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Abstract —The competitive and open market nature 
demands different vendors to collaborate during the product 
life cycle and to reduce the product’s time to market. In this 
paper, we propose an infrastructure to enable the concurrent 
collaboration of heterogeneous CAX tools at the feature level 
using a Service Oriented Architecture (SOA) approach. A 
Feature Markup Language (FML) is proposed as the modeling 
language for feature representation and exchange which can be 
independent to operating system and programming language. 
How to employ the concept of software factory to leverage 
FML as a Domain Specific Language (DSL) is discussed for the 
process of feature development and distribution. Moreover, the 
underlying architecture is described to enable CAX 
information sharing in real-time preserving the semantics and 
consistency of CAX models. 

I. INTRODUCTION 
H
(P

ROUGHOUT the product lifecycle management 
LM), different vendors are involved in the planning, 

designing, manufacturing, maintenance and disposal of 
a product [1]. This mandates the use of different CAX 
systems that exists at disperse geographical locations 
belonging to different enterprises with different ownership 
of the infrastructures. The vendors rely on a heterogeneous 
set of CAX tools to generate necessary artifacts to realize the 
product design and manufacturing. Different CAX tools 
employ proprietary representation, modeling and formatting 
of the underlying artifacts. This raises several challenges 
including but not limited to: 
o Difficulties of direct information sharing between the 

two tools due to format incompatibilities; 
o The need to build custom components for information 

transformation and exchange; 
o The loss of many of the semantics and design intents 

during the transformation and exchange process; 
o Software tools might be phased-out along the years; 
o Increased cost of maintaining the transformation tools 

especially with the continues change in software 
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technology; 
o Difficulty in synchronizing changes that might raise 

conflicts that require human interaction to resolve it; 
and 

o No possibility for concurrent collaboration on the 
product model. 

The machine-to-machine automatic interactions are 
difficult to realize with the current tools and the use of 
custom components for information transformation, 
translation and exchange is not satisfactory. Many of the 
operations related to CAX information exchange is 
performed manually using out-of-band processes, such as 
file ftp, disks, etc. In the current point-to-point CAX 
integration approach, an adapter or a custom build 
component must be built that takes care of the translation 
when exchanging information between two systems. The 
number of adapters increase based on the formula n2, where 
n is the number of interacting CAX systems.  Fig. 1 
describes the situation in a point-to-point integration. The 
situation becomes unmanageable when CAX tools evolve 
independently breaking the functionality of adapters’ 
implementations. 

 
Fig. 1 Point-to-Point Integration 

A better alternative to the problem is using a system 
sitting in the middle called a middleware. The CAX systems 
interact through the middleware who takes care of brokering 
or routing information to the destination party. This kind of 
integration is called the hub model architecture. 
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Fig. 2 Hub Architecture 

Fig. 2 depicts the hub architecture and it is noticed that 
the number of adapters which equals to n, is reduced 
drastically. For this architecture to work, using 
heterogeneous CAX tools, the adapters must compatible 
with the middleware and use the same language for 
communication. This language of communication has to be 
defined and managed by the middleware system. This work 
proposes a Domain Specific Language called Product 
Lifecycle Modeling Language (PLM-DSL) as the language 
of communication. The language specifications combined 
with the hub architecture provide standardized automated 
infrastructure to enable machine-to-machine interactions and 
leverage the collaboration aspects between different vendors 
contributing to the same product model. This proposed 
solution is based on the new technologies of associative 
features [2], Web Services specifications (WS-*), service 
oriented architecture (SOA), and Extensible Markup 
Language (XML). The solution platform is supposed to be 
operating system and language independent hence results in 
the high acceptability and adoption by the industry while 
reuse much of the currently existing systems. 

In the rest of this paper, the architectural details of the 
system are discussed in section II. Then in section III the 
modeling language specifications are listed and described. 
Section IV briefly describes software factories and finally 
Section V offers concluding remarks. 

II. ARCHITECTURAL OVERVIEW 

This research focuses on associative feature based 
collaboration throughout the product lifecycle. So far little 
work has been done on enabling CAX modeling and 
concurrent collaboration at the feature level. The process of 
exchanging CAX files involves file translation and 
transformation, and is limited to geometric information, 
hence leading to misinterpreting design intent and loss of 
information. Moreover, equivalent constructs for items 
translated must exist in the destination CAX tool. Even 
exchanging CAX files between the same CAX tools does 
not guarantee the recognition of constructs by the 
destination CAX application. Exchange of software 
components that include defined feature types becomes a 
complementary step to CAX files exchange. Therefore the 
collaboration process involves semi-manual steps (out-of-
band software component exchange).  

In this research, to leverage the concept of associative 
feature [2], feature information is utilized and shared by 
using OS and programming language independent constructs 
based on a Service-Oriented Architecture (SOA). We 
approach the problem by defining a web-friendly and 
machine sensible modeling language to define features and 
exchange CAX information. Fig. 1 is a conceptual 
architecture diagram of the solution. The core application 
component is the collaboration server (supported by 
middleware) that exposes a set of web services. The server 
manages the flow of model information between 

collaborating partners. The collaboration server manages the 
feature definitions catalogue. Feature definitions are 
articulated using Feature Markup Language (FML) which is 
based on XML and part of our PLM-DSL. FML is further 
discussed in section II. Suppliers collaborating on the same 
model are themselves service providers by exposing a set of 
web services that invoke and execute their feature logic 
implementation codes. A CAX tool modifies a model by 
invoking some operations or methods on certain features. 
The invocation action goes through so-called feature proxy 
which passes any real invocation to the collaboration server. 
The collaboration server using a routing mechanism would 
connect to the feature provider and channel through the 
invocation. The logic is executed on the feature provider 
server and the invocation result is returned to the CAX tool 
through the collaboration server. 

This architectural paradigm frees the collaborators from 
exchanging libraries that includes the feature 
implementation. A consumer of a feature interacts with the 
actual implemented feature through feature proxies that act 
as stubs that channel the method invocation through the 
collaboration platform to the provider of the feature. 

On the other hand, any changes on the model are applied 
to the CAX data models and managed by the collaboration 
server. These changes are validated by the collaboration 
server to ensure the consistency of model through checking 
the set of constraints at the model and feature level.  

Systems communicate with the collaboration server using 
PLM-DSL constructs on top of Simple Objet Access 
Protocol (SOAP) messages. SOAP messages can run on top 
of different transport protocols such as HTTP, TCP, and 
UDP. WS-* specifications, such as WS-Reliable Messaging 
and WS-Transaction, can further be utilized to enhance the 
communication between the CAX systems and the 
collaboration server.   

 
Fig. 1. Conceptual Architecture Diagram 

III. MODELING LANGUAGE 

The product lifecycle spans multiple phases and involves 
different contributors with different roles during the product 
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lifecycle management (PLM) [3]. PLM requires the 
collaborative creation, management, dissemination, and use 
of product model and process model information across the 
extended enterprise from market concept to product 
retirement. This collaborative nature mandate the CAX 
information sharing between partners. Non-geometrical 
information and design intent are stripped away during the 
process of CAX file exchange via some format such as 
STEP standard. As a consequence, the major challenge is to 
develop a ‘feature-centric’ expert system that incorporates 
knowledge and information from all phases of the PLM and 
supports global, concurrent design and engineering [2]. Ma 
et al. [2, 4] introduced the concept of associate feature (AF) 
as a form of self-contained and well-defined design object to 
capture the semantics and intents during the product 
lifecycle. However, their previous works described AF more 
in terms of its constituent elements and form.  

This work proposes a modeling language to model a 
product using fine-grained associate features as the building 
blocks. It leverages the collaborative environment through 
capturing the semantics and design intent during the product 
lifecycle. Moreover, by increasing the level of abstraction, 
the proposed architecture breaks away from specific 
operating system and programming language. These criteria 
can be met by developing a Domain Specific Language 
(DSL) for the proposed modeling method [5]. Therefore, the 
objective of this work is to design a DSL language to 
capture the information flow during the product lifecycle 
(PLM-DSL). Some of the considerations undertaken in the 
design of PLM-DSL include: 
o Modeling both geometric and non-geometric 

information; 
o Web-friendly mechanisms to enable collaboration and 

data transfer over the web; 
o Machine readable and computer sensible data types and 

methods to enable automation and machine-to-machine 
communication; 

o Extensibility and composability to accommodate for the 
evolving nature of the industry; and 

o Versioning support especially for the AF definitions as 
well as their instances such that AF life can be extended 
for many years. 

Extensible Markup Language (XML) is used as the 
underlying language for designing the Domain Specific 
language. XML has been the de facto standard for modeling 
and data representation over the wire and in Business-to-
Business transactions over the web because of its simplicity 
of use and its computer sensibility. Web services and Web 
service specifications are built on top of XML which enables 
automation of scenarios related to integration and B2B 
transactions. XML is machine, OS and programming 
language independent, and moreover, many tools and 
libraries exist in the market nowadays to process XML 
documents. The proposed DSL schema needs to be flexible 
enough to preserve the semantics of the artifacts and to 
allow some degree of extensibility to meet the needs of 
growing deployment.  

PLM-DSL is composed of two protocols to meet our 
requirements for modeling: Feature Markup Language 
(FML) and Product Modeling Language (PML). Both FML 
and PML are expressed as XML schemas using the XML 
schema definition language (XSD 1.1). The schemas define 
the grammar, structures and types in an XML document [6, 
7]. Using XSD offers many advantages, e.g. it is machine 
readable; those defined schemas are self documented; it is a 
W3C recommendation and widely accepted as a standard; 
and its definitions can be versioned. Fig. 2 depicts the 
building blocks of the proposed PLM-DSL.  

 
Fig. 2. Product Modeling Language 

A. Feature Markup Language 
Associate features are fine-grained objects that 

encapsulate both data and behavior [8]. The data encodes the 
semantics and state of the feature. Behaviors are realized in 
the form of methods and if invoked would change the 
internal state of a feature. FML was first introduced in [9] as 
an associative feature modeling language. FML schemas are 
based on XML Schema Definition (XSD 1.1). They define 
the grammar and constructs of FML constituents. An FML 
document is an XML info-set conforming to the FML 
schema that captures both the geometric and non-geometric 
details of a feature preserving the semantics and intent of 
designers. An FML schema describes the attributes, 
constraints and the interfaces of a feature. The following 
sections describe these concepts in further details. 

 
Fig. 3. Complex Type Definition 

1) Attributes 

Attributes represent the data state of the feature and are 
identified by unique names within the FML definition. An 
attribute type can be as simple as a primitive type such as 
integers, strings and float or complex types such as points 
and faces structure. Complex types are aggregates of other 
simple and/or complex types. XSD schemas provide the 
capability to define a rich set of types that are reusable by 
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other XSD schemas. Such reuse of schema defined types is 
analogous to reusable types packaged in software libraries 
such as dynamic link libraries in windows operating system 
world. Fig. 3 is a graphical representation of a schema 
defined complex types. The figure depicts a complex type 
Point having three primitive types x, y and z of type double. 
Another complex type recognized from the figure is the type 
Edge which in turn has two attributes p1 and p2 of type 
Point.  

To demonstrate the type definition capabilities of XSD, 
we defined XSD types that are equivalent to the topological 
geometric objects of ACIS. ACIS is a geometric modeler 
which represents a shape in terms of a network of 
interrelated geometric and topological objects [10]. Listing 1 
is the XML schema showing the defined types of both Point 
and Edge as complex types. XSD schemas include a couple 
of mechanisms both data-centric and object-oriented for 
creating and defining a rich type system. Some of the data-
centric concepts include constraints such as required values 
and unique keys while concepts such as inheritance are 
inferred from the object-oriented world.  

 
Listing 1: Schema Complex Type Definition 

Fig. 4 depicts one way to model ACIS objects using XSD 
type system. Many of the type attributes are omitted to 
simplify the graph. Every defined type inherits directly from 
the ENTITY type. The LUMP type for example is defined as 
a complex type that has a collection of SHELL objects.  

2) Constraints 

Constraints encode the rules and policies of a feature and 
define the relationship with other features in a product 
model. Some examples of constraints are parameter 
constraints such as dimensions, relations of referenced 
entities, tolerances, while some are more complicated and to 
be managed by certain procedures, such as derivations from 
upstream entities, and evolved design patterns like cooling 
circuit in mould design [2]. The constraint knowledge is 
encapsulated in a feature and controls the modifications 
applicable to its internal state. There are several levels where 

constraints can be defined: 
o At the type level, the acceptable set of values the type 

can assume is defined. This is implemented through XSD 
type system; 

o At the feature level which governs the rules and policies 
that relates attributes within the feature. The rules are 
defined at the FML level using the FML schema 
constraint constructs; and 

o At the model level which governs the relationship 
between different features. The constraints are defined at 
the model level using PML schema constructs. 

3) Interfaces 

As mentioned earlier, a feature encapsulates behavior that 
defines the set of operations callable on the feature. An 
operation is a method that can be invoked on a feature and 
leads to one of the following effects: 
o Changing the internal state of the feature by modifying 

one ore more attribute value; 
o Changing the state of other features in the model 

governed by the constraint set; and  
o Creating and deleting an instance of a defined type. 

 
<?xml version="1.0" encoding="utf-8"?> 

<xs:schema 
targetNamespace="http://tempuri.org/XMLSchema.xsd" 
elementFormDefault="qualified" 
xmlns="http://tempuri.org/XMLSchema.xsd" 
xmlns:mstns="http://tempuri.org/XMLSchema.xsd" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:complexType name="Point"> 
    <xs:sequence> 
      <xs:element name="x" type="xs:double" /> 
    </xs:sequence> 
  </xs:complexType> 
  <xs:complexType name="Edge"> 
    <xs:sequence> 
      <xs:element name="p1" type="Point" /> 
      <xs:element name="p2" type="Point" /> 
    </xs:sequence> 
  </xs:complexType> 
</xs:schema> 

Lumps 

0, …∞ 

BODY 

Faces 

0, …∞ 

 
Fig. 4. ACIS representational hierarchy using XML schema definition 

To allow user defined features, FML schema enables 
feature developers to define behavior by using interfaces. 
An interface is a group of related operations that specify an 
abstract contract. The interface lists the methods defined in a 
feature and the input parameters passed to a feature and the 
returned output parameters. It doesn’t provide a description 
to the concrete implementation of the feature. An interface is 
similar to the port construct in a Web Service Description 
Language (WSDL) document. WSDL is an XML based 
language and was the first widely adopted mechanism for 
describing the basic characteristics of a Web service [11]. 

Shells 

0, …∞ 

Edges 

0, …∞ 

LUMP 

Loops 

0, …∞ 

FML 

SHELL 

Surface 

LOOP 

SURFACE
FACE

CO-EDGE
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WSDL document describes how to call a method in a 
service without describing the internals of the method 
implementation. It describes what a request message must 
contain and what the response message look like in 
unambiguous notation [11]. The Grouping of operations into 
interfaces allows feature developers to reuse the interface 
definitions during the development of other features and in 
such a way a type can be reused.  

Listing 2 is an FML fragment that defines an interface 
called IFace and has two operations: CountEdges and 
AddEdge. The CountEdges operation has no input 
parameters while it returns an output parameter of type 
integer. On the other hand, the AddEdge operation accepts 
one input parameter of type EDGE and returns an output 
parameter of type Face.  

A feature implementing the interface IFace inherently 
acquires the behavior of a surface and supports the 
operations CountEdges and AddEdge. Note that the IFace 
interface is defined as a XSD type and therefore can be 
applied to other features. To successfully call an operation 
defined by an interface, the application must make sure to 
pass the input parameters as defined by the interface.  

 
Listing 2: FML interface definition 

A feature can have 0 or more interfaces depending on 
their complexity. The more interfaces implemented by a 
feature the more it has support for operations. We can define 
unlimited number of interfaces using the same type 
definition mechanism of XSD and as dictated by the FML 
language. Consider a scenario where we need to add extra 
information to a feature. In this case we can define an 
interface called ITaggable that has one method called 
GetTags and apply the interface to the feature. The GetTags 
will return the extra information associated with the feature. 

 
 Listing 3: C# sample code implementing IFace 

The mechanism of applying interfaces to features allows 
feature developers to tag their features with different 
interfaces using interface definitions. Listing 3 and Listing 4 
demonstrates the concrete implementation of an interface at 
the code level using C# and C++ respectively. The code 

implementation of the IFace interface corresponds to the 
schema defined previously. A class named SampleFeature 
implements the interface by providing the full method 
implementation. 

A CAX tool using the SampleFeature needs to know only 
the lists of interfaces defined by the feature. If the CAX tool 
identifies that a feature implements the IFace interface, that 
tool can invoke the methods CountEdges and AddEdges. 
This invocation of methods, combined with the 
collaboration server architecture discussed earlier, is actually 
channeled all the way to the feature provider using SOAP 
based messages. FML is the underlying protocol that insures 
the proper discovery of the interfaces, the methods exposed 
by an interface and the messages required to invoke these 
methods. 
An interface outlines the generic structure of associative 
feature; it avoids the concrete implementation of the 
behavior to achieve a greater level of abstraction. This 
abstraction, enables suppliers and feature developers to 
extend the feature schema to create new features to cover 
their needs. However, FML schema draws the general 
guidelines and rules for developing features to ensure the 
consistency and modularity of the developed features.  <interface name="IFace"> 

  <operation name="CountEdges"> 
    <out type="integer"></out> 
  </operation> 
  <operation name="AddEdge"> 
    <in name="edge" type="EDGE"></in> 

    <out name="face" type="FACE"></out> 
  </operation> 
</interface> 

class IFace{  virtual int GetCount(); 
     virtual void AddEDGE(EDGE* edge); }; 
class SampleFeature : IFace{ 
private: int _count; 
public: int GetCount() {  /*logic*/ } 
void   AddEDGE(EDGE* edge) { /*logic*/ };};  

Listing 4: C++ sample code implementing IFace  

A feature instance is an XML document based on an FML 
schema. An analogy can be drawn between an XML 
document to an FML schema and an object to a class in 
object-oriented programming. The XML document 
encapsulates the parameterization of the feature. An XML 
document always refers to the schema and is validated 
against it to insure the validity of the XML document 
structure. Schema referencing is a way to uniquely identify 
schemas published by different suppliers through the use of 
Uniform Resource Identifiers (URI). An example of a 
schema reference published by a certain supplier: 
http://www.supplier.com/schemas/v1.0/fml.xsd. The 
reference scheme creates some kind of namespace for the 
features defined in the schema. The namespace helps 
identify features developed by different suppliers that have 
the same schema definition. 

interface IFace{    int CountEdges(); 
          void AddEdge(EDGE edge); } 

class SampleFeauture : IFace{    Array _edges; 
              int CountEdges()    { 
                 return _edges.get_count();    } 
void AddEdge(EDGE edge)    {  _edges.add(edge); ;}; B. Product Markup Language 

Along with a product lifecycle are different engineering 
processes, such as conceptual design, detail design, CAE 
analysis, process planning, machining, assembly, and so on 
[1]. Several CAD/CAE tools contribute to the design along 
the different stages and each uses a proprietary data 
representation and file format. Traditionally, file translation 
and transformation take place during file exchanged between 
different CAX tools. This proposed Product Modeling 
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Language encodes the modeling information during the 
product lifecycle. Its format is also based on XML which 
makes it readable by machines and suitable for data 
exchange using web services. PML defines an XSD schema 
that lays out the structure of the XML file encoding the 
product lifecycle details. The XML file holds both geometric 
and non-geometric information. Referring to Fig. 2, the 
Product Modeling Language consists of the following 
building blocks: Metadata, Constraints, Feature Catalogue, 
and Features. 

1) Metadata. Metadata is defined as data describing 
data. Therefore PML Metadata provides the means to further 
associate data to the product model. Create date, authors, 
CAX tools and CAX versions are just a few examples of 
metadata that are associated with the model. The metadata 
system in PML is extensible allowing the collaborators to 
contribute to the semantic of the model. 

2) Constraints. Model constraints are part of the 
constraint space defined in a model. PML constraints govern 
the relationships between the set of features in a model. 
These constraints are constantly evaluated to ensure the 
consistency of the model data state. 

3) Feature Catalogue. A Feature Catalogue lists the 
available feature definitions in product model. This list 
includes the subset of features’ definitions used in the 
product model and in addition to other features definitions 
available to model designers. The CAX tools explore this 
catalogue to identify the used features and to generate 
features’ proxies. The features’ specific proxies are 
eventually used by the CAX tools to contribute to the 
product model persisted at the collaboration server level. 

4) Features. Any product model is built from a 
federation set of feature sets. The PML manages the 
collection of features and their internal data structures. The 
collaboration server constantly ensures the consistency of 
the internal data state of features through the evaluation of 
the constraints. Different views can be created to 
synchronize certain information from the feature collection. 
For example, we can have a view that extracts geometrical 
information to create a machining sub-model while stripping 
away any irrelevant information from design stage.  

IV. SOFTWARE FACTORIES 

FML is useful for building software factories to automate 
the generation of proxy features components and libraries. 
According to [12], a Microsoft software factory can be 
defined as a production line that configures extensible 
development tools like Visual Studio [13], with packaged 
contents and guidance, designed for building software 
applications. An initial investment in building software 
factories targeting different CAX tools can cut cost and time 
in building the proxy features. A CAX vendor can provide 
the tools on top of his product to ‘consume’ FML documents 
and generate the features corresponding to the FML 
document. This process is automated and reduces the time 
and effort to build proxy features. 

V. CONCLUSION 

Industries are always exploring new means to increase the 
collaboration on the design and manufacturing of products. 
This work describes a new approach for concurrent 
collaboration at finer grains-associate features than previous 
works. Our research promotes the idea of FML and PML as 
the Domain Specific Languages for Product Lifecycle 
Modeling. A Service Oriented Architecture was proposed to 
leverage the capabilities of these languages and create an 
agile environment for collaboration and information sharing. 
The authors believe in a great opportunity for further work 
on PML and FML especially in the areas of constraints 
management [14] and engineering intent modeling.  
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