation manager for feature
validation

Interface to
database

saveFeature(),
retrieveFeature()

Store a feature in or retrieve a feature from
the database

the UnifiedFeature class. Dashed and directed lines represent dependency relations.
The lines are directed from the depending class to the class it depends on. Solid and
directed lines with triangular open arrowheads represent generalisation relationships,
pointing to the more general class that defines basic properties. Solid and directed
lines with open diamonds represent aggregation relationships, pointing from the

76 Y.-S. Ma, G. Chen and G. Thimm

parts to the whole, aggregated object. Composition (indicated by a filled diamond) is
a variation of simple aggregation relationship. It describes strong ownership and
coincident lifetime between the parts and the whole. The ranges aside the origin and
target of an aggregation (or composition) arrow indicate how many parts can or
must be in a whole. For example, a unified feature may include none or many other
unified features. A circle attached to a class represents an interface (such as the
IAttribute) realised by (undirected lines) the class. Other classes can use this
interface, e.g. the UnifiedFeature class uses the IAttribute interface.

Figure 3.1. Unified feature

3.3.1 Fields

The unified feature class has four main kinds of fields.
(1) �on-geometric attributes represent feature properties that are attached to the

feature or to the feature’s geometric entities. They do not directly describe a
feature’s shape. Attributes are further classified into self-describing attributes and
association attributes. Self-describing attributes represent properties that are special
to a particular feature class. Examples of self-describing attributes are material type,
surface finish, and feature nature (adding or removing material). Association
attributes are references to the entities associated to this feature, such as other
features, corresponding facts in the expert system, etc. In addition, association
attributes are used to refer to non-geometric entities. For example, they refer to
functions and behaviours in the conceptual design stage, or machine tools and
machining operations in the process planning stage.

(2) Geometric parameters describe a feature’s geometric shape, dimension,
position, and orientation, such as the origin position and length, width, height of a
block feature. Geometric parameters are used as input to the geometry creation
methods provided by the geometric modelling kernel.

(3) Constraints can be classified according to the elements they constrain: (a)
intra-feature constraints restrict the field values in a feature. For example, a

 0..*

Constraint

 Priority
 Variables

IAttribute

IConstraint

0..*

0..*

0..*

0..*

UnifiedFeature Attribute

TopologicalEntity

0..* 0..*

FeatureModel

0..*

0..*0..*

Parameter

1..*

Other
constraints

Geometric
constraint

Self-
describing
attribute

Algebraic
constraint

dependency generalisation aggregation composition

Association
attribute

Fine Grain Feature Associations in Collaborative Design and Manufacturing 77

pocket’s width equals to its length or a blind-hole’s bottom face must be on the part
boundary; (b) inter-feature constraints specify relations between two or more
features; and (c) semantic constraints can also be specified between a feature and
other entities. For example, a process planning rule is used as the constraint to
specify whether a cutter can be used to create a feature with the specified shape,
dimension, tolerance and surface finish. Constraints can also be classified according
to their types, i.e. (a) algebraic constraints; (b) geometric constraints; and (c) rule-
based constraints, which are used to restrict a feature’s presence or the values of
feature properties directly based on engineering rules. Constraints are prioritised.

(4) Geometric references are pointers to topological entities in a geometric
model. Since features are used to describe specific relations between topological
entities, a feature’s geometry is not necessarily volumetric, connected, or two-
manifold.

3.3.2 Methods

Interfacing functions, which deal with geometric modeller, knowledge engineering
module, relation manager and database, are defined in the unified feature class.

(1) Creating and editing feature geometry. In the proposed scheme, conceptual
design and detailed design features are created from predefined and parameterised
geometric templates. The values of these parameters are specified to generate feature
geometry. In the process planning stage with a design feature model as input, a
process planning application analyses all machining faces for suitable process
planning features. The properties of these faces are then used to determine the
parameters of process planning features. Feature parameters are used to create
product geometry with the help of functions provided by a geometric modeller.
Because the definition of geometry is application specific, the way geometry is
created is delegated to the specific application features. Feature geometries can be
2D faces or 3D solids in the developed scheme. The geometries of different
dimensional features are represented uniformly in a non-manifold geometric model
(Chapter 3.5). When an application feature is created, its geometry is inserted into
the geometric model. When a feature is changed, it notifies the geometric model of
modifications. In both cases, the geometric model will update itself accordingly.

(2) Supporting knowledge embedment [3.33]. A fact table corresponding to a set
of associated features is created as a subset supporting a knowledge base. When an
application feature is created, a corresponding fact is generated and inserted into the
corresponding fact table and then accessible from the knowledge base. The fact of a
feature describes the feature’s identity, its parameters and self-describing attributes.
The fact generation and insertion methods are defined in the unified feature class.
When a feature is altered, it notifies the knowledge base. Matching rules (if any) are
then fired.

(3) Supporting data associations and validity maintenance. In a single stage,
when an application feature is created, a corresponding node is generated and
inserted into a relation manager. The relation manager is responsible for managing
the dependency relations among entities. The constraints, which are responsible for
the feature’s presence or controlling the values of feature parameters or self-
describing attributes, are also inserted into the relation manager and are associated to

78 Y.-S. Ma, G. Chen and G. Thimm

the corresponding feature node. The node generation, insertion and association
methods are commonly defined for different application features. When a feature is
modified, it calls the relation manager for change propagation. Related constraints
are validated. To support inter-stage data sharing, associations and change
propagation, application features as well as their inter-relations are stored in a
common database. The methods of storing features into the database are defined in
the unified feature class.

Two points about the above proposed unified feature definitions are worth
noting. First, traditionally, numerical constraints are used to represent engineering
intent. As an extension, the unified feature definition also defines associations to
knowledge base, geometric model and other non-geometric entities in order to
represent and maintain engineering intent. Second, from the viewpoint of software
engineering, data sharing is difficult because one application does not know the data
structures of other applications.

Hence, applications cannot manipulate the data created by other applications.
With the unified feature definition, the issue of sharing feature data among
applications is considerably improved. An application feature may have its specific
properties, which are not included in the unified feature definition. However, with
both application features defined as sub-classes of the unified feature class, an
application understands the generic part of feature objects of other applications.
These generic data is then used to reconstruct unified feature objects (Figure 3.2). In
the proposed scheme, each application stores the data in a central relational
database. An application can access the database to retrieve the data that is
authorised.

Figure 3.2. Data access methods via generic fields of application features

3.4 Entity Associations

The prime purpose of the unified feature-based product modelling scheme is to
maintain the validity, consistency, and integrity of product models. Traditional CAx
systems have limitations in serving this purpose. Two major problems are (1)
engineering intent is not well represented and managed, and (2) inter-stage, non-

Application-specific
feature data

Generic variables
defined in the unified

feature class

Application 2 constructs
unified feature objects using

the generic data of other
application features retrieved

from the central database.

Application 1

Store();

Store();

Retrieve(); Central Database

Application
feature table

 Specific Generic

Fine Grain Feature Associations in Collaborative Design and Manufacturing 79

geometric relations are not well maintained. The unified feature-based product
modelling scheme tackles these two problems via establishing and maintaining
geometric and non-geometric data associations, within a single or across different
stages. For example, in the conceptual design stage, the geometry of a feature is
usually not fully defined. The resulted entities could be, for instance, only surface
shapes, abstract mechanism concepts, or parameterised volumes without assigning
detailed properties. An abstract conceptual design feature has its concrete
counterparts in the detailed design feature model. Because a conceptual design
feature represents a primitive design function that is usually realised through the
interactions between a few components, it is likely that an individual conceptual
design feature is transformed into several features belonging to different components
in the detailed design stage. On the other hand, one detailed design feature may also
participate in the realisations of several conceptual design features. Such feature
object dependency associations are one kind of non-geometric associations between
features as discussed in [3.34]. Feature attributes, parameters, or constraints
specified in the conceptual design feature model are transformed into attributes,
parameters, or constraints for corresponding detailed design features. For example, a
parameter of a conceptual design feature may be transformed into a constraint
between two detailed design features of different components. A conceptual design
constraint could be related to several constraints in the detailed design feature model.
Such feature property dependency associations are another kind of non-geometric
associations across features of different stages [3.34]. These associations are
generalised as constraint-based associations and sharing associations (Figure 3.3).
Constraint-based associations are established on the basis of intra- or inter-stage,
numerical or rule-based constraints. Sharing associations are established based on
the unified cellular model.

Figure 3.3. Associations in the unified feature-based product modelling scheme

Associations in unified feature-based
product modelling scheme

Geometric
constraints

Algebraic
constraints

Rule-based
constraints

Intra-stage
constraints

Inter-stage
constraints

Classified
according to the
implementation

Classified
according to the
constraining scope

Sharing
associations

Constraint-based
associations

80 Y.-S. Ma, G. Chen and G. Thimm

3.4.1 Implementing the Constraint-based Associations

Together with a rule-based expert system and a numerical constraint solver, a
justification-based truth maintenance system (JTMS) is used to implement the
constraint-based associations as introduced in [3.34]. A JTMS dependency network
consists of a series of related nodes that represent the belief status of entities.
Assumption nodes are believed without any supporting justifications. Simple nodes
are only believed if they have valid justifications. An assumption node can be
converted into a simple node, which then needs to be supported by justifications. A
justification consists of antecedent nodes and consequent nodes. A node is said to be
justified by a supporting justification if all antecedents of the justification are
justified.

Whenever a constraint-based association is generated, the corresponding JTMS
nodes and justifications are inserted into a JTMS dependency network. After the
insertion process, each node records three items: (1) a reference to its direct
supporting justification; (2) references to the justifications that use this node as
antecedent (for later change propagation); and (3) its current belief status. Whenever
a modification to the JTMS dependency network occurs, such as adding or retracting
assumptions, modifying nodes or adding justifications, the JTMS dependency
network is searched for the affected nodes as well as the related justifications. If it is
a rule-based constraint to provide the justification, the system refers to the
knowledge base to validate the modification. If it is a numerical constraint to
provide the justification, the system refers to the numerical constraint solver to
validate the modification. These checking and change propagating processes are
automated. The result is a new status of each affected JTMS node or a rejection of
the modification on the basis of contradicting beliefs. The data structures and
algorithms of JTMS are generic. Therefore, it handles geometric and non-geometric
constraints uniformly.

A relational database is used for all applications to store and publish their data.
An application can access and enquire the database for data published by other
applications. When an inter-stage constraint-based association is established, this
association and the involved data are stored in the database. When an application
modifies its model, it must check the database for relevant inter-stage associations.
If such associations exist, a validity checking process is triggered. The applications
involved are responsible for maintaining the consistency (between associated stages)
while the database is a medium for storing the repository data, inter-stage
associations, and propagating changes. Figure 3.4 illustrates the constraint-based
associations between the conceptual and the detailed design feature models. The
constraint-based associations between the detailed design and the process planning
feature models are established in a similar way.

3.4.2 Implementing the Sharing Associations

Two methods are developed for sharing associations using a unified cellular model
implemented in a database.

(1) Generating a new application feature. Each application feature class has its
geometry creation and manipulation functions. When a creation function is invoked,
the feature geometry is created and inserted into the application’s runtime cellular

Fine Grain Feature Associations in Collaborative Design and Manufacturing 81

Figure 3.4. Constraint-based associations for conceptual and detailed design stages

model. The topological entities created are associated with the feature through the
owning feature attributes and the feature’s runtime geometric references. The feature
geometry is also inserted into the unified cellular model. If any cell in the unified
cellular model is affected by this new feature, e.g. overlapping, the owning features
of the affected cells are marked for validity checking.

 (2) Modifying an application feature. When an application feature is modified,
in addition to updating the application’s runtime cellular model, the application also
notifies the unified cellular model about the modifications. The unified cellular
model is updated and the affected cells are marked as been modified. The owning

Conceptual design knowledge base

consequent

antecedent

antecedent
part of

antecedent

feed

generate

trigger

generate

trigger

feed

generate

feed feed

derive

part of

derive

extract conceptual design features

store &
publish

Detailed design application

store & publish

Conceptual design feature
and its properties

Fired rules

Conceptual design rules

Database
(unified product

model)

Inference engine

Conceptual design facts

Conceptual design JTMS

store &
publish

Detailed design feature and its properties

Fired rules

Detailed design rules

Inference engine

Detailed design facts

Detailed
design
JTMS

Detailed design knowledge base

Inter-stage
constraint-based

associations Justification

Justification

generate

consequent

Conceptual design application

82 Y.-S. Ma, G. Chen and G. Thimm

features of the affected cells are then validated by the corresponding applications.
The sharing association mechanism enables different application features to be
associated with the same geometric or topological entities and hence supports
achieving inter-stage geometric consistency.

3.4.3 Evaluation of Validity and Integrity of Unified Feature Model

This subsection introduces a set of criteria, which is used to evaluate the validity and
integrity of a unified feature-based product model. The general requirement for a
valid product information model is that each application model (corresponding to a
particular stage) must be valid and also consistent with other associated application
models. The detailed evaluation criteria are classified into feature, intra-stage, and
inter-stage levels.

A feature is valid if (i) the feature geometry refers to valid topological entities;
(ii) the values of feature parameters are consistent with the product’s geometric
model; (iii) all constraints on the feature are satisfied; and (iv) any feature property,
if included in the JTMS dependency network, has a “believed” status, i.e. its
supporting justifications are valid.

A product model is valid if (i) all features in the model are valid; (ii) in its
knowledge base, the antecedent conditions of all fired rules, which are the
justifications for the generated features (or feature properties), are satisfied; (iii) all
constraint-based associations between consequent facts and respective features (or
feature properties) hold; and (iv) cellular entities, which are referenced by the
geometric references of all the existing features, exist and have the correct status
(material or void, on the boundary or not on the boundary) according to the feature
sequences in their owning feature lists.

Two product models (corresponding to different lifecycle stages) are consistent
if (i) sharing associations between their corresponding application features hold; and
(ii) constraint-based associations between their corresponding application features or
feature properties hold. In particular: (a) each critical feature in the conceptual
design is linked to features in the detailed design via valid constraint-based
associations; (b) each feature property or inter-feature constraint in the conceptual
design has its valid counterparts (may not be one to one relations) in the detailed
design; (c) each detailed design feature to be machined is linked to process planning
features via valid constraint-based associations; and (d) all the design specifications
(such as tolerances and surface finishes) are satisfied by the finish process planning
features.

3.4.4 Algorithms for Change Propagation

If users (designers or process planners) modify the product model, the modifications
must be checked to make sure that the consistency of the whole product information
model is maintained. As indicated in previous sections, a dependency network is
established using constraint-based associations and sharing associations. It is
implemented through a JTMS and a common database. The purpose of the
dependency network is for the propagation of modifications and determining the
influence scope of a modification.

Fine Grain Feature Associations in Collaborative Design and Manufacturing 83

Figure 3.5. Propagation chain of intra- and inter-stage changes

The propagation and checking process is divided into two major generic routines
[3.35]: local checking within a specific model and global checking across different
models (see Figure 3.5). Assume variable x in an application is changed (as the
initial modification). In the figure, arrows are directed from driving to driven
variables while “var” represents variables. The change propagation algorithms are
developed with reference to constraint-based and sharing associations as well as
their corresponding implementations in the unified feature-based product modelling
scheme. The algorithm is in iterative manner and starts from a local application
domain first; the local change impact is evaluated using a JTMS and a common
database to establish inter-stage non-geometric associations. An algorithm for
change propagation within a lifecycle stage is presented as follows.

PROCEDURE Check_Local(x)

/* checking the intra-stage associations */

(1) Backup the value of the initial modified variable x. Put x into a local set
(set_1, which records modified variables vi that need to be checked for
intra-stage associations). For each vi in set_1, search the JTMS dependency
network for variables that associate to vi using JTMS attributes (antecedent
or consequent). The variables, which are antecedents of vi, are driving
variables. The variables, which are consequents of vi, are driven variables.

(2) Check the constraints between each vi and its driving or driven variables
one by one:
– If the new value of vi violates the constraints between vi and any of its

related variables:

� If the related variable is a driven variable
• If the value of the driven variable is fixed by the constraint, i.e.

without alternative values, then the modification is rejected and
run Abandon().

• If the driven variable has alternative values, search one for which
the constraint is satisfied:

 Application 2 (calling application)

Var3 Var1
Var4

Var5

The initial
modified
variable

Intra-stage
change
propagation

Slocal-1

Slocal-2

var1

var2
var3

var5

Sasso

var4

 Application 1 (called application)

Var2
Inter-stage change propagation

84 Y.-S. Ma, G. Chen and G. Thimm

- If the constraint can be satisfied (and the value of the driven
variable is changed), make a backup of the old value and put
the driven variable into set_1.

- If no alternative value satisfies the constraint, then Abandon().
� If the related variable is a driving variable, then Abandon().

– If no constraint has been violated or if some constraints has been
violated but can be re-satisfied, the modification is locally accepted.

The Abandon() used in the above algorithm is given here:

PROCEDURE Abandon()

/* retracting all changes temporarily made */

(1) All modifications made in the calling and called applications are revoked
using backup values.

(2) In the database, the data of the called application, whose values are
temporarily changed, are set back to their original values.

Next, further check is carried out for vi in the database. If vi appears in any inter-

stage associations in the database, move vi from set_1 to set_2 (which records
variables that need to be checked for inter-stage associations). Run Check_Global().

PROCEDURE Check_Global()

/* checking the inter-stage associations */

(1) For each member of set_2, add all associated features or feature properties
in the database to set_3 (which records associated variables in other
applications). An initial modification in an application may invoke many
modifications in other applications. The members of set_3 are checked (in
the next two steps) one by one until set_3 becomes empty.

(2) The values of members of set_3 are temporarily changed in the database
using the constraints recorded in the calling application.

(3) For each member of set_3, execute Check_Local() in the called application
until the modification is found to be locally accepted or rejected. The
corresponding message (about whether the modification is locally accepted
or rejected in the called application) is sent back to the calling application
that initiates the initial modification.
– If all modifications are accepted, the initial modification in the calling

application is globally accepted and committed.
– If any of the modifications are rejected, the initial modification in the

calling application is rejected, then Abandon().

After the iteratively looped change propagation procedures, finally, the algorithm

for change propagation finishes if there is no new changes triggered. Then further
high-level attributes properties of related objects, logical facts, statuses of indicators
and controls are updated accordingly. Eventually, the consistency of product models
has been evaluated. This algorithm can be triggered again and again whenever there
is a major change decision is to be committed.

Fine Grain Feature Associations in Collaborative Design and Manufacturing 85

3.5 Multiple View Consistency

3.5.1 Cellular Model

Traditional geometric modelling systems use boundary representation (B-rep) or
constructive solid geometry (CSG) models for geometry representation [3.36]. They
have limitations with respect to the requirements of the unified feature-based
product modelling scheme.

Only the final product geometry is stored and managed. Intermediate geometries,
which do not belong to the final boundary, are usually not stored. This limitation
makes feature modifications difficult. It also results in a persistent naming problem.

CAx systems have different requirements on representing product geometry. A
hybrid geometric modelling environment that can accommodate the associative
wireframe, surface, and solid models coherently is a natural outcome of the unified
feature-based product modelling scheme. CAx systems need to represent the same
product geometry in different ways. On one hand, geometry may be represented in
different abstraction levels. For instance, a hole can be represented as a central line
(plus a radius), a cylindrical face, or a cylinder in different contexts. On the other
hand, product geometry may be represented in different ways. For instance, two
adjacent faces in one application may be represented as a single face in another
application. In addition, it is important for the unified feature-based product
modelling scheme that higher level application features can use lower level
topological entities to propagate modifications and control the information
consistency. Relationships or constraints in higher levels (e.g. feature level) may
also be specified using lower level (e.g. topological entity level) relations.

Some solutions were proposed to solve these problems. Bidarra et al. [3.37, 3.38]
proposed to use a cellular model to represent intermediate product geometry as well
as to support links between different views. However, their methods are confined to
3D features only. Other researchers [3.39–3.42] proposed to use the multi-
dimensional non-manifold topology (MD-NMT) to meet the geometric modelling
requirements of different applications. However, they did not fully apply the MD-
NMT to the feature-based modelling processes. It can be seen that a multi-
dimensional geometric modelling environment, which is capable of propagating
geometric modifications across feature models, does not exist.

3.5.2 Using Cellular Topology in Feature-based Solid Modelling

The goal of using a cellular topology is to keep a complete description of all the
input geometric entities without removing them after set operations on volumes
(unite, intersect, and subtract), regardless of whether they appear in the final
boundary or not [3.43]. The cellular model uses three mechanisms to fulfil this goal:

1. Attribute mechanism. There are two kinds of attributes used in a cellular
model: (a) cell nature – a cell is either additive or negative depending on
whether it corresponds to materials of the product (or the topological entities
on the part boundary) or not; and (b) owner – each cell records its owing
features because a cell may belong to several features due to feature

86 Y.-S. Ma, G. Chen and G. Thimm

interactions. The sequence of the owning features is kept to determine the
cell nature.

2. Decomposition mechanism. Two 3D cells do not overlap volumetrically.
Whenever two cells overlap, new cells for the overlap are generated with the
merged owner list.

3. Topology construction mechanism. In a cellular topology-based, non-
manifold boundary representation, an operation on volumes does not remove
any input geometry. The cellular model constructs topology, or generates
new faces, edges, and vertexes, before classifying the topological entities as
“in”, “out” or “on” the boundary. All topological entities are marked and
filtered for displaying according to the type of the operation.

Figure 3.6. Traditional feature model based on a two-manifold boundary representation

Figure 3.6 describes a feature model based on a two-manifold boundary
representation. Traditional boundary model does not store intermediate geometries.
In other words, according to the types of Boolean operators, “useless” geometries
are discarded before the part topology is reconstructed. For example, in Figure 3.6,
when inserting the slot_1 feature, its top face is not stored. During the later
modelling process, the intersections (due to feature interactions) further split and
remove feature geometry from the boundary model. It is hence difficult to relate the
feature to its corresponding topological entities in the final boundary model. In the
constraint-based, parametric design processes, this limitation makes the feature
model history-based. This limitation is also the major reason for the persistent
naming problem [3.15].

Alternatively, in cellular topology based non-manifold boundary representations,
operations on volumes do not discard any input geometry. Part geometries are
represented using cellular topologies. Figure 3.7 shows the decomposed cells of the
simple example according to the cellular topology along with the feature modelling
process.

Feature
model

Slot_2 Feature-1

Feature-n

Feature-2

Regularised
Boolean
operations

Base block Slot_1

…
…

…
…

Body

Lump

Shell

Face

Loop

Edge

Vertex

Two-manifold
boundary
representation

Fine Grain Feature Associations in Collaborative Design and Manufacturing 87

Figure 3.7. Feature model based on the cellular topology

Figure 3.8. Cellular geometry with different cylindrical features: (a) a block with three
interacting holes, (b) the cell, which belongs only to the block feature, (c) hole-1 feature, (d)
hole-2 feature, and (e) hole-3 feature

(a) (b)

(c) (d) (e)

hole-1

hole-2

hole-3

Cell_4 Cell_5, Cell_6 Cell_7 Cell_8

Base block

Slot_1

Slot_2

Cell_2 Cell_3

Cell_1

Non-regularised
Boolean operations

88 Y.-S. Ma, G. Chen and G. Thimm

The use of cellular topologies simplifies the representation of feature geometry
as combinations of cells. When a feature is initialised, it is a single cell that carries
only this feature’s identifier. Whenever feature interactions occur, new cells that
belong to the intersections are generated. The newly generated cells carry a merged
owning feature list.

The geometry of a cell can describe any shape. For example, Figure 3.8(a) shows
a block workpiece with three intersecting holes. Figure 3.8(b) shows the cell, which
carries only the block as its owning feature. Figures from 3.8(c) to (e) show the
cellular representations of the three hole features. In this way, all feature geometry,
geometric relations between features as well as relations between a feature and its
corresponding topological entities are stored in the product model persistently. The
persistent naming problem is avoided. It is also possible to modify features based on
the dependency relations, not on the construction history because the influence
scope of a geometric modification is confined by the inter-cell relations. However,
to meet the requirements of the unified feature-based product modelling scheme, this
3D-cell-based multiple-view feature modelling approach needs to be extended.
Some case studies are given in [3.43].

3.5.3 Extended Use of Cellular Model

Distinct applications covered by the unified feature-based product modelling scheme
have their particular geometry representation requirements. (1) During conceptual
design, a designer is concerned about functions and behaviours. Only critical
geometries and their relations are specified at that time. These critical geometries
may only be represented as abstracted lines, faces, curves, or surfaces. Solid models,
detailed topologies and geometries are not specified in this stage. (2) In the detailed
design stage, the product geometries or layouts are further materialised. Two-
manifold solid model representation is usually preferred. (3) In the process planning
stage, features are usually defined as material removal or accessing volumes related
to machining operations. Fixtures are also conceptualised in this stage. For these
types of features, solid representation with surface manipulation support is more
appropriate because, other than the machined volumes, fixture design uses sub-area
patches of the part, e.g. locating or clamping areas. (4) Similar requirements are
applicable to the assembly design stage. In particular, the sub-areas of the part or
assembly for interfacing or grasping are concerned.

The geometrical representations discussed above relate to each other. They
represent different aspects or abstraction levels of a product. To meet these diverse
geometry representation requirements, the current cellular topology-based feature
modelling method needs to be extended to support not only 3D solid features, but
also non-solid features. A multi-dimensional cellular model, named the unified
cellular model, is proposed here to integrate all these representations, manage their
relations and hence support the multiple-view feature-based modelling processes.
The geometric model of each application is a particular aspect (a sub-model) of the
unified cellular model. The traditional usage of the cellular topology in multiple-
view feature modelling is extended in three aspects: (1) 2D and 3D features are
supported uniformly; (2) the unified cellular model is used to share geometric data
as well as to propagate geometric modifications (creating new cells, modifying or

Fine Grain Feature Associations in Collaborative Design and Manufacturing 89

deleting cells) among views through the cells’ owner attributes; and (3) relationships
in the cell level are generalised. These relation types can be used as building blocks
to establish higher level feature relations.

The unified cellular model ensures the geometric consistency between the
application feature models.

1. The geometries of a detailed design and the corresponding process planning
model may have different topologies. However, both models correspond to
the same final product geometry. In other words, these two application
cellular models must correspond to the same B-rep solid model, which
represents the final part geometry. This geometric consistency is realised
through mapping 2D or 3D application features to the corresponding cells in
the shared unified cellular model.

2. Two features may represent the same item at two abstraction levels, e.g. a
central line or a cylindrical face of a hole. The consistency is maintained
through specifying geometric or topological constraints on the related cells
in the unified cellular model.

3.5.4 Characteristics of the Unified Cellular Model

A unified cellular model UCM includes all geometries from different applications
[3.43]. It consists of a set of cells:

 UCi: �
�
�

�
	

��

�
�

�
	

��

�
�

�
	

��

�
�

�
	

�

����

3

1

2

1

1

1

0

1
l

t

l
k

s

k
j

r

j
i

q

i
UCUCUCUCUCM ���� (3.1)

In the expression, UC0, UC1, UC2, and UC3 represent zero-dimensional (0D),
one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) cells,
respectively. Similarly, q, r, s, and t are the numbers of 0D, 1D, 2D, and 3D cells,
respectively, in the unified cellular model.

Each cell (except 0D cells) is bounded by a set of cells of a dimensionality
lowered by one. On the other hand, a cell may exist independently without bounding
any higher dimensional cell. The point sets of any two cells (of the same or different
dimensionalities) do not overlap: ��
 b

j
a
i UCUC (0 � a < b � 3 or (a = b) � (i �

j)). In addition, a cell does not include its boundary, except for 0D cells.
The cellular model obeys the Euler–Poincare formula for non-manifold

geometric models [3.41, 3.43]. Each application feature model uses the unified
cellular model. The relations among these models are described in [3.43]. An
application feature model AFM consists of a set of application features AFi and other
non-geometric entities �GEj:

 j

n

j
i

m

i
�GEAFAFM

11 ��
�� �� (3.2)

where m and n are the numbers of application features and non-geometric entities in
this application feature model.

90 Y.-S. Ma, G. Chen and G. Thimm

An application cellular model ACM is created at runtime, which consists of a set
of application cells ACi: i

u

i
ACACM

1�
� � , where u is the number of application cells in

this application cellular model. Each application feature refers to a set of application
cells. An application cell may belong to several application features, i.e. it records
several features in its owning feature list. The geometries of an application feature
correspond to 1D, 2D, or 3D cells.

An application cell can be mapped to one or more cells in the unified cellular
model. On one hand, for a particular application, one cell in the unified cellular
model is mapped to at most one application cell. On the other hand, each cell in the
unified cellular model is mapped to at least one application cell (and therefore at
least one application feature). This mapping is realised through the owner attribute
mechanism.

The rule for determining cell nature applies to the unified cellular model, i.e. the
nature of the latest feature in the owner list determines the nature of the cell. Please
refer to [3.43] for more details. All applications use this unified multi-dimensional
non-manifold cellular model. The geometry of each application feature model is a
particular aspect of the unified cellular model.

In Figure 3.9, the design of a cooling system of a plastic injection mould is used
as an example to illustrate the idea. In the conceptual design stage, the cooling
system is represented as cooling circuits for cooling effect analysis while in the
detailed design or process planning stage, the cooling system is in 3D for
manufacturability analysis and process planning. The cooling circuits and the
cooling channels are representations of the same cooling system in different
abstraction levels. The geometries of these two feature models are kept consistent
through the unified cellular model.

Figure 3.9. Link conceptual and detailed designs using unified cellular model

Fine Grain Feature Associations in Collaborative Design and Manufacturing 91

3.5.5 Two-dimensional Features and Their Characteristics

The idea in this sub-section is that the unified cellular modelling scheme represents
1D, 2D, and 3D cells uniformly (they are referred to as edge, face, and solid cells,
respectively hereafter). Currently, the prototype system only handles face and solid
cells (corresponding to 2D and 3D features, respectively). 1D features are mentioned
here but more research will be done in the future. Examples of 2D application
features include: (1) conceptual design features, which represent functional areas in
the product; the geometries of this kind of features are usually abstracted as pairs of
interacting faces; these faces correspond to partial faces in the detailed design; (2)
assembly features, which represent grasping or mating areas of parts in assembly
processes; and (3) locating or clamping features, which represent locating or
clamping faces during a machining operation.

Similar to solid cells, the major advantage of using face cells instead of
geometric faces is that operations on face cells do not remove faces (or parts of
faces) even if they do not belong to the final boundary. For example, the non-
regularised operations on faces and decomposition mechanism upon overlapping
detection are available to face cells. A 2D feature is represented as a group of
associated face cells with engineering semantics. For example, a locating feature is
defined as a pair of faces associated with the constraints on accessibility, machining
accuracy, non-interference, and minimising setup changes. The geometry of a 2D
feature is one or more surfaces. Two characteristics of 2D features exist. (1) A 2D
feature has a nature attribute (additive or negative) that can be changed by feature
interactions. A change of cell nature (from additive to negative or vice versa)
requires the corresponding features to be validated. For example, a clamping feature
represents a local area on a part that is used for clamping. When a clamping feature
is altered, its face cells may be split with the natures of some of the resulting face
cells inverted. This may jeopardise the clamping feature’s stability (sufficient area
for clamping). Similar situations are encountered for functional, assembly, and
locating features. (2) Face cells corresponding to functional, assembly, locating, and
clamping features have the same surface definitions as existing face cell(s). Hence,
to simplify the implementation, it is assumed that newly inserted face cells and
existing solid cells do not intersect. However, this is not valid for some CAE
analysis applications, in which middle faces are commonly used.

When a 2D feature is generated, the corresponding face cell is also generated and
inserted into the application and the unified cellular models. Figure 3.10 illustrates a
simple example: the integration of a detailed design and a process planning model
on the basis of a unified cellular model.

The designed part is a block with a blind hole. The hole has a distance
specification with face F2 as datum and a perpendicularity specification with face F1
as datum. The corresponding process planning model begins with a blank feature
(larger than the part to allow machining). Other process planning features are (1) a
surface-milling feature (due to the perpendicularity specification); (2) a clamping
feature (for surface-milling); (3) a drilling feature and a boring feature (to meet the
surface finish requirement of the hole); and (4) a locating feature and a supporting
feature for the drilling and boring operations. These 2D or 3D features are associated
in the unified cellular model.

92 Y.-S. Ma, G. Chen and G. Thimm

Figure 3.10. Integrating detailed design and process planning feature models

3.5.6 Relation Hierarchy in the Unified Cellular Model

Relations can be established on the cell level, the feature geometry level, and the
feature semantic level, respectively. Higher-level relations are established on the
basis of two lower-level relations.

Fine Grain Feature Associations in Collaborative Design and Manufacturing 93

The lowest level of relations is between two cells, which cover four cases:

1. The bounding relations among cells
2. The bounding cells that inherit the owner attributes of the bounded cell
3. Two solid cells that are adjacent if they are bounded by one or more common

face cells (two face cells are adjacent if they are bounded by one or more
common edge cells)

4. Two adjacent edge or face cells that may be part of the same curve or surface

The second level relations are topological relations between the geometries of
application features. Note that a feature’s dimensionality can be diverse depending
on the application nature. Three possible topological relations between two
application features are identified here:

1. Overlap: After cellular splitting, two n-dimensional features are said to
overlap each other if they use the same n-dimensional cell(s). An n- and a (n–
1)-dimensional features are also said to overlap each other if they use the
same (n–1)-dimensional cell(s).

2. Adjacent: Two different n-dimensional features are defined as adjacent ones
if they share (n–1)-dimensional cell(s) but do not overlap.

3. In a 3D feature, adjoining area refers to one or more faces (represented by
the face cells), which are mathematically connected and defined on the same
surface.

For two 3D features A and B, feature A is said to be completely adjacent to
feature B, if feature A’s adjoining area is fully enclosed by any of feature B’s
adjoining area. In plastic injection mould design, completely adjacent relations can
be used to represent maps from the plastic part to core or cavity inserts as well as
electrode geometry. Such maps are commonly encountered in die casting, forging
tooling, and fixture design as well. Again, for more details, refer to [3.43]. Other
examples are: (i) a single face in the detailed design corresponding to several
functional faces in the conceptual design; and (ii) a face in the process planning
model corresponding to one or more faces in the detailed design.

Higher level relations are semantic relations between application features.
Relation types in this level are application specific. Examples are:

1. Splitting. Figures 3.11(a) to (c) show a base block with a hole feature; and
the hole feature is further split by a vertical through-slot feature. A similar
situation for 2D features is shown in Figures 3.11(d) and (e), in which the
original clamping feature is split by a newly inserted through-slot feature.
The middle face cell of the clamping feature becomes negative. The
clamping feature must hence be checked for stability. This kind of relation
between two interacting features is defined as a splitting relation [3.38].
Using the above-mentioned two lower levels of relations, the splitting
relation can be described as: (i) the nature of the second feature is negative;
(ii) the two features overlap; and (iii) the insertion of the second feature
splits the original single cell (additive or negative) of the first feature into
several (at least three) cells, where the nature of at least one of the middle
cell(s) is negative.

94 Y.-S. Ma, G. Chen and G. Thimm

Figure 3.11. Splitting relation: (a) insert the first feature; (b) the second feature splits the first
feature; (c) the middle cell of the first hole feature becomes negative; (d) two additive face
cells of the clamping feature are inserted; and (e) the middle face cell of the clamping feature
becomes negative

2. Transmutation. Figure 3.12 shows a base block with a blind-hole feature and
a vertical through-slot feature. The relation between these two features is
defined as a transmutation relation in [3.38]. Using the above-mentioned
two lower levels of relations, the transmutation relation can be described as:
(i) the nature of the two features is negative, but the nature of one of the
bounding cells of the first feature, which represents the bottom face of a
blind hole, is additive; (ii) the two features overlap; and (iii) the insertion of
the second feature splits the original single 3D negative cell into two 3D
negative cells. The previous additive bounding 2D cell becomes negative.

3. �on-interference. This relation specifies that two features cannot overlap
with or are adjacent to each other. This constraint is satisfied if no cell in the
unified cellular model has both of these two features in its owner list. This
constraint is commonly used in product design or manufacturing activities.
For example, a process planning feature cannot interfere with the
corresponding clamping features.

3.6 Conclusions

Unified feature theory is a significant contribution to feature level collaboration in
future virtual enterprises. In the proposed scheme, unified features provide an
intermediate information layer to bridge the gap between engineering knowledge
and product geometry. Unified features are also used to maintain geometric and non-
geometric relations across product models. The feasibility of the proposed unified
feature modelling scheme is demonstrated with a prototype system and case studies.

hole feature vertical through-slot
feature

(a) (b) (c)

negative middle cell of
hole feature

(e)

clamping
feature

horizontal
through-slot

feature

negative middle face cell
of clamping feature(d)

Fine Grain Feature Associations in Collaborative Design and Manufacturing 95

With the unified feature definition, application feature definitions, the unified
cellular model, dependency network, and the change propagation algorithm, the
proposed unified feature-based product modelling scheme is able to integrate the
conceptual design, detailed design, and process planning applications. For detailed
case studies, please refer to [3.35].

Figure 3.12. Transmutation relation: (a) insert the first feature, a blind-hole; (b) the second
feature changes the blind-hole into a through-hole; (c) the bounding 2D cell is changed to
negative due to feature interaction

References

[3.1] Ma, Y.-S. and Fuh, J., 2008, “Editorial: product lifecycle modelling, analysis and
management,” Computers in Industry, 59(2–3), pp. 107–109.

[3.2] Varady, T., Martin, R.R. and Cox, J., 1997, “Reverse engineering of geometric
models – an introduction,” Computer-Aided Design, 29(4), pp. 255–268.

[3.3] Benko, P., Martin, R.R. and Varady, T., 2001, “Algorithms for reverse engineering
boundary representation models,” Computer-Aided Design, 33(11), pp. 839–851.

[3.4] Starly, B., Lau, A., Sun, W., Lau, W. and Bradbury, T., 2005, “Direct slicing of STEP
based NURBS models for layered manufacturing,” Computer-Aided Design, 37(4),
pp. 387–397.

[3.5] Kramer, T.R., Huang, H., Messina, E., Proctor, F.M. and Scott, H., 2001, “A feature-
based inspection and machining system,” Computer-Aided Design, 33(9), pp. 653–
669.

[3.6] Rezayat, M., 1996, “Midsurface abstraction from 3D solid models: general theory and
applications,” Computer-Aided Design, 28(11), pp. 905–915.

[3.7] Ma, Y.-S., Britton, G., Tor, S.B., Jin, L.-Y., Chen, G. and Tang, S.-H., 2004, “Design
of a feature-object-based mechanical assembly library,” Computer-Aided Design &
Applications, 1(1–4), pp. 397–404.

[3.8] International Organisation for Standardization (ISO), 2000, Industrial Automation
Systems and Integration: Product Data Representation and Exchange: Integrated
Generic Resource: Part 42 – Geometric and Topological Representation, Geneva,
Switzerland.

[3.9] Shah, J.J. and Rogers, M.T., 1993, “Assembly modelling as an extension of feature-
based design,” Research in Engineering Design, 5(3–4), pp. 218–237.

[3.10] van Holland, W. and Bronsvoort, W.F., 2000, “Assembly features in modelling and
planning,” Robotics and Computer Integrated Manufacturing, 16(4), pp. 277–294.

vertical through-slot
feature

(c)

bounding 2D cell,
negative

(b) (a)

bounding 2D cell,
additive

96 Y.-S. Ma, G. Chen and G. Thimm

[3.11] Karinthi, R.R. and Nau, D., 1992, “An algebraic approach to feature interactions,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(4), pp. 469–
484.

[3.12] Hounsell, M.S. and Case, K., 1999, “Feature-based interaction: an identification and
classification methodology,” Proceedings of the Institution of Mechanical Engineers,
Part B – Journal of Engineering Manufacture, 213(4), pp. 369–380.

[3.13] Vandenbrande, J.H. and Requicha, A.A.G., 1993, “Spatial reasoning for the automatic
recognition of machinable features in solid models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(12), pp. 1269–1285.

[3.14] Laakko, T. and Mantyla, M., 1993, “Feature modelling by incremental feature
recognition,” Computer-Aided Design, 25(8), pp. 479–492.

[3.15] Bidarra, R. and Bronsvoort, W.F., 2000, “Semantic feature modelling,” Computer-
Aided Design, 32(3), pp. 201–225.

[3.16] Schulte, M., Weber, C. and Stark, R., 1993, “Functional features for design in
mechanical engineering,” Computers in Industry, 23(1–2), pp. 15–24.

[3.17] Feng, C.-X., Huang, C.-C., Kusiak, A. and Li, P.-G., 1996, “Representation of
functions and features in detail design,” Computer-Aided Design, 28(12), pp. 961–
971.

[3.18] Anderl, R. and Mendgen, R., 1996, “Modelling with constraints: theoretical
foundation and application,” Computer-Aided Design, 28(3), pp. 301–313.

[3.19] Kim, C.-S. and O’Grady, P.J., 1996, “A representation formalism for feature-based
design,” Computer-Aided Design, 28(6–7), pp. 451–460.

[3.20] Mukherjee, A. and Liu, C.R., 1997, “Conceptual design, manufacturability evaluation
and preliminary process planning using function-form relationships in stamped metal
parts,” Robotics & Computer-Integrated Manufacturing, 13(3), pp. 253–270.

[3.21] Whitney, D.E., Mantripragada, R., Adams, J.D. and Rhee, S.J., 1999, “Designing
assemblies,” Research in Engineering Design, 11(4), pp. 229–253.

[3.22] Khoshnevis, B., Sormaz, D.N. and Park, J.Y., 1999, “An integrated process planning
system using feature reasoning and space search-based optimisation,” IIE
Transactions, 31(7), pp. 597–616.

[3.23] Stage, R., Roberts, C. and Henderson, M., 1999, “Generating resource based flexible
form manufacturing features through objective driven clustering,” Computer-Aided
Design, 31(2), pp. 119–130.

[3.24] Brunetti, G. and Golob, B., 2000, “A feature-based approach towards an integrated
product model including conceptual design information,” Computer-Aided Design,
32(14), pp. 877–887.

[3.25] Park, S.C., 2003, “Knowledge capturing methodology in process planning,”
Computer-Aided Design, 35(12), pp. 1109–1117.

[3.26] Brunetti, G. and Grimm, S., 2005, “Feature ontologies for the explicit representation
of shape semantics,” International Journal of Computer Applications in Technology,
23(2/3/4), pp. 192–202.

[3.27] Rossignac, J.R., 1990, “Issues on feature-based editing and interrogation of solid
models,” Computers & Graphics, 14(2), pp. 149–172.

[3.28] Ma, Y.-S. and Tong, T., 2003, “Associative feature modelling for concurrent
engineering integration,” Computers in Industry, 51(1), pp. 51–71.

[3.29] Martino, T.D., Falcidieno, B., Giannini, F., Hassinger, S. and Ovtcharova, J., 1994,
“Feature-based modelling by integrating design and recognition approaches,”
Computer-Aided Design, 26(8), pp. 646–653.

[3.30] Ma, Y.-S., Chen, G. and Thimm, G., 2008, “Paradigm shift: unified and associative
feature-based concurrent and collaborative engineering,” Journal of Intelligent
Manufacturing, 19(6), pp. 625–641.

Fine Grain Feature Associations in Collaborative Design and Manufacturing 97

[3.31] Chen, G., Ma, Y.-S., Thimm, G. and Tang, S.-H., 2004, “Unified feature modelling
scheme for the integration of CAD and CAx,” Computer-Aided Design &
Applications, 1(1–4), pp. 595–601.

[3.32] Booch, G., Rumbaugh, J. and Jacobson, I., 1999, The Unified Modelling Language
User Guide, Addison Wesley.

[3.33] Chen, G., Ma, Y.-S., Thimm, G. and Tang, S.-H., 2005, “Knowledge-based reasoning
in a unified feature modelling scheme,” Computer-Aided Design & Applications, 2(1–
4), pp. 173–182.

[3.34] Chen, G., Ma, Y.-S., Thimm, G. and Tang, S.-H., 2006, “Associations in a unified
feature modelling scheme,” Transactions of the ASME, Journal of Computing and
Information Science in Engineering, 6(6), pp. 114–126.

[3.35] Chen, G., Ma, Y.-S. and Thimm, G., 2008, “Change propagation algorithm in a
unified feature modelling scheme,” Computers in Industry, 59(2–3), pp. 110–118.

[3.36] Hoffman, C.M., 1989, Geometric and Solid Modelling: An Introduction, Morgan
Kaufmann, San Francisco.

[3.37] Bidarra, R., Madeira, J., Neels, W.J. and Bronsvoort, W.F., 2005, “Efficiency of
boundary evaluation for a cellular model,” Computer-Aided Design, 37(12), pp.
1266–1284.

[3.38] Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F., 1998, “Representation and
management of feature information in a cellular model,” Computer-Aided Design,
30(4), pp. 301–313.

[3.39] Lee, S.H., 2005, “A CAD-CAE integration approach using feature-based multi-
resolution and multi-abstraction modeller techniques,” Computer-Aided Design,
37(9), pp. 941–955.

[3.40] Sriram, R.D., Wong, A. and He, L.-X., 1995, “GNOMES: an object-oriented non-
manifold geometric engine,” Computer-Aided Design, 27(11), pp. 853–868.

[3.41] Masuda, H., 1993, “Topological operators and Boolean operations for complex-based
non-manifold geometric models,” Computer-Aided Design, 25(2), pp. 119–129.

[3.42] Crocker, G.A. and Reinke, W.F., 1991, “An editable non-manifold boundary
representation,” IEEE Computer Graphics & Applications, 11(2), pp. 39–51.

[3.43] Chen, G., Ma, Y.-S., Thimm, G. and Tang, S.-H., 2006, “Using cellular topology in a
unified feature modelling scheme,” Computer-Aided Design & Applications, 3(1–4),
pp. 89–98.

