
Volume 10 Issue 1

 2007 IJAMS

15

∗
 The corresponding author. Email: mysma@ntu.edu.sg Tel: (+65) 67905913, Fax: (+65) 67911859

1. Introduction

Information sharing is the prerequisite for the implementation

of concurrent and collaborative engineering (CCE).

Currently, almost all existing CAx applications, including

computer-based CAx applications, web portals, groupware

tools and product data management (PDM) systems, use files

as their repositories. File-based approach has the

disadvantages of data redundancy, storage waste and

potential conflicts [1]. Such design is not adequate for web-

based CCE environment. It can be appreciated that, instead of

managing the information via each application system in the

separated data format, a database management system

(DBMS) can be used to manage all the product information

concurrently, and at the same time in a consistent manner in

order to eliminate the duplicated data. A DBMS can also

provide multiple users shared access to databases and the

mechanisms to ensure the security and integrity of the stored

data.

Some research work has been carried out in supporting

CCE with DBMS. CAD*I project was among the first to use

DBMS to realize the data exchange among different CAD

systems [2]. Similar research work includes [3], [4].

However, so far, only geometric data can be managed in the

databases. This means high-level feature information

(semantic information) is lost. Therefore, it can not support

complete information integration. To represent high-level

feature information in database, Hoffman et al. [5] proposed

the concept of product master model to integrate CAD

systems with downstream applications for different feature

views in the product life cycle. Wang, et al. [6] put forward a

collaborative feature-based design system to integrate

different CAx systems with database support. However, these

proposed databases lack of geometrical engine to support

model validation on the server side. Kim et al. [7] describes

an interface (OpenDIS) for the integration of a geometrical

modeling kernel (OpenCascade) and a STEP database

(ObjectStore). However, STEP cannot fully cover

information for different CAx applications, particularly for

feature-based design.

In the previous work [8] a four-layer information

integration infrastructure was proposed and a feature-oriented

database was design. Ideally, it will enable information

sharing among CAx applications by using the unified feature

model in the entire product model, and allows the

manipulation of application-specific information with sub-

models. However, the geometrical representation adopted in

[8] is B-rep, which can only support history-dependent model

evaluation. History-dependent model evaluation has the

disadvantages of high computation cost and large storage

space [9]. Therefore, in this paper, the design is enhanced by

adopting a higher-level cellular model on the basis of B-rep

to support history-independent feature model evaluation.

2. Cellular Model

Abstract: Concurrent and collaborative engineering (CCE) has become a norm. Feature-oriented objects are ideal to support web enabled

collaborative engineering services. This paper describes the development of a feature-oriented database. Under the proposed unified feature

modeling approach, generic feature representation, product and part representation and geometrical representation schema are investigated.

Keywords: Feature-oriented database; Concurrent and collaborative engineering; Collaborative product development

IJAMS

Design of Feature-oriented Database for Collaborative Product Development

S. H. Tang, Y. –S. Ma
∗∗∗∗, G. Chen and J. Y. Chen

Department of Mechanical & Aerospace Engineering, Nanyang Technological University,

 Singapore, 639798

S. H. TANG, Y. –S. MA, G. CHEN AND J. Y. CHEN

 16

Cellular model represents a part as a connected set of

volumetric quasi-disjoint cells [9]. By cellular decomposition

of space, cells are never volumetrically overlapped. As each

cell lies either entirely inside or outside a shape extend, a

feature shape can be represented explicitly as one cell or a set

of connected cells in the part. The cellular model-based

geometrical representation schema adopted in this research is

shown in Fig. 1. Basically, there are three types of

topological entities for cellular topology, which are CELL,

CSHELL and CFACE. CELL has two subtypes, namely

CELL2D and CELL3D. A CELL2D contains a list of

CFACEs, each of which point to faces that are double-sided

and both-outside. A CELL3D contains a list of CSHELLs. A

CSHELL represents a connected set of CFACEs that bound

the 3D region of the cell. A CELL is attached to the normal

ACIS topology in the LUMP level which represents a

bounded, connected region in space, whether the set is 3D,

2D, 1D, or a combination of dimensions. Each CFACE has a

pointer to a face in the lump and use it in FORWARD or

REVERSE sense. For detail of history-dependent feature

model evaluation on the basis of cellular model, please refer

to [8].

BODY

LUMP

EDGE

APOINT

CURVE

SURFACE

SHELL

LOOP

SUBSHELL

WIREFACE

VERTEX

COEDGE

CFACE

CSHELL

CELL

Figure 1. Cellular Topology

3. Schema Definition for Proposed Database

On the basis of cellular model and mapping mechanism

described in [9], a feature-oriented database is designed.

3.1 Geometrical Representation

A partial cellular topology-based feature-oriented database

schema is created as shown in Fig. 2. In the schema

definition, (1) those attributes with suffix “_id” (but without

“REF”) represent object identifiers (OIDs), which are the

globally unique and immutable object identifier generated by

DBMS and allow the corresponding row object to be referred

to from other objects; (2) those attributes with “_id (REF)”

are a kind of built-in data type provided by DBMS which

encapsulates a reference to a row object of a specified object

type; (3) an arrow represents REF relationship between

object types, e.g. attribute edge_id in the COEDGE table,

which has the REF data type and is used as a reference

pointing to the edge object in the edge table; and (4)

abbreviation ‘F’ represents “the first”; ‘N’ represents “the

next” and ‘P’ represents “the previous”.

WIRE

wire_id

N_wire_id(REF)

F_coedge_id(REF)

shell_id(REF)

body_id(REF)

SUBSHELL

subshell_id

F_subshell_id(REF)

parent_shell_id(REF)

N_subshell_id(REF)

F_face_id(REF)

F_wire_id(REF)

LUMP

lump_id

body_id(REF)

F_shell_id(REF)

N_lump_id(REF)

F_cell_id(REF)

BODY

part_id

body_id

F_lump_id(REF)

F_wire_id(REF)

C_sys_id(REF)

SHELL

shell_id

lump_id(REF)

F_face_id(REF)

F_sub_shell_id

N_shell_id(REF)

F_wire_id(REF)

FACE

face_id

F_loop_id(REF)

surface_id(REF)

shell_id(subshell_id)(REF)

N_face_id(REF)

surface_type

SURFACE(PLANE)

surface(plane_id)

face_id(REF)

position

APOINT

point_id

x

y

z

vertex_id(REF)

LOOP

loop_id

F_coedge_id(REF)

face_id(REF)

N_loop_id

COEDGE

coedge_id

orientation

edge_id(REF)

P_coedge_id(REF)

N_coedge_id(REF)

loop_id(REF)

EDGE

edge_id

vertex_id(edge_start)(REF)

vertex_id(edge_end)(REF)

curve_id(REF)

same_sense

curve_type

CURVE(STRAIGHT)

curve_id(line_id)

edge_id(REF)

position

vector

VERTEX

vertex_id

point_id(REF)

CFACE

cface_id

face_id(REF)

N_cface(REF)

CELL

cell_id

lump_id(REF)

cell_type

N_cell_id(REF)

CELL2D

cell_id(REF)

F_cface(REF)

CELL3D

cell_id(REF)

F_cshell(REF)

CSHELL

cshell_id

cell_id(REF)

N_cshell_id(REF)

F_cface(REF)

e.g.

e.g.

Figure 2. Partial Database Schemas for Geometrical

Representation.

Note that not all the surface types and curve types are

illustrated in Figure 2. Instead, plane is used as an example

type. With the surface_type attribute defined in SURFACE

object table, different kinds of surface types can be identified.

Similarly with the curve_type attribute defined in EDGE

object table, different kinds of curve types can be identified;

line is an example option. Such kind of simplification will

not affect the validity of this proposed database schema.

In the database schema definition, there exist many lists,

which are an aggregate data type. For example, a shell

contains a list of faces. In order to consistently manage

Design of Feature-oriented Database for Collaborative Product Development

 17

aggregate data type, the following two methods will be

adopted on the basis of mapping mechanisms.
For ordered list which contains topological-related entities

(e.g. a shell contains a list of faces which are topologically

related), we follow the way of ACIS native data structure.

This is realized by defining link relations in the object data

structure, as illustrated in Fig. 3. In the list owner entity

object table, only the first member of the list will be recorded

by the entity’s ID, which can uniquely identify the first list

member in the list member entity object table. Then in the list

member entity object table, the next list member in the list

will be explicitly recorded by its ID, which is used to identify

the next list member. With such a data structure, each

member of the list can be identified. Note that the last list

member in a list will have a NULL next_entity_id pointer.

ENTITY(list owner)

entity_id

F_listmember_id(REF)

ENTITY(list member)

entity_id

next_entity_id(REF)

next

Figure 3. Linked List for Ordered List.

For unordered list (e.g. a feature contains a list of

constraints), the schema shown in Fig. 4 is designed to

collect each member of a list from the target object table.

Such a list shall be defined as REF data type with name

list_id which refers to list object in the entity_list object table

by list_id. A nested table called id_list stores all the list

members’ ids in the nested table. Within the nested table,

entity_type is used as a vector to decide from which object

table we can get the list members. Entity_id uniquely identify

entities from entity table. An implicit system generates

nested_table_id, and correlates the parent row object with the

row objects in the nested table.

entity_list

list_id

id list(nested table)

owner_id(REF)

id list(nested table)

entity_id(REF)

entity_type

order

list_owner

list_id(REF)

...

entity

entity_id

...

Figure 4. Generic Schema for Non-ordered List.

3.2 Generic Feature Representation in Database

On the basis of the previous work [8], a generic feature

representation in database can be expressed as shown in Fig.

5. A feature has feature_id, feature_name, part_id and

domain as its attributes. The feature_id attribute is an OID,

which can uniquely identify a feature object in database.

Feature_name combined with topological entity name,

provide basic indexing for solving persistent naming problem

during feature model re-evaluation. Part_id specifies which

part a particular feature belongs to. Domain has enumeration

data type, which can be design, manufacturing, CAE and so

on. A feature also contains a list of feature elements, a list of

constraints and a list of parameters.

Feature

product_id(REF)

part_id(REF)

feature_id

feature_name

parameter_list

constraint_list

feature_element_list(list of label_id)

depended_feature_id_list

nature

feature_label

label_id

feature_id(REF)

referenced_entity_ID(REF)

feature_name

element_name

...

constraint

constraint_id

owner_list

constraint_strength

constraint_sense

constraint_expression

constrained_entity_list(list of label_id)

referenced_entity_list(list of label_id)

...

entity

entity_id

...

Figure 5. Generic Feature Representation in Database.

Here, feature_element list refers to feature geometric

elements (e.g. cells, faces, edges or vertices that belong to a

feature). These feature elements are earmarked by

feature_labels. Each feature_label has a feature_id, which

identifies the owning feature of the label. The

reference_entity_id can uniquely identify the

referenced_entities by entity_id stored in entity table (entity

here may be a geometrical entity or a feature).

By using feature labels together with the functional

methods of the geometry reference layer in the unified

feature model, higher-level feature information can be

associated with low-level geometrical entities; and the

information model can be established by searching the

relevant attributes and re-instate the feature model.

Dimensions and tolerances are regarded as a kind of

constraint bounded to certain geometrical entities.

A constraint of a feature can be uniquely identified by

constraint_id. Constrained_entity_list identifies constrained

entity from the entity table by entity_id and entity_type. The

element number of parameter_list is not fixed until the

specific feature type is determined. For parameter_list of a

S. H. TANG, Y. –S. MA, G. CHEN AND J. Y. CHEN

 18

specific feature instance, each list element will be treated as

an attribute of the feature.

3.3 Product and Part Representation in

Database

Given the geometry and generic feature representation

schema, product representation in a feature-oriented database

can be created as shown in Fig. 6. In this work, we only focus

on the original feature representation of the product and the

related parts. Other product-level and part-level related

information is not addressed completely here.

Part

part_id

part_name

product_id(REF)

design_feature_list

manufacturing_feature_list

other_application_feature_list

solid_id

Product

product_id

product_name

part_list

assembly_feature_list

...

design_feature

feature_id

feature_name

feature_type

part_id(REF)

cell_list

other_application_feature

feature_id

feature_name

feature_type

part_id(REF)

cell_list

Manufacturing_feature

feature_id

feature_name

feature_type

part_id(REF)

cell_list

Block_feature

feature_id

...

Boss_feature

feature_id

...

Cylinder_feature

feature_id

...

other_feature_type

feature_id

...

solid

solid_id

...

Geometry

Feature

Part (component)

Product

.

.

lump

...

assembly_feature

feature_id

feature_name

feature_type

part(module)_list

product_id(REF)

cell_list

entity_list(REF)

Subassembly

module_id

module_name

subassembly_list

subassembly_feature_list

part_list

...

Assembly

Sub-assembly

.

cell

...

Figure 6. Product Representation in Database.

A product is identified by product_id. A product (the top

assembly) may contain a number of subassemblies, parts or

components which are assembled with some assembly

features. All the assembly features within a module are listed

in its assembly_feature_list, which is defined for the top

assembly and each sub-assembly of the product. For each

assembly feature, a list of part_ids (or module_ids) is used to

identify the related member parts (modules) in the part

(module) table. An assembly may have new level sub-

assemblies which could be referred by

subassembly_feature_id in the assembly feature table. In the

product, subassembly, and part table, design_feature_list,

manufacturing_feature_list and other_application

feature_list are stored, which are used to organize feature

model for different views at different levels. For example, all

design features of a modular subassembly are stored in the

associated design feature table. By feature_id and

feature_type, various types of design features can be

identified from the specific design feature tables. At the

geometric entity level, different kinds of features are built on

the basis of the cellular model.

3.4 Integration Solid Modeler with Database

The solid modeler has been tightly integrated in four layers in

order to manage product and process information (see Fig. 7).

First, its API functions are called constantly which are

encapsulated within the feature manipulation methods during

the collaboration sessions between the end users and the

application server. Second, all the geometrical entities are

manipulated and their run-time consistency maintained

through the solid modeler’s implicit runtime data structure

module. Third, it also provides runtime functional support

directly to the end users via commands dynamically. Fourth,

the solid modeler has also to support the repository

operations via the DB manager.

DB managerDB managerDB managerDB manager

FeatureFeatureFeatureFeature
informationinformationinformationinformation

GeometricalGeometricalGeometricalGeometrical
datadatadatadata

OtherOtherOtherOther
informationinformationinformationinformationOCCI LibraryOCCI LibraryOCCI LibraryOCCI Library

OCCIOCCIOCCIOCCI
resultresultresultresult

OCCIOCCIOCCIOCCI
queryqueryqueryquery

DatabaseDatabaseDatabaseDatabase

Feature managerFeature managerFeature managerFeature manager

FunctionsFunctionsFunctionsFunctions

Runtime modelRuntime modelRuntime modelRuntime model

APIAPIAPIAPI

 Solid modeler Solid modeler Solid modeler Solid modeler

LibraryLibraryLibraryLibrary

ConstraintConstraintConstraintConstraint
solversolversolversolver

ConstraintConstraintConstraintConstraint
librarylibrarylibrarylibrary

FeatureFeatureFeatureFeature
librarylibrarylibrarylibrary

Session managerSession managerSession managerSession manager

............

Figure 7. Integration of Modeler with Database.

In the proposed architecture of the web-based feature

modeling system [8], database manager (DB manager) is

responsible for managing the geometrical entities via the

solid modeler runtime model and manipulating the data

elements to be stored and extracted in the database for

different applications. With the support of a solid modeler,

the database manager can provide data manipulation

functions such as save, restore and validate functions. These

functions are fundamental to support different applications.

4. Case Study

In the prototyped system, the feature-oriented product

database has been established on the basis of proposed

database schemas. For database server, ORACLE 9i, an

object-relational database is adopted. ACIS, solid modeler

has been tightly integrated with the database. In this section,

a simple part is used to illustrate how feature information is

represented in the proposed feature-oriented database.

Fig. 8 illustrates the creation of a simple part with two

features, namely a base_block feature and a through_slot

feature. The base_block feature is created by two diagonal

coordinate points, which are derived from the parameters of

Design of Feature-oriented Database for Collaborative Product Development

 19

the block, i.e. length, width, height and its position point. The

through_slot is positioned by specifying three coplanar

constraints. The first constraint is the start face of slot that

coplanes with front face of base_block. The second constraint

is the end face of the through_slot which is coplanar with the

back face of base_block. Then, the third is the top face of the

feature that is supposed to be aligned with the top plane of

the base block. Other parameters such as the length, width

and depth of the slot are applied as dimensional constraints.

Finally, the part is created.

Slot shape

Base block

Length

Depth

Width

Slot_start

Slot_end

Block_back

Block_frontPosition

Position

Length

Width

Height

Position

Figure 8. A Case Part.

F
0
(CF

0
)

F
1
(CF

1

,CF
13

)

F
2
(CF

2
, CF

14
)

F
3
(CF

3
, CF

15
)

F
4
(CF

4
)

F
9
 (CF

9
)

F
7
 (CF

7
)

F
6
 (CF

6
)

F
5
(CF

5
)

V
0

V
15

V
14

V
12

V
11

V
10

V
9

V
8

V
7

V
6

V
5

V
4

V
3

V
2

V
1

E
0

E
23

E
22

E
21

E
20

E
19

E
18

E
17

E
16

E
15

E
14

E
13

E
12

E
11

E
10

E
9

E
8

E
7

E
6

E
5

E
4

E
3

E
2

E
1

F
8
(CF

8
)

F
12

(CF
12

)

F
11

(CF
11

)

F
10

(CF
10

)

Cell
1
 ,Cshell

1

(block)

Cell
2
 , Cshell

2

(slot)

E
24

E
25

V
13

Figure 9. Cellular Model of the Case Part.

The cellular model of the example part is shown in Fig. 9.

There are two cells (each one contains a cshell) in the cellular

model of the part; one for the base_block and the other for

the through_slot. Due to the overlapping of the two cells,

three double-sided faces are generated, namely, F1, F2 and F3.

Each double-sided face has two corresponding cell faces, one

contributes to the cell of the base_block and the other to the

cell of the slot. Note that, the cellular model of the example

part (built with non-regular Boolean operation) keeps three

additional faces (shaded faces with names F10, F11 and F12)

and two more edges (E24 and E25) shown in Fig. 9 in

comparison with the traditional B-rep final part geometry

obtained by regular Boolean operation as shown in Fig. 10.

These extra elements help to maintain the explicit feature

shape in the part model. As they have the characteristic of

not-on-boundary, the B-rep evaluation of cellular model can

be easily carried out by doing boundary detection and

removing entities that are not on the boundary. Note that in

Figs. 9 and 10, only faces, edges, vertices and two corner

points are labeled; other geometrical information (e.g. co-

edges, loops) is not included.

F
0

F
1

F
2

F
3

F
4

F
9

F
8

F
7

F
6

F
5

V
0

V
15

V
14

V
12

V
11

V
10

V
9

V
8

V
7

V
6

V
5

V
4

V
3

V
2

V
1

E
0

E
23

E
22

E
21

E
20

E
19

E
18

E
17

E
16

E
15

E
14

E
13

E
12

E
11

E
10

E
9

E
8

E
7

E
6

E
5

E
4

E
3

E
2

E
1

V
13

Figure 10. The Final B-rep Part Geometry.

Based on the proposed database schema, such a part can be

represented in database as shown in Fig. 11. In the part table,

two design features, namely, base_block feature and slot

feature are recorded with IDs. By block_ID, the block feature

can be recognized from block feature table. All attributes of a

block feature are stored in block feature table. Among all the

parameters, two positions, which are defined by two vertices

(V15 and V10), are used to fix the position and orientation of

block. Each vertex can be identified by vertex_ID in the

vertex point table. Vertex point table contains all the vertex

of the example part. All the feature elements (cell list, face

list, edge list and vertex list) of the block feature are stored as

a list of feature labels identified by label_IDs. Due to the

space limit, only face elements (B_L0~B_L6) are taken as

examples to explain how feature labels can be used to get

low-level feature elements. Other feature elements works in

the same way. By the lable_ID and the corresponding

face_ID stored in feature label table, the face elements (e.g.

F0, F4, F5, F6, F7, F8, F9) can be recognized in the face table.

By using the slot_ID, the slot feature can be identified from

the through_slot feature table. All the attributes of

through_slot feature are stored in the feature table.

The position field contains a vertex_ID (V4) which

uniquely identify a vertex point in the vertex point table. All

the face elements of the slot feature are stored as a list of

S. H. TANG, Y. –S. MA, G. CHEN AND J. Y. CHEN

 20

feature labels (S_L0~S_L6). In feature label object table, by

the label_ID and the corresponding face_ID, all the face

elements (e.g. F0, F1, F2, F3, F4, F8, F9) can be recognized

from the face table.

Slot table
Feature_ID: through_slot1

Part_ID

Domain:design;

Depended_feature_ID:

determined by constraints

Feature_element_list:

Feature_label_list:

 list of Label_ID(S_L
0
-S_L

6
);

Parameter list:

Position:

Vertex_ID(V
4
);

Length: derived value;

Width: fixed value;

Depth: fixed value;

Slot_end_type:

start: open_slot_end_type;

end: open_slot_end_type;

Constraint_list:

ID: C
0
; Type: Coplanar;

ID: C
1
; Type: Coplanar;

ID: C
2
; Type: Coplanar;

Block table

Feature_ID: block1;

Part_ID

Domain: design

Feature_element_list:

 list of Label_ID(B_L
0
-B_L

6
)

Parameter list:

Position:

Vertex_ID(V
15
)

Position:

Vertex_ID(V
10
)

Length: derived value

Width: derived value

Height: derived value

Constraint_list

Face table
Face_ID: F

0
;

...

Face_ID:F
8
;

Face_ID:F
9
;

...

Coplanar constraint
Constraint_ID: C

0
;

Feature_ID:through_slot1;

Constraint_entity:

Slot_start (F
9
);

referenced_entity:

Block_front (F
9
);

Constraint_ID: C
1
;

Feature_ID:through_slot1;

Constraint_entity:

Slot_end (F
8
);

referenced_entity:

Block_back (F
8
);

...

Feature_label table
Label_ID: S_L

5
;

Feature_ID: through_slot1;

Element_name: slot_end;

Face_ID: F
8
;

Label_ID: S_L
6
;

Feature_ID: through_slot1;

Element_name: slot_start;

Face_ID: F
9
;

Label_ID:B_L
5
;

Feature_name: block1;

Element_name: block_back;

Face_ID: F
8
;

Label_ID: B_L
6
;

Feature_name: block1;

Element_name: block_front;

Face_ID: F
9

…

Part table
Part_name

Part_ID

Solid_ID

Design_feature_ID_list:

slot_ID: through_slot1

block_ID: block1

Manufacturing_feature_ID_list

S_L
0
(F

0
), S_L

1
(F

1
), S_L

2
(F

2
),

S_L
3
(F

3
), S_L

4
(F

4
), S_L

5
(F

8
),

S_L
6
(F

9
)

B_L
0
(F

0
), B_L

1
(F

4
), B_L

2
(F

5
),

B_L
3
(F

6
), B_L

4
(F

7
), B_L

5
(F

8
),

B_L
6
(F

9
)

Vertex table
Vertex_ID: V

0

…

Vertex_ID: V
4
;

Vertex_ID: V
10
;

Vertex_ID: V
15
;

...

Body table
Body_ID;

Shell_ID; ...

...

Product table
Product_name

Product_ID

Part_list

...

Pointing to S_L
i

Pointing to B_L
i

...

Product assembly

subassembly

Figure 11. Database Representation of the Case Part.

In the slot feature table, constraints are stored in the

constraint_list. By the constraint_type and constraint_ID,

different kinds of constraints can be identified from various

constraint tables, e.g. coplanar_constraint and

distance_constraint tables. In this case, coplanar constraint

with IDs of C0 , C1, and C2 are stored in the

coplanar_constraint table. For coplanar constraint with ID

C0, the constrained feature elements (constrained_entity) can

be identified by feature and element names. Similarly, the

referenced feature elements (referenced_entity) can be

identified by feature name, element name. For C0, the feature

name is through_slot1. The element name is F8, which point

to the face in face table. Coplanar_constraint with ID C1 and

C2 are processed in the same way. Note that in this example,

geometrical and topological entities such as shell, face, loop,

coedge are stored across different tables (see Fig. 2). In this

way, low-level geometrical data and high-level feature

information can be represented in the feature-oriented

database.

5. Conclusions

In this paper, the design of a feature-oriented database is

enhanced on the basis of cellular topology. Detail

geometrical representation, feature representation and

product representation are investigated. The integration of

solid modeler with feature-oriented database is described.

Based on the case study and working prototype system, it can

be concluded that information sharing among different

applications and Web enabled engineering collaboration can

be realized on the basis of feature-oriented database.

References

1. Mittra, S. S., “Principles of relational database

systems”, Englewood Cliffs, N.J.: Prentice Hall, 1991.

2. Raflik, M., CAD*I Database-An Approach to an

Engineering Database, ECSC-EEC-EAEC, Brussels-

Luxembourg, 1990.

3. Regli, W. C. and Gaines, D. M., “A repository for

design, process planning and assembly”, Computer-

Aided Design, Vol. 29, pp. 895-905, 1997.

4. Kang, S. H., Kim, N., Kim, C.Y., Kim, Y. and O’Grady,

P., “Collaborative Design Using the World Wide Web”,

Technical Report, Dept. Industrial Engineering, Seoul

National University, Korea 1997.

5. Hoffmann, C. M. and Arinyo, R. J., “CAD and the

product master model”, Computer-Aided Design, Vol.

30, No. 11, pp. 905-918, 1998.

6. Wang, H. F. and Zhang, Y. L., “CAD/CAM integrated

system in collaborative development environment”,

Robotics and Computer Integrated Manufacturing, Vol.

18, pp. 135-145, 2002.

7. Kim, J. and Han, S., “Encapsulation of geometric

functions for ship structural CAD using a STEP database

as native storage”, Computer-Aided Design, Vol. 35, pp.

1161–1170, 2003.

8. Tang, S. H., Ma, Y. -S. and Chen, G., “A feature-

oriented database framework for web-based CAx

applications”, Computer-Aided Design & Applications,

Vol. 1, Nos. 1-4, 2004, CAD’04, pp 117-125.

9. Bidarra, R., Bronsvoort, W.F., “Semantic feature

modeling”, Computer-Aided Design Vol. 32, pp. 201–

225, 2000.

