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Abstract The focus of this publication is a review of the
state of the art in tolerance analysis, synthesis, and transfer
for geometric and dimensional tolerances in sheet metal
forming and the integration solutions with computer-aided
process planning systems. In this context, the general
tolerance methods are first described. Then, the mathemat-
ical models for sheet metal tolerance analysis and synthesis
are examined in detail. To address the CAPP modeling
concerns, the paper is then followed up with a brief review
of past research works related to feature-based process
planning. Finally, those imperative future research areas are
identified.
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1 Introduction

Sheet metal forming (SMF) is one of the most common
manufacturing methods for metal parts and is used widely
in industries [99]. As in assembly or metal removal

processes, design and process tolerances play an important
role with respect to functionality and cost. However,
mathematical methods for tolerance analysis, synthesis,
and transfer used in non-sheet metal forming processes are
not readily applicable. Reasons are the differences between
sheet metal forming and conventional material removal
machining as summarized in Table 1.

Great advances have been made in the field of sheet metal
forming. New processes and working methods have been
developed. Many tools for design, process simulation, and
control are available today [2, 4, 86, 101, 138, 148, 149, 159,
189, 190, 218, 238, 243, 257]. Since the 1990s, due to the
rapidly diminishing number of experienced process planners
for SMF, the need for shorter product life cycles and the
importance of three-dimensional (3D) computer-aided design
and manufacturing (CAD/CAM), the research on process
planning in this area attracted more attention. The research
areas cover topics such as raw material preparation technol-
ogies, process selection, tooling design, operation sequenc-
ing, fixture definition, and collision detection [69, 170].

Problems related to tolerances emerge in several stages
of the life cycle of a sheet metal part. The problems are
characterized by the particular viewpoints and objectives of
the individual life cycle stages. For example, a process
planner has to find the most economical processes and their
sequence as well as to fulfill the tolerance specification in
product design. For machined parts, tolerance constraints
play a significant role in process planning, and computer-
aided tolerancing (CAT) has been developed as a key
technology for determining machining sequences that can
result in the best accuracy on some special features of parts
[102, 125, 260]. However, in sheet metal forming, currently,
an effective approach of computer-aided tolerance analysis is
still not fully developed, and hence, there is no comprehen-
sive method to integrate design and process planning.
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The organization of this review is that, at first, sheet
metal forming operations are surveyed, in which bending
and punching operations are emphasized; then, the past
research efforts on CAT are reviewed; and finally followed
by the discussion of its integration with computer-aided
process planning (CAPP) aspect.

2 Sheet metal forming processes

Common sheet metal fabrication techniques include a
multitude of different operations. These operations can be
classified as in Table 2. Bending and punching are the most
popular sheet metal forming processes. Some operations,
such as folding, flanging, and hemming, may be regarded
as bending-like operations because they have similar
forming principles.

2.1 Bending operations

Bending is a prevalent type of forming operation, which
provides the required shape and further rigidity to sheet
metal parts. In this process, usually, a plane sheet or a metal
strip is deformed in a circular arc around a straight axis
lying perpendicular to the neutral axis as defined in [179].
Metal flow takes place in the plastic range of the metal so
that the bent part retains a permanent set after removal of
the applied stress. The cross-section of the bend inward
from the neutral axis is in compression, and the rest of the
bend is in tension [181]. The tensile stress decreases toward
the center of the sheet thickness and becomes zero at the

neutral axis, whereas the compressive stress increases from
the neutral axis toward the inside of the bend.

A typical sheet metal bending operation involves
mounting a punch (punches) and mold (die) on a press,
which controls relative motions between the punch and die,
then, placing sheet metal on a die against a (auto-) stopper
block, or a gage, to position the part. Punch(-es) and the
mold (die) provide the necessary bending forces or
pressures. Sometimes, grippers are used to hold the part
during and between operations.

Bending processes fall into several categories: air
bending, bottom bending, coining, U-bending, etc. Air
bending is a bending process in which the punch forces the
work piece into a V-shaped die and the work piece does not
touch the bottom of the die. Bottom bending is a bending
process where the punch and the work piece bottom on the
die. Coining is a bending process in which the punch and
the work piece bottom on the die and compressive stress is
applied to the bending region to increase the amount of
plastic deformation.

2.1.1 Bend allowance

If the bend radius is comparable to the thickness of the
sheet, the sheet tends to stretch during bending. This
influences the accuracy of dimensions and tolerances of
final part and has to be reflected in the working dimensions.
This change in length is compensated by the so-called bend
allowance (BA), which can be estimated as follows:

BA ¼ 2p
a
360

Rþ KbaTð Þ ð1Þ

Table 1 Comparison of SMF and conventional machining methods (modified from [95])

Sheet metal forming Conventional material removal machining process

The initial parts or blanks are cut out to form the required shape
from a large sheet metal layout.

The initial raw work-piece is normally sawed, preformed,
or prepared by casting or forging process.
They are less precise than sheet metal blanks.

The process is irreversible. Once formed incorrectly, parts are scrap. Work-piece can be machined again if the machined work piece
is not undersized (it usually is scrap otherwise).

Surface finish depends on the forming process. Surface finish largely depends on the final machining operation.

The deformation usually causes significant changes in shape,
but not in cross-section (sheet thickness and surface characteristics)
of the sheet.

The cross-section in all orientations is potentially changed.

Table 2 Common operations on sheet metal parts

Cutting operations Bending operations

Punching, notching, shearing, blanking, drilling, piercing, nibbling,
slitting, trimming, shaving, and stamping

Air bending, coining, bottoming, hemming, folding, and flanging

Joining operations Other operations

Welding, soldering, bonding, riveting, screwing, and seaming Drawing, rolling, stretching, spinning, and flattening
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where BA=bend allowance, in millimeters; α=bend angle,
in degrees; R=bend radius, in millimeters; T=material
thickness, in millimeters; and Kba is factor of stretching
effect. Kba is defined as t/T, where t is distance from the
inside face to the neutral axis. Clearly, Kba is a ratio that
gives the location of neutral axis with respect to the
thickness of the sheet metal part. The value of Kba is
usually estimated by adopting some recommended design
values. Many CAD programs calculate the bend allowance
by using Kba (or Y-factor in the case of Pro-E, where the Y-
factor is Kbap

2 ) [85]. For air bending, bottom bending, and
coining, [60] presented a method to determine Kba

reversely. Publications on bending allowances are numer-
ous, and two recent ones are given in [116, 217].

2.1.2 Springback

When the bending pressure is removed, elastic energy in
the bent part causes it to recover partially toward its original
shape. This elastic recovery is called springback, defined as
the increase in included angle of the bent part relative to the
included angle of the forming tool after the tool is removed.
This is expressed as:

Springback ¼ af � ai

ai
¼ Rf � Ri

Ri
: ð2Þ

where αf is the bending angle after springback in degrees;
αi is the bending angle before springback in degrees; Rf is
the final bend radius after springback; Ri is the bend radius
before springback.

Springback should be predicted in bending operations
and the punch position adjusted accordingly. As it causes
changes in shape and dimensions, springback prediction is
an important issue. It is difficult for design engineers to
predict springback, as many variables influence it: material
variations in mechanical properties, tool geometry (includ-
ing die radius and the gap between the die and the punch),
sheet thickness, punch stroke, lubricant condition, etc.
Springback is often approximated using

Ri

Rf
¼ 4

RiY

ET

� �3

� 3
RiY

ET

� �
þ 1; ð3Þ

where Rf is the final bend radius after springback in
millimeters; Ri is the bend radius before springback in
millimeters; Y is the yield strength of the sheet metal
in megapascal; E is Young’s modulus of the sheet metal
in gigapascal; and T is the thickness of the sheet material.

For air bending, the springback usually ranges from 5 to
10°. Bottom bending and coining allow for a better control
of the bending angle as springback is reduced.

Various investigations show the influence of process
parameters on springback, such as bend radius, die gap, and

punching speeds, and material properties, such as sheet
thickness, flow stress, texture, and grain size [26, 42, 114,
129].

2.2 Punching

Punching is a very efficient, inexpensive, and flexible way
of producing cutouts from sheet metal. The term punching
describes a shearing process, in which a punching machine
separates a sheet of metal by striking it, while supporting
it by a die with a hole matching the cross-section of the
punch. In punching, the cut out part of sheet is scrap, and
the remaining material is a desired part. Opposed to it, in
blanking, the cut out section of the part is the required
part.

Punching is usually utilized to create holes of various shapes
in sheet metal material. Traditional punching operations produce
a single geometry with the same tool. numerically controlled
(NC) punching operations with multiple standard tools can
produce a wide range of geometries characterized by simple
geometrical elements like lines and circles [181].

2.3 The “other” forming operations

The forming operations listed under “others” in Table 2 are
not addressed in detail in this report. In brief, they either
produce

– plain, flat sheet metal, and only thickness tolerance
matters, or

– free-form surfaces for which all tolerances are defined
by the drawing process (and estimated by finite
element methods, for example)

3 Computer-aided tolerancing

Tolerances and tolerance-related problems play a ubiquitous
role in both product design and process planning. The
existing research can be classified into seven distinct
categories as in Fig. 1. Selected tolerancing methods are
discussed later. In this figure, the dashed lines indicate that
tolerance transfer techniques are derived from tolerance
analysis and tolerance synthesis, as explained later in
section 3.4.

3.1 Geometrical dimensioning and tolerancing

Two main types of tolerancing schemes are in use:
parametric and geometrical. Parametric tolerancing identi-
fies a set of design parameters and assigns limits or
distributions to the parameters, such as maximal deviations
(conventional ±) or statistical tolerances [175]. A recently

Int J Adv Manuf Technol



proposed tolerancing scheme called vectorial tolerancing
falls into this category [247].

Defined in ISO 1101 and ANSI Y14.15M:1994, Geo-
metrical Dimensioning and Tolerancing is a dimensioning
system that benefits both design engineering and manufac-
turing engineering. It allows designers to set tolerance
limits, not just for the size of an object, but also for all of
the critical characteristics of a part.

Geometrical tolerances describe the acceptable range of
variation in geometry from a nominal or reference
geometry. They designate values to certain characteristics
of features, such as form, orientation, location, and run-out.
Detailed explanation and examples of current standards on
geometrical dimensioning and tolerancing can be found in
ANSI Y14.15M:1994 or ISO specifications such as ISO
1101:2002, ISO 14660-1:1999, and ISO/TS 17450-1:2005.

Orientation and position tolerances are often used in
sheet metal parts. Orientation tolerances include perpendic-
ularity, parallelism, and angularity tolerances, as shown in
Fig. 2. Discussions of geometrical error evaluation and
related research work can be found in [155, 179, 180, 193–
196, 232, 233]. The methods are mainly based on CMM,
computational geometrical techniques, and artificial intelli-
gence (AI).

3.2 Tolerance analysis

Tolerance analysis is used to estimate the accumulation of
process variations on assembly dimensions and features
and to verify the proper functionality of a design. This
topic has drawn considerable attention, and many papers
have been published on 1D, two-dimensional (2D), and
3D tolerancing.

The analysis methods can be classified based on the
types of analyzed variations:

– Dimensional (lengths and angles)
– Geometrical (flatness, roundness, angularity, etc.)

– Kinematic variations (small adjustments between mat-
ing parts in mechanical assemblies) [31]

Dimensional and geometrical variations are the result of
variations in component parts due to manufacturing
processes or raw materials used in production. Kinematic
variations occur at assembly time, whenever small adjust-
ments between mating parts are required to accommodate
dimensional or form variations.

3.2.1 Tolerance analysis models

Figure 3 gives an overview on mathematical models used in
tolerance analysis. Tolerance chain models, or dimensional
tolerance chain models, fall into two categories:

1. Linear/linearized tolerance accumulation models. One
of the most common models for the accumulation of
component tolerances Ti into the predicted assembly
tolerance T are, according to [73], worst-case models
with

T ¼
Xn
i¼1

Ti

Another commonly linearized model type, root sum square
models (RSS, the original theoretical model of this method
belongs to statistical category as discussed in the next
section), has been used for tolerance estimation purpose as
follows:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Ti2
s

This approach is applied in [83, 84] to worst-case
tolerance and root sum square tolerance analysis. A similar
analysis method for more complex mechanical assemblies

Fig. 2 Orientation tolerances (from ISO 1101:2002 and [53])

Fig. 1 Research on computer-aided tolerancing [98]
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and kinematic linkages is based on the direct linearization
method (DLM) [27, 28, 31, 77, 82, 248]. The role of
tolerance and assembly analysis in robust assembly design
is discussed in [66] and applied to nesting forces for exactly
constrained mechanical assemblies in [162]. A comprehen-
sive system based on dimensional tolerance chain model
has been developed [29, 77] which includes dimensional,
geometric, form, and kinematics sources; vector loops are
defined by homogeneous transformation matrices, similar
to robotics models.

2. Statistical analysis methods. In this category, two major
approaches exist. The analytical analysis approach was
developed from the tolerance chain technique, which
aims to determine the probability distribution of system
response functions [182]. RSS method belongs to this
group. The DLM is applied to make the analysis model
more convenient to use with small variations about the
nominal dimensions [75, 82–84].

The second approach is simulation-based analysis. The
most developed and commonly used method is Monte
Carlo simulation which circumvents the difficulty in
statistical tolerance analysis, which is to determine statisti-
cal moments of accumulated tolerances in a closed form.
Therefore, Monte Carlo simulation methods are frequently
used [32]. This method can be readily used for tolerance
analysis, but is rarely for tolerance synthesis due to the
difficulty to obtain derivatives of design functions [200].
The results of the direct linearization method with those
obtained from the Monte Carlo simulation are compared in
[75]. New metrics for assessing the accuracy of the Monte
Carlo analysis method for assemblies are presented in [48].

Geometrical feature variations defined in ANSI Y14.5M-
1994 are addressed statistically and propagated kinemati-
cally in a manner similar to the dimensional variations in
assemblies [29].

Variational dimension models are a kind of special
variational geometry in which only the dimension (size)
can vary [184]. Recent research work focuses on tolerance
sensitivity analysis in this area [63]. Variational solid
models were developed to overcome the problems of
variational dimensional models with non-polygonal/poly-
hedral models and certain types of geometrical tolerances
[18]. They were shown to be appropriate for tolerance
analysis of assemblies of toleranced parts [3, 127].

3.2.2 Three-dimensional tolerance analysis

With the advancement of 3D CAD and other engineering
analysis technologies, the traditional dimensional tolerance
chain models need to be enhanced to meet the requirements
of explicit 3D geometrical tolerance specifications. A 3D
tolerance propagation scheme has to address two related
issues:

– Representation of tolerance zones and
– Spatial tolerance propagation mechanism

Categories of three-dimensional tolerance analysis meth-
ods are shown in Fig. 4.

Preliminary work motivating the development of the
3D tolerance propagation techniques is regarded as the
spatial dimensional chain technique [163–165]. Other
methods are mostly a variation of the spatial dimensional
chain technique. For example in [163], the propagation of

Fig. 3 Main tolerance analysis
models
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position errors is taken into account in terms of a kinematic
chain, where the individual error is represented as matrices
with three-dimensional and three angular position errors.
For pairs of functional elements in a kinematic chain model
is associated with a set of six virtual joints, three for small
translations, and three for small rotations [117].

Three-dimensional tolerance propagation models based
on the concept of a small displacement torsor (SDT) are
used to simulate three-dimensional fixturing and machining
errors and their impacts on the geometry of the finished
part. An SDT is a mathematical object that represents the
displacement of a rigid body using three rotations and three
translations. This approach models the influence of a
process plan on functional tolerances as a chain of torsors.
Assuming that the displacements are small enough, linear-
ization is used to derive a torsor T as:

T ¼
a
b
g

u
v
w

0
@

1
A ð4Þ

where α, β, and γ are the small rotations of the element; u,
v, and w are the small translations [17, 57].

The traditional tolerance chain models can be used for
tolerance synthesis as shown in [30], but the related
methods are relatively difficult to be uniformly generalized
from case to case. The SDT-based and three-dimensional
tolerance propagation overcomes such limitations. Based
on the SDT method, a detailed model of mechanical parts,
part-holders, and machining operations was developed
[235] and extended to tolerance synthesis [236].

Vectorial tolerancing can be applied to geometrical
tolerance analysis, see [231] for example. Form variations
(ANSI Y14.5:1994) [29] and coordinate transformations
can be used to represent tolerance zones [57]. Alternatively,
a graphical representation of part features, process plans,
and functional requirements defined with an ISO standard
can be employed to analyze three-dimensional tolerance
specifications and to generate manufacturing specifications
compatible with ISO standards [11].

3.3 Tolerance synthesis

Tolerance synthesis, or tolerance allocation, is the reverse
process of tolerance analysis. It provides a rational basis for
assigning tolerances to working dimensions. Tolerance
synthesis has enormous impact on cost and quality. It
affects the fit and function of the product, which can cause
poor performance and dissatisfied customers. With respect
to manufacturing, tolerance requirements determine the
selection of machines, tools, and fixtures; the operator skill
level and set-up costs; inspection and gage precision; etc.
In conclusion, tolerance synthesis affects almost every
aspect of the product life cycle. Most tolerance synthesis
approaches are based on the optimization of a cost-
tolerance function. These approaches try to get optimal
tolerance values when the tolerance stacks are assumed to
be fixed. Nevertheless, the utilization of these models in
industry is still limited. One major reason is that these
models try to take advantage of the superficial knowledge
of processes, which is usually obtained from machinist
handbooks or company manuals. Process knowledge at this
level cannot provide the designer with sufficiently precise
tolerance values.

Commonly used tolerance synthesis methods include
[27]:

– Allocation by proportional scaling: component toler-
ances are linearly scaled by a common proportionality
factor.

– Allocation by constant precision factor: component
tolerances are allocated by means of weight factors. In
this way, weight factors are assigned to each compo-
nent tolerance in the accumulation model and the
system distributes a corresponding fraction of the
tolerance pool to each component. Larger weight
factors and corresponding bigger tolerances can be
given to those dimensions that are the more costly or
difficult to manufacture, which improves the cost and
manufacturability of the design.

– Allocation by optimization techniques: the most pop-
ular optimization technique of component tolerance
allocation is to minimize the cost of production of an
assembly. It is accomplished by defining a cost-
tolerance mathematical model for each component part
in the assembly. An optimization algorithm assigns the
tolerance for each component and searches systemati-
cally for the combination of tolerances that minimize
the cost.

3.3.1 Tolerance synthesis models

Tolerance synthesis or tolerance allocation can be inter-
preted as minimizing a cost function C(T) with respect to a
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set of tolerances T. According to the nature of the target
function C(·) (the cost is modeled to change linearly,
reciprocally, or exponentially with the tolerance), existing
tolerance synthesis models can be classified as shown in
Fig. 5.

Cost-tolerance models are typical analytical cost estima-
tion techniques [244]. The objective of these models is to
estimate product cost considering design tolerances of a
product as a function of the product cost. As an example, in
the minimum cost optimization method, a set of tolerances
is initially selected. Then, an optimization algorithm is used
to find the minimal cost. However, due to the number of
variables, the optimization can be rather involved, and a
global minimum is often not attained [27, 30].

Some recent optimization methods are based on AI
techniques, such as genetic algorithms, artificial neural
networks, simulated annealing, neuro-fuzzy learning, and
ant colony algorithm [166, 167].

Taguchi et al. presented quality engineering as an
approach to handling tolerancing issues [211]. Quality
engineering aims at an integrated production system with
an overall quality control, in which every activity is controlled
in order to produce the products with minimal deviations from
target values. Details of various applicationmethods of quality
engineering to tolerance analysis and synthesis can be found
in [46]; the application of parametric design and quality loss
functions is discussed in [39, 70, 71].

Statistical tolerancing synthesis (and process capability
index applications) drew attention in recent years. It
assumes that the final tolerance specifications and the
distributions of the process dimensions are known [230].
This idea was further developed:

– The distribution function zone approach was extend-
ed to an optimized cost-tolerance model, which

solves the statistical tolerance synthesis problems.
The model is illustrated with an assembly example in
[259].

– Process capability index applications in tolerance
synthesis are another important research area [187].

– An optimization model, named reliability index model,
with consideration of the required functional reliability,
the minimum machining cost, and quality loss was
established [104].

In summary, tolerance synthesis is mainly used for
assembly tolerances. However, tolerance synthesis for parts,
especially sheet metal parts, has its own, only partly
addressed, characteristics.

3.4 Tolerance transfer

Tolerance transfer, as tolerance analysis and synthesis in
process planning, is a method to convert design tolerances
into a manufacturing plan.

3.4.1 Conventional tolerance transfer method

Tolerance charting is the most popular conventional
tolerance transfer technique. A tolerance chart is a
graphical tool for process planners to determine the
manufacturing dimensions and tolerances of each ma-
chining operation, based on the design dimensions and
tolerances.

The fundamental idea of tolerance charting is discussed
in [21, 22]. The two main fundamental tolerance charting
techniques, Wade’s and Bourde’s model, are compared in
detail in [126]. The author concludes that Bourde’s model
appears more appropriate for the treatment of resultant
dimensions obtained under a single setup.

Fig. 5 Main tolerance synthesis
methods
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An overview of important tolerance charting-based
approaches is given in [98]. Since then, the three referenced
approaches were further developed:

– Angular tolerance charting [106, 107, 255, 256]
– Digraphic tolerance charts [1, 157]
– Rooted tree model and datum-hierarchy tree method

[20, 221, 222]

Although tolerance charting is applied widely in toler-
ance transfer, it has a major shortcoming: it cannot deal
with complex spatial tolerance transfer issues or geometri-
cal tolerances.

3.4.2 Three-dimensional tolerance transfer

Most tolerance charting techniques can handle only the
size-dimensional tolerances or a limited set of geometric
tolerances. Thus, it is necessary to develop new tolerance
propagation techniques in process planning for 3D
tolerance transfer, especially for geometric tolerances.
Existing approaches to three-dimensional tolerance anal-
ysis that are suitable for tolerance transfer are listed in
Table 3.

3.5 Monte Carlo simulation

The Monte-Carlo, or random sampling, method numerically
determines approximate solutions in mathematical physics
and engineering [177]. This stochastic technique was
utilized for centuries, but only from 1940s has it gained
the status of a method capable to address complex
applications.

The Monte Carlo method has been used extensively for
statistical tolerancing. Derivation of the statistical moments
of a function of random variables is usually impossible in
closed form, especially when the functional form is
complicated or piecewise-defined. The Monte Carlo meth-
od has the advantage of simplicity and flexibility. However,
this method can be computationally expensive. With the
improvement of computational capacity of computers, the
Monte Carlo method is adopted by many software pack-
ages, for example, variation simulation analysis, and then
applied in some commercial software including CATIA,
Pro/Engineer, and UG [98, 178].

The Monte Carlo method can be easily used for
tolerance analysis [76, 98, 186, 200], but it was rarely used
in tolerance synthesis, as it is difficult to obtain derivatives

or gradients with it. This changed, though, in recent years
[59, 102, 118, 121, 122, 134, 203].

4 Applying feature-based tolerance analysis in CAPP

4.1 Current tendency

The Society of Manufacturing Engineers defines process
planning as the systematic determination of methods by
which a product is to be manufactured, economically and
competitively.

In other words, process planning is the transposition of
engineering design information into process steps and
instructions to efficiently and effectively manufacture
products. Process planning activities include the following
[241]:

– Interpretation of product design data
– Determination of production tolerances
– Determination of setup requirements
– Selection of tool sets
– Selection of machine tools
– Sequencing of operations
– Tool path planning
– Determination of machining conditions
– Generation of process route sheets
– Selection of machining methods and processes
– Design of jigs and fixtures
– Calculation of process times
– NC program generation
– Capacity planning

Although CAPP uses almost the same steps taken in
manual process planning, it requires less time compared
with manual process planning. Due to the rapid diminishing
number of experienced process planners in industry,
compressed product life cycles, and the broad use of
CAD/CAM, the research on CAPP has gained more
attention than ever before. Approaches used in CAPP can
be categorized as two types [152]:

– Variant process planning follows the principle that
similar parts require similar plans. This technology is
often used with group technology for coding and
classification.

– Generative process planning utilizes decision logic,
formulae, manufacturing rules, and geometry-based

Table 3 Three-dimensional tolerance transfer methods

Small displacement torsor (SDT) and proportioned assembly clearance volume (PACV) [125, 215, 216, 235]

Technologically and topologically related surfaces model (TTRS) [56, 58]

Product data translator (PDT) approach [263]
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data to develop a new plan for each part based on input
about the part’s features and attributes.

Beside the above classification, research can be catego-
rized on the basis of their geometrical modeling (Fig. 6).
Most research in this area is focused on optimization of
process plans, although some other issues, such as
knowledge and data management in CAPP, are important
topics [55]. Optimization techniques used in CAPP can be
categorized as:

– Knowledge-based reasoning [43, 250].
– Graph theoretic approaches [19, 44, 105, 136, 223].
– Heuristic algorithms [131, 132, 169].
– Artificial intelligence, such as evolutionary or genetic

algorithms, artificial neural network, fuzzy logic, expert
systems, and so on [6, 15, 44, 81, 119, 120, 130, 172].

4.1.1 The concept of features

The use of features originates in the reasoning processes to
associate domain knowledge with object representations by
natural means. Numerous feature definitions are used in
CAD, computer-aided engineering (CAE), CAPP, and
CAM. At first, machining features were used to integrate
CAPP and CAM packages on a geometrical level. More
recently, the feature concept was expanded to relations
between geometrical and non-geometrical entities. Histori-
cal definitions of features are reviewed in Table 4.

Regardless of how features are defined, features can be
considered as the smallest elements which possess explicit
engineering meaning. Therefore, features are suitable as a
link between life cycle stages. According to their applications
in different stages, features can be classified for the following
engineering stages (modified from [33]): conceptual design,
embodiment design, detailed design, assembly design, CAE,
manufacturing, process planning, and inspection.

It can be envisaged that a new stream of feature
technology is to be developed for geometric and dimen-
sional tolerance (GDT) applications. Such features are to be
identified and related to computer-aided tolerancing func-
tions. With them, systematic design tolerance specifications

can be modeled and captured in the detailed design stage.
These features may involve a hierarchical relation tree to
associate the ideal functionality of a product to each
individual assembly feature tolerance. Such an assembly
tolerance feature can be further broken down into a set of
associated part GDT tolerance features that are required
when specifying individual part tolerances. At both stages
of tolerance specification, tolerance propagation and syn-
thesis are to be involved and always part of the design task
for manufacturing aspect. The application of geometric and
dimensional tolerance when a process plan is developed
and the final inspection carried out requires the implemen-
tation and check of tolerance features with manufacturing
tooling, processes, and measures.

Sheet metal feature definitions are as diverse as the
general feature definitions discussed above. In order to
support design and process planning for sheet metal
forming, sheet metal features highlight formability. Thus,
the following attributes define the sheet metal forming
features of the part in design and process planning stage
[modified from 214]: feature identifier, feature form,
material, dimensions associated with the feature, geometri-
cal tolerance associated, primary working direction or die
closure direction, positioning datum, and sheet metal
forming method.

4.1.2 Associative features

Associative features are a recently defined group of user-
defined, object-oriented, self-contained, and flexible seman-
tic features [16]. They are proposed as classes to represent
relations between different forms of non-geometrical and
geometrical entities depending on specific applications
[143–147]. Based on object-oriented technology, those
features that are difficult to be defined in a traditional
feature concept can be modeled parametrically and gener-
ically. Associative features are consistent to model the
evolvement of features in different stages of product life
cycle.

Figure 7 shows a sheet metal part that can be fully
defined with some typical associative forming features.
First, basic geometric features are defined as those primary
features or elemental plates which represent the overall
shape of a sheet metal part as the base for more detailed
shape definitions. In Fig. 7, the primary feature is the
S-plate. The primary features include plates, walls,
L-brackets, U-channels, curves, and boxes. Then, based
on the above primary features, subsidiary features can be
defined to represent those manufacturing-related feature
elements which represent localized characters of a sheet
metal part. Subsidiary features are modifications of the
basic features. Typical subsidiary features are bends,
pierced holes, extruded holes, embosses, lancing forms,Fig. 6 Research on process planning
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hems, beads, slots, bosses, ribs, and set-outs. In Fig. 7, the
four bends and the hole are subsidiary features.

In addition, sheet metal forming resources, such as
machining tools and fixtures, can be explicitly defined in
feature class as attributes or constraints. The associations
can be created by reasoning processes such as sequenc-
ing, tool selection, gage selection, and fixture selection. A
potential feature-based sheet metal forming planning
system can be developed based on the relevant associa-
tive feature theory and applications [33–36] because in
the above-listed references, associative concept design
features, detailed design features, and process planning
features have been defined using a unified feature model.
A prototype system was developed to demonstrate the
capability and feasibility of the proposed product model-
ing scheme.

4.1.3 Feature-based process planning

Feature-based process planning plays a crucial role in an
integration effort of product life cycle. In feature-based
process planning, machining features are recognized CAD
model, and machining processes and their sequences are
determined based on the features and other machining
information.

With a feature-based hierarchical description of the part
design, process planning decisions are made based on
individual features or groups of features. A feature-based
approach allows one to automate or semi-automate the
processes from design to manufacturing. A simple feature-
based flexible process planning system is laid out in Fig. 8.
A summary of recent research in this field is given in
Table 5.

Feature-based process planning was a hot research field
in recent years. Although many researchers focus on
developing CAPP systems [8, 9, 25, 37] or finding optimal
process planning procedures, more and more attention is
paid to the details of applying feature techniques on process
planning. For example, besides feature modeling and
recognition [5, 10], design by features approach is utilized
in feature conversion, composition, and de-composition [7,
12, 24, 47]. Association and integration of CAD/CAE/
CAM and CAPP [23, 25] are equally important topics, and
more attention is focused on optimization methods by AI
[13, 61, 108].

4.2 Process planning in sheet metal forming

4.2.1 Overview

In the 1990s, process planning for small batch part
manufacturing of sheet metal parts became a major research
area. Some researchers focus on computer-aided process
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Fig. 7 Examples of sheet metal part features

Table 4 Definition of features

Definition of a feature Source

A region of interest in a part model [246]

Any geometric form or entity that is used in reasoning in one or more design or manufacturing activities [47]

Generic shapes associated to certain properties or attributes and knowledge useful in reasoning about the product [183, 185]

A partial form or a product characteristic that is considered as a unit and that has a semantic meaning in design,
process planning, manufacture, cost estimation, or other engineering discipline

[245]

Regions of an object that are meaningful for a specific activity or application [229]

A representation of geometrical shape with a set of engineering attributes [25]

The representation of shape aspects of a physical product that are mappable to a generic shape and that have
functional significance

[184]

A set of form elements with a functional meaning in a given application context that allows an association between shapes
and functionality

[153]

A representation of shape aspects of a product that are mappable to a generic shape and functionally significant for some
product life cycle phase

[16]
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planning for sheet metal forming [136, 170, 227]. The sheet
metal manufacturing process comprises many complex
operations, which make it difficult to construct a compre-
hensive CAPP system for all sheet metal parts. Being the
most common operation of sheet metal forming, bending is
one of the most researched topics in this field [72, 219].
Other operations such as drawing or combined operations
begin to gain more attention. Table 6 shows a survey of
papers on CAPP of sheet metal forming. Only certain typical
operations were selected for review, as too many sheet metal
forming methods exist to be listed comprehensively.

4.2.2 Feature-based process planning in sheet metal
forming

An early topic in this field is feature representation and
classification. In [49–54], a CAPP system is presented which
relies on a feature type referred to as connections. A
connection is a design feature, typically a bend or a welded
seam. A further division, the bend features in simple bends
and those with hemmed or curled edges, is discussed in [225].
Basic sheet metal features are classified in [14] into walls,
bends, form features, cuts, punches, notches, and so on.

An integrated system presented in [239] for the design
and production of sheet metal parts identifies several bend
features: bend graph, internal tab, essential and optional
collinear bend, outside/inside bend, taller flange, shorter/
longer bend, channel, corner, hemming bend, large-radius
bend, part overhang, louver, and dimple.

A fully automated experimental feature recognition
system for sheet metal forming process planning extracts
the sheet metal feature information from 2D orthographic
drawings to generate process plan without any user
interaction [197].

Other research is focused on the development of feature-
based process planning systems:

– In the integrated modeling and process planning system
developed by [40, 41, 45, 128] for planning bending
operations of progressive dies, the geometrical bend
mapping function for feature elements within individ-
ual bends and the transformation matrix for connected
sub-bends are formulated.

– A prototype STEP-compliant process planning system
for sheet metal product development integrates soft-
ware modules for nesting optimization, path optimiza-

Table 5 Summary: features in process planning

Topic Source

Feature modeling and classification [8, 173, 226]

Roles of manufacturing features in process planning [228]

Feature recognition/extraction technique [5, 10, 24, 65, 94, 96, 109, 113, 115, 139, 154, 161, 174, 209, 252]

Feature-based CAPP system [9, 37, 38, 62, 64, 92, 111, 137, 140, 161, 242, 253, 258]

Integration of CAD/CAE/CAM and CAPP [33, 100, 224, 251]

Feature-based analysis of the manufacturability of machined parts [90]

Feature composition and decomposition [123, 124, 133, 210]

Feature-based process planning for environmentally conscious machining [205, 206]

Feature-based inspection process planning [13, 249, 261]

Optimization by AI and KBE techniques [61, 108, 141, 198, 199]

Fig. 8 Example of a simple
feature-based process planning
system
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Table 6 Review on CAPP for sheet metal forming

All operations Bending Punching Drawing Blanking CAPP system Operation and tool selection Sequencing

[202] √ √ √
[97] √ √
[50] √ √ √
[207] √ √
[54] √ △ √
[168] √ √
[89] √ √ √ √
[40] √ √ √
[87] √ √
[191] √ √
[51] √ √ △
[142, 208] √ √
[219] √ √ √
[91] √ √
[112] √ √ √ △
[160] √ √
[103] √ √ √
[67] √ √
[201] √ √
[240] √ △ √ √
[45] √ △ √ √
[234] √ √ △ △
[44] √ √ √ √
[49] √ √
[204] √ √ △ △
[192] √ √
[74] √ √
[158] √ △ √
[52] √ √
[135] √ √ √
[68] √ √
[88] √ √ √
[41] √ √ √
[78] √ √
[7] √ √
[12] √ √ √
[110] √ √ △
[151] √ △ △
[220] √ √
[176] √ √
[156] √ √
[237] √ √ √ △
[23] √ △ √
[171] √ √ √
[81] √ √ √ √

Tick symbol discussed in detail, triangle touched on
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tion and planning, simulation, and machining parame-
ters set-up and CNC machining [254].

– Another CAPP system based on feature technique
addresses stamping processes for automobile panels
[262].

Feature-based sheet metal part stampability evaluation
and stamping process planning approaches have been
studied in a two-part paper. The first part identifies the
aims and criteria of a stampability evaluation and formal-
izes the stampability evaluation knowledge [212]. The
second part presents a feature mapping system which
connects the stamping design feature space and the
stamping process feature space [213].

Opposed to traditional machining process planning,
feature-based process planning for sheet metal forming is
little represented in literature. Feature representation,
classification, recognition, and development of feature-
based process planning systems are current research topics;
other characteristics of sheet metal forming processes are
unaddressed.

5 Tolerance transfer in sheet metal part forming

Tolerance transfer in process planning of sheet metal
part forming attracted only little attention in the past as
shown in Table 7 according to available literature.
Furthermore, all the references listed focus on bending
operations and raise or leave the following issues
unaddressed:

– Computer-aided tolerancing does not address processes
including several operations of distinct nature, such as
bending, punching, blanking, and deep-drawing.

– Machining errors and their causes and inter-dependencies
are not characterized comprehensively as the sources of
final error accumulation, although some of the errors are
discussed in papers above.

– Only size-dimensional tolerances (using conventional
worst-case models) are discussed in detail.

– Statistical tolerancing approaches reflect actual part
tolerances better than worst-case tolerancing. However,
they are utilized only for sheet metal assembly issues
[200] or size dimensions [79, 80, 93].

– Tolerance synthesis/allocation for sheet metal part
forming are seldom studied. Currently, research works
are focused on sheet metal assembly [150, 188].

6 Summary

Even though process tolerances of individual sheet metal
forming operations are well understood and the industry has
adopted geometric tolerances and dimensions via some
standards, the combinational theory and applications of
tolerance stacks and the allocation of tolerances to individual
operations are not mature. This discrepancy is mostly due to
insufficiencies of tolerance transfer methods—certain differ-
ences with assemblies and material removal methods make
the problem a unique challenge. Only a small number of
publications address geometric tolerances and, as compared
with metal removal processes or assemblies, they cover a
limited scope and depth. We observed the following points:

– Insufficient coverage of operations. Although there
have been numerous publications addressing CAPP for
sheet metal, including systems, operation, tool selec-
tion, and sequencing, more than half of the 46
publications examined by the authors focus on bending
operations only.

– Limited integration to other computer solutions.
Feature-based process planning considering sheet metal
forming tolerancing, i.e., geometric tolerance feature
associations in the integrations of CAD, CAE, CAM,
and CAPP are only partially addressed.

– More research work is required for tolerance transfer of
geometric dimensions. Only nine publications were
discovered by the authors.

– Geometric tolerance synthesis should be studied; no
publication has been found.

Table 7 Tolerance transfer in sheet metal part forming

Resource Size dimensional
tolerance

GD&T Tolerance
analysis

Tolerance
synthesis

Worse
case

Statistical
tolerancing

Analytic Graphical

[52–54] √ △ √ √ √ △
[191] √ √ √ √ △
[79, 80, 93] √ √ √ √
[95] √ √ √ √
[12] √ √ √ √

Tick symbol discussed in detail, triangle touched on
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