
6

A Fine-grain and Feature-oriented Product Database

for Collaborative Engineering

Y.–S. Ma, S.–H. Tang, and G. Chen

School of Mechanical and Aerospace Engineering

Nanyang Technological University, Singapore

Abstract

Traditionally, product databases are either purely geometric or meta-linked to CAD

files. The first type lacks feature semantics and hence is too rigid for collaborative

engineering. The second type is dependent on CAD files which are system

sensitive and has too large information grain size that makes information sharing

and engineering collaboration difficult. This chapter introduces a fine-grain and

feature-oriented product database design. It is ideal to support Web-enabled

collaborative engineering services. For this purpose, a four-layer information

integration infrastructure is proposed. A solid modeler is incorporated to provide

low-level geometrical modeling services. The novelty of this research includes

three aspects: (1) a generic feature definition for different applications in the form

of EXPRESS-schemas; (2) the integration of a solid modeler with feature-oriented

database by mapping from EXPRESS-defined feature model to the runtime solid

modeler data structure as well as to the targeted database schema; and (3) Modeler-

based generic algorithms for feature validation and manipulation via the database.

A modeler-supported history-independent approach is developed for feature model

re-evaluation.

Keywords: Product database; Collaborative engineering; Feature-based

modeling

6.1 Introduction

Due to the stiff competition and rapid changes of globalization, shortening time-to-

market has become the critical success factor for many companies [1, 2]. As a

result, concurrent and collaborative engineering (CCE) has become a norm. CCE

has been recognized as the systematic approach to achieve the integrated,

concurrent design of products and their related processes, including manufacturing

and support [3], via collaborations across virtual project teams of different business

partners.

110 Y.-S. Ma, S.-H.Tang and G. Chen

In a CCE environment, many engineers with diverse skills, expertise,

temperament and personalities are responsible for different tasks. The vast amount

of knowledge and information involved in product development is certainly more

than any individual can manage. Many computer-aided software tools have been

incorporated into the product development process, which include Computer-Aided

Design (CAD), Computer-Aided Process Planning (CAPP), Computer-Aided

Engineering (CAE), and Computer-Aided Manufacturing (CAM) tools. However,

information sharing among these applications has not been very well handled so

far. Currently, almost all the existing CAx applications, which include individual

installations, project Web portals, groupware tools and PDM (product data

management) systems, are based on files as their repositories. File-based approach

has large information grain-size that results in data redundancy, storage space

waste and potential conflicts [4]. Therefore, such design is no longer adequate for

web-based CCE environment. It can be appreciated that, instead of managing the

information via each application system in the separated data formats, a database

management system (DBMS) can be used to manage all the product information

concurrently, and at the same time in a consistent manner in order to eliminate the

duplicated data. A DBMS can also provide shared user-access to databases and the

mechanisms to ensure the security and integrity of the stored data.

Some research work has been carried out in product DBMS (database

management system). CAD*I, a research project by ESPRIT (European strategic

program for research and development in information technology) was among the

first to use DBMS to realize the data exchange among different CAD systems [5].

Similar research work includes [6], [7] and [8]. However, in these product

databases, only geometric data can be managed. This means high-level feature

information (semantic information) is lost. Therefore, it cannot support complete

information integration.

Currently, most of the CAx systems are feature-based because features are a

very useful data structure that associates engineering semantics with tedious

geometrical data entities. Therefore, feature information must be represented such

that engineering meaning is fully shared among CAx applications. To represent

high-level feature information in database, Hoffman et al. proposed the concept of

product master model to integrate CAD systems with downstream applications for

different feature views in the product life cycle [9]. Wang, et al. [10, 11] put

forward a collaborative feature-based design system to integrate different CAx

systems with database support. However, these proposed databases lack

geometrical engine to support model validation.

A geometrical modeling kernel, which is also referred to as a modeling engine,

provides lower-level geometrical modeling service. Therefore, it can be integrated

with database to support feature management operations, such as saving, restoring

and updating, and hence product model integrity and consistency can be

maintained. In the previous work [12, 13], a four-layer information integration

infrastructure is proposed based on the architecture of a feature-oriented database.

Ideally, it will enable information sharing among CAx applications by using the

unified feature model [14] in the EPM (Entire Product Model), and allows the

manipulation of application-specific information with sub-models. However, the

 A fine-grain and feature-oriented product database for collaborative engineering 111

method to provide low-level geometrical modeling services remains as a major

question for research.

Martino et al. [15] proposed an intermediate geometry modeler to integrate

design and other engineering processes with a combined approach of “design-by-

feature” and “feature recognition”. Bidarra [16, 17] and Bronsvoort [18, 19]

proposed a semantic feature model by incorporating ACIS into webSPIFF, a web-

based collaborative system. However, the above-mentioned research has little

discussion on the integration of solid modeler with database, and it is not clear

whether they have managed product data in files or with a database. Kim et al. [20]

described an interface (OpenDIS) for the integration of a geometrical modeling

kernel (OpenCascade) and a STEP database (ObjectStore). However, their work

cannot ensure full information integration because STEP cannot cover feature

information for different feature-based CAx applications.

Traditionally, feature information cannot be exchanged among different

applications. More recently, researchers, such as Bhandarkar et al. [21], Dereli et

al. [22] and Fu et al. [23], proposed different algorithms to identify useful feature

information from the exchanged part models. Although feature extraction [24] and

identification can partially recognize some feature information, information loss

still occurs because these approaches depend on pure geometric data. For example,

feature relationships (constraints) cannot be recovered from the geometric data

model.

In order to enable higher-level feature information sharing among different

applications, many researchers [25, 26, 27] proposed to use design information as

the input and derive downstream application feature models by feature conversion.

However, their works support only one-way link which means they can only

convert from design features to other application features. In [28, 29], a multi-view

feature modeling approach that can support multi-way feature conversion by

feature links, is proposed. Separately, an “associative feature” definition was

developed in [30, 31] for establishing built-in links among related geometric

entities of an application-specific and multi-facet feature while self-validation

methods were defined for keeping feature validation and consistency. Compared

with one-way feature conversion approach, these multi-facet feature

representations are promising for supporting multi-view product modeling.

The concept of unified feature model was first proposed by Geelink et al. [32].

The interactive definitions for design and process planning features were focused.

However, the constraints defined were limited within one application feature

model. Therefore, different application views could not be integrated in their

model. Chen et al. [14] proposed a new unified feature modeling scheme by

introducing inter-application links for higher-level feature information sharing

among different CAx applications. The unified feature model is essentially a

generic semantic feature model for different CAx applications covering three-level

relations among geometric and non-geometric entities. The unified feature model

includes a knowledge-based model by incorporating rules and the necessary

reasoning functions [33, 34].

This chapter focuses on the investigation of mechanisms to integrate a solid

modeler with a feature-oriented database, such that multi-application information

sharing can be realized over the Web. This chapter consists of seven sections. After

112 Y.-S. Ma, S.-H.Tang and G. Chen

this introduction, Section 6.2 gives a generic definition of features with the

consideration of unification of applications. Section 6.3 investigates the mapping

mechanisms between the proposed feature type, consisting of properties and

methods, and a solid modeler data structures. Section 6.4 explores the integration

of the solid modeler and database with key algorithms, e.g. feature validation,

constraint solving. Section 6.5 describes the method for solid modeler-supported

feature model evaluation. A case study is presented in Section 6.6. Section 6.7

gives the conclusions.

6.2 Generic feature model

To consider integrating a solid modeler with the feature-oriented database, the

mapping method between the database schemas and the feature definitions based

on the solid modeler entities is critical. A unified feature model allows different

applications to define different features with a set of well-defined generic types

[14]. It is essential that each feature type has well-defined semantics [16]. The

semantic attributes specified in each feature definition have to be associated with

the structured elements of the given feature type. Such elements include feature

shape representation with parameters, constraints that all feature instances should

satisfy, and the non-geometric attributes to be used for embedded semantic

properties, such as classifications, names, labels, and relations. All types of

constraints are used for capturing design intent in the context of a product model. A

generic feature representation schema is described in Fig. 6.1. Note that the

original information model is described in EXPRESS-G. Details for the convention

of EXPRESS-G are shown in Fig. 6.2 [35].

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema
#, #,

Descriptive_parameter

feature_type

Fig. 6.1. Generic feature representation schema

 A fine-grain and feature-oriented product database for collaborative engineering 113

....

#, #,

: Schema

: Defined type

: Referenced entity

: Page reference

: Entity

.

: Enumerated data type

: Used entity

: Relationship with direction

A B represents entity A has

entity B as its explicit attribute

: Inheritance relationship line

: Normal relationship line

Fig. 6.2. Convention of EXPRESS-G

6.2.1 Feature shape representation

To represent the shape of a feature means defining feature geometrical and

topological constraints or relations with parameters and associating these

parameters with feature manipulation (creation, modification and deletion)

functions. The parameters are used to provide user interfaces to create and modify

features in the modeling operations.

6.2.2 Constraint definition

Constraints must be explicitly defined in the feature model to specify relationships

among features, geometric or topological entities. Such constrints provide invariant

characteristics of a feature type in the product model. Constraints may have various

types (e.g. geometric constraints, tolerance constraints and others). In generic

feature definition, constraints are regarded as attributes attached to a set of

associated entities, e.g. geometric and non-geometric entities or even features.

Although different types of constraints may have different attributes, they fall into

a few common types, which can be generalized as shown in Fig. 6.3.

Constraint_ID: It is the identifier of a constraint instance.

Constraint_name: It specifies the name of a constraint instance.

Owner_ID: It uniquely identifies which feature a constraint belongs to.

Constraint_expression: It represents the relationship between the constrained

elements and reference elements.

Constrained_entity_ID list: It is used to specify a list of constrained entities

with reference to the referenced entities.

Referenced_entity_ID list: It can be used to uniquely identify other related

reference entities.

Constraint_strength: It has an enumeration data type, which may include

several levels, such as required, strong, medium or weak. It represents the extent

that the constraint needs to be imposed when constraints conflict with each other.

Constraint_sense: It is used to specify the direction between constrained

entities and referenced entities. It has the select data type which maybe directed

114 Y.-S. Ma, S.-H.Tang and G. Chen

and undirected. A constraint is directed if all members of a set or list of constrained

entities are constrained with respect to one or more referenced entities. A constraint

is undirected if there are no referenced entities and the constraint is required to

hold between all possible pairs of a set of constrained entities. Stated differently, in

the undirected constraint, there is no difference between constrained entities and

referenced entities. For example, if a directed constraint is applied to two lines

(line1 and line2), which requires line2 to be parallel with reference to line1, it

implies that line1 existed in the model before line2 was created. The corresponding

undirected constraint would simply assert that line1 and line2 are parallel, with no

implied precedence in their order of creation.

constraint

#, #, numeric_parameter

owner_idreferenced_entity_id L[0:?]

constraint_strength constraint_sense

strength sense

#, #, Descriptive_parameter

constraint_type

constraint expression

#, #,

numeric_parameter

general_feature_schema.

model.element

general_feature_schema.

model.element

constraint_entity_id

#, #, Descriptive_parameter

id

name

ISO13584_expressions_schema

.expression

geometric

constraint

algebraic

constraint

semantic

constraint

dimension

constraint

coincident

constraint

parallel

constraint

coplanar

constraint
... angledistance ...

...

Fig. 6.3. Constraint representation schema

Constraint solving functions: They are responsible for solving constraint

according to constraint types.

Other manipulation functions: These functions may include attributes access

functions, behavior control functions, etc.

6.2.3 Other feature properties

Other feature properties can be defined as follows:

General feature attributes- Feature_name and feature_id

General feature attributes such as feature_name and feature_id shall be realized

with the instantiation of a specific feature according to the application_specific

 A fine-grain and feature-oriented product database for collaborative engineering 115

feature definition. These attributes are necessary when searching for the relevant

feature properties during feature modeling operations.

Depended_feature_id_list

To maintain feature relationship, depended_feature shall be explicitly defined

in feature definition. Feature dependency relation definition is described by

Biddara [16, 17] as “feature f1 directly depends on feature f2 whenever f1 is

attached, positioned or, in some other way, constrained relative to f2”.

Depended_feature_id_list plays an important role in maintaining feature

dependency graph, and furthermore, feature relations during feature modeling

operations.

Feature label

A feature label is attached as an attribute to every face of a particular feature

instance. In a feature, its member face labels are defined as a list of strings in the

definition, to record feature face elements. Then the face corresponding to the label

is referred to as the owner.

Domain specification

Domain specification has the ENUMERATION data type, which represents the

application scope such as design, manufacturing, assembly and others. By

specifying the different domains, multi-views can be supported with certain

filtering and synchronizing mechanisms.

Nature

The nature of a feature also has ENUMERATION data type. It could be either

positive or negative. A positive value means the instances of the feature are created

by adding material. A negative value means forming a feature instance is realized

by subtracting material.

6.2.4 Member Functions

Four groups of member functions are required to support the generic feature class.

Attribute access functions shall be defined to manage a feature’s attributes. Some

functions are common to all types of features, e.g. backup(). Others are feature-

specific such as findOwner(), findConstraint(), getParameter(), setParameter(),

etc. Object technology with a proper polymorphism design can be applied well

here.

Modeling operation functions (e.g. splitOwner(), mergeOwner()) are used to

control the behaviors of feature during a modeling operation, e.g. splitting,

merging, or translation.

Feature evaluation and validation functions are responsible for feature model

modification. Feature validation functions are used to validate feature geometry

and solving constraints after each feature modeling operation. These functions will

be discussed in detail in section 6.4.

In order to persistently manage product and process information, which

includes feature information, geometrical data and other information, saving and

restoring functions of the database, which are the interactions between the run-time

feature model and the database, must be defined in individual feature classes

because these functions have to organize information for different applications

according to the functional requirements. Details will be explained in section 6.4.

116 Y.-S. Ma, S.-H.Tang and G. Chen

(ABS)Design_F

eature

(ABS)Primitive_Feature

(ABS)Transition_Feature

(ABS)Compound_Feature

Hole

Planar_Face

Step

Pocket

Slot

(ABS)Subtractive_Feature

(ABS)Additive_Feature Pad

Chamfer

Edge_Round

Fillet

Block

Boss

Cylinder

Sphere

Torus

Taper

...

...

...

...

Fig. 6.4. Design feature representation schema

6.2.5 Application-specific Feature Model

Application-specific feature model can be defined on the basis of generic feature

model. As shown in Fig. 6.4, the design feature type has three subtypes: primitive

feature, transition feature and compound feature. The primitive feature type is

separated into two subtypes, additive and subtractive features. Additive feature is

represented as “pad”, which covers all instance features formed by adding material

such as cylinder, taper, sphere, boss, block, torus and so on. Subtractive feature

type represents all features such as hole, pocket, and slot that are formed by

subtracting material. The transition feature type includes chamfer, edge_round and

fillet, which are always associated with other primitive features. The compound

feature type is a union of several primitive features. For each specific design

feature type, it has predefined explicit geometry, topology, parameterization and

constraints specifications. For example, a design feature slot can be defined as

shown in Fig. 6.5.

6.3 Mapping mechanisms

To provide lower-level geometrical modeling services, a geometrical modeling

kernel is required. In this work, ACIS, a commercial package, is incorporated into

the proposed system. An EXPRESS-defined and extended STEP feature model,

which includes geometrical and generic feature representation schemas, is mapped

to the data representation schemas in ACIS such that the proposed system will have

the required fine grain functionality. On the other hand, this feature model would

also need to be mapped to the target database schema so that it can be interfaced

with a consistent repository.

 A fine-grain and feature-oriented product database for collaborative engineering 117

Slot

#, #, Open_profile

#, #, path

Slot_end_type

end_conditions [2:2]

Open_slot_end_type Radiused_slot_end_type

Woodruff_slot_end_type

Flat_slot_end_type

1

#, #,

Numeric_parameter

#, #,

Numeric_parameter

first_radius

second_radius

#, #,

Numeric_parameter

radius

#, #, axis_placement_3d

position

Generic feature

#, #,

Numeric_parameter

#, #,

Numeric_parameter

#, #,

Descriptive_parameter

feature_name feature_id

depended_feature_id

constraint L[0:?]

Domain Nature

domain_specification feature_nature

#, #, Label

feature_label L[1:?]
element L[0:?] Feature_shape_schema

Generic_constraint_schema

feature_type

first_or_second

#, #,

Descriptive_parameter

#, #,

Descriptive_parameter

design
subtractive

#, #,

Descriptive_parameter

Design feature

Primitive feature

Subtractive feature

Slot_shape

course_of_travel

swept_shape

Fig. 6.5. Slot feature definition in EXPRESS-G

6.3.1 Mapping from extended EXPRESS model to ACIS workform format

6.3.1.1 Geometry mapping

In this research, in order to explicitly maintain feature shape and associative

relations in the product model, a cellular model is adopted. Cellular model

represents a part as a connected set of volumetric quasi-disjoint cells [36]. By

cellular decomposition of space, cells are never volumetrically overlapped. As each

cell lies either entirely inside or outside a shape volume, a feature shape can be

represented explicitly as one cell or a set of connected cells in the part. The cellular

model-based geometrical representation schema adopted in this research is shown

in Fig. 6.6. Basically, there are three types of topological entities for cellular

topology, which are CELL, CSHELL and CFACE. CELL has two subtypes, namely

118 Y.-S. Ma, S.-H.Tang and G. Chen

CELL2D and CELL3D. A CELL2D contains a list of CFACEs, each of which

points to faces that are double-sided and both-outside. A CELL3D contains a list of

CSHELLs. A CSHELL represents a connected set of CFACEs that bound the 3D

region of the cell. A CELL is attached to the normal ACIS topology in the LUMP

level (which represents a bounded, connected region in space, whether the set is

3D, 2D, 1D, or a combination of dimensions). Each CFACE has a pointer to a face

in the lump and use it in FORWARD or REVERSE sense.

As cellular model is directly supported in an ACIS, cellular husk is adopted.

Therefore, geometry mapping is one-to-one straight forward.

BODY

LUMP

EDGE

APOINT

CURVE

SURFACE

SHELL

LOOP

SUBSHELL

WIREFACE

VERTEX

COEDGE

CFACE

CSHELL

CELL

Fig. 6.6. Partial geometrical representation schema according to cellular topology [36]

6.3.1.2 Generic feature definition under ACIS framework

ACIS provides ENTITY-ATTRIBUTE architecture [36], under which we can

specify user-defined attributes (features, constraints or others). The following rules

are developed and used by the authors for defining features, constraints and other

attributes in ACIS:

Use simple attributes to represent properties such as the material of a body or

color of a face.

Use complex attributes to represent properties such as features, dimensions,

tolerance, or constraints.

Use bridging attributes to link an ENTITY with some application-specific and

parametric variables, such as dimensions.

Use instruction attributes placed on entities to force certain behavior.

Attributes of features and constraints may have various data types, e.g. string,

integer or ENTITY pointer.

Aggregating data type has been defined as ENTITY_LIST. The ENTITY_LIST

is a variable length associative array of ENTITY pointers and provides common

functions for the manipulation of its members, e.g. add ENTITY, look up ENTITY

and [] operator for accessing list member by position.

 A fine-grain and feature-oriented product database for collaborative engineering 119

Enumeration data type can be simulated by defining a string as the enumeration

member or simply using an integer data type.

Selecting data type can be simulated by using an abstract class and defining

specific types on top of the abstract class.

On the basis of the above proposed mapping rules, a generic feature definition

is created as shown in Fig. 6.7.

Generic Feature Definition

Attribute:
Domain: string;

Feature_name: string;

Nature: string;

Owner ID: ENTITY*;

Feature_ID: ENTITY*;

Depend_feature_ID list:ENTITY_LIST;

Parameter list:

 Parameter1;

 Parameter2;

 ...

Constraint list: ENTITY_LIST;

Feature element list: ENTITY_LIST;

 Cell list: ENTITY_LIST;

 Face list: ENTITY_LIST;

 Edge list: ENTITY_LIST;

 Vertex list: ENTITY_LIST;

Member functions:

Attribute acess:

getAttribute(),setAttribute()...

Modeling operation:

splitOwner(), mergeOwner()...

Feature validation:

geometryValidation(),

constraintSolving(),

Save and restore:

Save(),

Restore()

Entity
Entity ID: ENTITY*;

Feature_ID: ENTITY*;

Functions:

geometryValidation();

Constraint:

Attribute:
Owner_ID: ENTITY*;

Constraint_ID: ENTITY*;

Constraint_content;

Constraint_strength: int;

Constraint_sense: string;

Constrained_entity:

ENTITY_LIST;

Reference_entity_list:

ENTITY_LIST;

Other attribute:

...

Member function:
getAttribute();

setAttribute();

solveConstraint();

Other function:
...

Feature_label
Label_ID: ENTITY*;

Feature_name: string;

Element_name: string;

Reference_entity_ID: ENTITY*

Functions:

splitOwner(); mergeOwner();

Fig. 6.7. Generic feature definition with ACIS entities

6.3.2 Database representation schema

According to the mapping mechanisms proposed in [12], a geometrical

representation schema as well as generic feature representation schema in the

database has been developed. For details, please refer to [12].

6.4 The Integration of the solid modeler and the database

The solid modeler has been tightly integrated in four layers in order to manage

product and process information (see Fig. 6.8). First, its API functions are called

constantly which are encapsulated within the feature manipulation methods during

the collaboration sessions between the end users and the application server.

Second, all the geometrical entities are manipulated and their run-time consistency

maintained through the solid modeler’s implicit runtime data structure module.

120 Y.-S. Ma, S.-H.Tang and G. Chen

Third, it also provides runtime functional support directly to the end users via

commands dynamically. Fourth, the solid modeler has also to support the

repository operations via the DB manager.

DB managerDB managerDB managerDB manager

FeatureFeatureFeatureFeature
informationinformationinformationinformation

GeometricalGeometricalGeometricalGeometrical
datadatadatadata

OtherOtherOtherOther
informationinformationinformationinformationOCCI LibraryOCCI LibraryOCCI LibraryOCCI Library

OCCIOCCIOCCIOCCI
resultresultresultresult

OCCIOCCIOCCIOCCI
queryqueryqueryquery

DatabaseDatabaseDatabaseDatabase

Feature managerFeature managerFeature managerFeature manager

FunctionsFunctionsFunctionsFunctions

Runtime modelRuntime modelRuntime modelRuntime model

APIAPIAPIAPI

 Solid modeler Solid modeler Solid modeler Solid modeler

LibraryLibraryLibraryLibrary

ConstraintConstraintConstraintConstraint
solversolversolversolver

ConstraintConstraintConstraintConstraint
librarylibrarylibrarylibrary

FeatureFeatureFeatureFeature
librarylibrarylibrarylibrary

Session managerSession managerSession managerSession manager

............

Fig. 6.8. Partial integration diagram of a solid modeler and the feature-oriented database

This chapter focuses on the forth layer. In the proposed architecture of the web-

based feature modeling system [12], database (DB) manager is responsible for

managing the geometrical entities via the solid modeler runtime model and

manipulating the data elements to be stored and extracted in the database for

different applications. With the support of a solid modeler, the database manager

can provide data manipulation functions such as save, restore and validate

functions. These functions are fundamental to support different applications. In the

following sub-sections, feature validation methods together with the generic save

and restore algorithms are explained. In order to manage the connection between

the DB manager and the database during saving and restoring processes, OCCI

(Oracle C++ Call Interface) [37] is adopted as the bridge (see Fig. 6.8).

6.4.1 Feature model re-evaluation and constraint solving

Once feature operations are specified via User Interfaces (UIs), the product model

needs to be modified and updated. This process is achieved through feature

evaluation. The geometrical model has to be managed to ensure the consistency.

Here, the run-time product model should be generated via the integrated solid

modeler and managed based on the database records. All feature evaluation

operations call solid modeler APIs to realize the geometrical procedures while the

rest of the functions are implemented separately. In this way, the bottom-level

geometrical operations are readily looked after by the solid modeler; hence, the

development effort is significantly reduced. Details of feature model re-evaluation

will be explained in section 6.5.

Theoretically, feature validation functions include two kinds: those dealing with

the geometry, and those dealing with constraints. With the incorporation of a solid

modeler, geometry validation functions are not really necessary under the proposed

design because the solid modeler is responsible for manipulating and validating

 A fine-grain and feature-oriented product database for collaborative engineering 121

feature geometry. On the other hand, constraint-solving functions need to call

specific algorithms defined in the individual constraint sub-classes to solve

different kinds of constraints according to their types. Globally, all the constraints

are maintained by the Constraint Manager in a constraint graph for EPM (Entire

Product Model), which contains sub-graphs for specific application views.

Constraint manager solves constraints by calling the corresponding solvers

according to different constraint types. For example, SkyBlue algorithm [38] can

be used to solve local algebraic constraints in design domain; Degrees of Freedom

analysis algorithm [39] can be used to solve geometrical constraints in design

domain. If conflict of intra-application constraints occurs, local constraints solver

can determine automatically which constraint should be satisfy first according to

the value of constraint_strengh, which is an attribute of constraint defined in

section 6.2. Inter-application constraints can also be solved under the control of

constraint manager according to the value of domain_strength. For the definition of

domain_strength, also refer to section 6.2. The value of domain_strength, which

regulates priority sequence of different domains, can be predefined, or is set by an

authorized user. Any conflict of inter-application constraints will be detected by

constraint manager after which the constraints solver can trigger the corresponding

applications to reevaluate the product model according to domain_strength. Only

when all constraints are checked and feature geometry is validated, does feature

validation finish.

6.4.2 Save algorithm

To elaborate, during the saving process, the solid modeler has to extract all the

information from its runtime data structure and then save them into the database

after a format conversion according to the mapping relations and the database

mapping schema described in [12]. The Save algorithm can be expressed in the

steps as follows (see Fig. 6.9):

Initiate algorithm

by selecting the

part & creating an

empty entity_list

Cycle the

part to get

all entities

Create/update

the entity

graph and get

OIDs

Save entities
with OIDs

into the DB

Fig. 6.9. Save algorithm

• Select the part to be saved. Create an empty entity list and add the part

attributes to be saved to the list;

• Cycle all entities (features, topological entities, such as solids, shells, faces,

and geometrical entities, such as lines, planes, curves, and surfaces) from

the part and add them to a graph map so that object pointers can be fixed as

unique database Object Identifiers (OID). ACIS API functions, e.g.

api_get_xxxx(), are used to get all saved ENTITIES;

122 Y.-S. Ma, S.-H.Tang and G. Chen

• Use such object pointers to call save functions of the specific class (e.g.

point.save(), vertex.save() or feature.save()) to save part data to the

database.

6.4.3 Restore algorithm

Get all

entities of the

part from DB

Reconstruct

entity objects

& add them to

the graph

Traverse OIDs

and create

entities

Add them

into a

entity_list

& form a part

Fig. 6.10. Restore algorithm

In a reverse way, the uploading process is triggered when the product model is

being established during the session initiation from the database.

Restore algorithm has the following steps (see Fig. 6.10):

• All the entities of a part are retrieved from the database by searching their

linked Object Identifiers (OIDs);

• Reconstruct new objects, e.g. features, geometrical entities, topological

entities. Upon reconstruction, all the objects will be validated;

• Add all the entities to a newly generated object graph map;

• Convert these OIDs to genuine pointers;

• Create an entity list and add all the entities to the list to form the part.

Validation, e.g. geometry and feature validation will be carried out during

this procedure.

6.5 Feature model re-evaluation

6.5.1 Problems of historical-dependent system

For most parametric and history-based modeling systems, feature model is re-

evaluated by re-executing whole or part of the model history. The disadvantages of

this method are the high computational cost and the considerable amount of storage

space [16]. Moreover, history-based model re-evaluation causes ambiguous feature

semantics due to the static chronological feature creation order in the model

history. This is illustrated in the example shown in Fig. 6.11. The simple part

consists of a base block and a through hole. Later on, the designer wants to modify

the part by adding another block and extending the depth of hole so that he can get

the expected part model as shown in Fig. 6.11(b). However, sometimes unexpected

modeling results as shown in Fig. 6.11(c) can be generated by the history-based

reevaluation, because the feature creation order is baseblock->hole->block. In

 A fine-grain and feature-oriented product database for collaborative engineering 123

order to get the expected part model, the precedence order, in this example, should

be changed to baseblock->block->hole. This semantic problem is caused by the

static precedence order in the model history on which model re-evaluation is based.

From this example, it is clear that the precedence relation among features should be

dynamically maintained and updated after each modeling operation.

1. base block1. base block1. base block1. base block
2. hole2. hole2. hole2. hole

a

b

1. base block1. base block1. base block1. base block
2. hole2. hole2. hole2. hole
3. block3. block3. block3. block

c

Fig. 6.11. Semantic problem for historical-dependent system a. example part at the initial

state; b. expected result after modification; c. result of history-based re-evaluation after

modification

124 Y.-S. Ma, S.-H.Tang and G. Chen

6.5.2 Dynamically maintaining feature precedence order

In this work, feature precedence order is maintained dynamically based on a

feature dependency graph. Relations between independent features can be

determined by feature overlapping detection. Feature dependency relations are

explicitly defined in the feature definition as explained in section 6.2. The

following rules are proposed for feature precedence determination. Note that,

explicit rules always overrule implicit rules during dynamic maintenance of the

global precedence order of all features. Stated differently, the explicit rules will be

first used to determine the precedence relation; while if the global precedence order

cannot be uniquely generated, implicit rules will be then considered to get a unique

one.

Rule 1 (explicit rule)

For two dependent features, if feature f2 depends on feature f1, then f1 precedes

f2 [16].

 It is easy for us to derive from rule 1 that:

For n dependent features, if:

 f1 � f2� f3� …� fn

 Then, there exist:

 O1 < O2 < O3 < … < On

 where:

 fi�fj : represents feature dependency relation(e.g. f1� f2 means f2 depends

on f1);

Oi : represents the precedence order of feature fi .

Oi <Oj : represents the j
th
 feature is ordered after the i

th
 feature.

Rule 2 (explicit rule)

For a feature in the feature dependency graph, if it depends on two or more

features, the precedence order of this feature comes after the latest feature it

depends on (we call it latest depended feature or LDF).

Note that in the feature dependency graph, LDF is always the feature that has

the longest length of path (LLP) from the root node of the graph among all

depended features of a particular feature.

Path: a path in a graph is a walk whose nodes are all distinct;

Walk: a walk in a graph is a finite alternating sequence of nodes and edges

between its starting node and ending node;

Length of path: the length of a path is the number of edges that form the path.

Rule 3 (implicit rule)

For a group of features that have random precedence order, the feature

creation sequence will be used to determine their precedence relations.

The feature creation sequence is defined as an attribute attached to the feature

instance to record the sequence of the feature among all features in the part.

Rule 4 (implicit rule)

For two independent features, if they do not overlap with each other, the

precedence relation between them is determined by LLP of these two features.

There exists:

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3.

 A fine-grain and feature-oriented product database for collaborative engineering 125

Rule 5 (implicit rule)

For two independent features with same natures (both negative or both

additive), if they overlap with each other, the precedence relation between them is

random and should be determined by LLP of these two features. There exists:

O1 < O2 if LLP1 < LLP2

In the case of LLP1 = LLP2, the precedence order can be determined by rule 3.

Rule 6 (explicit rule)

For two independent features (f1 and f2) with different natures, if the overlap of

these two features is caused by some modeling operation of f2, then feature f1

precedes feature f2 [16].

Based on the above rules for feature precedence determination, after each

modeling operation, the following algorithm shown below is used to dynamically

maintain feature precedence relations.

• Find all the features of the part and add them to a graph map (unsorted).

• Partially sort the graph map according to the existing feature dependency

graph. This is done by using the algorithm shown in Fig. 12 on the basis of

rules 1 ~ 3.

• Sort the partially sorted graph with reference to the overlapping detection

result based on rules 4 ~ 6.

In this way, a global feature precedence order can be updated dynamically.

(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)(For i=1; i<n-1; i++)
{ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++){ (for j=i+1, j<n; j++)
 {if (Px {if (Px {if (Px {if (Px

jjjj
>Px>Px>Px>Px

iiii
))))

 {X {X {X {Xmmmm
= X= X= X= Xiiii

;;;;
 X X X Xiiii

=X=X=X=Xjjjj
;;;;

 X X X Xjjjj
=X=X=X=Xmmmm

;;;;
 } } } }
 } } } }
}}}}
Here:

X
i
 represents any feature in the feature set;

X
j
represents depended feature of X

i
;

Px
i
represents the position of feature X

i
 in the

feature map;

Fig. 6.12. Algorithm for precedence order generation [40]

6.5.3 History-independent feature model re-evaluation

First of all, re-evaluating the feature model requires that feature elements (cells,

faces, edges and vertices) are correctly identified in the cellular model. This can be

achieved by cellular entity owner list control.

6.5.3.1 Adding a New Feature Instance

This is carried out as follows:

126 Y.-S. Ma, S.-H.Tang and G. Chen

• Create the shape of the new feature (one cell shape);

• Attach labels of the feature to each face of the feature instance; and

• Carry out Boolean operation (with the ‘non-regular’ option).

• During non-regular Boolean Union, intersection detection will be carried

out for each cell (Ci) in the cellular model and the newly added feature cell

(C). Upon cellular decomposition, the owner list of each cell and cell face

should be controlled by the following rules [41]:

• The new cells that are in the intersection of C and Ci are assigned with an

owner list that is the union of the owner lists of C and Ci;

• Other non-intersecting cells resulting from the decomposition get their

owner lists which are the same as the original cells (either C or Ci);

• The new cell faces lying on the boundary of both C and Ci get the owner

list that is the union of the owner lists of the overlapping cell faces from

which it originates;

• The new cell faces lying on the boundary of either C or Ci inherit the owner

list from their respective original cell faces;

• The remaining new cell faces get an empty owner list.

Fig. 6.13(a) illustrates the creation of a slot feature on the base_block. The

shape of the slot is first created as a one-cell shape. Then non-regular-Boolean

Union is carried out to create the cellular model of the part. During the operation,

upon intersection analysis, cell decomposition is performed. On the basis of above

rules for cell and cell face owner list control, the result of the modeling operation is

shown in Fig. 6.13(b). Note that there are two cells in the cellular model. One is the

original base_block cell (has block feature in its owner list). The other is a new cell

generated by cell decomposition, namely the slot cell (which has block and slot in

its owner list). Three double-side faces separate these two cells. Each double-side

face has two corresponding cell faces (e.g. CF8 and CF9); one (CF8) is for the block

cell boundary, the other (CF9) is for the slot cell boundary.

Note that CFi represents i
th
 cell face; S represents slot feature; B indicates block

feature; and () indicates the labeled entity’s owner list.

6.5.3.2 Deleting a Feature Instance

This is carried out as follows (assume no other feature depends on the feature to be

deleted) [16]:

• Traverse through all the cells and cell faces to remove from their owner list

the feature to be deleted;

• Remove all the cells which has empty owner list. This can be realized by

removing all one-side faces bounding the cell;

• Merge adjacent cells which have the same owner list. This can be realized

by removing all double-side faces that separate the two cells;

 A fine-grain and feature-oriented product database for collaborative engineering 127

• Clean up the model by merging the adjacent faces that have the same

geometry and whose cell faces have the same owner list.

CF
5
 (S)

CF
4
 (S)

CF
1
(S)

CF
2
(S)

CF
3
 (S)

CF
6
 (S)

CF
1
 (B)

CF
2
 (B)

CF
3
 (B)

CF
4
(B)

CF
5
(B)

CF
6
(B)

Cell_Slot

Cell_block

a

CF
4
 (B)

CF
10
 (B, S)

CF
8
 (), CF

9
(S)

CF
7
 (B)

CF
2
(B)

CF
6
 (B)

CF
13
 (), CF

14
(S)

CF
3
 (B)

CF
5
(B)

CF
1
(B)

CF
16
 (B, S)

CF
15
 (B, S)

Cell (B, S)

Cell (B)

CF
11
 (), CF

12
(S)

b

Fig. 6.13. Creation of slot feature on the base block a. base block and slot shape; b.

result of modeling operation

128 Y.-S. Ma, S.-H.Tang and G. Chen

As shown in Fig. 6.14, to delete the slot feature from the cellular model, all

cells and cell faces in the cellular model are traversed through to remove from their

owner list the slot feature.

CF
4
 (B)

CF
10
 (B)

CF
8
 (), CF

9
()

CF
7
 (B)

CF
2
(B)

CF
6
 (B)

CF
13
 (), CF

14
()

CF
3
 (B)

CF
5
(B)

CF
1
(B)

CF
16
 (B)

CF
15
 (B)

Cell (B)

Cell (B)

CF
11
 (), CF

12
()

a

CF
4
 (B)

CF
10
 (B)

CF
7
 (B)

CF
2
(B)

CF
6
 (B)

CF
3
 (B)

CF
5
(B)

CF
1
(B)

CF
16
 (B)

CF
15
 (B)Cell (B)

Cell (B)

Cell (B)

b

Fig. 6.14. Feature deletion a. remove slot from owner list of cell and cell face; b. merge two

cells

The result is shown in Fig. 6.14(a). Then as two cells have the same owner list,

the block feature, these two cells are merged by removing three double-side faces

(the underlying faces of CF8 and CF9, CF11 and CF12, CF13 and CF14) that

separate them. The result is shown in Fig. 6.14(b). Finally, adjacent faces that have

 A fine-grain and feature-oriented product database for collaborative engineering 129

the same geometry and same owner list are merged. This option carries out the

merging of the underlying faces of CF5 and CF16, CF7 and CF15, as well as CF1,

CF2 and CF10. The result is the same as block feature shown in Fig. 6.14(a) before

creating the slot.

F
4
 (O)

F
9
 (N)

F
8
 (O)

F
7
 (O)

F
2
(O)

F
6
 (O)

F
11
 (O)

F
3
 (O)

F
5
(O)

F
1
(O)

F
13
 (N)

F
12
 (N)

Cell (S)

Cell (B)

F
10
 (O)

a

F
4
 (O)

F
8
 (O)

F
7
 (O)

F
2
(O)

F
6
 (O)

F
9
 (O)

F
3
 (O)

F
5
(O)

F
1
(O)

F
10
 (O)

b

Fig. 6.15. B-Rep evaluation a. boundary detection; b. boundary evaluation

130 Y.-S. Ma, S.-H.Tang and G. Chen

6.5.3.3 Modifying a Feature Instance

To modify a feature instance, we shall first check which features are really

involved in the modeling operation. This checking is based on the feature

dependency graph and the global feature precedence order. Next, features involved

will be removed from the part model. Finally, features with modified properties

will be added to the model.

6.5.3.4 B-rep Evaluation

As the cellular model of a part contains much more information than only the

boundary of the final part, which means it also contains faces that are not on the

boundary. Therefore, the B-rep evaluation of the cellular model requires boundary

detection of every face in the cellular model. The following rules are used to carry

out the boundary detection of faces in the cellular model:

• For each single-side face of a cell, the nature of the cell determines whether

it is on-boundary or not. Additive nature of the cell means the face is on-

boundary; subtractive nature of the cell means the face is not-on-boundary.

• For each double-side face of a cell, if the cell has a different nature with the

partner cell that shares the same face, this double-side face is on-boundary;

otherwise, it is not-on-boundary.

Note that the nature of a cell is determined by the nature of its last owner in the

cell owner list. The sequence of cell owner list is dynamically maintained

according to the unique feature precedence order, see section 6.5.2. On the basis of

boundary detection of each face in the cellular model, the B-rep evaluation of the

cellular model can be carried out in steps as follows:

• Walk through all the faces and find all the faces that are not-on-boundary;

• Remove all the cells and the faces that are not-on-boundary;

• Merge adjacent faces that have the same geometry.

Also taking the part shown in Fig. 6.13(b) as an example, on the basis of rules

for boundary detection, the result of boundary detection is shown in Fig. 6.15(a).

Then, the B-Rep evaluation of the cellular model can easily be realized by

removing three faces (F9, F12 and F13) that are not-on-boundary. The result is

shown in Fig. 6.15(b). Note that in Fig. 6.15, O represents on-boundary; N

represents not-on-boundary.

6.6 A Case Study

The proposed feature-oriented database has been implemented coupled with a

geometrical modeling kernel, ACIS. Design features and constraints have been

defined and some example parts have been tested. Fig. 6.16 illustrates the creation

of an example part which is made up of a base_block, a vertical_support, a rib, a

cylinder and two through_hole features.

 A fine-grain and feature-oriented product database for collaborative engineering 131

CCCC1111

CCCC2222

CCCC3333

CCCC4444

CCCC5555

CCCC6666

CCCC7777
CCCC8888

HHHH1111

HHHH2222

RRRR2222

DDDD1111 DDDD4444

DDDD2222 WWWW2222

HHHH

RRRR1111

a

Baseblock

Through_hole1

Rib

Vertical

support

Through_hole2

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1 Through_hole 2

 b c

Fig. 6.16. A case part a. creation of the case part; b. modeling result; c. feature dependency

graph

All the parameters and constraints are listed in Tab. 6.1. The precedence order

of the part can be generated according to the rules described in section 6.5.2 as

follows: Base_block � vertical_support � cylinder � rib � through_hole 1 �

through_hole 2.

If the designer wishes to add a cylinder_boss feature on the top of cylinder

overlapping with the hole2 as shown in Fig. 6.15, feature overlapping detection and

semantic constraint checking (semantic constraints here refer to through_hole2

must have both top and bottom face not_on_boundary) will be carried out. In this

case, constraint conflict happens because the semantic constraint of the

through_hole2 cannot be satisfied if the current precedence relation is kept.

Therefore, a message will be generated by the system to prompt the user on how to

solve such problems (via changing the precedence order of those two features as

shown in Tab. 6.2).

After modification, the feature precedence order of the part will be changed

from: base_block� vertical_support � cylinder � rib � through_hole1�

132 Y.-S. Ma, S.-H.Tang and G. Chen

through_hole2� boss to: base_block � vertical_support � cylinder � rib �

through_hole1� boss � through_hole2.

Tab. 6.1. Features, constraints and parameters in the example part

Feature Constraints and parameters

Baseblock Determined by two position points (0,0,0) and (100,100,10). length of

baseblock = 100; width of baseblock = 100; height of baseblock = 10

Vertical_

support

Geometric constraints: verticalsupport_start coplane with baseblock_left;

Radius of arc C2 , R1 =16; Center of arc C2 determined by two distance

constraints: D1=50; D2=60; C1 tangent to C2 ; C3 tangent to C2; Extrusion

length W2=10

Cylinder Geometric constraint: Cylinder_top coplane with baseblock_left; Center

of cylinder_top concentric to arc C2 ; Height of cylinder H = 85

Rib Distance constraint: distance between C5 and C7,

2 2
3 2 1 1 1((/ 2))D D R R W= − − − ; Extrusion length W1=10

Through_h

ole1

Geometric constraints: Through_hole1_top coplane with cylinder_top;

Through_hole1_bottom coplane with cylinder_bottom; Center of

through_hole1 concentric to the center of cylinder; Radius of

through_hole1 = 8

Through_h

ole2

Radius of through_hole2 R3 =3; Through_hole2_topcenter determined by

three distance constraints: D1, D2+R1, and D4 ; Height of through_hole2

2 2
2 1 2 3H R R R= − −

Tab.6.2. Redefining two features

Feature Constraints and parameters

Cylinder

boss

Radius of cylinder boss R4 = 6;

The top center of cylinder boss determined by three distance constraints:

D1, D4 and D5 (distance between top center of cylinder boss and top of
base block in Z axis; Height of cylinder boss

2 2
2 5 2 1 4H D D R R= − − −

Through_h

ole2

Radius of through_hole2 R3 =3; Top center of through_hole2 coplane

with top center of cylinder boss ; Top center of through_hole2 concentric

with top center of cylinder boss; Height of through_hole2

2 2
2 5 2 3H D R R= − −

Therefore, the result part model after modification can be generated as shown

in Fig. 6.17(a). The dependency graph of the modified part can be expressed as

shown in Fig. 6.17(b).

Subsequently, the designer wishes to remove the boss feature. According to the

feature dependency graph shown in Fig. 6.17(b) and the latest feature precedence

 A fine-grain and feature-oriented product database for collaborative engineering 133

order, the removal of the boss feature can be done by removing the boss as well as

the hole feature that depends on the boss feature. The final part after removing the

boss is shown in Fig.6.18.

Baseblock

Through_hole1
Vertical

support

Through_hole2

Cylinder

Rib

Cylinder_

boss

Baseblock

RibCylinder

Vertical_support

Through_hole 1 Cylinder boss

Through_hole 2

 a b

Fig. 6.17. Feature model after adding a boss a. modeling result; b. feature dependency graph

after adding a boss

Baseblock

Through_hole1

Rib

Vertical

support

Cylinder

Baseblock

RibCylinder

Vertical_support

Through_hole 1

 a b

Fig. 6.18. Feature model after removing the boss feature a. modeling result after removing

the boss feature; b. feature dependency graph

6.7 Conclusion

In this chapter, the integration of a fine-grain, feature-oriented database and a solid

modeler, is presented. The mapping mechanisms, from EXPRESS-defined generic

feature model entities to ACIS workform format, and the integration with the

repository database schema are described. Generic algorithms for feature

manipulation with the solid molder and database methods are illustrated. Finally, a

modeler-supported, history-independent feature model re-evaluation approach is

described in detail. Based on the working prototype system, it can be concluded

134 Y.-S. Ma, S.-H.Tang and G. Chen

that solid modeler can be effectively integrated with the feature-oriented database

to provide low-level geometrical modeling services. This kind of integration can

further enable information sharing among different applications and Web enabled

engineering collaboration.

6.8 Acknowledgements

The authors gratefully acknowledge the support of technical staff in Design

Research Center and CAD/CAM lab of Nanyang Technological University.

6.9 References

[1] Nwagboso C, Georgakis P and Dyke D, (2004), “Time compression design

with decision support for intelligent transport systems deployment,”

Computers in Industry, 54:291-306.

[2] Terwiesch C and Loch CH, (1999) Measuring the effectiveness of

overlapping development activities. Management Science, 26:44-59.

[3] Prasad B., (1996) Concurrent Engineering Fundamentals: Integrated

Product and Process Organization, Prentice Hall.

[4] Mittra SS, (1991) Principles of Relational Database Systems, Prentice

Hall.

[5] Raflik, M, (1990) CAD*I Database-An Approach to an Engineering

Database, ECSC-EEC-EAEC.

[6] Regli WC and Gaines DM, (1997) A repository for design, process

planning and assembly. Computer-Aided Design, 29:895-905.

[7] Kang SH, Kim N, Kim CY, Kim Y and O’Grady P, (1997) Collaborative

design using the world wide Web. Technical Report, Dept. Industrial

Engineering, Seoul National University, Korea.

[8] Loffredo D, (1998) Efficient database implementation of EXPRESS

information models. PhD Thesis, Rensselaer Polytechnic Institute, New

York.

[9] Hoffmann CM and Arinyo RJ, (1998) CAD and the product master

model. Computer-Aided Design, 30(11):905-918.

[10] Wang HF and Zhang YL, (2002) CAD/CAM integrated system in

collaborative development environment. Robotics and Computer

Integrated Manufacturing, 18: 135-145.

[11] Wang HF, Zhang YL, Cao J, Lee SK and Kwong WC, (2003) Feature-

based collaborative design. Journal of Material Processing Technology,

139:613-618.

[12] Tang SH, Ma YS and Chen G, (2004) A feature-oriented database

framework for web-based CAx applications. Computer-Aided Design &

Applications, 1(1-4): 117-125.

 A fine-grain and feature-oriented product database for collaborative engineering 135

[13] Tang SH, Ma YS and Chen G, (2004) A Web-based collaborative feature

modeling system framework. Proceedings of the 34th International

MATADOR conference, 31-36.

[14] Chen G, Ma YS, Thimm G and Tang SH, (2004) Unified feature

modeling scheme for the integration of CAD and CAx. Computer-Aided

Design & Applications, 1(1-4):595-602.

[15] Martino TD, Falcidieno B and Habinger S, (1998) Design and engineering

process integration through a multiple view intermediate modeler in a

distributed object-oriented system environment. Computer-Aided Design,

30(6):437-452.

[16] Bidarra R and Bronsvoort WF, (2000) Semantic feature modeling.

Computer-Aided Design, 32:201–225.

[17] Bidarra R, van den Berg E and Bronsvoort WF, (2001) Collaborative

modeling with features. Proceedings of DETC’01 ASME Design

Engineering Technical Conferences, Pittsburgh, Pennsylvania.

[18] Bronsvoort WF, Bidarra R, Dohmen M, van Holland W and de Kraker

KJ, (1997) Multiple-view feature modeling and conversion. In: Strasser,

W., Klein, R., and Rau, R. (Eds.), Geometric Modeling: Theory and

Practice - The State of the Art, Springer, Berlin, 159-174.

[19] Bronsvoort WF, Bidarra R and Noort A, (2001) Semantic and multiple-

view feature modeling: towards more meaningful product modeling. In:

Kimura F, (Ed.) Geometric Modeling - Theoretical and Computational

Basis towards Advanced CAD Applications, Kluwer Academic Publishers,

69-84.

[20] Kim J and Han S, (2003) Encapsulation of geometric functions for ship

structural CAD using a STEP database as native storage. Computer-Aided

Design, 35:1161–1170.

[21] Bhandarkar MP, (2000) STEP-based feature extraction from STEP

geometry for agile manufacturing. Computers in Industry, 41:3-24.

[22] Dereli T and Filiz H, (2002) A note on the use of STEP for interfacing

design to process planning. Computer-Aided Design, 34:1075-1085.

[23] Fu MW, Ong SK, Lu WF, Lee IBH and Nee AYC, (2003) An approach to

identify design and manufacturing features from a data exchanged part

model. Computer-Aided Design, 35:979–993.

[24] Holland P, Standring PM, Long H and Mynors DJ, (2002) Feature

extraction from STEP (ISO10303) CAD drawing files for metal-forming

process selection in an integrated design system. Journal of Materials

Processing Technology, 125-126:446-455.

[25] Suh YS and Wozny MJ, (1997) Interactive feature extraction for a form

feature conversion system. In: Hoffmann CM and Bronsvoort WF (Eds.),

Solid Modeling ’97, Fourth Symposium on Solid Modeling and

Applications, 11-122, New York, ACM Press.

[26] Li WD, Ong SK and Nee AYC, (2002) Recognizing manufacturing

features from a design-by-feature model. Computer-Aided Design,

34:849-868.

136 Y.-S. Ma, S.-H.Tang and G. Chen

[27] Gao J, Zheng DT, and Gindy N, (2004) Extraction of machining features

for CAD/CAM integration. International Journal of Advanced

Manufacturing Technology, 24:573–581.

[28] Noort A, Hoek GFM and Bronsvoort WF, (2002) Integrating part and

assembly modeling. Computer-Aided Design, 34:899-912.

[29] Bronsvoort WF and Noort A, (2004) Multiple-view feature modeling for

integral product development. Computer-Aided Design, 36:929-946.

[30] Ma YS and Tong T, (2003) Associative feature modeling for concurrent

engineering integration. Computers in Industry, 51: 51-71.

[31] Ma YS, Britton GA, Tor SB, Jin LY, Chen G and Tang SH, (2004)

Design of an feature-object-based mechanical assembly library.

Computer-Aided Design & Applications, 1(1-4):379-403.

[32] Geelink R, Salomons OW, Van Slooten F, Van Houten FJAM and Kals

HJJ, (1995) Unified feature definition for feature based design and feature

based manufacturing. Proceedings of the 15th Annual International

Computers in Engineering Conference and the 9th Annual ASME

Engineering Database Symposium, 517-533.

[33] Chen G, Ma YS, Thimm G and Tang SH, (2005) Knowledge-based

reasoning in a unified feature modeling scheme, Computer-Aided Design

& Applications, 2(1-4): 173-182.

[34] Chen G, Ma Y S, Ming XG, Thimm G, Lee SSG, Khoo LP, Tang SH and

Lu WF, (2005) A unified feature modeling scheme for multi-applications

in PLM. Proceedings of The 12th ISPE International Conference on

Concurrent Engineering (CE2005): Research and Applications -Next

Generation Concurrent Engineering, Sobolewski M and Ghodous P

(Eds.), ISPE, Dallas, 343-348.

[35] ISO, (1994) Industrial Automation Systems and Integration — Product

Data Representation and Exchange — Part 11: Description Methods: The

EXPRESS Language Reference Manual, ISO 10303-11, Geneva.

[36] ACIS Online Help User’s Guide. Available at http://www.spatial.com.

[37] ORACLE online documentation. Available at http://www.oracle.com.

[38] Sannella M, (1993) The SkyBlue constraint solver and its applications.

First Workshop on Principles and Practice of Constraint Programming.

[39] Kramer GA, (1992) Solving geometric constraints systems: a case study

in kinematics, The MIT Press, USA.

[40] Wirth N, (1976) Algorithms + Data Structure = Programs, Prentice-Hall.

[41] Bidarra R, Madeira J, Neels WJ and Bronsvoort WF, (2005) Efficiency of

boundary evaluation for a cellular model. Computer-Aided Design,

37:1266-1284.

