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Abstract 
In the context of concurrent and collaborative engineering, the validity and consistency of 
product information become important. However, it is difficult for the current computer-aided 
systems to check the information validity and consistency because the engineers’ intent is not 
fully represented in a consistent product model. This chapter consolidates a theoretic unified 
product modelling scheme with fine grain feature-based methods for the integration of 
computer-aided applications. The scheme extends the traditional feature concept to a flexible 
and enriched data type, unified feature, which can be used to support the validity maintenance 
of product models. The novelty of this research is that the developed unified feature scheme is 
able to support entity associations and propagation of modifications across product lifecycle 
stages. 

3.1 Introduction 

Product development comprises several lifecycle stages, such as conceptual design, 
detailed design, process planning, machining, assembly, etc. Commonly, computer-
aided tools (called ‘CAx systems’ hereafter) are used to support activities associated 
to these stages. Traditionally, stand-alone CAx systems for individual stages 
produce separate models, such as a product design or a process plan. The existing 
CAx technologies have difficulties in maintaining the integrity of the comprehensive 
product model as inter-stage data transfer or sharing is insufficiently supported, 
especially for non-geometric data. Furthermore, validity checking of product models 
is difficult as the engineering knowledge applied in product designs or process plans 
is usually not stored with the product model as the existing technology does not 
allow for this. Recently, due to the drive for industrial globalisation and mass 
customisation, the trend of concurrent and collaborative engineering has led to tight 
integration of product and process domains as well as CAx systems [3.1]. 
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This research accommodates product model validity and consistency by 
proposing a comprehensive product model consisting of linked geometric and non-
geometric data throughout all product lifecycle stages based on feature technology 
with consideration of knowledge engineering, system integration, and collaboration. 
The goal of this research is to establish a paradigm in product modelling across 
multiple lifecycle stages. The multiple aspects of product modelling are integrated in 
a systematic and scalable manner. The paradigm is expected to allow multiple 
applications to share a consistent product model with supporting mechanisms and to 
maintain its integrity and validity. 

3.2 Literature Review 

Traditional application integration approaches focus on geometric data sharing. For 
example, system integration between design and reverse engineering, rapid 
prototyping, co-ordinate measuring machine, mesh generation for CAE, and virtual 
reality has been widely studied [3.2–3.7]. The most common approach to support 
application integration is using geometric data file exchange via a set of neutral 
formats, such as the Initial Graphics Exchange Specification (IGES) or the STandard 
for the Exchange of Product model data (STEP) [3.8]. This situation is no longer 
satisfactory to support modern product lifecycle management [3.1]. To support 
application integration fully, more comprehensive data sharing is needed than 
provided by the existing IGES or STEP standards. 

Features combine geometric and non-geometric entities. Therefore, compared 
with geometric models, more complex relations exist in feature models. Managing 
these relations, especially the non-geometric ones, is essential for the validity of a 
product model. Relations in a feature-based product model can be classified as 
shown in Table 3.1. 

Table 3.1. Summary of research on relations in a feature-based application 

Relation Related entity Representation Source 
Geometric 
relations 

Between geometric entities Geometric constraints [3.9, 3.10]  
Between features Interaction constraints [3.11, 3.12]  

Non-
geometric 
relations 

Between features and the 
corresponding geometric entities 

Features referred to the 
corresponding geometric 
entities 

[3.13–3.15] 

Between features and other non-
geometric entities, such as 
functions, behaviours, assembly 
methods, machines, cutting tools 

Tables, graph, rules, etc. [3.16–3.25]  

3.2.1 Geometric Relations 

Many publications focus on geometric relations in a feature model [3.9]. All these 
relations are explicitly declared and represented as geometric constraints, which 
maintain the geometric integrity of features. However, unintentional feature 
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interactions, may also affect the validity of features [3.11, 3.12]. These interactions 
usually cannot be prevented by geometric or algebraic constraints. This work will 
show that the geometric feature interactions can only be managed through the 
associations between the feature model and the geometric model. 

3.2.2 �on-geometric Relations 

Non-geometric relations refer to dependency relations involving non-geometric 
entities. For example, in process planning, the clamping faces or accessing faces are 
required and are to be preserved when machining a feature and they are associated to 
the machining processes and sequence used. Furthermore, two features, which do 
not spatially overlap, even belong to different product lifecycle stages, may interact 
with each other. How to represent these non-geometric feature relations has not been 
fully investigated. 

Non-geometric relations also exist among features and non-geometric entities. 
For example in functional design stage, functional-form matrixes, bipartite function-
feature graphs, design flow chain and key characteristics, and mapping hierarchy are 
used to link features to product functions [3.17, 3.20, 3.21, 3.24, 3.26]. In the 
process planning stage, features are also related to non-geometric entities, such as 
machines, cutting tools, and machining processes [3.22]. The methods of using non-
geometric relations to validate product models have not been developed. 

A product model has to be constructed or analysed iteratively using engineering 
knowledge from different aspects of expertise to fulfil requirements, such as 
functional or manufacturing requirements. In addition, lifecycle stages are inter-
related and mutually constraining. Any modification in one stage may provoke a 
chain of subsequent modifications to entities of the same or other stages. This 
propagation of changes requires the management of inherent relations within and 
among these stages. In other words, a product model must have a sound mechanism 
to check its validity. Compared to the strict validity maintenance mechanisms of B-
rep or CSG, current feature-based modelling schemes are weak in this aspect. 

Laakko and Mantyla [3.14], and Rossignac [3.27] suggested that a feature’s 
validity should be defined in terms of the referenced geometric entities and of their 
existence, shape, and relations to other geometric elements of the model. A feature 
model is valid if the geometric and algebraic constraints specified on features are 
satisfied. However, with the introduction of associative features [3.28], the validity 
of features must be checked in more complex scenarios. The associative feature 
concept expands feature definitions of specific application-related shapes into a set 
of well-constrained geometric entities. By using an object-oriented approach, a 
feature type can be modelled in a declarative manner that basically consists of the 
properties and behaviours. Feature properties define the geometric entities whose 
behaviours define the related constraints and logics in functioning methods 
throughout the lifecycle of any feature instance. With the built-in object 
polymorphism capability, a systematic modelling scheme for a generic and 
abstractive parent feature class, with levels of specification as per application 
domain requirements, can be developed. Such a generic feature definition scheme 
unifies many traditionally defined, application-oriented feature definitions and 
supports XML representation and fine grain database repository. Under the 
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associative feature concept, where the associative constraints across multiple phases 
of applications of a product lifecycle, complicated engineering features (patterns) 
and engineering intent can be implemented. An example associative feature, cooling 
channel pattern in plastic injection mould design, was given in [3.28]. An initial 
sketch-based conceptual pattern in the early mould design stage is implemented and 
its downstream cooling hole features are derived from the pattern; and then the 
related assembly interfacing features and associated standard components at the 
manufacturing and assembly stages are associatively generated and managed via a 
well-defined feature class model. 

Feature validity is concerned with a feature’s internal semantic characteristic 
properties, logics, constraints and attributes. This validity aspect is largely 
categorised as the constraint satisfaction problem, which has been partly addressed 
to a wide extent. 

Feature consistency refers to the tally relations between related features or more 
abstracted semantic entities. Feature consistency is related to the semantic relations. 
The consistency requirement can have different types. Some researchers suggest that 
feature consistency means that the feature concerned is agreeable to the engineering 
intent [3.29]. In their publications, engineering intent must be transformed into a set 
of geometric, algebraic or preliminary semantic constraints, such as the boundary or 
interaction constraints [3.15]. However, during the transformation process, 
engineering intent may be lost because it has not been modelled explicitly so far. 
Others emphasise that non-geometric constraints, such as a dependency constraint, 
specified on the features have to be satisfied. For example, the presence of features, 
or the values of feature parameters, may be determined by functional requirements 
[3.18]. For another example, different machining sequences may influence the 
presence, form, volume, and validity of machining features. Hence, the presence of a 
machining feature is coupled with a machining process. Currently the representation, 
checking and maintenance methods of inter-feature non-geometric constraints are 
immature. Few researchers have touched on the feature consistency aspect although 
they are equally important for product modelling. A more detailed literature review 
by the authors is available [3.30]. This work introduces a solution framework that 
entails major class definitions, association structures, as well as integration and 
reasoning mechanisms based on a unified feature concept. 

3.3 Unified Feature 

Unified feature is a feature class definition that can generically represent the 
common properties as well as the required methods throughout product lifecycle 
stages. A unified feature is defined as a set of constrained associations among a 
group of geometric and non-geometric entities. The commonalities of application 
features, such as conceptual design features, detailed design features, and process 
planning features, are defined in the unified feature class as generic fields and 
methods. A brief publication can be found in [3.31]. Table 3.2 gives the major fields 
and methods defined in the unified feature class. 

Figure 3.1 gives the generic definition using a UML diagram [3.32]. The UML 
symbols used in the figure are explained here. Rectangles represent classes, such as 
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Table 3.2. Major fields and methods of the unified feature class 

 Name Description 
Fields Attributes Association 

attributes 
Identities of the associated objects, such as 
functions and behaviours in a conceptual 
design, machines and cutters in a process 
plan, other features, etc. 

Self-describing 
attributes 

Material, surface finish, belonging 
application, etc. 

Parameters Variables used as input to geometry 
creation methods 

Constraints Geometric 
constraints 

Identities of geometric constraints that the 
feature’s topological entities participate in 

Algebraic 
constraints 

Identities of algebraic constraints that the 
feature’s self-describing attributes or 
parameters participate in 

Rule-based 
constraints 

Identities of rules that the feature or its self-
describing attributes, parameters, numerical 
constraints participate in 

Geometric references Topological entities 
Methods Geometry 

construction  
createGeometry() Generate the feature geometry  

Interface to 
geometric 
model 

getCell() Find out the feature’s member topological 
entities 

setCell() Assign a topological entity as the feature’s 
identity 

insertGeometry() Notify the geometric model to insert the 
feature geometry 

deleteGeometry() Notify the geometric model to delete the 
feature geometry 

Interface to 
expert system 

getFact(), setFact() Retrieve or create the corresponding facts  
getRule(), setRule() Retrieve or assign the corresponding rules 
checkRule() Check whether the related rules are 

satisfied or not 
Interface to 
relation 
manager 

addToJTMS() Add the feature or its self-describing 
attributes, parameters to the relation 
manager as nodes 

validityChecking() Call the relation manager for feature 
validation 

Interface to 
database 

saveFeature(), 
retrieveFeature() 

Store a feature in or retrieve a feature from 
the database 

 
the UnifiedFeature class. Dashed and directed lines represent dependency relations. 
The lines are directed from the depending class to the class it depends on. Solid and 
directed lines with triangular open arrowheads represent generalisation relationships, 
pointing to the more general class that defines basic properties. Solid and directed 
lines with open diamonds represent aggregation relationships, pointing from the 
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parts to the whole, aggregated object. Composition (indicated by a filled diamond) is 
a variation of simple aggregation relationship. It describes strong ownership and 
coincident lifetime between the parts and the whole. The ranges aside the origin and 
target of an aggregation (or composition) arrow indicate how many parts can or 
must be in a whole. For example, a unified feature may include none or many other 
unified features. A circle attached to a class represents an interface (such as the 
IAttribute) realised by (undirected lines) the class. Other classes can use this 
interface, e.g. the UnifiedFeature class uses the IAttribute interface. 

 

 
Figure 3.1. Unified feature 

3.3.1 Fields 

The unified feature class has four main kinds of fields. 
(1) �on-geometric attributes represent feature properties that are attached to the 

feature or to the feature’s geometric entities. They do not directly describe a 
feature’s shape. Attributes are further classified into self-describing attributes and 
association attributes. Self-describing attributes represent properties that are special 
to a particular feature class. Examples of self-describing attributes are material type, 
surface finish, and feature nature (adding or removing material). Association 
attributes are references to the entities associated to this feature, such as other 
features, corresponding facts in the expert system, etc. In addition, association 
attributes are used to refer to non-geometric entities. For example, they refer to 
functions and behaviours in the conceptual design stage, or machine tools and 
machining operations in the process planning stage. 

(2) Geometric parameters describe a feature’s geometric shape, dimension, 
position, and orientation, such as the origin position and length, width, height of a 
block feature. Geometric parameters are used as input to the geometry creation 
methods provided by the geometric modelling kernel. 

(3) Constraints can be classified according to the elements they constrain: (a) 
intra-feature constraints restrict the field values in a feature. For example, a 
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pocket’s width equals to its length or a blind-hole’s bottom face must be on the part 
boundary; (b) inter-feature constraints specify relations between two or more 
features; and (c) semantic constraints can also be specified between a feature and 
other entities. For example, a process planning rule is used as the constraint to 
specify whether a cutter can be used to create a feature with the specified shape, 
dimension, tolerance and surface finish. Constraints can also be classified according 
to their types, i.e. (a) algebraic constraints; (b) geometric constraints; and (c) rule-
based constraints, which are used to restrict a feature’s presence or the values of 
feature properties directly based on engineering rules. Constraints are prioritised. 

(4) Geometric references are pointers to topological entities in a geometric 
model. Since features are used to describe specific relations between topological 
entities, a feature’s geometry is not necessarily volumetric, connected, or two-
manifold. 

3.3.2 Methods 

Interfacing functions, which deal with geometric modeller, knowledge engineering 
module, relation manager and database, are defined in the unified feature class. 

(1) Creating and editing feature geometry. In the proposed scheme, conceptual 
design and detailed design features are created from predefined and parameterised 
geometric templates. The values of these parameters are specified to generate feature 
geometry. In the process planning stage with a design feature model as input, a 
process planning application analyses all machining faces for suitable process 
planning features. The properties of these faces are then used to determine the 
parameters of process planning features. Feature parameters are used to create 
product geometry with the help of functions provided by a geometric modeller. 
Because the definition of geometry is application specific, the way geometry is 
created is delegated to the specific application features. Feature geometries can be 
2D faces or 3D solids in the developed scheme. The geometries of different 
dimensional features are represented uniformly in a non-manifold geometric model 
(Chapter 3.5). When an application feature is created, its geometry is inserted into 
the geometric model. When a feature is changed, it notifies the geometric model of 
modifications. In both cases, the geometric model will update itself accordingly. 

(2) Supporting knowledge embedment [3.33]. A fact table corresponding to a set 
of associated features is created as a subset supporting a knowledge base. When an 
application feature is created, a corresponding fact is generated and inserted into the 
corresponding fact table and then accessible from the knowledge base. The fact of a 
feature describes the feature’s identity, its parameters and self-describing attributes. 
The fact generation and insertion methods are defined in the unified feature class. 
When a feature is altered, it notifies the knowledge base. Matching rules (if any) are 
then fired. 

(3) Supporting data associations and validity maintenance. In a single stage, 
when an application feature is created, a corresponding node is generated and 
inserted into a relation manager. The relation manager is responsible for managing 
the dependency relations among entities. The constraints, which are responsible for 
the feature’s presence or controlling the values of feature parameters or self-
describing attributes, are also inserted into the relation manager and are associated to 
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the corresponding feature node. The node generation, insertion and association 
methods are commonly defined for different application features. When a feature is 
modified, it calls the relation manager for change propagation. Related constraints 
are validated. To support inter-stage data sharing, associations and change 
propagation, application features as well as their inter-relations are stored in a 
common database. The methods of storing features into the database are defined in 
the unified feature class. 

Two points about the above proposed unified feature definitions are worth 
noting. First, traditionally, numerical constraints are used to represent engineering 
intent. As an extension, the unified feature definition also defines associations to 
knowledge base, geometric model and other non-geometric entities in order to 
represent and maintain engineering intent. Second, from the viewpoint of software 
engineering, data sharing is difficult because one application does not know the data 
structures of other applications. 

Hence, applications cannot manipulate the data created by other applications. 
With the unified feature definition, the issue of sharing feature data among 
applications is considerably improved. An application feature may have its specific 
properties, which are not included in the unified feature definition. However, with 
both application features defined as sub-classes of the unified feature class, an 
application understands the generic part of feature objects of other applications. 
These generic data is then used to reconstruct unified feature objects (Figure 3.2). In 
the proposed scheme, each application stores the data in a central relational 
database. An application can access the database to retrieve the data that is 
authorised. 

 

 

Figure 3.2. Data access methods via generic fields of application features 

3.4 Entity Associations 

The prime purpose of the unified feature-based product modelling scheme is to 
maintain the validity, consistency, and integrity of product models. Traditional CAx 
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geometric relations are not well maintained. The unified feature-based product 
modelling scheme tackles these two problems via establishing and maintaining 
geometric and non-geometric data associations, within a single or across different 
stages. For example, in the conceptual design stage, the geometry of a feature is 
usually not fully defined. The resulted entities could be, for instance, only surface 
shapes, abstract mechanism concepts, or parameterised volumes without assigning 
detailed properties. An abstract conceptual design feature has its concrete 
counterparts in the detailed design feature model. Because a conceptual design 
feature represents a primitive design function that is usually realised through the 
interactions between a few components, it is likely that an individual conceptual 
design feature is transformed into several features belonging to different components 
in the detailed design stage. On the other hand, one detailed design feature may also 
participate in the realisations of several conceptual design features. Such feature 
object dependency associations are one kind of non-geometric associations between 
features as discussed in [3.34]. Feature attributes, parameters, or constraints 
specified in the conceptual design feature model are transformed into attributes, 
parameters, or constraints for corresponding detailed design features. For example, a 
parameter of a conceptual design feature may be transformed into a constraint 
between two detailed design features of different components. A conceptual design 
constraint could be related to several constraints in the detailed design feature model. 
Such feature property dependency associations are another kind of non-geometric 
associations across features of different stages [3.34]. These associations are 
generalised as constraint-based associations and sharing associations (Figure 3.3). 
Constraint-based associations are established on the basis of intra- or inter-stage, 
numerical or rule-based constraints. Sharing associations are established based on 
the unified cellular model. 

 

 

Figure 3.3. Associations in the unified feature-based product modelling scheme 
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3.4.1 Implementing the Constraint-based Associations 

Together with a rule-based expert system and a numerical constraint solver, a 
justification-based truth maintenance system (JTMS) is used to implement the 
constraint-based associations as introduced in [3.34]. A JTMS dependency network 
consists of a series of related nodes that represent the belief status of entities. 
Assumption nodes are believed without any supporting justifications. Simple nodes 
are only believed if they have valid justifications. An assumption node can be 
converted into a simple node, which then needs to be supported by justifications. A 
justification consists of antecedent nodes and consequent nodes. A node is said to be 
justified by a supporting justification if all antecedents of the justification are 
justified. 

Whenever a constraint-based association is generated, the corresponding JTMS 
nodes and justifications are inserted into a JTMS dependency network. After the 
insertion process, each node records three items: (1) a reference to its direct 
supporting justification; (2) references to the justifications that use this node as 
antecedent (for later change propagation); and (3) its current belief status. Whenever 
a modification to the JTMS dependency network occurs, such as adding or retracting 
assumptions, modifying nodes or adding justifications, the JTMS dependency 
network is searched for the affected nodes as well as the related justifications. If it is 
a rule-based constraint to provide the justification, the system refers to the 
knowledge base to validate the modification. If it is a numerical constraint to 
provide the justification, the system refers to the numerical constraint solver to 
validate the modification. These checking and change propagating processes are 
automated. The result is a new status of each affected JTMS node or a rejection of 
the modification on the basis of contradicting beliefs. The data structures and 
algorithms of JTMS are generic. Therefore, it handles geometric and non-geometric 
constraints uniformly. 

A relational database is used for all applications to store and publish their data. 
An application can access and enquire the database for data published by other 
applications. When an inter-stage constraint-based association is established, this 
association and the involved data are stored in the database. When an application 
modifies its model, it must check the database for relevant inter-stage associations. 
If such associations exist, a validity checking process is triggered. The applications 
involved are responsible for maintaining the consistency (between associated stages) 
while the database is a medium for storing the repository data, inter-stage 
associations, and propagating changes. Figure 3.4 illustrates the constraint-based 
associations between the conceptual and the detailed design feature models. The 
constraint-based associations between the detailed design and the process planning 
feature models are established in a similar way. 

3.4.2 Implementing the Sharing Associations 

Two methods are developed for sharing associations using a unified cellular model 
implemented in a database. 

(1) Generating a new application feature. Each application feature class has its 
geometry creation and manipulation functions. When a creation function is invoked, 
the feature geometry is created and inserted into the application’s runtime cellular 
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Figure 3.4. Constraint-based associations for conceptual and detailed design stages 
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features of the affected cells are then validated by the corresponding applications.  
The sharing association mechanism enables different application features to be 
associated with the same geometric or topological entities and hence supports 
achieving inter-stage geometric consistency. 

3.4.3 Evaluation of Validity and Integrity of Unified Feature Model 

This subsection introduces a set of criteria, which is used to evaluate the validity and 
integrity of a unified feature-based product model. The general requirement for a 
valid product information model is that each application model (corresponding to a 
particular stage) must be valid and also consistent with other associated application 
models. The detailed evaluation criteria are classified into feature, intra-stage, and 
inter-stage levels. 

A feature is valid if (i) the feature geometry refers to valid topological entities; 
(ii) the values of feature parameters are consistent with the product’s geometric 
model; (iii) all constraints on the feature are satisfied; and (iv) any feature property, 
if included in the JTMS dependency network, has a “believed” status, i.e. its 
supporting justifications are valid. 

A product model is valid if (i) all features in the model are valid; (ii) in its 
knowledge base, the antecedent conditions of all fired rules, which are the 
justifications for the generated features (or feature properties), are satisfied; (iii) all 
constraint-based associations between consequent facts and respective features (or 
feature properties) hold; and (iv) cellular entities, which are referenced by the 
geometric references of all the existing features, exist and have the correct status 
(material or void, on the boundary or not on the boundary) according to the feature 
sequences in their owning feature lists. 

Two product models (corresponding to different lifecycle stages) are consistent 
if (i) sharing associations between their corresponding application features hold; and 
(ii) constraint-based associations between their corresponding application features or 
feature properties hold. In particular: (a) each critical feature in the conceptual 
design is linked to features in the detailed design via valid constraint-based 
associations; (b) each feature property or inter-feature constraint in the conceptual 
design has its valid counterparts (may not be one to one relations) in the detailed 
design; (c) each detailed design feature to be machined is linked to process planning 
features via valid constraint-based associations; and (d) all the design specifications 
(such as tolerances and surface finishes) are satisfied by the finish process planning 
features. 

3.4.4 Algorithms for Change Propagation 

If users (designers or process planners) modify the product model, the modifications 
must be checked to make sure that the consistency of the whole product information 
model is maintained. As indicated in previous sections, a dependency network is 
established using constraint-based associations and sharing associations. It is 
implemented through a JTMS and a common database. The purpose of the 
dependency network is for the propagation of modifications and determining the 
influence scope of a modification. 
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Figure 3.5. Propagation chain of intra- and inter-stage changes 

The propagation and checking process is divided into two major generic routines 
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models (see Figure 3.5). Assume variable x in an application is changed (as the 
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developed with reference to constraint-based and sharing associations as well as 
their corresponding implementations in the unified feature-based product modelling 
scheme. The algorithm is in iterative manner and starts from a local application 
domain first; the local change impact is evaluated using a JTMS and a common 
database to establish inter-stage non-geometric associations. An algorithm for 
change propagation within a lifecycle stage is presented as follows. 
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- If the constraint can be satisfied (and the value of the driven 
variable is changed), make a backup of the old value and put 
the driven variable into set_1. 

- If no alternative value satisfies the constraint, then Abandon(). 
� If the related variable is a driving variable, then Abandon(). 

– If no constraint has been violated or if some constraints has been 
violated but can be re-satisfied, the modification is locally accepted. 

 
The Abandon() used in the above algorithm is given here: 
 
PROCEDURE Abandon() 

/* retracting all changes temporarily made */ 

(1) All modifications made in the calling and called applications are revoked 
using backup values. 

(2) In the database, the data of the called application, whose values are 
temporarily changed, are set back to their original values. 

 
Next, further check is carried out for vi in the database. If vi appears in any inter-

stage associations in the database, move vi from set_1 to set_2 (which records 
variables that need to be checked for inter-stage associations). Run Check_Global(). 
 
PROCEDURE Check_Global() 

/* checking the inter-stage associations */ 

(1) For each member of set_2, add all associated features or feature properties 
in the database to set_3 (which records associated variables in other 
applications). An initial modification in an application may invoke many 
modifications in other applications. The members of set_3 are checked (in 
the next two steps) one by one until set_3 becomes empty. 

(2) The values of members of set_3 are temporarily changed in the database 
using the constraints recorded in the calling application. 

(3) For each member of set_3, execute Check_Local() in the called application 
until the modification is found to be locally accepted or rejected. The 
corresponding message (about whether the modification is locally accepted 
or rejected in the called application) is sent back to the calling application 
that initiates the initial modification. 
– If all modifications are accepted, the initial modification in the calling 

application is globally accepted and committed. 
– If any of the modifications are rejected, the initial modification in the 

calling application is rejected, then Abandon(). 
 
After the iteratively looped change propagation procedures, finally, the algorithm 

for change propagation finishes if there is no new changes triggered. Then further 
high-level attributes properties of related objects, logical facts, statuses of indicators 
and controls are updated accordingly. Eventually, the consistency of product models 
has been evaluated. This algorithm can be triggered again and again whenever there 
is a major change decision is to be committed. 
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3.5 Multiple View Consistency 

3.5.1 Cellular Model 

Traditional geometric modelling systems use boundary representation (B-rep) or 
constructive solid geometry (CSG) models for geometry representation [3.36]. They 
have limitations with respect to the requirements of the unified feature-based 
product modelling scheme. 

Only the final product geometry is stored and managed. Intermediate geometries, 
which do not belong to the final boundary, are usually not stored. This limitation 
makes feature modifications difficult. It also results in a persistent naming problem. 

CAx systems have different requirements on representing product geometry. A 
hybrid geometric modelling environment that can accommodate the associative 
wireframe, surface, and solid models coherently is a natural outcome of the unified 
feature-based product modelling scheme. CAx systems need to represent the same 
product geometry in different ways. On one hand, geometry may be represented in 
different abstraction levels. For instance, a hole can be represented as a central line 
(plus a radius), a cylindrical face, or a cylinder in different contexts. On the other 
hand, product geometry may be represented in different ways. For instance, two 
adjacent faces in one application may be represented as a single face in another 
application. In addition, it is important for the unified feature-based product 
modelling scheme that higher level application features can use lower level 
topological entities to propagate modifications and control the information 
consistency. Relationships or constraints in higher levels (e.g. feature level) may 
also be specified using lower level (e.g. topological entity level) relations. 

Some solutions were proposed to solve these problems. Bidarra et al. [3.37, 3.38] 
proposed to use a cellular model to represent intermediate product geometry as well 
as to support links between different views. However, their methods are confined to 
3D features only. Other researchers [3.39–3.42] proposed to use the multi-
dimensional non-manifold topology (MD-NMT) to meet the geometric modelling 
requirements of different applications. However, they did not fully apply the MD-
NMT to the feature-based modelling processes. It can be seen that a multi-
dimensional geometric modelling environment, which is capable of propagating 
geometric modifications across feature models, does not exist. 

3.5.2 Using Cellular Topology in Feature-based Solid Modelling 

The goal of using a cellular topology is to keep a complete description of all the 
input geometric entities without removing them after set operations on volumes 
(unite, intersect, and subtract), regardless of whether they appear in the final 
boundary or not [3.43]. The cellular model uses three mechanisms to fulfil this goal: 

1. Attribute mechanism. There are two kinds of attributes used in a cellular 
model: (a) cell nature – a cell is either additive or negative depending on 
whether it corresponds to materials of the product (or the topological entities 
on the part boundary) or not; and (b) owner – each cell records its owing 
features because a cell may belong to several features due to feature 
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interactions. The sequence of the owning features is kept to determine the 
cell nature. 

2. Decomposition mechanism. Two 3D cells do not overlap volumetrically. 
Whenever two cells overlap, new cells for the overlap are generated with the 
merged owner list. 

3. Topology construction mechanism. In a cellular topology-based, non-
manifold boundary representation, an operation on volumes does not remove 
any input geometry. The cellular model constructs topology, or generates 
new faces, edges, and vertexes, before classifying the topological entities as 
“in”, “out” or “on” the boundary. All topological entities are marked and 
filtered for displaying according to the type of the operation. 

 

 
Figure 3.6. Traditional feature model based on a two-manifold boundary representation 

Figure 3.6 describes a feature model based on a two-manifold boundary 
representation. Traditional boundary model does not store intermediate geometries. 
In other words, according to the types of Boolean operators, “useless” geometries 
are discarded before the part topology is reconstructed. For example, in Figure 3.6, 
when inserting the slot_1 feature, its top face is not stored. During the later 
modelling process, the intersections (due to feature interactions) further split and 
remove feature geometry from the boundary model. It is hence difficult to relate the 
feature to its corresponding topological entities in the final boundary model. In the 
constraint-based, parametric design processes, this limitation makes the feature 
model history-based. This limitation is also the major reason for the persistent 
naming problem [3.15]. 

Alternatively, in cellular topology based non-manifold boundary representations, 
operations on volumes do not discard any input geometry. Part geometries are 
represented using cellular topologies. Figure 3.7 shows the decomposed cells of the 
simple example according to the cellular topology along with the feature modelling 
process. 
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Figure 3.7. Feature model based on the cellular topology 

 

Figure 3.8. Cellular geometry with different cylindrical features: (a) a block with three 
interacting holes, (b) the cell, which belongs only to the block feature, (c) hole-1 feature, (d) 
hole-2 feature, and (e) hole-3 feature 
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The use of cellular topologies simplifies the representation of feature geometry 
as combinations of cells. When a feature is initialised, it is a single cell that carries 
only this feature’s identifier. Whenever feature interactions occur, new cells that 
belong to the intersections are generated. The newly generated cells carry a merged 
owning feature list. 

The geometry of a cell can describe any shape. For example, Figure 3.8(a) shows 
a block workpiece with three intersecting holes. Figure 3.8(b) shows the cell, which 
carries only the block as its owning feature. Figures from 3.8(c) to (e) show the 
cellular representations of the three hole features. In this way, all feature geometry, 
geometric relations between features as well as relations between a feature and its 
corresponding topological entities are stored in the product model persistently. The 
persistent naming problem is avoided. It is also possible to modify features based on 
the dependency relations, not on the construction history because the influence 
scope of a geometric modification is confined by the inter-cell relations. However, 
to meet the requirements of the unified feature-based product modelling scheme, this 
3D-cell-based multiple-view feature modelling approach needs to be extended. 
Some case studies are given in [3.43]. 

3.5.3 Extended Use of Cellular Model 

Distinct applications covered by the unified feature-based product modelling scheme 
have their particular geometry representation requirements. (1) During conceptual 
design, a designer is concerned about functions and behaviours. Only critical 
geometries and their relations are specified at that time. These critical geometries 
may only be represented as abstracted lines, faces, curves, or surfaces. Solid models, 
detailed topologies and geometries are not specified in this stage. (2) In the detailed 
design stage, the product geometries or layouts are further materialised. Two-
manifold solid model representation is usually preferred. (3) In the process planning 
stage, features are usually defined as material removal or accessing volumes related 
to machining operations. Fixtures are also conceptualised in this stage. For these 
types of features, solid representation with surface manipulation support is more 
appropriate because, other than the machined volumes, fixture design uses sub-area 
patches of the part, e.g. locating or clamping areas. (4) Similar requirements are 
applicable to the assembly design stage. In particular, the sub-areas of the part or 
assembly for interfacing or grasping are concerned. 

The geometrical representations discussed above relate to each other. They 
represent different aspects or abstraction levels of a product. To meet these diverse 
geometry representation requirements, the current cellular topology-based feature 
modelling method needs to be extended to support not only 3D solid features, but 
also non-solid features. A multi-dimensional cellular model, named the unified 
cellular model, is proposed here to integrate all these representations, manage their 
relations and hence support the multiple-view feature-based modelling processes. 
The geometric model of each application is a particular aspect (a sub-model) of the 
unified cellular model. The traditional usage of the cellular topology in multiple-
view feature modelling is extended in three aspects: (1) 2D and 3D features are 
supported uniformly; (2) the unified cellular model is used to share geometric data 
as well as to propagate geometric modifications (creating new cells, modifying or 
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deleting cells) among views through the cells’ owner attributes; and (3) relationships 
in the cell level are generalised. These relation types can be used as building blocks 
to establish higher level feature relations. 

The unified cellular model ensures the geometric consistency between the 
application feature models. 

1. The geometries of a detailed design and the corresponding process planning 
model may have different topologies. However, both models correspond to 
the same final product geometry. In other words, these two application 
cellular models must correspond to the same B-rep solid model, which 
represents the final part geometry. This geometric consistency is realised 
through mapping 2D or 3D application features to the corresponding cells in 
the shared unified cellular model.  

2. Two features may represent the same item at two abstraction levels, e.g. a 
central line or a cylindrical face of a hole. The consistency is maintained 
through specifying geometric or topological constraints on the related cells 
in the unified cellular model. 

3.5.4 Characteristics of the Unified Cellular Model 

A unified cellular model UCM includes all geometries from different applications 
[3.43]. It consists of a set of cells: 

 UCi: �
�
�

�
	

��

�
�

�
	

��

�
�

�
	

��

�
�

�
	

�

����

3

1

2

1

1

1

0

1
l

t

l
k

s

k
j

r

j
i

q

i
UCUCUCUCUCM ����  (3.1) 

In the expression, UC0, UC1, UC2, and UC3 represent zero-dimensional (0D), 
one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) cells, 
respectively. Similarly, q, r, s, and t are the numbers of 0D, 1D, 2D, and 3D cells, 
respectively, in the unified cellular model. 

Each cell (except 0D cells) is bounded by a set of cells of a dimensionality 
lowered by one. On the other hand, a cell may exist independently without bounding 
any higher dimensional cell. The point sets of any two cells (of the same or different 
dimensionalities) do not overlap: ��
 b

j
a
i UCUC  (0 � a < b � 3 or (a = b) � (i � 

j)). In addition, a cell does not include its boundary, except for 0D cells. 
The cellular model obeys the Euler–Poincare formula for non-manifold 

geometric models [3.41, 3.43]. Each application feature model uses the unified 
cellular model. The relations among these models are described in [3.43]. An 
application feature model AFM consists of a set of application features AFi and other 
non-geometric entities �GEj: 
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where m and n are the numbers of application features and non-geometric entities in 
this application feature model. 
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An application cellular model ACM is created at runtime, which consists of a set 
of application cells ACi: i

u

i
ACACM

1�
� � , where u is the number of application cells in 

this application cellular model. Each application feature refers to a set of application 
cells. An application cell may belong to several application features, i.e. it records 
several features in its owning feature list. The geometries of an application feature 
correspond to 1D, 2D, or 3D cells. 

An application cell can be mapped to one or more cells in the unified cellular 
model. On one hand, for a particular application, one cell in the unified cellular 
model is mapped to at most one application cell. On the other hand, each cell in the 
unified cellular model is mapped to at least one application cell (and therefore at 
least one application feature). This mapping is realised through the owner attribute 
mechanism. 

The rule for determining cell nature applies to the unified cellular model, i.e. the 
nature of the latest feature in the owner list determines the nature of the cell. Please 
refer to [3.43] for more details. All applications use this unified multi-dimensional 
non-manifold cellular model. The geometry of each application feature model is a 
particular aspect of the unified cellular model. 

In Figure 3.9, the design of a cooling system of a plastic injection mould is used 
as an example to illustrate the idea. In the conceptual design stage, the cooling 
system is represented as cooling circuits for cooling effect analysis while in the 
detailed design or process planning stage, the cooling system is in 3D for 
manufacturability analysis and process planning. The cooling circuits and the 
cooling channels are representations of the same cooling system in different 
abstraction levels. The geometries of these two feature models are kept consistent 
through the unified cellular model. 

 
Figure 3.9. Link conceptual and detailed designs using unified cellular model 
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3.5.5 Two-dimensional Features and Their Characteristics 

The idea in this sub-section is that the unified cellular modelling scheme represents 
1D, 2D, and 3D cells uniformly (they are referred to as edge, face, and solid cells, 
respectively hereafter). Currently, the prototype system only handles face and solid 
cells (corresponding to 2D and 3D features, respectively). 1D features are mentioned 
here but more research will be done in the future. Examples of 2D application 
features include: (1) conceptual design features, which represent functional areas in 
the product; the geometries of this kind of features are usually abstracted as pairs of 
interacting faces; these faces correspond to partial faces in the detailed design; (2) 
assembly features, which represent grasping or mating areas of parts in assembly 
processes; and (3) locating or clamping features, which represent locating or 
clamping faces during a machining operation. 

Similar to solid cells, the major advantage of using face cells instead of 
geometric faces is that operations on face cells do not remove faces (or parts of 
faces) even if they do not belong to the final boundary. For example, the non-
regularised operations on faces and decomposition mechanism upon overlapping 
detection are available to face cells. A 2D feature is represented as a group of 
associated face cells with engineering semantics. For example, a locating feature is 
defined as a pair of faces associated with the constraints on accessibility, machining 
accuracy, non-interference, and minimising setup changes. The geometry of a 2D 
feature is one or more surfaces. Two characteristics of 2D features exist. (1) A 2D 
feature has a nature attribute (additive or negative) that can be changed by feature 
interactions. A change of cell nature (from additive to negative or vice versa) 
requires the corresponding features to be validated. For example, a clamping feature 
represents a local area on a part that is used for clamping. When a clamping feature 
is altered, its face cells may be split with the natures of some of the resulting face 
cells inverted. This may jeopardise the clamping feature’s stability (sufficient area 
for clamping). Similar situations are encountered for functional, assembly, and 
locating features. (2) Face cells corresponding to functional, assembly, locating, and 
clamping features have the same surface definitions as existing face cell(s). Hence, 
to simplify the implementation, it is assumed that newly inserted face cells and 
existing solid cells do not intersect. However, this is not valid for some CAE 
analysis applications, in which middle faces are commonly used. 

When a 2D feature is generated, the corresponding face cell is also generated and 
inserted into the application and the unified cellular models. Figure 3.10 illustrates a 
simple example: the integration of a detailed design and a process planning model 
on the basis of a unified cellular model. 

The designed part is a block with a blind hole. The hole has a distance 
specification with face F2 as datum and a perpendicularity specification with face F1 
as datum. The corresponding process planning model begins with a blank feature 
(larger than the part to allow machining). Other process planning features are (1) a 
surface-milling feature (due to the perpendicularity specification); (2) a clamping 
feature (for surface-milling); (3) a drilling feature and a boring feature (to meet the 
surface finish requirement of the hole); and (4) a locating feature and a supporting 
feature for the drilling and boring operations. These 2D or 3D features are associated 
in the unified cellular model. 
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Figure 3.10. Integrating detailed design and process planning feature models 

3.5.6 Relation Hierarchy in the Unified Cellular Model 

Relations can be established on the cell level, the feature geometry level, and the 
feature semantic level, respectively. Higher-level relations are established on the 
basis of two lower-level relations. 



Fine Grain Feature Associations in Collaborative Design and Manufacturing 93 
 

The lowest level of relations is between two cells, which cover four cases: 

1. The bounding relations among cells 
2. The bounding cells that inherit the owner attributes of the bounded cell 
3. Two solid cells that are adjacent if they are bounded by one or more common 

face cells (two face cells are adjacent if they are bounded by one or more 
common edge cells) 

4. Two adjacent edge or face cells that may be part of the same curve or surface 

The second level relations are topological relations between the geometries of 
application features. Note that a feature’s dimensionality can be diverse depending 
on the application nature. Three possible topological relations between two 
application features are identified here: 

1. Overlap: After cellular splitting, two n-dimensional features are said to 
overlap each other if they use the same n-dimensional cell(s). An n- and a (n–
1)-dimensional features are also said to overlap each other if they use the 
same (n–1)-dimensional cell(s). 

2. Adjacent: Two different n-dimensional features are defined as adjacent ones 
if they share (n–1)-dimensional cell(s) but do not overlap. 

3. In a 3D feature, adjoining area refers to one or more faces (represented by 
the face cells), which are mathematically connected and defined on the same 
surface. 

For two 3D features A and B, feature A is said to be completely adjacent to 
feature B, if feature A’s adjoining area is fully enclosed by any of feature B’s 
adjoining area. In plastic injection mould design, completely adjacent relations can 
be used to represent maps from the plastic part to core or cavity inserts as well as 
electrode geometry. Such maps are commonly encountered in die casting, forging 
tooling, and fixture design as well. Again, for more details, refer to [3.43]. Other 
examples are: (i) a single face in the detailed design corresponding to several 
functional faces in the conceptual design; and (ii) a face in the process planning 
model corresponding to one or more faces in the detailed design. 

Higher level relations are semantic relations between application features. 
Relation types in this level are application specific. Examples are: 

1. Splitting. Figures 3.11(a) to (c) show a base block with a hole feature; and 
the hole feature is further split by a vertical through-slot feature. A similar 
situation for 2D features is shown in Figures 3.11(d) and (e), in which the 
original clamping feature is split by a newly inserted through-slot feature. 
The middle face cell of the clamping feature becomes negative. The 
clamping feature must hence be checked for stability. This kind of relation 
between two interacting features is defined as a splitting relation [3.38]. 
Using the above-mentioned two lower levels of relations, the splitting 
relation can be described as: (i) the nature of the second feature is negative; 
(ii) the two features overlap; and (iii) the insertion of the second feature 
splits the original single cell (additive or negative) of the first feature into 
several (at least three) cells, where the nature of at least one of the middle 
cell(s) is negative. 
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Figure 3.11. Splitting relation: (a) insert the first feature; (b) the second feature splits the first 
feature; (c) the middle cell of the first hole feature becomes negative; (d) two additive face 
cells of the clamping feature are inserted; and (e) the middle face cell of the clamping feature 
becomes negative 

2. Transmutation. Figure 3.12 shows a base block with a blind-hole feature and 
a vertical through-slot feature. The relation between these two features is 
defined as a transmutation relation in [3.38]. Using the above-mentioned 
two lower levels of relations, the transmutation relation can be described as: 
(i) the nature of the two features is negative, but the nature of one of the 
bounding cells of the first feature, which represents the bottom face of a 
blind hole, is additive; (ii) the two features overlap; and (iii) the insertion of 
the second feature splits the original single 3D negative cell into two 3D 
negative cells. The previous additive bounding 2D cell becomes negative. 

3. �on-interference. This relation specifies that two features cannot overlap 
with or are adjacent to each other. This constraint is satisfied if no cell in the 
unified cellular model has both of these two features in its owner list. This 
constraint is commonly used in product design or manufacturing activities. 
For example, a process planning feature cannot interfere with the 
corresponding clamping features. 

3.6 Conclusions 

Unified feature theory is a significant contribution to feature level collaboration in 
future virtual enterprises. In the proposed scheme, unified features provide an 
intermediate information layer to bridge the gap between engineering knowledge 
and product geometry. Unified features are also used to maintain geometric and non-
geometric relations across product models. The feasibility of the proposed unified 
feature modelling scheme is demonstrated with a prototype system and case studies. 
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With the unified feature definition, application feature definitions, the unified 
cellular model, dependency network, and the change propagation algorithm, the 
proposed unified feature-based product modelling scheme is able to integrate the 
conceptual design, detailed design, and process planning applications. For detailed 
case studies, please refer to [3.35]. 

 

 

Figure 3.12. Transmutation relation: (a) insert the first feature, a blind-hole; (b) the second 
feature changes the blind-hole into a through-hole; (c) the bounding 2D cell is changed to 
negative due to feature interaction 
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