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Abstract This paper presents a new type of feature,
associative assembly design feature. Its concept, imple-
mentation, and application are introduced. This new feature
allows the following associations: (1) between parts that
have not been defined geometrically; (2) between geo-
metric entities defining interfaces between parts; and (3)
between part geometry and intermediate geometry used to
define a part. The associations can be geometric or non-
geometric. Our extension to traditional assembly feature
properties allows product architectures to be defined using
features. These architectures, in turn, can be used to
constrain the modular design of assembly geometry. The
application is a mould base library for injection mould
design.

Keywords Assembly feature - Associative feature -
Feature-based design - Design library

1 Introduction

CAD systems have become smarter through embedding
expert knowledge and linking with specialist engineering
solutions. This trend will continue as more powerful expert
systems are developed for engineering design and
verification. The major challenge is to develop a ‘design-
centric’ expert system that incorporates knowledge from all
phases of the product life cycle and supports global,
concurrent design and engineering. The transference of
information from CAD to knowledge-based engineering
(KBE) systems is very difficult because KBE systems rely
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heavily on design intent to perform activities such as DFX
analyses and cost estimation [4]. The intelligence added to
CAD geometry is either stripped off by the translation
software or not recognized by the KBE system. In addition,
many current CAD systems cannot capture design intent
completely and unambiguously. On the other hand,
transferring KBE intelligence to CAD systems is equally
challenging because there is no mechanism to enable such
information flow. The gap between CAD and KBE systems
can be bridged using feature-based engineering [12, 14].

In this paper, the authors propose a new type of feature,
associative assembly design feature, and describe its
concept, implementation and an application with a mould
base assembly library. Section 2 reviews research in the
field of feature modelling. Section 3 introduces the
associative feature concept and its characteristics. Section 4
discusses the concept and implementation of associative
assembly design features. To show the effective application
of this new feature type, Section 5 presents an assembly
library framework designed by using assembly features.
Section 6 discusses the detailed library implementation and
demonstrates the feature editing functions. Finally, Sect. 7
contains the summary and conclusions.

2 Literature review on assembly features

In most CAD/CAM tools, machining form features are
emphasized so that part modelling, process planning, and
CAM tool path generation for machined parts can be
interfaced using common geometric information. Theoret-
ically, feature-based technology should offer consistent data
sharing among other application domains such as conceptual
design, assembly planning, and quality inspection, but
implementation is very difficult due to the differences in
feature definitions. Current practice is limited to extracting or
copying CAD geometry entities from one to another
application, instead of dynamically linking them. Limited
integration has been achieved by mapping between design
and other engineering features; for example, the CAD and
CAE feature integration carried out by Deng et al. [5].



Shah and Rogers [15] developed feature-based design
for assemblies. They provided a uniform set of connection
relations for modelling all levels of the product: part-of,
structuring relations, degrees of freedom, motion limits,
and fit. Such features can be used for kinematics analysis,
tolerance analysis, and assembly analysis and planning.
One very interesting point is that they distinguish between
the representation of the assembly and that of assembly
relationships. In our view this de-coupling is essential for
assembly features. Unfortunately their declarative ap-
proach has limited capability for associating geometric
properties. Their form features are volumetric, requiring
pre-definition of part geometry. Such feature-in-part
constraints limit the assembly features that can be defined.

More recently, connection features between pre-defined
geometric entities have been used to define the geometric
positions, orientations, mating conditions, and parent-child
relations [3, 16, 22]. Connection features are essential for
assemblies but they are very specialised. Henson et al. [7]
argue that a product model should include rich information
such as component geometry, assembly sequences, mating
relations, representation of functions, cost and type of
assembly process, costs of component manufacture, and
component differentiation, integration and design rules,
etc. This view is echoed by Holland and Bronsvoort [8],
who introduced the concept of manufacturing set-up
handling features in addition to connection features in
assemblies. However, their mixed part-assembly approach
is not compatible with the basic principles of embodiment
design in mechanical engineering, although it does
facilitate information sharing within a generic analysis
model.

Traditionally a product model consists of a hierarchical
framework-product, assembly, components, and features,
each of which has a set of entity attributes [7, 21]. The
assembly feature semantics defined under such a frame-
work are useful for many bill-of -material-based applica-
tions, such as drawing creation, manufacturing, assembly,
scheduling, inventory control, and maintenance services. It
is not suitable for those applications that require semantic
information about the relationships between entities across
components or assemblies, such as DFX engineering
analysis and optimisation [7, 15]. For example, to reduce
assembly cost, a design model may be optimized to reduce
the number of parts [7]; therefore, assembly design features
can not be limited by the boundaries of part solids.

More importantly, the previous assembly feature defini-
tions require detailed form features defined in part models.
They support bottom-up development, but offer no solution
for top-down development; so they are totally inadequate
for the early stages of design when key design decisions are
being made about the architecture. Architectural design
requires design constraints to be specified between named
parts or components, for which the part (volumetric)
geometry does not exist (because they have not been
designed yet). In this situation the traditional connection
features cannot be used. A partial solution to this problem
was developed by Myung and Han [11], who introduced a
“design unit” concept, which is a sub-assembly model that
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attaches functional design features with assembly-part
groups, but they did not provide the means to edit and
manage assembly features. Another solution is to use a
functional design approach. One popular functional design
method is the function-behaviour-structure approach [2, 6,
13, 17, 23]. Functional design has an important contribu-
tion because it provides a clear link between design
intention and physical structure. Thus far, work in this field
has focussed on conceptual design and the integration with
detail design is immature.

Recently the feature concept has been extended to
include any meaningful grouping schema related to
geometrical entities [12]. Betting and Shah [1] suggest a
cross-application feature based architecture. Brunetti and
Golob [3] state that a major prerequisite for a schema is a
suitable representation scheme to store, manage, and
retrieve product semantics including conceptual data. Ma
and Tong [9] argue that features have to be flexible, self-
contained, and consistent to integrate different applications
for concurrent engineering.

From the brief discussion it can be seen that there are still
difficulties in adequately defining all the characteristics
required of features for detail design. The authors argue
that the semantics of an assembly feature should include
the following:

— Independent representation of the part-assembly rela-
tions and the design pattern relations among parts in
the assembly

— Representation of relationships between named fea-
tures of named parts, even before their geometry has
been defined. This is especially important during the
early design stages

— Representation of connections between defined geo-
metric entities

— Representation of both geometric and non-geometric
relations in an assembly

— Provision of means to interface with different en-
gineering applications

The authors conclude that these conditions have not yet
been fulfilled. This paper presents our scheme to satisfy
these conditions. The key concept in the scheme is
associative feature.

3 Associative feature

Ma and Tong [9] introduced the concept of associative
features (AFs) to support the integration of concurrent
engineering. An associated feature is defined as a set of
semantic relationships among product geometric entities,
which can be defined as a single object entity in an
engineering application. The product geometric entities
may include assemblies, components, solids, faces, edges,
vertices, surfaces, curves, points, vectors, datum refer-
ences, etc. The relations can be geometric or non-
geometric, including constraints, dependencies, equations,
memberships, part-whole relations, coupling, patterns, etc.
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Fig. 1 Layer structure of associative assembly features

An associative feature has the

characteristics:

following  key

— Built-in associative links to the related geometric
entities

— Self-validation to check for the consistency of its
entities, attributes, constraints, etc.

— Methods for constructing, storing, indexing, editing
and destroying its instances

— Methods that can be expanded to interface with query
and execution mechanisms for high level knowledge
processes

— Methods to interface with other engineering applica-
tion tools

In addition to the characteristics listed above, AFs can be
distinguished from traditional geometrical form features in
the following aspects:

AFs are objects defined specifically for an application

purpose.

— AFs can be defined independently of geometric model
entities.

—  AFsrefer to product final geometric model entities, but
they are not derived from them. For example, an
associative feature may contain intermediate geometry
needed to construct another geometric entity, to which
it is referenced.

— An AF does not require a volume of material like a
form feature; therefore, the feature elements can refer
to any geometric entity, including datum entities. This
is the key feature of the AF definition. It allows
geometric and other design patterns to be specified
prior to the detailed design and geometric definition;
for example, design patterns for a plastic injection
mould might include cooling circuit layouts, core/
cavity insert layouts, sub-insert layouts, hole patterns
for mould plates, and gate and runner circuit layouts
[9].

—  Volumetric entities such as form features, assemblies

and components are special types of AFs. Note that

traditional machining features are included in our
definition.

—  AFs can refer to derived entities defined with respect to
the final product geometry model. Geometric solid
representation and associated relevant rules are
optional; they are only applied when necessary.

The architecture for our proposed associative assembly
design feature system is shown in Fig. 1. The bottom layer
contains the solid geometry modeller, form features, and
form feature and geometry libraries. These functions are
widely available today. Our contribution lies in the two
layers above, shown shaded in Fig. 1. The layer above the
geometric modeller consists of generic associative assem-
bly features and an assembly modeller. The associative
assembly features integrate with and extend the function-
ality of conventional assembly modellers, which use
connection features. The top layer is the engineering
application layer. At this level, generic features can be
customised to create domain specific associative assembly
features and feature libraries. Along the sides of these three
layers are the product master model and application
knowledge bases. These interact with all three layers.
Our associative feature semantics facilitates interactions
with the product master model and engineering knowledge
bases.

4 Assembly design feature

The main purpose of this paper is to introduce a new
category of associative features, assembly design features.
In our proposed associative feature model, associative
assembly relations are classified according to purpose, for
example, assembly (functional) design, engineering anal-
ysis, assembly planning (sequences), manufacturing pro-
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cess planning, etc. This paper addresses assembly design
features for modular systems. A typical example is
illustrated in Figs. 2 and 3 for a plastic injection mould
base assembly. In this case, the assembly design feature is a
pattern defining the number and positions of the guide pins.
For convenience the parameters controlling the pattern are
labelled 4, B, and C.

Figure 2 shows a typical assembly tree for a mould base.
The mould base assembly is divided into three subassem-
blies, namely, fixed subassembly, movable subassembly,
and ejection subassembly. Each subassembly is made up of
components. The relationships shown in the assembly tree
are based on part-whole relations. In the geometric model,
it is possible to include mating relationships between the
components and the sub-assemblies. This capability is
already widely available in commercial CAD software.
However, in addition to these types of relationships there
are other dimensional relationships that apply to a number
of components in the assembly. The guide pin pattern is
one example. This kind of pattern applies to several
different components in different sub-assemblies, some of
which are not in direct contact with each other: guide
bushes, cavity plate, guide pins and core plate. In addition,
it is desirable to store this pattern independently of the
related components so it can be used during conceptual
design. This is achieved through our associative feature
semantics. There are three points to note. First, it is normal
practice to off-set one pin to ensure that the mould can be
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Fig. 5 The application relations
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assembled in only one way. Second, the pattern in Fig. 2
shows six guide pins, but the mould in Fig. 3 only has four
pins. The number of pins depends on the mould size. The
associate feature defining this pattern contains rules to
determine the number of pins required for a specific mould
size.

The third point is very important. The pattern is defined
parametrically. In this case, the dimensions are indicated by
the parameters 4, B, and C. These parameters are linked to
the relevant parameters for the components controlled by the
pattern. The manner in which this is achieved is illustrated in
Fig. 3, which shows an exploded assembly model of the
mould assembly.

The components inherit parameters from the guide pin
pattern at the mould assembly level. The guide bush holes
in the cavity plate and those in the core plate have the same
pattern as the predefined assembly design feature. In the
cavity plate part, 4,, B, and C, are used to define the local
pattern of the guide pin bush holes, which are, in turn,
parametric and primitive form features. Similarly, A5, B;
and Cj are used in the core plate part.

The guide bushes and guide pins are directly related to
the cavity and core plates through mating conditions. The
mating conditions, in turn, are defined with respect to their
accommodating holes in the core and cavity plates. That is:

Position of bush (or pin) = position of hole in cavity
(or core) plate + offset from hole where, the offset is
determined by the mating condition.

Attributes Reference entities

Configurations Form features

Parameter data sets 0.* Key parameters
Dimensions / Constraints
Attributes
Configurations

Parameter data sets

¢—— Composition association

<----- Dependency association

Hence, the positions of the bushes and pins, (4, B; and
C,) and (44, B4 and C,), are associated with and controlled
by the guide pin pattern.

It is important to note that the naming of parameters for
the components can be, and in general will be, different
from the naming used in the design feature pattern. The
assembly design feature object provides the semantic
linking between the component and pattern parameters.

Figure 4 shows a partial class relation diagram in UML
format for an assembly design feature. The properties
include reference entity list, constraint list, parameter list,
etc. Related geometric entities can be assemblies (including
its parent assembly), components, solids, form features,
faces, edges, vertices, etc. They can also be derivatives of
these geometric entities or construction datum references.
Assembly design features can also refer to other assembly
design features.

The application of assembly design feature can be
achieved as shown in Fig. 5. The assembly design feature is
implemented as an object class in the design application
environment. During the design session, the class is loaded
and ready for instantiation. A feature manager is needed to
register, track and check consistency of all the design
features created in the session. The properties of each
object are associated with the top assembly, sub-assemblies
or components. The associations can be achieved in
different ways. The method proposed in this work will be
introduced in the next section.



The novelty of the approach lies in the concept and
implementation of the assembly design feature object and
its associated feature manager. In general, the associations
are implemented using CAD API’s, which are embedded in
the methods of the assembly design feature object.

The user can use the assembly design feature in either a
top-down or bottom-up approach. In the top-down ap-
proach, the designer can develop the conceptual design
based on the results of a function mapping process. The
conceptual design can be further refined as design patterns
in either geometric or non-geometric representation. The
design patterns can then be converted to assembly design
features to define the product architecture. Alternatively,
predefined patterns can be selected from an assembly
features library. In the bottom-up approach components
and form features that have already been defined can be
associated using the assembly design feature.

It can be appreciated that in the context of product
modelling with assemblies, many other different associa-
tive features can be defined and applied for different
purposes such as assembly planning, manufacturability
analysis, cost evaluation, process planning, quality check-
ing, etc. It is possible to generalise associative features to
cover all kinds of assembly purposes. We refer to these as
associative assembly features (AAFs). An assembly design
feature is one type of AAF.

4.1 Implementation of assembly design features
Assembly design features have been implemented in

QuickMould using Unigraphics CAD software (Fig. 6).
The left side of the figure shows that assembly design
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features contain the following properties: assembly param-
eters, assembly parametric constraints, position and orien-
tation constraints, assembly configuration, and predefined
sizes.

On the right side of Fig. 6, there are three layers. The
middle layer consists of all the entities contained in the
CAD assembly model: a top assembly part, a few sub-
assembly parts and component parts. The parts contain
expressions, which are automatically generated and used
for parametric modelling. There are two types of expres-
sions: inter- and inner-part. Inner-part expressions are
associated with the modelling entities contained in the
same part, while inter-part expressions are associated with
the expressions of other parts. The assembly tree is defined
in an assembly file.

Assembly design feature properties are associated with
the CAD entities as shown in Fig. 6. For example,
assembly parameters are associated with top assembly
expressions, which are contained in the top assembly part.
Feature position and orientation constraints are associated
with the assembly mating conditions defined at a different
node of the assembly tree.

The bottom layer on the right contains the parameter data
sets for different product configurations and sizes. The
predefined sizes for a parametric family are defined by sets
of predefined parameter values. Thus, modular design
configurations for product families can be standardized and
“frozen” for future reuse. Note that this approach covers
both scale-based and modular-based product families.

The top layer on the right of Fig. 6 contains the
configuration files and bitmap files for the feature manip-
ulation function UI’s. The bitmaps provide a picture of the
feature in the UI for ease of use. This layer is needed
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because the generic assembly features can be customised
for different applications. For each application customised
assembly design features can be defined. Pictures of these
features can be defined using decomposed configurable
bitmaps and embedded in specific user interfaces.

The parametric association between component part
feature parameters and assembly design feature parameters
have been implemented using CAD software API’s that
define association rules in terms of expression functions.
An assembly design feature (left-top corner) contains
parameters (Fig. 6). These design feature parameters are
expressed in the assembly expressions at different levels. In
Fig. 2, the “guide pin pattern” feature parameters are
expressed at the top-assembly part level. Features and
feature pattern expressions in components or child-
assembly parts can be associated with the parent assembly
expressions via inter-part expressions (associations). Note,
however, that this method of implementation is for
convenience; our feature concept is not limited solely to
expression functions.

The procedure is illustrated with the assembly design
feature shown in Fig. 2, where the pattern variations were
defined by different values of 4, B and C. For example, the
number of instances (number of guide pins) along the y
direction increases when the value of B becomes large. In
the implementation, the actual names of 4, B and C are
“gp dis x”, “gp dis y”, and “gp h offset y”, respec-
tively. To enable parametric association with the design
pattern, the components must be defined using parametric
features. Figure 7 shows some of the parameters defined for
the “cavity plate” of Fig. 3.

The key parameters “gp dis x”, “gp dis y”, and
“op h offset y” are mapped as expressions “mb2 a s gp
dis x”, “mb2 a s gp dis y” and “mb2 a s guid pin off-
set_y” in the top assembly part “mb2_a s” (Fig. 8a). Next, at
the “cavity plate” component level the generic parameters
“op dis x”, “gp dis y”, and “guide pin offset y” are
linked to the cavity plate parameters “pa gp h dis x”,
“pa_gp h dis y” and “pa_gp h offset y” using inter-part
expression references, which follow the convention: “local
parameter = reference part :: reference parameter”, e.g.,
“pa_gp h dis x=mb2 as::mb2 a s gp dis x”. Figure 8b
shows a portion of the corresponding expressions defined

Instance 2— ¢
Instance 3 = “g_ilt}lc_dia
gp_h_c_dia
gp_h_c_depth

Instance |—_

ap_dis_x

Prototype
feature —+

v | ep_h_loc_y

Fig. 7 A component model with parameters shown (cavity plate)

width

for the component part. Other features are defined in a similar
manner.

An interesting variation on the parameter definition is
the situation where the number of instances is made to vary
depending on the overall size of the assembly. Consider the
case where the number of guide pins and bushes increases
with mould size. If, in the y direction, there are “gp n y”
instances, and this expression has been defined in the top
assembly, then the pattern related component expressions
in “pa” (“plate A” part, which refers to the cavity plate)
would be:

“pa_gp n_h y’=mb2 as::mb2 a s gp n y”

“pa_gp _h dis y=mb2 as::mb2 a s gp dis y/

(pa_gp_n_h_y-1)”

As the number of instances is increased, the number of
guide pins and bushes, and their accommodating holes are
created parametrically.

Other methods have been implemented for assembly
design features to provide functions over the complete
design life cycle. These include initiation, enrichment,
modification, information queries, deletion, etc.

To configure the design environment, the types of
assembly design features have to be registered first. When
creating a feature object, relevant pointers can be obtained
by interactive entity selection or construction in the design
environment. Once the object is fully established, by
embedding the relevant properties into the design model
entities, it can be persistently stored in the product model.
The feature object can be edited via a unified user interface
coupled with common call-back functions. Then the new
object contents can be saved again and again. At the
beginning of a design session it is necessary to cluster all
the assembly features that exist in the working assembly.
This is achieved by cycling for the earmarked attributes
until the matching entities are identified. Then the feature
objects are established by retrieving the embedded
attributes.

5 Design of a mould base assembly library

The mould base design approach suggested here is in line
with the assembly design theory presented by Whitney et
al. [18-20]. In their papers, it was shown that assemblies
are structures of mutual constraints instantiated by
assembly features. These structures build chains of parts
that can be represented by a directed acyclic graph called a
datum flow chain.

In this work, a comprehensive mould base library has
been implemented with assembly design features. Standard
mould base catalogues are classified according to different
suppliers, even though they have different feature defini-
tions and dimensional conventions. Each catalogue
specifies sets of standard mould base types and compo-
nents. For each standard configuration, an assembly CAD
template is built together with a configuration file and a
data file as shown in Fig. 9. The configuration file specifies
the assembly features within the template and their
corresponding parameters, dimensions, and other attri-
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Fig. 8 Inter- and inner-expres-
sions of component and feature
parameters

mh2_a_s_gp_dis_x=142
mh2_a_s_gp_dis_y=154

//Aassembly Tevel expressions for guide pin pattern

/ Guide pin pattern parameter A
S/ Guide pin pattern parameter B
mh2_a_s_guid_pin_offset_y=2 // Guide pin pattern parameter C

a

S/ cavity Plate component Tevel expressions
Sfconnected to the corresponding parent expressions
pa_gp_h_dis_x=mb2_as::mb2_a_s_gp_dis_x
pa_gp_h_dis_y=mh2_as::mb2_a_s_gp_dis_y
pa_gp_h_offset_y=mbh2_as::mmb2_a_s_guid_pin_offset_y

S parameter A
J/Parameter B
S/ parameter C

butes. They can be flexibly configured to reflect different
suppliers’ definition conventions. Once the user confirms a
selected standard, an instance of the assembly is inserted
into the design model and its corresponding assembly
features are registered by a feature manager in the design
environment (see Fig. 5), which in turn associates the
assembly instance with the corresponding library source
via a library manager. This feature manager is also
responsible for maintaining the validity of assembly
features through a set of general methods, such as
“select_sizes()”, "update parameters()" and "evaluate -
constraints()", etc.

6 Library implementation

The system was developed based on and seamlessly
integrated with, UG via UG/OPEN API using C++
language. When the library is invoked in the QuickMould
environment, the program automatically initialises the
session and checks for available catalogues, standards, and
types, as well as the corresponding configurations, data and
template files. Then the library resource tree is established
which in turn supports the mould base library main UI as
shown in Fig. 10. The user can select different suppliers
from a top pull-down menu, e.g. DME, FUTABA, and
HOPPT, and the required configuration out of the available
options, such as 2- or 3-plate mould bases. In each
category, mould sub-types can be selected as shown in
Fig. 11 for DME 2-plate mould bases.

When the “Apply” or “OK” button is activated at the
bottom of the Ul the selected mould base assembly is
loaded and inserted into the design assembly, as shown in
Fig. 12. In this case, the default size is “1515” which means
150 mm in length and 150 mm in width. When the user
clicks the “size” pull-down menu all the available default
sizes for the specific configuration is listed in another sub-
menu. When the user selects a new size, it does not load

Fig. 9 IML library data
structure
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Fig. 10 The main UI of
the mould base library in
QuickMould
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Fig. 12 The CAD model of 2-
plate A standard mould base
from DME
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another set of assembly parts because there are many
different sizes in every configuration. If each size is
implemented in a “hard-coding” manner, the mould base
library CAD files would be enormous. Then such a library
would be too large to manage. Our design assembly feature
provides a generic method to parametrically update and
regenerate the existing mould base assembly with the
corresponding data set, which specifies the effective
parameter values predefined for the selected size by the
supplier. Figure 13 shows the updated mould base
assembly in a new size. Comparison between Figs. 12
and 13 shows that the updated mould contains more
screws. This clearly demonstrates that our method can
handle subtraction and addition of features and the related

components, an essential feature for CAD modelling of
modular product families.

The novelty here is that, in this system, assembly design
features such as the thickness values of plates, the cap
screw pattern, and the guide pin pattern are modelled,
identified and managed as objects.

Within a library assembly template, associative para-
metric links are automatically created via relations among
expressions across the assembly model. Such links are
retrieved, managed and saved via a set of feature object
modification methods.

A user can customize a mould base assembly easily by
editing the assembly design features. For example, if the
designer decides that a “2x2” guide pin pattern is not
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Fig. 14 “Guide pin pattern”
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suitable, he can change it to “2x3” pattern. The Ul for
editing the pattern is shown in Fig. 14. Assume the number
of'n is changed to 3 with other appropriate values for 4 and
B (4=540 mm, B=614 mm), then once they are accepted,
the assembly can be regenerated automatically as shown in
Fig. 15.

Figure 16 shows a portion of a mould base created as
part of an actual mould design using QuickMould. In
QuickMould, standard components are also managed with
a unified design feature approach [10].

7 Summary and conclusion

In this paper, associative assembly features (AAFs) have
been modelled in the form of self-contained objects. The
object class for the assembly design features has been
defined. It is generic in nature and flexible to accommodate
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Fig. 15 Regenerated mould
base assembly after changing
the “guide pin pattern”
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Fig. 16 A mould base assembly (partially loaded)

different relations among geometrical entities within a
product model. With this class definition, associative
assembly features can not only be automatically generated
but also managed through a set of generic user interfaces.
As a theoretical contribution, this paper has given a
detailed discussion about associative assembly features in
the form of objects. The authors believe that associative
feature objects are sufficiently flexible to support deep
reasoning and network communication in concurrent and
collaborative engineering. Future work is aimed at
extending the feature definitions to support design
verification.

3 @

in y_1mrk_a_s_tr i y
80Pty A sl Rt 2.3 0311 |

s

XR8P
6 A&
=1

doob |

Careel Pl

M E SRS RS

[nasem xanrg mupamsncn 5 628, o7 arter raore

<180 & |t | %)



444

Acknowledgements

The findings of this paper are based on the

implementation of QuickMould, which is a software package for
designing plastic injection moulds. It was jointly developed by
Nanyang Technological University and Singapore Institute of
Manufacturing Technology in a Unigraphics CAD environment.
The QuickMould research project was sponsored by the InfoComm
Development Authority (iDA) of Singapore.

References

. Bettig B, Shah J (1999) An object-oriented program shell for

integrating CAD software tools. Adv Eng Softw 30(8):529-541

. Britton GA, Tor SB, Lam YC, Deng Y-M (2001) Modelling

functional design information for injection mould design. Int J
Prod Res 39(12):2501-2515

. Brunetti G, Golob B (2000) A feature-based approach towards

an integrated product model including conceptual design
information. Comput Aided Des 32(14):877-887

. CASA/SME (2000) Virtual enterprise integration: creating a

sustainable manufacturing life cycle. Tech Trend Report. SME,
Dearborn, MI. http://www.sme.org/casa. Cited 27 February
2006

. Deng Y-M, Britton GA, Lam YC, Tor SB, Ma Y-S (2002)

Feature-based CAD-CAE integration model for injection-
moulded product design. Int J Prod Res 40(15):3737-3750

. Deng Y-M, Tor SB, Britton GA (2000) Abstracting and

exploring functional design information for conceptual me-
chanical product design. Eng Comput 16:36-52

. Henson BW, Baxter JE, Juster NP (1993) Assembly representa-

tion within a product data framework. ASME Adv Des Autom
65(1):195-205

. Holland WV, Bronsvoort WF (2000) Assembly features in

modeling and planning. Robot Com-Int Manuf 16(4):277-294

.Ma Y-S, Tong T (2003) Associative feature modeling for

concurrent engineering integration. Comput Ind 51(1):51-71

. Ma Y-S, Tor SB, Britton GA (2003) The development of a

standard component library for plastic injection mould design
using an object oriented approach. Int J Adv Manuf Technol 22
(9-10):611-618

11.

14.
15.
16.

17.

18.
19.

20.

21.

22.

23.

Myung S, Han S (2001) Knowledge-based parametric design of
mechanical products based on configuration design method.
Expert Syst Appl 21(2):99-107

. Otto HE (2001) From concepts to consistent object specifica-

tions: translation of a domain-oriented feature framework into
practice. J] Comput Sci Technol 16(3):208-230

. Qian L, Gero JS (1996) Function-behavior-structure paths and

their role in analogy-based design. AIEDAM 10:289-312
Shah JJ (1995) Parametric and feature-based CAD/CAM:
concepts, techniques, and applications. Wiley, New York
Shah JJ, Rogers MT (1993) Assembly modeling as an
extension of feature-based design. Res Eng Des 5:218-237
Sugimura N, Moriwaki T, Kakino T (1996) A study on
assembly model based on STEP and its application to assembly
process planning. ASME Japan/USA symposium on flexible
automation, Boston, MA, 2:791-794

Welch RV, Dixon JR (1992) Representing function, behavior
and structure during conceptual design. Proceedings of the
ASME design theory and methodology conference, Scottsdale,
AZ, 13-16 September, 42:11-18

Whitney DE, Mantripragada R, Adams JD, Rhee SJ (1999a)
Designing assemblies. Res Eng Des 11(4):229-253

Whitney DE, Mantripragada R, Adams JD, Rhee SJ (1999b)
Toward a theory for design of kinematically constrained
mechanical assembly. Int J] Rob Res 18(12):1235-1248
Whitney DE, Shukla G, Praun SV (2001) A design procedure
applicable to different classes of assemblies. Proceedings of
DETC’01, ASME 2001 design engineering technical confer-
ences and computers and information in engineering con-
ference, Pittsburgh, PA

Zha XF, Du HJ, Qiu JH (2001) Knowledge-based approach and
system for assembly oriented design, part I: the approach. Eng
Appl Artif Intell 14(1):61-75

Zha XF, Du HJ (2002) A PDES/STEP-based model and system
for concurrent integrated design and assembly planning.
Comput Aided Des 34(14):1087-1110

Zhang WY, Tor SB, Britton GA (2002) A two-level modeling
approach to acquire functional design knowledge in engineer-
ing systems. Int J] Adv Manuf Technol 19(6):454-460


http://www.sme.org/casa

	Associative assembly design features: concept, implementation and application
	Abstract
	Introduction
	Literature review on assembly features
	Associative feature
	Assembly design feature
	Implementation of assembly design features

	Design of a mould base assembly library
	Library implementation
	Summary and conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


