

A Service Oriented Architecture for CAX Concurrent Collaboration

A. Khaled, Y. Ma*, and J. Miller

Abstract —The competitive and open market nature
demands different vendors to collaborate during the product
life cycle and to reduce the product’s time to market. In this
paper, we propose an infrastructure to enable the concurrent
collaboration of heterogeneous CAX tools at the feature level
using a Service Oriented Architecture (SOA) approach. A
Feature Markup Language (FML) is proposed as the modeling
language for feature representation and exchange which can be
independent to operating system and programming language.
How to employ the concept of software factory to leverage
FML as a Domain Specific Language (DSL) is discussed for the
process of feature development and distribution. Moreover, the
underlying architecture is described to enable CAX
information sharing in real-time preserving the semantics and
consistency of CAX models.

I. INTRODUCTION
H
(P

ROUGHOUT the product lifecycle management
LM), different vendors are involved in the planning,

designing, manufacturing, maintenance and disposal of
a product [1]. This mandates the use of different CAX
systems that exists at disperse geographical locations
belonging to different enterprises with different ownership
of the infrastructures. The vendors rely on a heterogeneous
set of CAX tools to generate necessary artifacts to realize the
product design and manufacturing. Different CAX tools
employ proprietary representation, modeling and formatting
of the underlying artifacts. This raises several challenges
including but not limited to:
o Difficulties of direct information sharing between the

two tools due to format incompatibilities;
o The need to build custom components for information

transformation and exchange;
o The loss of many of the semantics and design intents

during the transformation and exchange process;
o Software tools might be phased-out along the years;
o Increased cost of maintaining the transformation tools

especially with the continues change in software

Manuscript received March 4, 2008.
A. Khaled is a PhD candidate with the Electrical and Computer

Engineering Department, University of Alberta, Edmonton, Alberta,
Canada. Tel: 780-297-0400; Fax: 780-475-9646; e-mail: adel@ualberta.ca

* Corresponding author. Y.-S. Ma is an Associate Professor with the
Department of Mechanical Engineering, University of Alberta, AB T6G
2G8, Canada. Tel: 780-492-4443; Fax: 780-492-2200; e-mail:
yongsheng.ma@ualberta.ca

J. Miller is a Professor with the Electrical and Computer Engineering
Department, University of Alberta, Edmonton, Alberta, Canada. Tel: 780-
492-5580; Fax: 780-492-6153; e-mail: jm@ece.ualberta.ca

technology;
o Difficulty in synchronizing changes that might raise

conflicts that require human interaction to resolve it;
and

o No possibility for concurrent collaboration on the
product model.

The machine-to-machine automatic interactions are
difficult to realize with the current tools and the use of
custom components for information transformation,
translation and exchange is not satisfactory. Many of the
operations related to CAX information exchange is
performed manually using out-of-band processes, such as
file ftp, disks, etc. In the current point-to-point CAX
integration approach, an adapter or a custom build
component must be built that takes care of the translation
when exchanging information between two systems. The
number of adapters increase based on the formula n2, where
n is the number of interacting CAX systems. Fig. 1
describes the situation in a point-to-point integration. The
situation becomes unmanageable when CAX tools evolve
independently breaking the functionality of adapters’
implementations.

Fig. 1 Point-to-Point Integration

A better alternative to the problem is using a system
sitting in the middle called a middleware. The CAX systems
interact through the middleware who takes care of brokering
or routing information to the destination party. This kind of
integration is called the hub model architecture.

T

 1

mailto:adel@ualberta.ca
mailto:yongsheng.ma@ualberta.ca
mailto:jm@ece.ualberta.ca

Fig. 2 Hub Architecture

Fig. 2 depicts the hub architecture and it is noticed that
the number of adapters which equals to n, is reduced
drastically. For this architecture to work, using
heterogeneous CAX tools, the adapters must compatible
with the middleware and use the same language for
communication. This language of communication has to be
defined and managed by the middleware system. This work
proposes a Domain Specific Language called Product
Lifecycle Modeling Language (PLM-DSL) as the language
of communication. The language specifications combined
with the hub architecture provide standardized automated
infrastructure to enable machine-to-machine interactions and
leverage the collaboration aspects between different vendors
contributing to the same product model. This proposed
solution is based on the new technologies of associative
features [2], Web Services specifications (WS-*), service
oriented architecture (SOA), and Extensible Markup
Language (XML). The solution platform is supposed to be
operating system and language independent hence results in
the high acceptability and adoption by the industry while
reuse much of the currently existing systems.

In the rest of this paper, the architectural details of the
system are discussed in section II. Then in section III the
modeling language specifications are listed and described.
Section IV briefly describes software factories and finally
Section V offers concluding remarks.

II. ARCHITECTURAL OVERVIEW

This research focuses on associative feature based
collaboration throughout the product lifecycle. So far little
work has been done on enabling CAX modeling and
concurrent collaboration at the feature level. The process of
exchanging CAX files involves file translation and
transformation, and is limited to geometric information,
hence leading to misinterpreting design intent and loss of
information. Moreover, equivalent constructs for items
translated must exist in the destination CAX tool. Even
exchanging CAX files between the same CAX tools does
not guarantee the recognition of constructs by the
destination CAX application. Exchange of software
components that include defined feature types becomes a
complementary step to CAX files exchange. Therefore the
collaboration process involves semi-manual steps (out-of-
band software component exchange).

In this research, to leverage the concept of associative
feature [2], feature information is utilized and shared by
using OS and programming language independent constructs
based on a Service-Oriented Architecture (SOA). We
approach the problem by defining a web-friendly and
machine sensible modeling language to define features and
exchange CAX information. Fig. 1 is a conceptual
architecture diagram of the solution. The core application
component is the collaboration server (supported by
middleware) that exposes a set of web services. The server
manages the flow of model information between

collaborating partners. The collaboration server manages the
feature definitions catalogue. Feature definitions are
articulated using Feature Markup Language (FML) which is
based on XML and part of our PLM-DSL. FML is further
discussed in section II. Suppliers collaborating on the same
model are themselves service providers by exposing a set of
web services that invoke and execute their feature logic
implementation codes. A CAX tool modifies a model by
invoking some operations or methods on certain features.
The invocation action goes through so-called feature proxy
which passes any real invocation to the collaboration server.
The collaboration server using a routing mechanism would
connect to the feature provider and channel through the
invocation. The logic is executed on the feature provider
server and the invocation result is returned to the CAX tool
through the collaboration server.

This architectural paradigm frees the collaborators from
exchanging libraries that includes the feature
implementation. A consumer of a feature interacts with the
actual implemented feature through feature proxies that act
as stubs that channel the method invocation through the
collaboration platform to the provider of the feature.

On the other hand, any changes on the model are applied
to the CAX data models and managed by the collaboration
server. These changes are validated by the collaboration
server to ensure the consistency of model through checking
the set of constraints at the model and feature level.

Systems communicate with the collaboration server using
PLM-DSL constructs on top of Simple Objet Access
Protocol (SOAP) messages. SOAP messages can run on top
of different transport protocols such as HTTP, TCP, and
UDP. WS-* specifications, such as WS-Reliable Messaging
and WS-Transaction, can further be utilized to enhance the
communication between the CAX systems and the
collaboration server.

Fig. 1. Conceptual Architecture Diagram

III. MODELING LANGUAGE

The product lifecycle spans multiple phases and involves
different contributors with different roles during the product

 2

lifecycle management (PLM) [3]. PLM requires the
collaborative creation, management, dissemination, and use
of product model and process model information across the
extended enterprise from market concept to product
retirement. This collaborative nature mandate the CAX
information sharing between partners. Non-geometrical
information and design intent are stripped away during the
process of CAX file exchange via some format such as
STEP standard. As a consequence, the major challenge is to
develop a ‘feature-centric’ expert system that incorporates
knowledge and information from all phases of the PLM and
supports global, concurrent design and engineering [2]. Ma
et al. [2, 4] introduced the concept of associate feature (AF)
as a form of self-contained and well-defined design object to
capture the semantics and intents during the product
lifecycle. However, their previous works described AF more
in terms of its constituent elements and form.

This work proposes a modeling language to model a
product using fine-grained associate features as the building
blocks. It leverages the collaborative environment through
capturing the semantics and design intent during the product
lifecycle. Moreover, by increasing the level of abstraction,
the proposed architecture breaks away from specific
operating system and programming language. These criteria
can be met by developing a Domain Specific Language
(DSL) for the proposed modeling method [5]. Therefore, the
objective of this work is to design a DSL language to
capture the information flow during the product lifecycle
(PLM-DSL). Some of the considerations undertaken in the
design of PLM-DSL include:
o Modeling both geometric and non-geometric

information;
o Web-friendly mechanisms to enable collaboration and

data transfer over the web;
o Machine readable and computer sensible data types and

methods to enable automation and machine-to-machine
communication;

o Extensibility and composability to accommodate for the
evolving nature of the industry; and

o Versioning support especially for the AF definitions as
well as their instances such that AF life can be extended
for many years.

Extensible Markup Language (XML) is used as the
underlying language for designing the Domain Specific
language. XML has been the de facto standard for modeling
and data representation over the wire and in Business-to-
Business transactions over the web because of its simplicity
of use and its computer sensibility. Web services and Web
service specifications are built on top of XML which enables
automation of scenarios related to integration and B2B
transactions. XML is machine, OS and programming
language independent, and moreover, many tools and
libraries exist in the market nowadays to process XML
documents. The proposed DSL schema needs to be flexible
enough to preserve the semantics of the artifacts and to
allow some degree of extensibility to meet the needs of
growing deployment.

PLM-DSL is composed of two protocols to meet our
requirements for modeling: Feature Markup Language
(FML) and Product Modeling Language (PML). Both FML
and PML are expressed as XML schemas using the XML
schema definition language (XSD 1.1). The schemas define
the grammar, structures and types in an XML document [6,
7]. Using XSD offers many advantages, e.g. it is machine
readable; those defined schemas are self documented; it is a
W3C recommendation and widely accepted as a standard;
and its definitions can be versioned. Fig. 2 depicts the
building blocks of the proposed PLM-DSL.

Fig. 2. Product Modeling Language

A. Feature Markup Language
Associate features are fine-grained objects that

encapsulate both data and behavior [8]. The data encodes the
semantics and state of the feature. Behaviors are realized in
the form of methods and if invoked would change the
internal state of a feature. FML was first introduced in [9] as
an associative feature modeling language. FML schemas are
based on XML Schema Definition (XSD 1.1). They define
the grammar and constructs of FML constituents. An FML
document is an XML info-set conforming to the FML
schema that captures both the geometric and non-geometric
details of a feature preserving the semantics and intent of
designers. An FML schema describes the attributes,
constraints and the interfaces of a feature. The following
sections describe these concepts in further details.

Fig. 3. Complex Type Definition

1) Attributes

Attributes represent the data state of the feature and are
identified by unique names within the FML definition. An
attribute type can be as simple as a primitive type such as
integers, strings and float or complex types such as points
and faces structure. Complex types are aggregates of other
simple and/or complex types. XSD schemas provide the
capability to define a rich set of types that are reusable by

 3

other XSD schemas. Such reuse of schema defined types is
analogous to reusable types packaged in software libraries
such as dynamic link libraries in windows operating system
world. Fig. 3 is a graphical representation of a schema
defined complex types. The figure depicts a complex type
Point having three primitive types x, y and z of type double.
Another complex type recognized from the figure is the type
Edge which in turn has two attributes p1 and p2 of type
Point.

To demonstrate the type definition capabilities of XSD,
we defined XSD types that are equivalent to the topological
geometric objects of ACIS. ACIS is a geometric modeler
which represents a shape in terms of a network of
interrelated geometric and topological objects [10]. Listing 1
is the XML schema showing the defined types of both Point
and Edge as complex types. XSD schemas include a couple
of mechanisms both data-centric and object-oriented for
creating and defining a rich type system. Some of the data-
centric concepts include constraints such as required values
and unique keys while concepts such as inheritance are
inferred from the object-oriented world.

Listing 1: Schema Complex Type Definition

Fig. 4 depicts one way to model ACIS objects using XSD
type system. Many of the type attributes are omitted to
simplify the graph. Every defined type inherits directly from
the ENTITY type. The LUMP type for example is defined as
a complex type that has a collection of SHELL objects.

2) Constraints

Constraints encode the rules and policies of a feature and
define the relationship with other features in a product
model. Some examples of constraints are parameter
constraints such as dimensions, relations of referenced
entities, tolerances, while some are more complicated and to
be managed by certain procedures, such as derivations from
upstream entities, and evolved design patterns like cooling
circuit in mould design [2]. The constraint knowledge is
encapsulated in a feature and controls the modifications
applicable to its internal state. There are several levels where

constraints can be defined:
o At the type level, the acceptable set of values the type

can assume is defined. This is implemented through XSD
type system;

o At the feature level which governs the rules and policies
that relates attributes within the feature. The rules are
defined at the FML level using the FML schema
constraint constructs; and

o At the model level which governs the relationship
between different features. The constraints are defined at
the model level using PML schema constructs.

3) Interfaces

As mentioned earlier, a feature encapsulates behavior that
defines the set of operations callable on the feature. An
operation is a method that can be invoked on a feature and
leads to one of the following effects:
o Changing the internal state of the feature by modifying

one ore more attribute value;
o Changing the state of other features in the model

governed by the constraint set; and
o Creating and deleting an instance of a defined type.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema
targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="Point">
 <xs:sequence>
 <xs:element name="x" type="xs:double" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Edge">
 <xs:sequence>
 <xs:element name="p1" type="Point" />
 <xs:element name="p2" type="Point" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Lumps

0, …∞

BODY

Faces

0, …∞

Fig. 4. ACIS representational hierarchy using XML schema definition

To allow user defined features, FML schema enables
feature developers to define behavior by using interfaces.
An interface is a group of related operations that specify an
abstract contract. The interface lists the methods defined in a
feature and the input parameters passed to a feature and the
returned output parameters. It doesn’t provide a description
to the concrete implementation of the feature. An interface is
similar to the port construct in a Web Service Description
Language (WSDL) document. WSDL is an XML based
language and was the first widely adopted mechanism for
describing the basic characteristics of a Web service [11].

Shells

0, …∞

Edges

0, …∞

LUMP

Loops

0, …∞

FML

SHELL

Surface

LOOP

SURFACE
FACE

CO-EDGE

 4

WSDL document describes how to call a method in a
service without describing the internals of the method
implementation. It describes what a request message must
contain and what the response message look like in
unambiguous notation [11]. The Grouping of operations into
interfaces allows feature developers to reuse the interface
definitions during the development of other features and in
such a way a type can be reused.

Listing 2 is an FML fragment that defines an interface
called IFace and has two operations: CountEdges and
AddEdge. The CountEdges operation has no input
parameters while it returns an output parameter of type
integer. On the other hand, the AddEdge operation accepts
one input parameter of type EDGE and returns an output
parameter of type Face.

A feature implementing the interface IFace inherently
acquires the behavior of a surface and supports the
operations CountEdges and AddEdge. Note that the IFace
interface is defined as a XSD type and therefore can be
applied to other features. To successfully call an operation
defined by an interface, the application must make sure to
pass the input parameters as defined by the interface.

Listing 2: FML interface definition

A feature can have 0 or more interfaces depending on
their complexity. The more interfaces implemented by a
feature the more it has support for operations. We can define
unlimited number of interfaces using the same type
definition mechanism of XSD and as dictated by the FML
language. Consider a scenario where we need to add extra
information to a feature. In this case we can define an
interface called ITaggable that has one method called
GetTags and apply the interface to the feature. The GetTags
will return the extra information associated with the feature.

 Listing 3: C# sample code implementing IFace

The mechanism of applying interfaces to features allows
feature developers to tag their features with different
interfaces using interface definitions. Listing 3 and Listing 4
demonstrates the concrete implementation of an interface at
the code level using C# and C++ respectively. The code

implementation of the IFace interface corresponds to the
schema defined previously. A class named SampleFeature
implements the interface by providing the full method
implementation.

A CAX tool using the SampleFeature needs to know only
the lists of interfaces defined by the feature. If the CAX tool
identifies that a feature implements the IFace interface, that
tool can invoke the methods CountEdges and AddEdges.
This invocation of methods, combined with the
collaboration server architecture discussed earlier, is actually
channeled all the way to the feature provider using SOAP
based messages. FML is the underlying protocol that insures
the proper discovery of the interfaces, the methods exposed
by an interface and the messages required to invoke these
methods.
An interface outlines the generic structure of associative
feature; it avoids the concrete implementation of the
behavior to achieve a greater level of abstraction. This
abstraction, enables suppliers and feature developers to
extend the feature schema to create new features to cover
their needs. However, FML schema draws the general
guidelines and rules for developing features to ensure the
consistency and modularity of the developed features. <interface name="IFace">

 <operation name="CountEdges">
 <out type="integer"></out>
 </operation>
 <operation name="AddEdge">
 <in name="edge" type="EDGE"></in>

 <out name="face" type="FACE"></out>
 </operation>
</interface>

class IFace{ virtual int GetCount();
 virtual void AddEDGE(EDGE* edge); };
class SampleFeature : IFace{
private: int _count;
public: int GetCount() { /*logic*/ }
void AddEDGE(EDGE* edge) { /*logic*/ };};

Listing 4: C++ sample code implementing IFace

A feature instance is an XML document based on an FML
schema. An analogy can be drawn between an XML
document to an FML schema and an object to a class in
object-oriented programming. The XML document
encapsulates the parameterization of the feature. An XML
document always refers to the schema and is validated
against it to insure the validity of the XML document
structure. Schema referencing is a way to uniquely identify
schemas published by different suppliers through the use of
Uniform Resource Identifiers (URI). An example of a
schema reference published by a certain supplier:
http://www.supplier.com/schemas/v1.0/fml.xsd. The
reference scheme creates some kind of namespace for the
features defined in the schema. The namespace helps
identify features developed by different suppliers that have
the same schema definition.

interface IFace{ int CountEdges();
 void AddEdge(EDGE edge); }

class SampleFeauture : IFace{ Array _edges;
 int CountEdges() {
 return _edges.get_count(); }
void AddEdge(EDGE edge) { _edges.add(edge); ;}; B. Product Markup Language

Along with a product lifecycle are different engineering
processes, such as conceptual design, detail design, CAE
analysis, process planning, machining, assembly, and so on
[1]. Several CAD/CAE tools contribute to the design along
the different stages and each uses a proprietary data
representation and file format. Traditionally, file translation
and transformation take place during file exchanged between
different CAX tools. This proposed Product Modeling

 5

http://www.supplier.com/schemas/v1.0/fml.xsd

6

Language encodes the modeling information during the
product lifecycle. Its format is also based on XML which
makes it readable by machines and suitable for data
exchange using web services. PML defines an XSD schema
that lays out the structure of the XML file encoding the
product lifecycle details. The XML file holds both geometric
and non-geometric information. Referring to Fig. 2, the
Product Modeling Language consists of the following
building blocks: Metadata, Constraints, Feature Catalogue,
and Features.

1) Metadata. Metadata is defined as data describing
data. Therefore PML Metadata provides the means to further
associate data to the product model. Create date, authors,
CAX tools and CAX versions are just a few examples of
metadata that are associated with the model. The metadata
system in PML is extensible allowing the collaborators to
contribute to the semantic of the model.

2) Constraints. Model constraints are part of the
constraint space defined in a model. PML constraints govern
the relationships between the set of features in a model.
These constraints are constantly evaluated to ensure the
consistency of the model data state.

3) Feature Catalogue. A Feature Catalogue lists the
available feature definitions in product model. This list
includes the subset of features’ definitions used in the
product model and in addition to other features definitions
available to model designers. The CAX tools explore this
catalogue to identify the used features and to generate
features’ proxies. The features’ specific proxies are
eventually used by the CAX tools to contribute to the
product model persisted at the collaboration server level.

4) Features. Any product model is built from a
federation set of feature sets. The PML manages the
collection of features and their internal data structures. The
collaboration server constantly ensures the consistency of
the internal data state of features through the evaluation of
the constraints. Different views can be created to
synchronize certain information from the feature collection.
For example, we can have a view that extracts geometrical
information to create a machining sub-model while stripping
away any irrelevant information from design stage.

IV. SOFTWARE FACTORIES

FML is useful for building software factories to automate
the generation of proxy features components and libraries.
According to [12], a Microsoft software factory can be
defined as a production line that configures extensible
development tools like Visual Studio [13], with packaged
contents and guidance, designed for building software
applications. An initial investment in building software
factories targeting different CAX tools can cut cost and time
in building the proxy features. A CAX vendor can provide
the tools on top of his product to ‘consume’ FML documents
and generate the features corresponding to the FML
document. This process is automated and reduces the time
and effort to build proxy features.

V. CONCLUSION

Industries are always exploring new means to increase the
collaboration on the design and manufacturing of products.
This work describes a new approach for concurrent
collaboration at finer grains-associate features than previous
works. Our research promotes the idea of FML and PML as
the Domain Specific Languages for Product Lifecycle
Modeling. A Service Oriented Architecture was proposed to
leverage the capabilities of these languages and create an
agile environment for collaboration and information sharing.
The authors believe in a great opportunity for further work
on PML and FML especially in the areas of constraints
management [14] and engineering intent modeling.

REFERENCES

[1] G. Thimm, S.G. Lee, Y.-S. Ma, “Towards unified modelling of
product life-cycles,” Computers in Industry, vol. 57, 2006, pp. 331–
341.

[2] Y.-S. Ma and T. Tong, “Associative feature modeling for concurrent
engineering integration,” Computers in Industry, vol. 51, no. 1, 2003,
pp. 51-71.

[3] Y.-S. Ma and Jerry Y.H. Fuh, “Product lifecycle modelling, analysis
and management,” Computers in Industry, vol. 59, no. 2-3, 2008, pp.
107–109.

[4] Y.-S. Ma, G. A. Britton, S. B. Tor and L. Y. Jin, “Associative
assembly design features: concept, implementation and application,”
International Journal of Advanced Manufacturing Technology, vol.
32, no. 5-6, 2005, pp. 434-444.

[5] M Regio, J. Greenfield and B. Thuman. (2005, June). A Software
Factory Approach to HL7 Version 3 Solutions [Online]. Available:
http://msdn2.microsoft.com/en-us/library/ms954602.aspx

[6] H. Thompson, D. BEECH, M. Maloney, N. Mendelsohn. (2004, Oct)
XML Schema Part 1: Structures Second Edition [Online]. Available:
http://www.w3.org/TR/xmlschema-1/

[7] P.V. Biron, K. Permanente and A. Malhotra. (2004, Oct) XML
Schema Part 2: Datatypes Second Edition [Online]. Available:
http://www.w3.org/TR/xmlschema-1/

[8] Y.–S. Ma, S.–H. Tang, and G. Chen, “A Fine-grain and Feature-
oriented Product Database for Collaborative Engineering”, Chapter 6,
Collaborative Product Design and Manufacturing Methodologies and
Applications, W.D. Li et al. (eds.), London: Springer-Verlag, 2007,
pp.109-134.

[9] Y. Ma, J. Jiao and Y. Deng, “Web Service Oriented Electronic
Catalogs for Online Product Customization”, Concurrent
Engineering: Research and Application, to be published.

[10] J. Corney and T. Lim, “3D Modeling with ACIS”, 2nd ed., Saxe-
Coburg Publications, 2001.

[11] L. Cabrera, C. Kurt, “Web Services, Architecture and Its
Specifications: Essentials for Understanding WS-*”, Microsoft Press,
1st ed., 2005.

[12] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi, “Software
factories: assembling applications with patterns, models, frameworks,
and tools”, Wiley and Sons, 2004.

[13] S. Guckenheimer and J.J. Perez, “Software engineering with Microsoft
visual studio team system”, 1st ed., Addison-Wesley Professional,
2006.

[14] Y. Ma, G. Chen and G. Thimm, “Change propagation algorithm in a
unified feature modeling scheme,” Computers in Industry, vol. 59, no.
2-3, 2008, pp. 110-118.

http://msdn2.microsoft.com/en-us/library/ms954602.aspx
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

	I. INTRODUCTION
	II. Architectural Overview
	III. Modeling Language
	A. Feature Markup Language
	1) Attributes
	2) Constraints
	3) Interfaces

	B. Product Markup Language
	1) Metadata. Metadata is defined as data describing data. Therefore PML Metadata provides the means to further associate data to the product model. Create date, authors, CAX tools and CAX versions are just a few examples of metadata that are associated with the model. The metadata system in PML is extensible allowing the collaborators to contribute to the semantic of the model.
	2) Constraints. Model constraints are part of the constraint space defined in a model. PML constraints govern the relationships between the set of features in a model. These constraints are constantly evaluated to ensure the consistency of the model data state.
	3) Feature Catalogue. A Feature Catalogue lists the available feature definitions in product model. This list includes the subset of features’ definitions used in the product model and in addition to other features definitions available to model designers. The CAX tools explore this catalogue to identify the used features and to generate features’ proxies. The features’ specific proxies are eventually used by the CAX tools to contribute to the product model persisted at the collaboration server level.
	4) Features. Any product model is built from a federation set of feature sets. The PML manages the collection of features and their internal data structures. The collaboration server constantly ensures the consistency of the internal data state of features through the evaluation of the constraints. Different views can be created to synchronize certain information from the feature collection. For example, we can have a view that extracts geometrical information to create a machining sub-model while stripping away any irrelevant information from design stage.

	IV. Software Factories
	V. Conclusion

