

 Int. J. Manufacturing Research, Vol. 5, No. 1, 2010 87

 Copyright © 2010 Inderscience Enterprises Ltd.

Feature and Product Markup Languages
in service-oriented CAX collaboration

A. Khaled
Electrical and Computer Engineering Department,
University of Alberta,
AB T6G 2G8, Canada

Y-S. Ma*
Department of Mechanical Engineering,
University of Alberta,
AB T6G 2G8, Canada
E-mail: yongsheng.ma@ualberta.ca
*Corresponding author

J. Miller
Electrical and Computer Engineering Department,
University of Alberta,
AB T6G 2G8, Canada

Abstract: The competitive and open market nature demands different vendors
to collaborate during the product life cycle and to reduce the product’s time
to market. In this paper, we propose an infrastructure to enable the
concurrent collaboration of heterogeneous Computer Aided tools for concurrent
engineering aspect X (CAX) at the feature level using a Service Oriented
Architecture (SOA) approach. A Feature Markup Language (FML) and
a Product Markup Language (PML) are proposed as the modelling
and communication media for feature and product information representation
and exchanges which can be independent to operating system and programming
language.

[Received 4 December 2008; Revised 9 July 2009; Accepted 20 July 2009]

Keywords: collaborative engineering; markup languages; PLM; product
lifecycle management.

Reference to this paper should be made as follows: Khaled, A., Ma, Y-S.
and Miller, J. (2010) ‘Feature and Product Markup Languages in
service-oriented CAX collaboration’, Int. J. Manufacturing Research, Vol. 5,
No. 1, pp.87–101.

Biographical notes: Adel Khaled is pursuing his PhD Degree in software
engineering at University of Alberta. For the past four years, he has held the
positions of technical manager and software architect at Netways, an e-Solution
company based in Riyadh. He has over seven years of experience in software
development with Microsoft .Net related technologies developing client-server
windows based applications, web services and distributed applications.

 88 A. Khaled et al.

He has implemented several projects using Microsoft technologies such as
Content Management Server, SharePoint Portal Server, Microsoft Message
Queuing, MS SQL Server and BizTalk.

Yong-sheng Ma joined the Department of Mechanical Engineering of
University of Alberta since September, 2007. Before that, he had been with
Nanyang Technological University in Singapore for seven years. His main
research areas include product lifecycle management, feature-based product
and process modelling. He received his BEng from Beijing TsingHua
University (1986) and obtained both his MSc and PhD Degrees from UMIST,
Manchester (1990 and 1994). In Singapore, he also lectured at Ngee Ann
Polytechnic (1993–1996) and worked as a group manager and senior research
fellow at the Singapore Institute of Manufacturing Technology (1996–2000).

James Miller has been with the Department of Electrical and Computer
Engineering at the University of Alberta as a full Professor since 2000.
His research interest is in software and systems engineering. He received the
BSc and PhD Degrees in Computer Science from the University of Strathclyde,
Scotland. He has investigated in the areas of software verification, validation
and evaluation issues across various domains, including embedded, web-based
and ubiquitous environments. He currently sits on the editorial board of the
Journal of Empirical Software Engineering.

1 Introduction

Throughout the PLM, different processes and vendors are involved (Thimm et al., 2006).
This mandates the use of different CAX systems that exist at disperse geographical
locations with different ownership of the infrastructures. This raises several challenges,
including but not limited to

1 difficulties of direct information sharing between the two tools due
to format incompatibilities

2 the need to build custom components for information transformation
and exchange

3 the loss of many of the semantics and design intents during the transformation
and exchange process

4 software tools might be phased-out along the years

5 increased cost of maintaining the transformation tools, especially with the continuous
change in software technology

6 difficulty in synchronising changes that might raise conflicts that require human
interaction to resolve it

7 no possibility for concurrent collaboration on the product model.

In the current CAX integration approach, an adapter or a custom built component
must be built that takes care of the translation when exchanging information between
two systems, and the adapter must be compatible with a middleware and use the
same language for communication. This work proposes two DSLs for PLM as the

 Feature and Product Markup Languages in service-oriented 89

medium of communication. The languages’ specifications combined with a hub
architecture (adapters are required) to provide standardised automated infrastructure
to enable machine-to-machine interactions and leverage the collaboration aspects
between different vendors contributing to the same product model. Figure 1 shows a
framework at an abstract level that makes connections with the underlying geometry and
topology of a particular feature (Tang et al., 2004).

Figure 1 A feature-oriented database framework for web-based CAx applications

This paper proposes a solution that is based on the new technologies of associative
features (Ma and Tong, 2003), Web Services specifications (WS-*), SOA, and Extensible
Markup Language (XML). The solution is aimed to result in the high acceptability
and adoption by the industry while reusing much of the currently existing systems. In the
rest of this paper, the architectural details of the system from the engineering contents
communication point of view are discussed in Section 2. Then, in Section 3 the modelling
language requirements are introduced. Sections 4 and 5 propose the specifications of two

 90 A. Khaled et al.

major components of the proposed solution, feature and PMLs, respectively. Section 6
offers concluding remarks.

2 Architectural overview

This research focuses on feature-based collaboration throughout product lifecycles.
The process of exchanging CAX files involves file translation and transformation,
and is limited to geometric information, hence leading to misinterpreting design intent
and loss of information. Moreover, equivalent constructs for items translated must
exist in the destination CAX tool. Even exchanging CAX files between the same CAX
tools does not guarantee the recognition of constructs by the destination application.
This research leverages the concept of associative feature (Ma and Tong, 2003) where the
concept expands the feature definitions of specific application-related shapes through
a set of well-constrained geometric entities. By using object-oriented approach, a feature
type can be modelled in a declarative manner which basically consists of the properties
and behaviours. Feature properties define the geometric entities, and behaviours define
the related constraints and logics in functioning methods throughout the lifecycle
of any feature instance. With the built-in object polymorphism capability, a systematic
modelling scheme for a generic and abstractive parent feature class, with levels of
specification as per application domain requirements, can be developed.

One major concern in the research community is how the architecture can be used to
support a product development environment where multiple CAD systems (e.g., CATIA,
NX, Pro/E or STEP) are present. Clearly, a neutral product modelling scheme has to be
developed. This neutral product model makes use of a comprehensive mapping scheme
that could interface the neutral and equivalent geometric and non-geometric entities
with different CAX systems. While the information shared across different entities is
associated via a feature-oriented product repository system (Ma et al., 2007), but the
feature validity and functional methods to create, edit, and keep the integrated
constraints, are expected to be handled via an application specific product modelling
engine, such as the solid modellers at the bottom of CAD application architectures.
For the geometric modelling aspect, the STEP standard data structures can be adopted
as a common reference model. For more advanced feature-oriented applications,
the centralised fine grain repository system (Ma et al., 2007) can be further designed
and implemented to support the interactions and the reference relations across different
applications at a higher level under a feature-oriented collaboration scheme.

Such a generic feature definition scheme unifies many traditionally defined
(ISO, 1999, 2000), application-oriented feature definitions, and supports XML
representation and fine grain database repository. Under the associative feature concept,
the associative constraints across multiple phases of applications of a product’s life cycle,
complicated engineering patterns and engineering intent can be implemented.
An example associative feature, cooling channel pattern in plastic injection mould design,
was given in Ma and Tong (2003) (see Figure 2). An initial sketch-based conceptual
pattern is implemented and its downstream cooling ‘hole’ features are derived from the
pattern; and then the related assembly interfacing features and associated standard
components at the manufacturing and assembly stages are associatively generated and
managed via a well defined feature class model. Figure 3 depicts another example of
associated feature, ‘referenced face regions’ which defines the associated geometric

 Feature and Product Markup Languages in service-oriented 91

mapping between a rubber part region, its related core and cavity mould surface regions,
and the corresponding region created on the electrode for manufacturing the cavity.

Figure 2 An example associative feature, cooling channel pattern

Figure 3 ‘Referenced surface region’ in an associated feature applied in a rubber mould
design: (a) Rubber part model; (b) Extracted surfaces for the upper and lower cavities
and (c) Electrode model developed (see online version for colours)

The associative feature concept does not emphasise the particular name of a traditional
feature definition in the real application, such as a ‘pocket’, a ‘slot’, or a ‘hole’.
Rather, it emphasises the overall support of the common properties and behaviours from
the parent ‘generic feature’ for the common functions of any feature, and a well-defined
sub-class of the ‘generic feature’ parent, i.e. the ‘pocket’, or the ‘slot’, or the ‘hole’ which
supports the relevant properties and behaviours of their specific application properties
and behaviours. In associative feature modelling, a feature name is only a labelling
attribute that identifies a sub-class definition type. Feature information is utilised and
shared by using OS and programming language independent constructs based on SOA.
We approach the problem by defining a web-friendly and machine sensible modelling
language to define features and exchange CAX information.

 92 A. Khaled et al.

Figure 4 is a conceptual architecture diagram of the solution. The core application
component is a collaboration server supported by middleware that exposes a set of web
services. The server manages the flow of model information between collaborating
partners. The collaboration server manages the feature definitions catalogue. Feature
definitions are articulated using FML which is based on XML and part of our PLM-DSL.
FML is further discussed in Section 4. Suppliers collaborating on the same model are
themselves service providers by exposing a set of web services that invoke and execute
their feature logic implementation codes.

Figure 4 Conceptual architecture diagram (see online version for colours)

A CAX tool modifies a model by invoking some operations or methods on certain
features. The invocation action goes through a so-called feature proxy which passes any
real invocation to the collaboration server. The collaboration server using a routing
mechanism would connect to the feature provider and channel through the invocation.
The logic is executed on the feature provider server and the invocation result is returned
to the CAX tool through the collaboration server. This architectural design frees
the collaborators from exchanging libraries that include the feature implementation.
A consumer of a feature interacts with the actual implemented feature through feature
proxies that act as stubs that channel the method invocation through the collaboration
platform to the provider of the feature. On the other hand, any change on the model is
propagated to the CAX data models and managed by the collaboration server. Subsequent
changes are validated by the collaboration server to ensure the consistency of
model through checking the constraints involved at the model and feature levels.
Systems communicate with the collaboration server using PLM-DSL constructs on top of
Simple Object Access Protocol (SOAP) messages. SOAP messages can run on top of
different transport protocols such as HTTP, TCP, and UDP. WS-* specifications
such as Reliable Messaging and Transaction can further be utilised to enhance the
communication between the CAX systems and the collaboration server.

 Feature and Product Markup Languages in service-oriented 93

3 Modelling language

The product lifecycle spans multiple phases and involves different contributors
with different roles during PLM (Thimm et al., 2006; Ma and Fuh, 2008). PLM requires
the collaborative creation, management, dissemination, and the use of product model
and process model information across the extended enterprise, from market concept
to product retirement. This collaborative nature mandates the CAX information
sharing between partners. Non-geometrical information and design intent are stripped
away during the process of CAX file exchange via some format such as STEP
standard (ISO, 1999, 2000). As a consequence, the major challenge is to develop a
‘feature-centric’ expert system that incorporates knowledge and information from all
phases of the PLM and supports global, concurrent design and engineering. Ma et al.
(2005), Ma and Tong, (2000) introduced the concept of Associate Feature (AF) as a form
of self-contained and well-defined design object to capture the semantics and intents
during the product lifecycle. However, their previous works described AF more in terms
of its constituent elements and form.

This work proposes a neutral modelling language to model a product using
fine-grained AFs as the building blocks. It leverages the collaborative environment by
capturing the semantics and design intent during the product lifecycle. Moreover,
by increasing the level of abstraction, the proposed architecture breaks away from a
specific operating system and programming language. These criteria can be met by
developing a DSL for the proposed modelling method (Regio et al., 2005). Therefore,
the objective of this work is to design DSL language at different levels of information
abstraction to capture the information flow in PLM. Some of the considerations
undertaken in the design of PLM-DSL include

1 modelling both geometric and non-geometric information

2 web-friendly mechanisms to enable collaboration and data transfer over the web

3 machine readable and computer sensible data types and methods to enable
automation and machine-to-machine communication

4 extensibility and composability to accommodate for the evolving nature of the
industry

5 versioning support especially for the AF definitions as well as their instances
such that AF life can be extended for many years.

The proposed DSL schema needs to be flexible enough to preserve the semantics
of the artefacts and to allow some degree of extensibility to meet the needs of growing
deployment.

XML is used as the underlying language for designing the Domain Specific language.
Web services and web service specifications are to be applied to enable automation
of scenarios related to integration and B2B transactions. XML is machine, OS and
programming language independent and, moreover, many tools and libraries exist in the
market nowadays to process XML documents. PLM-DSL is composed of two protocols
to meet our requirements for modelling: FML and PML. Both of them are expressed as
XML schemas using the XML schema definition language, ‘XSD 1.1’. The schemas
define the grammar, structures and types in an XML document (Thompson et al., 2004;
Biron et al., 2004). Using XSD offers many advantages, e.g., it is machine readable;

 94 A. Khaled et al.

those defined schemas are self documented; it is a W3C recommendation and widely
accepted as a standard; and its definitions can be versioned. Figure 5 depicts the building
blocks of the proposed PLM-DSL.

Figure 5 Product modelling language

4 FML

Associate Features are fine-grained objects that encapsulate both data and behaviour
(Ma et al., 2007). The data encodes the semantics and state of the feature. Behaviours
are realised in the form of methods and if invoked would change the internal state of a
feature. FML was first introduced in Ma et al. (2009) as an associative feature modelling
language. FML schemas are based on XML Schema Definition (XSD 1.1). They define
the grammar and constructs of FML constituents. An FML document is an XML info-set
conforming to the FML schema that captures both the geometric and non-geometric
details of a feature preserving the semantics and intent of the designers. An FML
schema describes the attributes, constraints and the interfaces of a feature. The following
sections describe these concepts in further detail.

4.1 Attributes

Attributes represent the data state of the feature and are identified by unique names
within the FML definition. An attribute type can be as simple as a primitive type such
as integers, strings and float, or complex types such as points and faces structure.
Complex types are aggregates of other simple and/or complex types. XSD schemas
provide the capability to define a rich set of types that are reusable by other XSD
schemas. Such reuse of schema defined types is analogous to reusable types packaged
in software libraries such as dynamic link libraries in the windows operating system
world.

Figure 6 graphically represents a complex type ‘Point’ of a schema for complex
types. Type ‘Point’ having three primitive types x, y and z of type double.
Another complex type recognised from the figure is the type ‘Edge’ which in turn has
two attributes p1 and p2 of type ‘Point’. To demonstrate the type definition capabilities
of XSD, we defined XSD types that are equivalent to the topological geometric objects of
ACIS. ACIS is a geometric modeller which represents a shape in terms of a network
of interrelated geometric and topological objects (Corney and Lim, 2001). The reason for
choosing ACIS as a reference data structure model is the capability of cellular
representation that allows multiple views of geometrical entities to coexist without
conflicts. On the other hand, any solid modeller that has a mechanism to represent
unified (especially geometric) entity multi-views can be considered as a candidate

 Feature and Product Markup Languages in service-oriented 95

reference model. Eventually, a mapping mechanism that can encapsulate different
‘engines’ into a ‘software factory’ has to be studied and developed.

Figure 6 Complex type definitions (see online version for colours)

Listing 1 is the XML schema showing the defined types of both Point and Edge as
complex types. XSD schemas include a couple of mechanisms both data-centric and
object-oriented for creating and defining a rich type system. Some of the data-centric
concepts include constraints such as required values and unique keys while concepts such
as inheritance are inferred from the object-oriented approach.

Listing 1 Schema complex type definition (see online version for colours)

Figure 7 depicts one way to model ACIS objects using XSD type system. Many of the
type attributes are omitted, to simplify the graph. Every defined type inherits directly
from the ENTITY type. The LUMP type, for example, is defined as a complex type that
has a collection of SHELL objects.

 96 A. Khaled et al.

Figure 7 ACIS representational hierarchy using XML schema definition

4.2 Constraints

Constraints encode the rules and policies of a feature and define the relationship
with other features in a product model. Some examples of constraints are parameter
constraints such as dimensions, relations of referenced entities, tolerances, while some
are more complicated and to be managed by certain procedures, such as derivations
from upstream entities, and evolved design patterns like cooling circuit in mould
design (Ma and Tong, 2003). The constraint knowledge is encapsulated in a feature and
controls the modifications applicable to its internal state. There are several levels where
constraints can be defined

1 At the type level; the acceptable set of values the type can assume is defined.
This is implemented through XSD type system.

2 At the feature level which governs the rules and policies that relates attributes within
the feature. The rules are defined at the FML level using the FML schema constraint
constructs.

3 At the model level which governs the relationship between different features.
The constraints are defined at the model level using PML schema constructs.

4.3 Interfaces

As mentioned earlier, a feature encapsulates behaviour that defines the set of operations
callable on the feature. An operation is a method that can be invoked on a feature and
leads to one of the following effects:

 Feature and Product Markup Languages in service-oriented 97

1 changing the internal state of the feature by modifying one or more attribute value

2 changing the state of other features in the model governed by the constraint set

3 creating and deleting an instance of a defined type.

To allow user defined features, FML schema enables feature developers to define
behaviour by using interfaces. An interface is a group of related operations that specify
an abstract contract. The interface lists the methods defined in a feature and the input
parameters passed to a feature and the returned output parameters. It does not provide a
description of the concrete implementation of the feature. An interface is similar to the
port construct in a Web Service Description Language (WSDL) document. WSDL is an
XML based language and was the first widely adopted mechanism for describing
the basic characteristics of a Web service (Cabrera and Kurt, 2005). A WSDL document
describes how to call a method in a service without describing the internals of the method
implementation. It describes what a request message must contain and what the response
message look like in unambiguous notation. The Grouping of operations into interfaces
allows feature developers to reuse the interface definitions during the development of
other features and in such a way a type can be reused.

Listing 2 is an FML fragment that defines an interface called IFace and has
two operations: CountEdges and AddEdge. The CountEdges operation has no input
parameters, while it returns an output parameter of type integer. On the other hand,
the AddEdge operation accepts one input parameter of type EDGE and returns an output
parameter of type Face.

Listing 2 FML interface definition (see online version for colours)

A feature implementing the interface IFace inherently acquires the behaviour of a surface
and supports the operations CountEdges and AddEdge. Note that the IFace interface is
defined as a XSD type and therefore can be applied to other features. To successfully call
an operation defined by an interface, the application must make sure to pass the input
parameters as defined by the interface. A feature can have 0 or more interfaces depending
on their complexity. The more interfaces implemented by a feature the more it has
support for operations. We can define unlimited number of interfaces using the same type
definition mechanism of XSD and as dictated by the FML language. Consider a scenario
where we need to add extra information to a feature. In this case we can define an
interface called ITaggable, that has one method called GetTags, and apply the interface to
the feature. The GetTags will return the extra information associated with the feature.
The mechanism of applying interfaces to features allows feature developers to tag their
features with interfaces using interface definitions. Listings 3 and 4 demonstrate the
concrete implementation of an interface using C# and C++, respectively.

 98 A. Khaled et al.

Listing 3 C# sample code implementing IFace

Listing 4 C++ sample code implementing IFace

The code implementation of the IFace interface corresponds to the schema defined
previously. A class named SampleFeature implements the interface by providing the full
method implementation.

A CAX tool using the SampleFeature needs to know only the lists of interfaces
defined by the feature. If the CAX tool identifies that a feature implements the IFace
interface, that tool can invoke the methods CountEdges and AddEdges. This invocation
of methods, combined with the collaboration server architecture discussed earlier, is
actually channelled all the way to the feature provider using SOAP based messages.
FML is the underlying protocol that ensures the proper discovery of the interfaces,
the methods exposed by an interface and the messages required to invoke these methods.

An interface outlines the generic structure of associative feature; it avoids the
concrete implementation of the behaviour to achieve a greater level of abstraction.
This abstraction, enables suppliers and feature developers to extend the feature schema to
create new features to cover their needs. However, the FML schema draws the general
guidelines and rules for developing features to ensure the consistency and modularity of
the developed features.

A FML instance is an XML document based on an FML schema. An analogy can
be drawn between an XML document and an FML schema and an object to a class in
object-oriented programming. The XML document encapsulates the parameterisation of
the feature. An XML document always refers to the schema and is validated against
it to ensure the validity of the XML document structure. Schema referencing is a way to
uniquely identify schemas published by different suppliers through the use of Uniform

 Feature and Product Markup Languages in service-oriented 99

Resource Identifiers (URI) (refer to http://www.supplier.com/schemas/v1.0/fml.xsd).
The reference scheme creates some kind of namespace, i.e., a set of uniquely defined
coded names, for the features defined in the schema. The namespace helps identify
features developed by different suppliers that have the same schema definition.

The FML manages the collection of features and their internal data structures.
The collaboration server constantly ensures the consistency of the internal data state of
features through the evaluation of the constraints. Different views can be created to
synchronise certain information from the feature collection. For example, geometrical
information can be extracted in a machining feature view by certain feature recognition
algorithms (Han et al., 2000) or interactive identification by the machinist to create a
machining sub-model while stripping away irrelevant information from design stage.

5 PML

This proposed Product Modelling Language encodes the modelling information during
the product lifecycle. Its format is also based on XML which makes it readable by
machines and suitable for data exchange using web services. PML defines an XSD
schema that lays out the structure of the XML file encoding the product lifecycle details.
The XML file holds both geometric and non-geometric information. The definitions
of typical geometric information represented in the form of features, solids, faces,
edges, vertices, as well as their geometrical shapes or positions, are well reported
in the literature. The representation of non-geometric information is relatively less
studied; a related review is available (Ma et al., 2008a, 2008b).

Referring to Figure 5, the Product Modelling Language consists of the following
three building blocks.

1 Metadata is defined as data describing data. Therefore, PML Metadata provides
the means to further associate data to the product model. Create date, authors,
CAX tools and CAX versions are just a few examples of metadata that are associated
with the model. The metadata system in PML is extensible, allowing the
collaborators to contribute to the semantic of the model.

2 Model constraints (policies) are part of the constraint space defined in a model.
PML constraints govern the relationships between the set of features in a model.
These constraints are constantly evaluated to ensure the consistency of the model
data state.

3 A Feature Catalogue lists the available feature definitions in the product model.
This list includes the subset of features’ definitions used in the product model and
in addition to other features definitions available to model designers. The CAX tools
explore this catalogue to identify the used features and to generate features’ proxies.
The features’ specific proxies are eventually used by the CAX tools to contribute to
the product model created and managed at the collaboration server level.

5.1 Software factories

FML is useful for building software factories to automate the generation of proxy
features components and libraries. According to (Greenfield et al., 2004), a Microsoft
software factory can be defined as a production line that configures extensible

 100 A. Khaled et al.

development tools like Visual Studio (Guckenheimer and Perez, 2006), with packaged
contents and guidance, designed for building software applications. An initial investment
in building software factories targeting different CAX tools can cut cost and time
in building the proxy features. A CAX vendor can provide the tools on top of his
product to ‘consume’ FML documents and generate the features corresponding to the
FML document. This process can be automated (Chen et al., 2005) and reduces the time
and effort to build proxy features. Figure 8 shows the test case that has been created
and modified using the common ‘operations’ but executed on both Siemens NX
(formerly known as Unigraphics) and SolidWorks CAD systems.

Figure 8 An example part that has been created and modified on both Unigraphics
and SolidWorks systems by using ‘operations’ (see online version for colours)

 (a) (b)

Source: Chen et al. (2005)

6 Conclusion

Based on the default mechanisms of XML over the internet that support the multimedia
interoperability and granularity, this research work promotes the idea of FML and PML
as the domain specific languages for product lifecycle modelling. These languages enable
neutral, content-driven and computer-interpretable communication solution that can
effectively support ‘encapsulation’ of low level entities that are currently being generated
and used by the existing CAX systems. A service-oriented architecture was proposed
to leverage the capabilities of these languages and create an agile environment for
collaboration and information sharing. This work describes a new communication
approach for concurrent collaboration at a finer grains-associative feature level than
previous works. For future research directions, the authors believe in the opportunities
of constraint management (Ma et al., 2008a, 2008b) and engineering intent modelling.

References
Biron, P.V., Permanente, K. and Malhotra, A. (2004) XML Schema Part 2: Datatypes, 2nd ed.

(Online) Available: http://www.w3.org/TR/xmlschema-1/
Cabrera, L. and Kurt, C. (2005) Web Services, Architecture and Its Specifications: Essentials for

Understanding WS-*, 1st ed., Microsoft Press, Washington.
Chen, J.Y., Ma, Y-S., Wang, C.L. and Au, C.K. (2005) ‘Collaborative design environment

with multiple CAD systems’, Computer-Aided Design and Applications, Vol. 2, pp.367–376.

 Feature and Product Markup Languages in service-oriented 101

Corney, J. and Lim, T. (2001) 3D Modeling with ACIS, 2nd ed., Saxe-Coburg Publications,
Stirling, UK.

Greenfield, J., Short, K., Cook, S., Kent, S. and Crupi, J. (2004) Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, Wiley and Sons, Toronto.

Guckenheimer, S. and Perez, J.J. (2006) Software Engineering with Microsoft Visual Studio Team
System, 1st ed., Addison-Wesley Professional, Upper Saddle River, NJ.

Han, J.H., Pratt, M. and Regli, W.C. (2000) ‘Feature recognition from solid models:
a status report’, IEEE Transaction on Robotics and Automation, Vol. 16, pp.782–796.

ISO (1999) STEP – Part 224: Application Protocol: Mechanical Product Definition for
Process Planning Using Machining Features, ISO 10303-224, International Organization for
Standardization (ISO), Geneva, Switzerland.

ISO (2000) STEP – Part 42: Integrated Generic Resource: Geometric and Topological
Representation, ISO 10303-42, International Organization for Standardization (ISO), Geneva,
Switzerland.

Ma, Y-S. and Fuh, J.Y.H. (2008) ‘Product lifecycle modelling, analysis and management’,
Computers in Industry, Vol. 59, pp.107–109.

Ma, Y-S. and Tong, T. (2003) ‘Associative feature modeling for concurrent engineering
integration’, Computers in Industry, Vol. 51, pp.51–71.

Ma, Y-S., Britton, G.A., Tor, S.B. and Jin, L.Y. (2005) ‘Associative assembly design features:
concept, implementation and application’, International Journal of Advanced Manufacturing
Technology, Vol. 32, pp.434–444.

Ma, Y-S., Chen, G. and Thimm, G. (2008a) ‘Change propagation algorithm in a unified feature
modeling scheme’, Computers in Industry, Vol. 59, pp.110–118.

Ma, Y-S., Chen, G. and Thimm, G. (2008b) ‘Paradigm shift: unified and associative feature-based
concurrent and collaborative engineering’, Journal of Intelligent Manufacturing, Vol. 19,
pp.625–641.

Ma, Y-S., Jiao, J. and Deng, Y. (2009) ‘Web service oriented electronic catalogs for online product
customization’, Concurrent Engineering: Research and Application, Vol. 14, pp.263–270.

Ma, Y-S., Tang, S-H. and Chen, G. (2007) ‘A fine-grain and feature-oriented product database
for collaborative engineering’, in Li, W.D., Ong, S.K., Nee, A.Y.C. and McMahon, C. (Eds.):
Collaborative Product Design and Manufacturing Methodologies and Applications,
Springer-Verlag, London, pp.109–134.

Regio, M., Greenfield, J. and Thuman, B. (2005) A Software Factory Approach to HL7 Version 3
Solutions, (Online) Available: http://msdn2.microsoft.com/en-us/library/ms954602.aspx

Tang, S-H., Ma, Y-S. and Chen, G. (2004) ‘A feature-oriented database framework for web-based
CAx applications’, Computer-Aided Design and Applications, Vol. 1, Nos. 1–4, pp.117–125.

Thimm, G., Lee, S.G. and Ma, Y-S. (2006) ‘Towards unified modelling of product life-cycles’,
Computers in Industry, Vol. 57, pp.331–341.

Thompson, H., Beech, D., Maloney, M. and Mendelsohn, N. (2004) XML Schema Part 1:
Structures Second Edition (Online) Available: http://www.w3.org/TR/xmlschema-1/

