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Abstract 

Traditionally, product databases are either purely geometric or meta-linked to CAD 

files. The first type lacks feature semantics and hence is too rigid for collaborative 

engineering. The second type is dependent on CAD files which are system 

sensitive and has too large information grain size that makes information sharing 

and engineering collaboration difficult. This chapter introduces a fine-grain and 

feature-oriented product database design. It is ideal to support Web-enabled 

collaborative engineering services. For this purpose, a four-layer information 

integration infrastructure is proposed. A solid modeler is incorporated to provide 

low-level geometrical modeling services. The novelty of this research includes 

three aspects: (1) a generic feature definition for different applications in the form 

of EXPRESS-schemas; (2) the integration of a solid modeler with feature-oriented 

database by mapping from EXPRESS-defined feature model to the runtime solid 

modeler data structure as well as to the targeted database schema; and (3) Modeler-

based generic algorithms for feature validation and manipulation via the database. 

A modeler-supported history-independent approach is developed for feature model 

re-evaluation.  

Keywords: Product database; Collaborative engineering; Feature-based 

modeling 

6.1 Introduction 

Due to the stiff competition and rapid changes of globalization, shortening time-to-

market has become the critical success factor for many companies [1, 2]. As a 

result, concurrent and collaborative engineering (CCE) has become a norm. CCE 

has been recognized as the systematic approach to achieve the integrated, 

concurrent design of products and their related processes, including manufacturing 

and support [3], via collaborations across virtual project teams of different business 

partners.  
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In a CCE environment, many engineers with diverse skills, expertise, 

temperament and personalities are responsible for different tasks. The vast amount 

of knowledge and information involved in product development is certainly more 

than any individual can manage. Many computer-aided software tools have been 

incorporated into the product development process, which include Computer-Aided 

Design (CAD), Computer-Aided Process Planning (CAPP), Computer-Aided 

Engineering (CAE), and Computer-Aided Manufacturing (CAM) tools. However, 

information sharing among these applications has not been very well handled so 

far. Currently, almost all the existing CAx applications, which include individual 

installations, project Web portals, groupware tools and PDM (product data 

management) systems, are based on files as their repositories. File-based approach 

has large information grain-size that results in data redundancy, storage space 

waste and potential conflicts [4]. Therefore, such design is no longer adequate for 

web-based CCE environment. It can be appreciated that, instead of managing the 

information via each application system in the separated data formats, a database 

management system (DBMS) can be used to manage all the product information 

concurrently, and at the same time in a consistent manner in order to eliminate the 

duplicated data. A DBMS can also provide shared user-access to databases and the 

mechanisms to ensure the security and integrity of the stored data.  

Some research work has been carried out in product DBMS (database 

management system). CAD*I, a research project by ESPRIT (European strategic 

program for research and development in information technology) was among the 

first to use DBMS to realize the data exchange among different CAD systems [5]. 

Similar research work includes [6], [7] and [8]. However, in these product 

databases, only geometric data can be managed. This means high-level feature 

information (semantic information) is lost. Therefore, it cannot support complete 

information integration.  

Currently, most of the CAx systems are feature-based because features are a 

very useful data structure that associates engineering semantics with tedious 

geometrical data entities. Therefore, feature information must be represented such 

that engineering meaning is fully shared among CAx applications. To represent 

high-level feature information in database, Hoffman et al. proposed the concept of 

product master model to integrate CAD systems with downstream applications for 

different feature views in the product life cycle [9]. Wang, et al. [10, 11] put 

forward a collaborative feature-based design system to integrate different CAx 

systems with database support. However, these proposed databases lack 

geometrical engine to support model validation.  

A geometrical modeling kernel, which is also referred to as a modeling engine, 

provides lower-level geometrical modeling service. Therefore, it can be integrated 

with database to support feature management operations, such as saving, restoring 

and updating, and hence product model integrity and consistency can be 

maintained. In the previous work [12, 13], a four-layer information integration 

infrastructure is proposed based on the architecture of a feature-oriented database. 

Ideally, it will enable information sharing among CAx applications by using the 

unified feature model [14] in the EPM (Entire Product Model), and allows the 

manipulation of application-specific information with sub-models. However, the 
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method to provide low-level geometrical modeling services remains as a major 

question for research. 

Martino et al. [15] proposed an intermediate geometry modeler to integrate 

design and other engineering processes with a combined approach of “design-by-

feature” and “feature recognition”. Bidarra [16, 17] and Bronsvoort [18, 19] 

proposed a semantic feature model by incorporating ACIS into webSPIFF, a web-

based collaborative system. However, the above-mentioned research has little 

discussion on the integration of solid modeler with database, and it is not clear 

whether they have managed product data in files or with a database. Kim et al. [20] 

described an interface (OpenDIS) for the integration of a geometrical modeling 

kernel (OpenCascade) and a STEP database (ObjectStore). However, their work 

cannot ensure full information integration because STEP cannot cover feature 

information for different feature-based CAx applications.  

Traditionally, feature information cannot be exchanged among different 

applications. More recently, researchers, such as Bhandarkar et al. [21], Dereli et 

al. [22] and Fu et al. [23], proposed different algorithms to identify useful feature 

information from the exchanged part models. Although feature extraction [24] and 

identification can partially recognize some feature information, information loss 

still occurs because these approaches depend on pure geometric data. For example, 

feature relationships (constraints) cannot be recovered from the geometric data 

model. 

In order to enable higher-level feature information sharing among different 

applications, many researchers [25, 26, 27] proposed to use design information as 

the input and derive downstream application feature models by feature conversion. 

However, their works support only one-way link which means they can only 

convert from design features to other application features. In [28, 29], a multi-view 

feature modeling approach that can support multi-way feature conversion by 

feature links, is proposed. Separately, an “associative feature” definition was 

developed in [30, 31] for establishing built-in links among related geometric 

entities of an application-specific and multi-facet feature while self-validation 

methods were defined for keeping feature validation and consistency. Compared 

with one-way feature conversion approach, these multi-facet feature 

representations are promising for supporting multi-view product modeling. 

The concept of unified feature model was first proposed by Geelink et al. [32]. 

The interactive definitions for design and process planning features were focused. 

However, the constraints defined were limited within one application feature 

model. Therefore, different application views could not be integrated in their 

model. Chen et al. [14] proposed a new unified feature modeling scheme by 

introducing inter-application links for higher-level feature information sharing 

among different CAx applications. The unified feature model is essentially a 

generic semantic feature model for different CAx applications covering three-level 

relations among geometric and non-geometric entities. The unified feature model 

includes a knowledge-based model by incorporating rules and the necessary 

reasoning functions [33, 34]. 

This chapter focuses on the investigation of mechanisms to integrate a solid 

modeler with a feature-oriented database, such that multi-application information 

sharing can be realized over the Web. This chapter consists of seven sections. After 
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this introduction, Section 6.2 gives a generic definition of features with the 

consideration of unification of applications. Section 6.3 investigates the mapping 

mechanisms between the proposed feature type, consisting of properties and 

methods, and a solid modeler data structures. Section 6.4 explores the integration 

of the solid modeler and database with key algorithms, e.g. feature validation, 

constraint solving. Section 6.5 describes the method for solid modeler-supported 

feature model evaluation. A case study is presented in Section 6.6. Section 6.7 

gives the conclusions. 

6.2 Generic feature model 

To consider integrating a solid modeler with the feature-oriented database, the 

mapping method between the database schemas and the feature definitions based 

on the solid modeler entities is critical. A unified feature model allows different 

applications to define different features with a set of well-defined generic types 

[14]. It is essential that each feature type has well-defined semantics [16]. The 

semantic attributes specified in each feature definition have to be associated with 

the structured elements of the given feature type. Such elements include feature 

shape representation with parameters, constraints that all feature instances should 

satisfy, and the non-geometric attributes to be used for embedded semantic 

properties, such as classifications, names, labels, and relations. All types of 

constraints are used for capturing design intent in the context of a product model. A 

generic feature representation schema is described in Fig. 6.1. Note that the 

original information model is described in EXPRESS-G. Details for the convention 

of EXPRESS-G are shown in Fig. 6.2 [35]. 
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Fig. 6.1. Generic feature representation schema 
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Fig. 6.2. Convention of EXPRESS-G 

6.2.1 Feature shape representation 

To represent the shape of a feature means defining feature geometrical and 

topological constraints or relations with parameters and associating these 

parameters with feature manipulation (creation, modification and deletion) 

functions. The parameters are used to provide user interfaces to create and modify 

features in the modeling operations.  

6.2.2 Constraint definition 

Constraints must be explicitly defined in the feature model to specify relationships 

among features, geometric or topological entities. Such constrints provide invariant 

characteristics of a feature type in the product model. Constraints may have various 

types (e.g. geometric constraints, tolerance constraints and others). In generic 

feature definition, constraints are regarded as attributes attached to a set of 

associated entities, e.g. geometric and non-geometric entities or even features. 

Although different types of constraints may have different attributes, they fall into 

a few common types, which can be generalized as shown in Fig. 6.3. 

Constraint_ID: It is the identifier of a constraint instance. 

Constraint_name: It specifies the name of a constraint instance. 

Owner_ID:  It uniquely identifies which feature a constraint belongs to. 

Constraint_expression: It represents the relationship between the constrained 

elements and reference elements. 

Constrained_entity_ID list: It is used to specify a list of constrained entities 

with reference to the referenced entities. 

Referenced_entity_ID list: It can be used to uniquely identify other related 

reference entities.  

Constraint_strength: It has an enumeration data type, which may include 

several levels, such as required, strong, medium or weak. It represents the extent 

that the constraint needs to be imposed when constraints conflict with each other. 

Constraint_sense: It is used to specify the direction between constrained 

entities and referenced entities. It has the select data type which maybe directed 
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and undirected. A constraint is directed if all members of a set or list of constrained 

entities are constrained with respect to one or more referenced entities. A constraint 

is undirected if there are no referenced entities and the constraint is required to 

hold between all possible pairs of a set of constrained entities. Stated differently, in 

the undirected constraint, there is no difference between constrained entities and 

referenced entities. For example, if a directed constraint is applied to two lines 

(line1 and line2), which requires line2 to be parallel with reference to line1, it 

implies that line1 existed in the model before line2 was created. The corresponding 

undirected constraint would simply assert that line1 and line2 are parallel, with no 

implied precedence in their order of creation.  

 

constraint

#, #, numeric_parameter

owner_idreferenced_entity_id L[0:?]

constraint_strength constraint_sense

strength sense
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constraint_type
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... angledistance ...

...

 

Fig. 6.3. Constraint representation schema 

Constraint solving functions: They are responsible for solving constraint 

according to constraint types. 

Other manipulation functions: These functions may include attributes access 

functions, behavior control functions, etc. 

6.2.3 Other feature properties 

Other feature properties can be defined as follows: 

General feature attributes- Feature_name and feature_id 

General feature attributes such as feature_name and feature_id shall be realized 

with the instantiation of a specific feature according to the application_specific 
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feature definition. These attributes are necessary when searching for the relevant 

feature properties during feature modeling operations. 

Depended_feature_id_list 

To maintain feature relationship, depended_feature shall be explicitly defined 

in feature definition. Feature dependency relation definition is described by 

Biddara [16, 17] as “feature f1 directly depends on feature f2 whenever f1 is 

attached, positioned or, in some other way, constrained relative to f2”. 

Depended_feature_id_list plays an important role in maintaining feature 

dependency graph, and furthermore, feature relations during feature modeling 

operations. 

Feature label 

A feature label is attached as an attribute to every face of a particular feature 

instance. In a feature, its member face labels are defined as a list of strings in the 

definition, to record feature face elements. Then the face corresponding to the label 

is referred to as the owner. 

Domain specification 

Domain specification has the ENUMERATION data type, which represents the 

application scope such as design, manufacturing, assembly and others. By 

specifying the different domains, multi-views can be supported with certain 

filtering and synchronizing mechanisms. 

Nature 

The nature of a feature also has ENUMERATION data type. It could be either 

positive or negative. A positive value means the instances of the feature are created 

by adding material. A negative value means forming a feature instance is realized 

by subtracting material. 

6.2.4 Member Functions 

Four groups of member functions are required to support the generic feature class. 

Attribute access functions shall be defined to manage a feature’s attributes. Some 

functions are common to all types of features, e.g. backup(). Others are feature-

specific such as findOwner(), findConstraint(), getParameter(), setParameter(), 

etc. Object technology with a proper polymorphism design can be applied well 

here. 

Modeling operation functions (e.g. splitOwner(), mergeOwner()) are used to 

control the behaviors of feature during a modeling operation, e.g. splitting, 

merging, or translation. 

Feature evaluation and validation functions are responsible for feature model 

modification. Feature validation functions are used to validate feature geometry 

and solving constraints after each feature modeling operation. These functions will 

be discussed in detail in section 6.4.  

In order to persistently manage product and process information, which 

includes feature information, geometrical data and other information, saving and 

restoring functions of the database, which are the interactions between the run-time 

feature model and the database, must be defined in individual feature classes 

because these functions have to organize information for different applications 

according to the functional requirements. Details will be explained in section 6.4. 
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Fig. 6.4. Design feature representation schema 

6.2.5 Application-specific Feature Model 

Application-specific feature model can be defined on the basis of generic feature 

model. As shown in Fig. 6.4, the design feature type has three subtypes: primitive 

feature, transition feature and compound feature. The primitive feature type is 

separated into two subtypes, additive and subtractive features. Additive feature is 

represented as “pad”, which covers all instance features formed by adding material 

such as cylinder, taper, sphere, boss, block, torus and so on. Subtractive feature 

type represents all features such as hole, pocket, and slot that are formed by 

subtracting material. The transition feature type includes chamfer, edge_round and 

fillet, which are always associated with other primitive features. The compound 

feature type is a union of several primitive features. For each specific design 

feature type, it has predefined explicit geometry, topology, parameterization and 

constraints specifications. For example, a design feature slot can be defined as 

shown in Fig. 6.5. 

6.3 Mapping mechanisms 

To provide lower-level geometrical modeling services, a geometrical modeling 

kernel is required. In this work, ACIS, a commercial package, is incorporated into 

the proposed system. An EXPRESS-defined and extended STEP feature model, 

which includes geometrical and generic feature representation schemas, is mapped 

to the data representation schemas in ACIS such that the proposed system will have 

the required fine grain functionality. On the other hand, this feature model would 

also need to be mapped to the target database schema so that it can be interfaced 

with a consistent repository.  
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Fig. 6.5. Slot feature definition in EXPRESS-G 

6.3.1 Mapping from extended EXPRESS model to ACIS workform format 

6.3.1.1 Geometry mapping 

In this research, in order to explicitly maintain feature shape and associative 

relations in the product model, a cellular model is adopted. Cellular model 

represents a part as a connected set of volumetric quasi-disjoint cells [36]. By 

cellular decomposition of space, cells are never volumetrically overlapped. As each 

cell lies either entirely inside or outside a shape volume, a feature shape can be 

represented explicitly as one cell or a set of connected cells in the part. The cellular 

model-based geometrical representation schema adopted in this research is shown 

in Fig. 6.6. Basically, there are three types of topological entities for cellular 

topology, which are CELL, CSHELL and CFACE. CELL has two subtypes, namely 
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CELL2D and CELL3D. A CELL2D contains a list of CFACEs, each of which 

points to faces that are double-sided and both-outside. A CELL3D contains a list of 

CSHELLs. A CSHELL represents a connected set of CFACEs that bound the 3D 

region of the cell. A CELL is attached to the normal ACIS topology in the LUMP 

level (which represents a bounded, connected region in space, whether the set is 

3D, 2D, 1D, or a combination of dimensions). Each CFACE has a pointer to a face 

in the lump and use it in FORWARD or REVERSE sense.  

As cellular model is directly supported in an ACIS, cellular husk is adopted. 

Therefore, geometry mapping is one-to-one straight forward. 
 

BODY

LUMP

EDGE

APOINT

CURVE

SURFACE

SHELL

LOOP

SUBSHELL

WIREFACE

VERTEX

COEDGE

CFACE

CSHELL

CELL

 

Fig. 6.6. Partial geometrical representation schema according to cellular topology [36] 

6.3.1.2 Generic feature definition under ACIS framework 

ACIS provides ENTITY-ATTRIBUTE architecture [36], under which we can 

specify user-defined attributes (features, constraints or others). The following rules 

are developed and used by the authors for defining features, constraints and other 

attributes in ACIS: 

Use simple attributes to represent properties such as the material of a body or 

color of a face. 

Use complex attributes to represent properties such as features, dimensions, 

tolerance, or constraints.  

Use bridging attributes to link an ENTITY with some application-specific and 

parametric variables, such as dimensions. 

Use instruction attributes placed on entities to force certain behavior. 

Attributes of features and constraints may have various data types, e.g. string, 

integer or ENTITY pointer. 

Aggregating data type has been defined as ENTITY_LIST. The ENTITY_LIST 

is a variable length associative array of ENTITY pointers and provides common 

functions for the manipulation of its members, e.g. add ENTITY, look up ENTITY 

and [] operator for accessing list member by position. 
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Enumeration data type can be simulated by defining a string as the enumeration 

member or simply using an integer data type. 

Selecting data type can be simulated by using an abstract class and defining 

specific types on top of the abstract class. 

On the basis of the above proposed mapping rules, a generic feature definition 

is created as shown in Fig. 6.7. 

Generic Feature Definition

Attribute:
Domain: string;

Feature_name: string;

Nature: string;

Owner ID: ENTITY*;

Feature_ID: ENTITY*;

Depend_feature_ID list:ENTITY_LIST;

Parameter list:

  Parameter1;

  Parameter2;

  ...

Constraint list: ENTITY_LIST;

Feature element list: ENTITY_LIST;

  Cell list: ENTITY_LIST;

  Face list: ENTITY_LIST;

  Edge list: ENTITY_LIST;

  Vertex list: ENTITY_LIST;

Member functions:

Attribute acess:

getAttribute(),setAttribute()...

Modeling operation:

splitOwner(), mergeOwner()...

Feature validation:

geometryValidation(),

constraintSolving(),

Save and restore:

Save(),

Restore()

Entity
Entity ID: ENTITY*;

Feature_ID: ENTITY*;

Functions:

geometryValidation();

Constraint:

Attribute:
Owner_ID: ENTITY*;

Constraint_ID: ENTITY*;

Constraint_content;

Constraint_strength: int;

Constraint_sense: string;

Constrained_entity:

ENTITY_LIST;

Reference_entity_list:

ENTITY_LIST;

Other attribute:

...

Member function:
getAttribute();

setAttribute();

solveConstraint();

Other function:
...

Feature_label
Label_ID: ENTITY*;

Feature_name: string;

Element_name: string;

Reference_entity_ID: ENTITY*

Functions:

splitOwner(); mergeOwner();
 

Fig. 6.7. Generic feature definition with ACIS entities 

6.3.2 Database representation schema 

According to the mapping mechanisms proposed in [12], a geometrical 

representation schema as well as generic feature representation schema in the 

database has been developed. For details, please refer to [12]. 

6.4 The Integration of the solid modeler and the database 

The solid modeler has been tightly integrated in four layers in order to manage 

product and process information (see Fig. 6.8). First, its API functions are called 

constantly which are encapsulated within the feature manipulation methods during 

the collaboration sessions between the end users and the application server. 

Second, all the geometrical entities are manipulated and their run-time consistency 

maintained through the solid modeler’s implicit runtime data structure module. 
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Third, it also provides runtime functional support directly to the end users via 

commands dynamically. Fourth, the solid modeler has also to support the 

repository operations via the DB manager. 
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 Solid modeler Solid modeler Solid modeler Solid modeler
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ConstraintConstraintConstraintConstraint
solversolversolversolver

ConstraintConstraintConstraintConstraint
librarylibrarylibrarylibrary

FeatureFeatureFeatureFeature
librarylibrarylibrarylibrary

Session managerSession managerSession managerSession manager

............

 

Fig. 6.8. Partial integration diagram of a solid modeler and the feature-oriented database 

This chapter focuses on the forth layer. In the proposed architecture of the web-

based feature modeling system [12], database (DB) manager is responsible for 

managing the geometrical entities via the solid modeler runtime model and 

manipulating the data elements to be stored and extracted in the database for 

different applications. With the support of a solid modeler, the database manager 

can provide data manipulation functions such as save, restore and validate 

functions. These functions are fundamental to support different applications. In the 

following sub-sections, feature validation methods together with the generic save 

and restore algorithms are explained. In order to manage the connection between 

the DB manager and the database during saving and restoring processes, OCCI 

(Oracle C++ Call Interface) [37] is adopted as the bridge (see Fig. 6.8). 

6.4.1 Feature model re-evaluation and constraint solving 

Once feature operations are specified via User Interfaces (UIs), the product model 

needs to be modified and updated. This process is achieved through feature 

evaluation. The geometrical model has to be managed to ensure the consistency. 

Here, the run-time product model should be generated via the integrated solid 

modeler and managed based on the database records. All feature evaluation 

operations call solid modeler APIs to realize the geometrical procedures while the 

rest of the functions are implemented separately. In this way, the bottom-level 

geometrical operations are readily looked after by the solid modeler; hence, the 

development effort is significantly reduced. Details of feature model re-evaluation 

will be explained in section 6.5. 

Theoretically, feature validation functions include two kinds: those dealing with 

the geometry, and those dealing with constraints. With the incorporation of a solid 

modeler, geometry validation functions are not really necessary under the proposed 

design because the solid modeler is responsible for manipulating and validating 
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feature geometry. On the other hand, constraint-solving functions need to call 

specific algorithms defined in the individual constraint sub-classes to solve 

different kinds of constraints according to their types. Globally, all the constraints 

are maintained by the Constraint Manager in a constraint graph for EPM (Entire 

Product Model), which contains sub-graphs for specific application views. 

Constraint manager solves constraints by calling the corresponding solvers 

according to different constraint types. For example, SkyBlue algorithm [38] can 

be used to solve local algebraic constraints in design domain; Degrees of Freedom 

analysis algorithm [39] can be used to solve geometrical constraints in design 

domain. If conflict of intra-application constraints occurs, local constraints solver 

can determine automatically which constraint should be satisfy first according to 

the value of constraint_strengh, which is an attribute of constraint defined in 

section 6.2. Inter-application constraints can also be solved under the control of 

constraint manager according to the value of domain_strength. For the definition of 

domain_strength, also refer to section 6.2. The value of domain_strength, which 

regulates priority sequence of different domains, can be predefined, or is set by an 

authorized user. Any conflict of inter-application constraints will be detected by 

constraint manager after which the constraints solver can trigger the corresponding 

applications to reevaluate the product model according to domain_strength. Only 

when all constraints are checked and feature geometry is validated, does feature 

validation finish. 

6.4.2 Save algorithm 

To elaborate, during the saving process, the solid modeler has to extract all the 

information from its runtime data structure and then save them into the database 

after a format conversion according to the mapping relations and the database 

mapping schema described in [12]. The Save algorithm can be expressed in the 

steps as follows (see Fig. 6.9): 

Initiate algorithm 

by  selecting the 

part & creating an 

empty entity_list 

Cycle the 

part to get 

all entities 

Create/update 

the entity 

graph and get 

OIDs  

Save entities 
with OIDs 

into the DB 

 

Fig. 6.9. Save algorithm 

• Select the part to be saved. Create an empty entity list and add the part 

attributes to be saved to the list;  

• Cycle all entities (features, topological entities, such as solids, shells, faces, 

and geometrical entities, such as lines, planes, curves, and surfaces) from 

the part and add them to a graph map so that object pointers can be fixed as 

unique database Object Identifiers (OID). ACIS API functions, e.g. 

api_get_xxxx(), are used to get all saved ENTITIES; 
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• Use such object pointers to call save functions of the specific class (e.g. 

point.save(), vertex.save() or feature.save()) to save part data to the 

database. 

6.4.3 Restore algorithm 

 

Get all 

entities of the 

part from DB 

Reconstruct 

entity  objects 

& add them to 

the graph 

Traverse OIDs 

and create 

entities  

Add them 

into  a 

entity_list 

& form a part 

 

Fig. 6.10. Restore algorithm 

In a reverse way, the uploading process is triggered when the product model is 

being established during the session initiation from the database. 

Restore algorithm has the following steps (see Fig. 6.10):  

• All the entities of a part are retrieved from the database by searching their 

linked Object Identifiers (OIDs);  

• Reconstruct new objects, e.g. features, geometrical entities, topological 

entities.  Upon reconstruction, all the objects will be validated;  

• Add all the entities to a newly generated object graph map;  

• Convert these OIDs to genuine pointers;  

• Create an entity list and add all the entities to the list to form the part. 

Validation, e.g. geometry and feature validation will be carried out during 

this procedure. 

6.5 Feature model re-evaluation 

6.5.1 Problems of historical-dependent system 

For most parametric and history-based modeling systems, feature model is re-

evaluated by re-executing whole or part of the model history. The disadvantages of 

this method are the high computational cost and the considerable amount of storage 

space [16]. Moreover, history-based model re-evaluation causes ambiguous feature 

semantics due to the static chronological feature creation order in the model 

history. This is illustrated in the example shown in Fig. 6.11. The simple part 

consists of a base block and a through hole. Later on, the designer wants to modify 

the part by adding another block and extending the depth of hole so that he can get 

the expected part model as shown in Fig. 6.11(b). However, sometimes unexpected 

modeling results as shown in Fig. 6.11(c) can be generated by the history-based 

reevaluation, because the feature creation order is baseblock->hole->block. In 
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order to get the expected part model, the precedence order, in this example, should 

be changed to baseblock->block->hole. This semantic problem is caused by the 

static precedence order in the model history on which model re-evaluation is based. 

From this example, it is clear that the precedence relation among features should be 

dynamically maintained and updated after each modeling operation. 

1. base block1. base block1. base block1. base block
2. hole2. hole2. hole2. hole  

a 

 

b 

1. base block1. base block1. base block1. base block
2. hole2. hole2. hole2. hole
3. block3. block3. block3. block  

c 

Fig. 6.11. Semantic problem for historical-dependent system a. example part at the initial 

state; b. expected result after modification; c. result of history-based re-evaluation after 

modification 
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6.5.2 Dynamically maintaining feature precedence order 

In this work, feature precedence order is maintained dynamically based on a 

feature dependency graph. Relations between independent features can be 

determined by feature overlapping detection. Feature dependency relations are 

explicitly defined in the feature definition as explained in section 6.2. The 

following rules are proposed for feature precedence determination. Note that, 

explicit rules always overrule implicit rules during dynamic maintenance of the 

global precedence order of all features. Stated differently, the explicit rules will be 

first used to determine the precedence relation; while if the global precedence order 

cannot be uniquely generated, implicit rules will be then considered to get a unique 

one. 

Rule 1 (explicit rule) 

For two dependent features, if feature f2 depends on feature f1, then f1 precedes 

f2 [16]. 

     It is easy for us to derive from rule 1 that: 

For n dependent features, if: 

                   f1 � f2�  f3� …� fn 

     Then, there exist: 

                  O1 < O2 < O3 < … < On 

     where: 

     fi�fj : represents feature dependency relation( e.g. f1� f2 means f2 depends 

on f1); 

Oi : represents the precedence order of feature fi . 

Oi <Oj : represents the j
th
 feature is ordered after the i

th
 feature. 

Rule 2 (explicit rule) 

For a feature in the feature dependency graph, if it depends on two or more 

features, the precedence order of this feature comes after the latest feature it 

depends on (we call it latest depended feature or LDF). 

Note that in the feature dependency graph, LDF is always the feature that has 

the longest length of path (LLP) from the root node of the graph among all 

depended features of a particular feature. 

Path: a path in a graph is a walk whose nodes are all distinct; 

Walk: a walk in a graph is a finite alternating sequence of nodes and edges 

between its starting node and ending node; 

Length of path: the length of a path is the number of edges that form the path. 

Rule 3 (implicit rule) 

For a group of features that have random precedence order, the feature 

creation sequence will be used to determine their precedence relations. 

The feature creation sequence is defined as an attribute attached to the feature 

instance to record the sequence of the feature among all features in the part. 

Rule 4 (implicit rule) 

For two independent features, if they do not overlap with each other, the 

precedence relation between them is determined by LLP of these two features. 

There exists: 

O1 < O2 if LLP1 < LLP2  

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3. 
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Rule 5 (implicit rule) 

For two independent features with same natures (both negative or both 

additive), if they overlap with each other, the precedence relation between them is 

random and should be determined by LLP of these two features. There exists: 

O1 < O2 if LLP1 < LLP2  

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3. 

Rule 6 (explicit rule) 

For two independent features (f1 and f2) with different natures, if the overlap of 

these two features is caused by some modeling operation of f2, then feature f1 

precedes feature  f2 [16]. 

Based on the above rules for feature precedence determination, after each 

modeling operation, the following algorithm shown below is used to dynamically 

maintain feature precedence relations. 

• Find all the features of the part and add them to a graph map (unsorted). 

• Partially sort the graph map according to the existing feature dependency 

graph. This is done by using the algorithm shown in Fig. 12 on the basis of 

rules 1 ~ 3. 

• Sort the partially sorted graph with reference to the overlapping detection 

result based on rules 4 ~ 6. 

In this way, a global feature precedence order can be updated dynamically. 

 

(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)
{ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++)
  {if (Px  {if (Px  {if (Px  {if (Px

jjjj
>Px>Px>Px>Px

iiii
))))

    {X    {X    {X    {Xmmmm
= X= X= X= Xiiii

;;;;
     X     X     X     Xiiii

=X=X=X=Xjjjj
;;;;

     X     X     X     Xjjjj
=X=X=X=Xmmmm

;;;;
     }     }     }     }
   }   }   }   }
}}}}
Here:

X
i
 represents any feature in the feature set;

X
j 
represents depended feature of X

i
;

Px
i 
represents the position of feature X

i
 in the

feature map;

 

Fig. 6.12. Algorithm for precedence order generation [40] 

6.5.3 History-independent feature model re-evaluation 

First of all, re-evaluating the feature model requires that feature elements (cells, 

faces, edges and vertices) are correctly identified in the cellular model. This can be 

achieved by cellular entity owner list control. 

6.5.3.1 Adding a New Feature Instance 

This is carried out as follows: 
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• Create the shape of the new feature (one cell shape); 

• Attach labels of the feature to each face of the feature instance; and 

• Carry out Boolean operation (with the ‘non-regular’ option).  

• During non-regular Boolean Union, intersection detection will be carried 

out for each cell (Ci) in the cellular model and the newly added feature cell 

(C). Upon cellular decomposition, the owner list of each cell and cell face 

should be controlled by the following rules [41]: 

• The new cells that are in the intersection of C and Ci are assigned with an 

owner list that is the union of the owner lists of C and Ci; 

• Other non-intersecting cells resulting from the decomposition get their 

owner lists which are the same as the original cells (either C or Ci); 

• The new cell faces lying on the boundary of both C and Ci get the owner 

list that is the union of the owner lists of the overlapping cell faces from 

which it originates; 

• The new cell faces lying on the boundary of either C or Ci inherit the owner 

list from their respective original cell faces; 

• The remaining new cell faces get an empty owner list. 

Fig. 6.13(a) illustrates the creation of a slot feature on the base_block. The 

shape of the slot is first created as a one-cell shape. Then non-regular-Boolean 

Union is carried out to create the cellular model of the part. During the operation, 

upon intersection analysis, cell decomposition is performed. On the basis of above 

rules for cell and cell face owner list control, the result of the modeling operation is 

shown in Fig. 6.13(b). Note that there are two cells in the cellular model. One is the 

original base_block cell (has block feature in its owner list). The other is a new cell 

generated by cell decomposition, namely the slot cell (which has block and slot in 

its owner list). Three double-side faces separate these two cells. Each double-side 

face has two corresponding cell faces (e.g. CF8 and CF9); one (CF8) is for the block 

cell boundary, the other (CF9) is for the slot cell boundary. 

Note that CFi represents i
th
 cell face; S represents slot feature; B indicates block 

feature; and ( ) indicates the labeled entity’s owner list. 

6.5.3.2 Deleting a Feature Instance 

This is carried out as follows (assume no other feature depends on the feature to be 

deleted) [16]: 

• Traverse through all the cells and cell faces to remove from their owner list 

the feature to be deleted; 

• Remove all the cells which has empty owner list. This can be realized by 

removing all one-side faces bounding the cell; 

• Merge adjacent cells which have the same owner list. This can be realized 

by removing all double-side faces that separate the two cells; 
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• Clean up the model by merging the adjacent faces that have the same 

geometry and whose cell faces have the same owner list. 
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Fig. 6.13. Creation of slot feature on the base block a. base block and slot shape; b. 

result of modeling operation 
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As shown in Fig. 6.14, to delete the slot feature from the cellular model, all 

cells and cell faces in the cellular model are traversed through to remove from their 

owner list the slot feature.  
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Fig. 6.14. Feature deletion a. remove slot from owner list of cell and cell face; b. merge two 

cells 

The result is shown in Fig. 6.14(a). Then as two cells have the same owner list, 

the block feature, these two cells are merged by removing three double-side faces 

(the underlying faces of CF8 and CF9, CF11 and CF12, CF13 and CF14) that 

separate them. The result is shown in Fig. 6.14(b). Finally, adjacent faces that have 
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the same geometry and same owner list are merged. This option carries out the 

merging of the underlying faces of CF5 and CF16, CF7 and CF15, as well as CF1, 

CF2 and CF10. The result is the same as block feature shown in Fig. 6.14(a) before 

creating the slot. 
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Fig. 6.15. B-Rep evaluation a. boundary detection; b. boundary evaluation 
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6.5.3.3 Modifying a Feature Instance 

To modify a feature instance, we shall first check which features are really 

involved in the modeling operation. This checking is based on the feature 

dependency graph and the global feature precedence order. Next, features involved 

will be removed from the part model. Finally, features with modified properties 

will be added to the model. 

6.5.3.4 B-rep Evaluation 

As the cellular model of a part contains much more information than only the 

boundary of the final part, which means it also contains faces that are not on the 

boundary. Therefore, the B-rep evaluation of the cellular model requires boundary 

detection of every face in the cellular model. The following rules are used to carry 

out the boundary detection of faces in the cellular model: 

• For each single-side face of a cell, the nature of the cell determines whether 

it is on-boundary or not. Additive nature of the cell means the face is on-

boundary; subtractive nature of the cell means the face is not-on-boundary. 

• For each double-side face of a cell, if the cell has a different nature with the 

partner cell that shares the same face, this double-side face is on-boundary; 

otherwise, it is not-on-boundary. 

Note that the nature of a cell is determined by the nature of its last owner in the 

cell owner list. The sequence of cell owner list is dynamically maintained 

according to the unique feature precedence order, see section 6.5.2. On the basis of 

boundary detection of each face in the cellular model, the B-rep evaluation of the 

cellular model can be carried out in steps as follows: 

• Walk through all the faces and find all the faces that are not-on-boundary; 

• Remove all the cells and the faces that are not-on-boundary; 

• Merge adjacent faces that have the same geometry. 

Also taking the part shown in Fig. 6.13(b) as an example, on the basis of rules 

for boundary detection, the result of boundary detection is shown in Fig. 6.15(a). 

Then, the B-Rep evaluation of the cellular model can easily be realized by 

removing three faces (F9, F12 and F13) that are not-on-boundary. The result is 

shown in Fig. 6.15(b). Note that in Fig. 6.15, O represents on-boundary; N 

represents not-on-boundary. 

6.6  A Case Study 

The proposed feature-oriented database has been implemented coupled with a 

geometrical modeling kernel, ACIS. Design features and constraints have been 

defined and some example parts have been tested. Fig. 6.16 illustrates the creation 

of an example part which is made up of a base_block, a vertical_support, a rib, a 

cylinder and two through_hole features.  
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Fig. 6.16. A case part a. creation of the case part; b. modeling result; c. feature dependency 

graph 

All the parameters and constraints are listed in Tab. 6.1. The precedence order 

of the part can be generated according to the rules described in section 6.5.2 as 

follows: Base_block � vertical_support � cylinder � rib � through_hole 1 � 

through_hole 2. 

If the designer wishes to add a cylinder_boss feature on the top of cylinder 

overlapping with the hole2 as shown in Fig. 6.15, feature overlapping detection and 

semantic constraint checking (semantic constraints here refer to through_hole2 

must have both top and bottom face not_on_boundary) will be carried out. In this 

case, constraint conflict happens because the semantic constraint of the 

through_hole2 cannot be satisfied if the current precedence relation is kept. 

Therefore, a message will be generated by the system to prompt the user on how to 

solve such problems (via changing the precedence order of those two features as 

shown in Tab. 6.2).  

After modification, the feature precedence order of the part will be changed 

from: base_block� vertical_support � cylinder � rib � through_hole1� 
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through_hole2� boss to: base_block � vertical_support � cylinder � rib � 

through_hole1� boss � through_hole2. 

Tab. 6.1. Features, constraints and parameters in the example part 

Feature Constraints and parameters 

Baseblock    Determined by two position points (0,0,0) and (100,100,10). length of 

baseblock = 100; width of baseblock = 100; height of baseblock = 10 

Vertical_ 

support  

Geometric constraints: verticalsupport_start coplane with baseblock_left; 

Radius of arc C2 , R1 =16; Center of arc C2 determined by two distance 

constraints: D1=50; D2=60; C1  tangent to C2 ; C3 tangent to C2; Extrusion 

length W2=10 

Cylinder  Geometric constraint: Cylinder_top coplane with baseblock_left; Center 

of cylinder_top concentric to arc C2 ; Height of cylinder H = 85 

Rib Distance constraint: distance between C5 and C7, 

2 2
3 2 1 1 1( ( / 2) )D D R R W= − − − ; Extrusion length W1=10 

Through_h

ole1  

Geometric constraints: Through_hole1_top coplane with cylinder_top; 

Through_hole1_bottom coplane with cylinder_bottom; Center of 

through_hole1 concentric to the center of cylinder; Radius  of 

through_hole1 = 8 

Through_h

ole2  

Radius of through_hole2 R3 =3; Through_hole2_topcenter  determined by 

three distance constraints: D1, D2+R1, and D4 ; Height of through_hole2 

2 2
2 1 2 3H R R R= − −  

Tab.6.2. Redefining two features 

Feature Constraints and parameters 

Cylinder 

boss 

Radius of cylinder boss R4 = 6; 

The top center of cylinder boss determined by three distance constraints: 

D1, D4 and D5 (distance between top center of cylinder boss and top of 
base block in Z axis; Height of cylinder boss 

2 2
2 5 2 1 4H D D R R= − − −  

Through_h

ole2  

Radius of through_hole2 R3 =3; Top center of through_hole2 coplane 

with top center of cylinder boss ; Top center of through_hole2 concentric 

with top center of cylinder boss; Height of through_hole2 

2 2
2 5 2 3H D R R= − −  

 

Therefore, the result part model after modification can be generated as shown 

in Fig. 6.17(a). The dependency graph of the modified part can be expressed as 

shown in Fig. 6.17(b).  

Subsequently, the designer wishes to remove the boss feature. According to the 

feature dependency graph shown in Fig. 6.17(b) and the latest feature precedence 
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order, the removal of the boss feature can be done by removing the boss as well as 

the hole feature that depends on the boss feature. The final part after removing the 

boss is shown in Fig.6.18. 
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Fig. 6.17. Feature model after adding a boss a. modeling result; b. feature dependency graph 

after adding a boss 
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Fig. 6.18. Feature model after removing the boss feature a. modeling result after removing 

the boss feature; b. feature dependency graph 

6.7 Conclusion 

In this chapter, the integration of a fine-grain, feature-oriented database and a solid 

modeler, is presented. The mapping mechanisms, from EXPRESS-defined generic 

feature model entities to ACIS workform format, and the integration with the 

repository database schema are described. Generic algorithms for feature 

manipulation with the solid molder and database methods are illustrated. Finally, a 

modeler-supported, history-independent feature model re-evaluation approach is 

described in detail. Based on the working prototype system, it can be concluded 
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that solid modeler can be effectively integrated with the feature-oriented database 

to provide low-level geometrical modeling services. This kind of integration can 

further enable information sharing among different applications and Web enabled 

engineering collaboration.  
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