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A B S T R A C T

This paper reports a collaborative product design framework and a prototype system that supports

multiple CAD systems. The key contribution is an ‘operation’-based, multi-application oriented, and near

real-time collaboration mechanism which can significantly reduce collaboration communication load

over the network. The mechanism is discussed and demonstrated with examples. To support the

proposed multi-application collaboration system, a fine-grain feature-oriented product database is used.

This research is a continued effort based on a shared common product modeling scheme, which covers

fundamental issues of generic feature, feature level interoperability, engineering intent and operation

definitions.
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1. Introduction

1.1. Literature review

Due to the competition pressure and rapid change of market,
shortening time-to-market has become the critical objective for
many companies. As a result, concurrent and collaborative
engineering (CCE) become an industry trend. In a CCE environ-
ment, it is common for engineering tasks to be carried out by a
group of engineers who may be distributed in terms of both time
and space. Furthermore, different engineering partners use
different applications; hence a product model generated from
one application system has to be used directly by other ones.
Currently, information sharing among multiple applications
becomes the bottleneck for CCE [1].

There are two strategies for information sharing in computer
readable form, using proprietary direct translators or a public
domain neutral intermediate format. Compared with direct
translators, the neutral intermediate format strategy is suitable
for information sharing among a large number of applications. In
order to enable such interoperability, a commonly acceptable,
comprehensive and well-defined information model is crucial. A
lot of efforts have been made to model product entire lifecycle for
the implementation of CCE. The existing standards for data
exchange include IGES, VDAFS, SET, STEP, etc. For example, STEP is
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the most popular one and regulates mainly geometric information
of a product although it was intended to cover the entire lifecycle of
a product, i.e. from design to analysis, manufacture, quality control
testing, inspection, and product support functions [2].

Under the STEP framework, Szykman and Sriram presented a
heterogeneous system integration method and contributed to CCE
on database information sharing [3]. Zhang [4] also presented a
web-based data exchange framework to provide STEP data
translation services for virtual enterprises. However, during data
translation, some useful geometric and non-geometric information
such as features and their associated semantics are usually
stripped off. Therefore, this approach does not support complete
information sharing.

Currently, most of the CAx systems are feature-based. Features
are found very useful to encapsulate engineering intent in
computer systems. Therefore, representing feature-level informa-
tion uniformly is required so that engineering meaning is fully
shared among CAx applications. Many researchers proposed to use
design geometry information as the input to derive downstream
application features by feature conversion [5–9]. A multi-view
feature modeling approach that was supported by feature links
was proposed [8,9]. An ‘‘associative feature’’ definition was
developed in [10,11] for establishing the built-in object-oriented
mechanisms among related geometric entities. Such features are
application-specific and multi-facet features while self-validation
methods were defined for keeping feature validation and
consistency. Compared with the one-way feature conversion
approach, such a multi-way feature association approach is more
promising to support multi-view product modeling because of the
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object technology’s scalability and the possible implementation for
lifecycle servicing methods. Recently, Chen et al. proposed a
unified feature modeling scheme [12] related to inter-application
association management for high-level feature information shar-
ing among different CAx applications. The unified feature model is
essentially a generic semantic feature model for different CAx
applications covering relations among geometric and non-geo-
metric entities. This unified feature model can be further extended
to knowledge-based models by incorporating reasoning techni-
ques [13].

To support collaborative design [14] based on feature modeling,
web-based systems were developed in a semantic modeling
approach [15]. In some of them, enhanced multi-view feature
models [9,16] were adopted which can maintain feature semantics
among CAx applications. Mechanisms for feature model validity
and feature conversion are described. Li et al. [17] presented a
system to support feature-based design in distributed collabora-
tive environment. The ‘face-based’ data structure in the client side
can greatly reduce communication load between the server and
client. A modeler-supported server provides feature modeling and
feature validation functions in the server side. These efforts have
illustrated that features can be used as the intermediate medium to
express design and engineering modeling details with reduced
transferring load across the network. Unfortunately, the inter-
operability issue was not addressed because different semantic
schemes are used. For example, in [17], Open CASCADE and Java
development toolkit were used.

Another more generic approach is to make use the modern
database technology. A database allows the handling of a large
volume of data and is generic for reading, writing, updating and
deleting operations. The database management system (DBMS)
can ensure the security and transparency for the users of CAD data.
Therefore, compared with the traditional file-based approach,
databases are appropriate tools for information sharing among
multiple applications.

Kim and Han [18] described an interface (OpenDIS) between the
geometric modeling kernel and the DBMS for the implementation
of CAD system that uses the STEP database as the native storage. A
prototype CAD system was implemented using the Open CASCADE
geometric modeling kernel and ObjectStore. The STEP methodol-
ogy was used for the database schema. However, currently, STEP
files are very large in size and cannot fully support information for
different CAx applications, particularly for feature-based applica-
tions; so directly using STEP format files as the network-based
collaborative engineering medium is not satisfactory.

Other than research efforts, there also exist commercial efforts
which can support CCE to some extent, such as CAD web portals
developed by CAD/CAM-E Inc. [19], OpenDXM by ProSTEP [20]. All
these web portals are in fact operated by translator providers.
During data translation, useful information such as features is not
maintained. PDM/PLM solutions, such as Unigraphics’ TeamCenter,
Pro-E’s Windchill can be basically categorized as a kind of file-
based data management environments and cannot provide flexible
information sharing with finer-grain levels of granularity. There is
one commercial system, OneSpace by Cocreate [21] currently
offering some collaborative modeling capabilities. However, its
modeling facilities are severely constrained by the modeler at the
server SolidDesigner, and by the model format into which it
converts all shared models [14]. Although a lot of research and
development work have been done to enable CCE, the following
problems still exist:

(1) Duplicated data and conflicts [22]. Product and process
information is often stored in file format, which means
duplicated data and potential conflicts. In addition, files are
not flexible enough to support the multi-view functions
required by CCE applications. Furthermore, it is difficult to
extract and manage useful information from distributed files.
For example, multiple end-users or applications cannot
synchronize definitions and modifications easily for the data
stored in individual files.

(2) Information loss. As for geometrical information, although
many existing systems claim to support CAD-neutral (e.g.
STEP-based) data exchange, they lack feature level interoper-
ability so far. Useful information such as features is often
stripped off during data exporting and importing. Therefore
complete information sharing has not been achieved.

Therefore, the research work presented in this paper, that is to
achieve feature level information sharing among multiple
applications with a feature-oriented product database support,
can be justified. This paper has seven sections. After this
introduction, Section 2 gives a description of a comprehensive
and neutral product model definition of an entire product model
and related integration interfaces. Section 3 introduces the
proposed method to synchronize multiple application systems
via feature-based operations. Section 4 describes interactions
between the engineering applications and the product database
while Section 5 briefly introduces the whole system architecture.
Section 6 demonstrates the prototyped system with cases. Section
7 draws conclusions.

2. A comprehensive and neutral product model

2.1. Information integration infrastructure

To achieve information integration, a four-layer infrastructure
was proposed in [23] consisting of application, information,
representation and physical model layers. In the application
layer, different feature-based functional application interfaces and
procedures, e.g. design, tooling, manufacturing, are represented as
sub-modules; they need to be developed according to application-
specific requirements.

Next, the information layer contains four components again.
(1) The first component is a meta-product model, named as
entire product model (EPM). The EPM component describes
information dependencies across applications, and contains the
domain classification ontology and metadata. It also contains
assembly-part models, product geometry and topology, and the
related attributes. (2) The second component in this layer is the
‘unified feature’ [12] which provides a generic modeling frame-
work for different application feature modeling by giving a set of
generic feature templates. Although different applications define
features in different ways, their features can be fully represented
with a set of common types of data entities in the categories of
geometry, topology, dimensions, tolerances, constraints and
parameters, etc. In addition, different application features refer
to the same master product geometry. (3) The third is the
application feature component. Detailed feature objects are
organized by different sub-application models, or specific
application views for the product development processes. (4)
The last but not least, is the EXPRESS specification component
which offers the formal definitions of information modeling
structures, graphical interfacing specifications for the EPM, the
unified feature model and the application sub-models [24]. This
component is useful for future application integration reference
and protocol implementation.

Then, in the representation layer, for implementation, the
EXPRESS-defined information models need to be mapped to
database schema for data storage, programming data structures
like ‘workform’ format, and neutral content format for data
communication.
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Finally, in the physical layer, a network-oriented database
provides a repository of information entities, e.g. geometrical entity
data, feature properties and others objects’ data. In the database,
all kinds of information are stored as data elements across data-
base tables. Such an open yet neutral data structure makes the
information sharing natural, flexible and with different levels of
granularity.

2.2. Generic feature model

From the application point of view, it is essential that each feature
type has a well-defined meaning or well defined semantics. How-
ever, to address feature-level interoperability, feature definition
in an ‘open’ and neutral format is important. Here ‘open’ format
means the generic definition of features allow different instances of
user-defined feature types to be incorporated into the working
collaboration framework either automatically or interactively with
minimum mapping effort. The generic feature class introduced in
[23] offers the structured description of all common properties and
methodsofapplicationfeaturetypes.Suchproperties includefeature
shape representation with parameters, constraint types, reference
mechanisms and validity methods. This generic feature model also
provides a template for application-specific feature definitions.

2.3. Co-existence of different application features in geometry

representation

The unified feature model allows different applications to define
different features, even though there could be physically over-
lapping in space or volume [25]. They are associated to the same
master product model via a cellular model of geometry representa-
tion. A cellular model represents a part as a connected set of
volumetric quasi-disjoint cells [26]. By cellular decomposition of
space, cells are never volumetrically overlapped. As each cell lies
either entirely inside or outside a shaped cell, a cell can be used to
construct multiple features. A feature shape can be represented
explicitly as one cell or a set of related cells in the part. Explicitly
maintained feature shapes in the product model make feature
association and reference persistent in application implementation.

3. A method to synchronize multiple application systems via
feature-based operations

For developing a collaborative engineering platform, one of the
major issues is engineering data sharing/exchange. For example,
the sharing/exchange process in a collaborative CAx platform
should be dynamic, consistent and able to support various CAx
systems. In this interoperability issue, the key challenge is
modeling the interactions among functions of different systems.
In short, a synchronous and dynamic functional interoperability is
needed for a collaborative CAx platform. However, owing to the
large sizes of 3D geometry files, data transmission among different
CAx applications through the Internet is very time-consuming and
unreliable. Although incremental data file transfer is an alternative
way to reduce the network-load where only the modifications
instead of the whole CAD model are transferred incrementally
during collaboration, but even the first-time downloading is still a
very time-consuming task. To the best knowledge of the authors,
there is no reported research that can meet the feature-level
interoperability requirements. In this research, a new method,
based on feature operations, is proposed to address the issue.

3.1. A premise

The parametric feature technology is one of the core tech-
nologies in the current CAD/CAM systems. Engineering patterns
are defined as templates that are associated with dimensions,
constraints, attributes and are geometrically represented by a set
of entities and controlling parameters. In the past three decades,
parametric feature modeling has been proved to be effective to
support many kinds of design strategies (e.g. top-down or bottom-
up, etc.) and approaches (e.g. initial design, resembling design and
variant design, etc.). In addition, it can capture the engineering
information and maintain flexible models.

The proposed method is an extension of the parametric feature
modeling technology, but there is a premise. A set of commonly
used neutral features can be achieved in equivalent forms with
different application systems by mapping, grouping, combination,
or manipulating existing predefined feature types explicitly. Let us
first discuss about the soundness of this premise. As reported in
Chen et al. [27], to simplify and verify this premise, some basic
form features were selected. By comparing some popular
commercial CAD software tools such as Unigraphics, Pro/E, Catia
and SolidWorks and the design form features defined in STEP [2], it
can be concluded that their form features can be defined by using
another commercially available feature scheme.

Here, sketch feature needs to be explained. Strictly speaking, a
sketching module is a tool that provides convenient means to
define and create a feature. A sketch is not a form feature in fact. A
sketch includes the attached plane and a two-dimensional
boundary. By sketching a contour of the desired feature, the
designer defines the topology of the feature by its edges and
vertices. Then by constraining the sketch, some information, such
as position, orientation of the desired feature is defined. Thus the
sketch is a special feature that contains information of the resulted
form feature it creates. Sketching function has been employed by
most current commercial CAD systems as a tool to create form
feature. So ‘sketch’ is selected as a basic feature to support the
proposed method for data sharing/exchange.

3.2. The concept of operation

An operation is defined as a set of associated commands (or
methods), which are responsible for the functions and manipula-
tions of a commonly acceptable or equivalent set of feature entities
among multiple engineering application packages. This set of
commands is usually feature-based and can be directly used to
support the interfaces of the central databases with different
feature-based systems. Hence, by identifying a generic functional
processing object type named as operation, different feature level
properties and processes can be standardized and manipulated
with generic methods such that they can be commonly supported
by object technology within individual engineering application
systems. The implementation of operation class and its applica-
tions have been reported in [27]. In essence, the interpretation of
such commands would be dynamically associated with the specific
feature functions defined within the interfacing application
system. Therefore, the standardization of operations that are
supported by different systems is the critical condition if this
approach is to be adopted in real implementation.

3.3. Data type definition for operations

Supporting operations is a basic requirement for the generic
feature definition. It is also important for the manipulations of the
associative feature model, especially for distributed collaboration
system implementation over the web because the communication
load between distributed client and database server can be
reduced significantly in comparison to communication with lower
level geometric data.

Operation definition is represented as a generic and concise
object type in EXPRESS-G as shown in Fig. 1. An operation entity



Fig. 1. Operation definition.
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has its name and ID. An attribute named time_stamp is used to
record time sequence during a collaboration session. An operation
records the entities to be created or modified in an operation_en-

tity_list. In the referenced_entity_list, entities that are related to a
particular operation are recorded. For example, when an operation
that re-constrains a feature with reference to an element of
another feature is sent, the old and new constrained_entities and
referenced_entities are recorded in the referenced_entity_list such
that the application, which receives this operation, can easily
match the corresponding entities in its application. Such matched
entities in the receiving application are recorded in the targe-

t_entity_list, which is used for model update according to the
operation. An operation_rational specifies what kind of action the
operation will do to the operation entity, e.g. for feature-related
operation, operation_rational attribute specifies the actions such as
add, delete or modify. Operations can be flexible in record size
according to different synchronization intervals and could be
nested.

As categorized by [27], operations have two types, namely
geometry- and non-geometry-related operations. The geometry-
related operations can be further classified into feature-related and
low-level operations according to the entities that they manip-
ulate. The low-level operations are to create or to modify low-level
entities, such as points, lines and faces. The feature-related
operations (feature operation) include instantiating a feature or
modifying a feature. Non-geometry related operation could be
divided into ‘‘auxiliary’’ and ‘‘additional’’ operations. ‘‘Auxiliary’’
operations are mainly to facilitate the designer in geometric
modeling but do not affect the geometric shapes, such as layer
management and view manipulation. Other non-geometric
operations can be classified into ‘‘additional’’ group, such as those
related to file management.

Note that the time stamp in each operation has a set of time-
based attributes to record the sequence of the confirmed decisions
made upon the generation of each operation (e.g. when the user
confirms by clicking ‘save’ or ‘update database’) after its contents
are delivered, verified and executed. Operation records are also
stored into the product model database with their references
associated to the operation ID, target features, referenced entities,
parameters, etc., together with their sequences. Therefore,
generally, product model can be regenerated from time to time
by running through the operations recorded, and if necessary,
operations can be rolled back and forth if milestones or stop points
are inserted so that more flexibility or variations for engineering
activities can be supported. Clearly, within the product database,
features are static in nature recording the existing model entities,
relations, constraints while operations are sequential and time
based. By cycling the associated operations of any feature, its
construction history can be traced for verification or future
auditing purpose.

3.4. Generic feature-based collaborative engineering with the

operation concept

As illustrated in Fig. 2(a), a traditional CAD system consists of
several layers, such as data repository file, runtime database,
modeling kernel, application functions and CAD modular applica-
tions. The modeling kernel deals with the low-level geometric data
and mainly takes charge of creating, maintaining and displaying
the geometric model. It provides basic functions for the application
layer to access the database and data repository (usually in the
form of files). The modular application layer is an intermediate
layer which provides functional interfaces and controls the
sessions. It acts as a bridge that connects the user functions to
the lower level generic application functions and further to the
modeling kernel. This layer enables a series of User Interface (UI)
functions for the designer to input the design data and design
intent into the CAD system. According to the design intent, the
designer chooses a group of operations, such as creating a part. The
application layer extracts the information of the UI functions and
calls one or more functions provided by lower level sub-systems,
such as the generic application module and the modeling kernel.
During this process, the design data and knowledge are converted
and embedded into the lower level CAD data and stored in the
repository via the modeling kernel. According to the input, the
modeling kernel modifies the geometric model and updates the
display. So far, majority of such repositories are based on part and
assembly files instead of scalable neutral databases.

Now, a new collaborative engineering mechanism is suggested
here by introducing operations into the information flows.
Operations supported by a CAx system act as interfacing message
carriers for the user to access the system data and functions as
illustrated in Fig. 2(b). An engineer uses Graphical User Interfaces
of the given CAx system and generates operations incrementally to
design, plan, reprocess and evaluate his work on top of the feature-
based product model [23]. Take a typical design process as an
example. The designer converts the design concepts and rules into
a group of incremental operations; and then through these



Fig. 2. Schematic comparison of traditional and proposed CAx structures.
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operations, the design data and design intent can be created and
consistently maintained by a Web-based product model database
system without the tedious system-specific feature definitions.
Such a ‘plug and play’ protocol is based on a common set of
operations required for the functionality of the related engineering
processes.

If all the CAx systems can interact with a set of standardized
neutral operations, then the feature level interoperability can be
expected. Fig. 3 shows the virtual mapping method between a
system-specific feature command scheme and a standardized
operations-based scheme. Note that the corresponding mapping
tools between the specific CAx system and the neutral and generic
feature system have to be developed and made available
automatically upon legitimate requests across the network by
the web service mechanism. In addition, such operations can
generate and manipulate even higher level information than
features, such as product meta-data and semantics embedded in
engineering modeling processes. The communication language
which consists of operations, reference entities and other
associated parameter values can be defined as a high level ‘feature
markup language’ (FML) and used for information transfer
between the specific CAx client and the neutral server databases.

4. Interactions between engineering applications and
the fine-grain product database

Once the standardized operations become the acceptable
communication vehicle with an agreed vocabulary collectively to
support the incremental changes sent to the product repository,
the interaction methods between CAx systems and the database
can be developed. Here, the ‘fine-grain’ product database needs
some elaboration. In informatics, grain size is a concept of
accessible object level that the end user or developer can make use
of for the required inquiries and manipulations. In the context of
collaborative system, the grain size of interoperability refers to
the neutral and abstract level of information entities that can be
accessed via common interfaces. As to the collaborative engineer-
ing platform, the informatics grain size indicates the level of
flexibility of manipulation and information sharing in the
collaboration sessions. In the current available commercial CAx
systems, the grain size of interoperability is at the part file level
and for geometric entities only attributing to some geometry
exchange standards, such as IGES and STEP. A fine-grain product
model was proposed in [23,25] because in the proposed system
design, all the CAD entities, including geometrical and non-
geometrical ones, are extracted and stored into a generic product
database. Since the accessibility to all levels of entities, from
points, edges, faces, to slides and features is expected to be
possible, hence the proposed approach is ‘fine-grain’ for the
product repository. Here, the ‘fine-grain’ entities refer to the
neutrally accessible objects that can be manipulated.

Operations are dynamically created relating to the stages of the
end user’s activities. It is mapped into standard methods related to
generic features as well as the sequence of executions. The results
generated are converted into static features and other low level
geometric and non-geometric entities. Using operations provides a
dynamic collaboration mechanism for users to cooperate on a
single product model via different CAx interfaces and rolled back
and forth easily. Operations enable engineering activities to be
‘saved’ incrementally and allow such activities continued any-
where and anytime. This mechanism provides the means of
capturing the user’s design sequences and making the feature-
based engineering activities valid in a very effective manner. Fig. 4
illustrates the interactions between the cooperating CAx and CAD
systems and the network-based product model database. This
interaction method is supportive to the generic feature represen-
tation schema described in [25], and the feature representation in
database as reported in [23].

5. System architecture

As shown in Fig. 4, the proposed repository system adopts a
client–server architecture. The functional servers include a web
server, an application object server and a feature object server to
provide different functionalities. In the following section, the roles
of these functional servers are described briefly. For more detailed
information, refer to [28].

5.1. Web server

The web server contains a collaboration manager, security
manager and session manager. Collaboration manager provides
two kinds of accesses for multiple users, namely, ‘‘HTTP’’ access
through MDAI (multi-view data access interface) by adopting ASP
(active server pages) and direct socket-based access. It can support
data check-in and check-out by multiple users through the web; it
also supports socket-based collaboration among multiple users.
The security manager is used to check whether the user has the
right to access the product model data and what kind of access
right he may have. Users are classified into several groups. Each
group has different access rights. Such management data are
stored in the database. When a user signs in through collaboration
manager by his user name and password, the security manager will
check the user’s information stored in the database. Then
according to the role of the users, e.g. product designer, tooling
designer, process planner, or CAE analyzer, selective views of the
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product model data will be provided for the user [29]. The session
manager is responsible for controlling concurrent access by
multiple users of the same data, and controls concurrent access
of product data.

5.2. Application object server

The application object server provides categorized information
services (e.g. design or manufacturing applications) for different
Fig. 4. System architecture.
users such that users can interactively carry out feature-based
operations via generic user interfaces (to be developed) with the
support of the dedicated views by a product model manager. The
product model manager is responsible for managing different
application views as an integrated product information model and
maintaining the information consistency in the product level.

5.3. Feature object server

The product information model includes different feature
models with feature level constraints, inter-application constraints
and the underlying solid models (via cellular models). The feature
object server maintains different application feature libraries and
therefore can provide feature object methods for application
packages. To maintain the meaning of a feature during feature
modeling operations, such as adding, deleting and modifying
features, the feature manager calls the constraint solver and the
geometrical modeler to create/update all feature instances based
on those feature creation/manipulation functions and constraint
solving functions defined in application-specific feature class. The
constraint solver can check the validation of all constraints, which
are part of the feature definition. The geometrical modeler here is
used also to validate feature geometry.

5.4. Database server

The database server provides physical storage for all kinds of
data including product model data, security management data and
so on. Within the database, geometrical data and features for
different applications are stored as data elements across tables.
Database manager can provide data manipulation functions (e.g.
save, restore and validate functions) with the help of geometrical
modeler. These functions are used to organize information for
different application views according to users’ requirements.

5.5. Geometrical modeler

In the proposed system, a solid modeler has been tightly inte-
grated into the repository server with interfaces to the feature object
server and database server. It provides all the geometry-related
services such as creating and modifying geometrical entities [25].



Fig. 5. Partial operation mapping table between unigraphics and solid works.
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5.6. Information flow

In the proposed system, when a user wants to check-in or check-
out product information, he can access through ASP. Then, the
security manager, by connecting to the database manager, will check
the user information stored in database, and decide whether the user
has an access right, what kind of access right he has, and what kind of
information (application-specific view) he wants. Finally, he can
check-in or check-out product information. If multiple users want to
collaboratively design a product, the participants have to register
first with the collaboration manager. After security checking, a new
session is established according to the user’s profile. Similarly,
multiple users can collaboratively work on the product through the
application object server where the product manager plays the role
of the information broker. During modeling collaboration, feature-
level operations are communicated in most cases so the commu-
nication load among distributed clients and server is minimized. The
application object server, through product model manager, con-
sistently manages product information in the server side. After each
feature operation, such as insertion, modification and deletion, the
geometrical modeler will be called to process and validate the
feature geometry. The feature manager will also call constraints
solver to check all the involved constraints (intra-application
constraints and inter-application constraints) to validate the feature
model. Finally, the finished product model can be stored into the
database by the database manager.

6. Prototype system implementation

To prove the practical effectiveness of this operation-based
collaborative engineering mechanism, preliminary prototyping
efforts have been carried out. The first question to be answered is
whether there is a set of mutual-equivalent features between two
different CAx systems?

6.1. Feature-based modeling with operations

To address the above question, a client server testing envi-
ronment has been set up. The database server is connected to two
client workstations. Two different client CAD systems are installed
respectively, one is UGS NX v.2 and the other is SolidWorks 2004. A
set of equivalent features have been identified and implemented
into the operation data structures with the required mutual
agreeable parameter structures. Fig. 5 shows a partial feature
mapping table where equivalent features are paired between UGS
NX and SolidWorks. Fig. 6 illustrates the detailed operation steps
involved to construct a real industrial model. These operations
have been implemented, and the modeling steps can be
collaboratively executed or generated by any client who has the
editing control [27]. The switching of editing control is also tested.

6.2. Feature-oriented database

In the prototyped system, the feature-oriented product
database has been established on the basis of database schemas
described [23]. For the database server, ORACLE 9i, an object-
relational database solution has been adopted [30]. Product
information includes geometrical entities, features (with para-
meters and constraints) and other information. High-level feature
information connects with low-level geometrical data with the
help of intermediate reference layer (feature labels). The use of
database makes information sharing among multiple applications
possible with great flexibility and granularity. Eventually, the
proposed repository system is aimed to support highly intelligent
reasoning for engineering decision making [31]. Fig. 7 shows a
portion of the geometrical data (faces) stored in the database,
which belongs to a part fix_jaw. Fig. 8 lists all the design features of
part fix_jaw. In the prototyped system, a database manager (DB
manager) has been implemented to be responsible for reorganizing
data elements stored in different database tables for different
applications, such that the proposed system is multi-view
supported. Generic save() and restore() functions have been
developed [25] in order to manage feature information, geome-
trical data and operations. DB manager is connected with database
server via OCCI (Oracle C++ call interface). OCCI is an API that
provides C++ application access to data in an Oracle database. OCCI
enables C++ programmers to utilize the full range of Oracle
database operations, including SQL statement processing and
object manipulation [30].

6.3. Web-based multi-client collaboration

In the prototype system, collaboration among two clients
participating in a product design session has been tested. Both the
clients are first registered in the session manager after security
checking, then the collaborative design can be started by specifying
product related domain information. Two design views and one
manufacturing view participated in the design of fix_jaw, a part
which belongs to a clamping vise product. As shown in Fig. 8, in the
design view, the part fix_jaw constains seven features which are an
extrusion, a wedge_cut, a slot, two counter_bore_holes and two
simple_holes.

During collaboration process, only one system is allowed to edit
by managing the process lock attribute. In the edit view, after each
modeling operation, it will send feature operation instead of entire
file to the server side. Note, in real application, the interval of two
continuous operations can be flexibly determined in a batch of
commands manner. Fig. 9 is a manually captured screen with an
interactive viewer window showing the existing part loaded in the
application and the sending operation control buttons from the
edit view after adding two simple_hole features. In real situation,



Fig. 6. An example modeling process by operations.
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the sending process is automated transparently. In this case, the
size of the feature operation file is only 4.07 kB, while the size of
the whole part file is 28.4 kB. In real applications, the local part files
can be huge depending on the complexity of geometry. Clearly, by
sending feature operations instead of the complete CAD files or
STEP files, the communication load between server and distributed
clients can be reduced significantly.

Theoretically, upon receiving a feature operation, product
manager in the server side re-evaluate the feature model using a
constraint solver (partially developed) and keep a consistent
runtime product model in the server side. According to the domain
of the participants, different server actions will be executed. After
the current set of feature operations being sent through network to
the server side; then, the server side will validate the feature
model. For those who have the same application domain with the
current edit client, after the validation, the newly updated feature
models will be sent to them and the corresponding views updated.

In the fix_jaw design example, after receiving the feature
operation, the server side creates the two simple_holes according to
their constraints and parameters (for details, please refer to [25]);
then update the design view; finally, this view can evaluate and
update the feature model. The result after model evaluation is the
same as shown in Fig. 9.

For a client workstation which has different applications, the
product manager first call the current application packages to re-
evaluate the view. This kind of model evaluation contains two
actions. If only ‘modify feature operation’ is being processed, the
corresponding application view will try to automatically propagate
the changes by solving inter-application constraints and local
constraints of the corresponding view. If automatic model re-



Fig. 7. Partial geometric data stored in database.

Fig. 8. The feature list of fix_jaw part.

Fig. 10. The manufacturing features generated for the example.
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evaluation is not successful due to constraint conflicts (or the view
does not exist), the product manager will require the client to open
the both views in the client side by downloading the entire file
from the server side. Fig. 10 shows the result with the loaded
design model together with the manufacturing view, where two
simple_hole features are added in the design view. The interactive
Fig. 9. Send feature operation from the edit view.
resolving process is carried out as follows: firstly, create the stock
automatically or manually by drawing on the basis of design
feature model; then, interactively identify manufacturing features
by predefined feature shape and choosing the machining tool as
well as cutting tool; finally, a manufacturing feature model is
generated. In such a way, multiple application collaboration can be
realized. Note that manufacturing feature model is shown in
Fig. 10.

Due to the space limitation of this paper, the actual operation
records generated in the prototyped system are not presented.
Although UG NX2 and SolidWorks 2004 are taken as examples,
we have been convinced in the investigation that equivalent
common features can be identified with other feature-based CAD
systems. In addition, based on our observation, if such colla-
borative interoperability can be realized between two different
CAD systems, it could also be applicable to different application
systems such as CAD, CAM and CAPP systems.

6.4. Web-based access

The prototype system also supports online communication
between distributed clients and database server through the web.
For this purpose, all the clients should have the access to the
check-in and check-out data services through the MDAI controlled
by a collaboration manager. In the prototyped the system, the
Fig. 11. Data check-in through MDAI part.



Fig. 12. Data check-out through MDAI.
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MDAI has been established adopting the ASP (active server page)
technology. Apache has been used as the ‘‘HTTP’’ server to provide
data communication service through the web. A security manager
in the web server side is responsible for preventing unauthorized
access.

Once the user has been successfully logged in after the security
checking, the user can check in the product information. This
procedure is illustrated in Fig. 11. By specifying product related
information, the 3D model can be uploaded to the server side.
Then, on the server side, product manager will validate the model
by different application view packages and finally check the
information into the database.

If the user wants to check out the product information from
the database, MDAI also provides database search and data check

out functions. By specifying the search items, e.g. the product
name, the search function will search in the database, after
which the matching product with all its containing parts will
be checked out. Finally, the user can download the file to the
client side for further processing. This procedure is illustrated in
Fig. 12.

7. Conclusions

In this paper, a new communication data structure, operation,
has been defined to minimize the network information transfer
load in collaborative engineering and to support nearly real time
collaboration among multiple applications by incrementally
transfer model modifications. The scenarios studied are based
on the web-based, database-driven, and feature-oriented system
architecture. The novelty of this research is the new mechanism via
operations to address feature-level interoperability among multi-
ple applications. The client–server architecture can provide shared
access for multiple users. The proposed four-layer information
model can integrate different applications with an associative fine-
grain product repository, and allow the manipulation of applica-
tion-specific information with sub-models. The generic feature
model provides an integrated and associated feature modeling
framework for different application feature models. With the
proposed operation-based synchronization and scalable database
support, product engineering processes can be organized for
multiple applications with flexibility and finer-level of granularity.
A geometrical modeler has been incorporated into the system to
provide lower level geometrical modeling service, with which
feature geometric modeling can be realized. Through some
preliminary case studies, it can be concluded that the proposed
operation synchronization mechanism could be very useful for
a prospective global collaborative engineering framework with the
aid of a fine-grain feature-oriented product database.
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