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1. Introduction 
 

Information sharing is the prerequisite for the implementation 

of concurrent and collaborative engineering (CCE). 

Currently, almost all existing CAx applications, including 

computer-based CAx applications, web portals, groupware 

tools and product data management (PDM) systems, use files 

as their repositories. File-based approach has the 

disadvantages of data redundancy, storage waste and 

potential conflicts [1]. Such design is not adequate for web-

based CCE environment. It can be appreciated that, instead of 

managing the information via each application system in the 

separated data format, a database management system 

(DBMS) can be used to manage all the product information 

concurrently, and at the same time in a consistent manner in 

order to eliminate the duplicated data. A DBMS can also 

provide multiple users shared access to databases and the 

mechanisms to ensure the security and integrity of the stored 

data. 

Some research work has been carried out in supporting 

CCE with DBMS. CAD*I project was among the first to use 

DBMS to realize the data exchange among different CAD 

systems [2]. Similar research work includes [3], [4]. 

However, so far, only geometric data can be managed in the 

databases. This means high-level feature information 

(semantic information) is lost. Therefore, it can not support 

complete information integration. To represent high-level 

feature information in database, Hoffman et al. [5] proposed 

the concept of product master model to integrate CAD 

systems with downstream applications for different feature 

views in the product life cycle. Wang, et al. [6] put forward a 

collaborative feature-based design system to integrate 

different CAx systems with database support. However, these 

proposed databases lack of geometrical engine to support 

model validation on the server side. Kim et al. [7] describes 

an interface (OpenDIS) for the integration of a geometrical 

modeling kernel (OpenCascade) and a STEP database 

(ObjectStore). However, STEP cannot fully cover 

information for different CAx applications, particularly for 

feature-based design. 

In the previous work [8] a four-layer information 

integration infrastructure was proposed and a feature-oriented 

database was design. Ideally, it will enable information 

sharing among CAx applications by using the unified feature 

model in the entire product model, and allows the 

manipulation of application-specific information with sub-

models. However, the geometrical representation adopted in 

[8] is B-rep, which can only support history-dependent model 

evaluation. History-dependent model evaluation has the 

disadvantages of high computation cost and large storage 

space [9]. Therefore, in this paper, the design is enhanced by 

adopting a higher-level cellular model on the basis of B-rep 

to support history-independent feature model evaluation.  

 

2. Cellular Model 
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Cellular model represents a part as a connected set of 

volumetric quasi-disjoint cells [9]. By cellular decomposition 

of space, cells are never volumetrically overlapped. As each 

cell lies either entirely inside or outside a shape extend, a 

feature shape can be represented explicitly as one cell or a set 

of connected cells in the part. The cellular model-based 

geometrical representation schema adopted in this research is 

shown in Fig. 1. Basically, there are three types of 

topological entities for cellular topology, which are CELL, 

CSHELL and CFACE. CELL has two subtypes, namely 

CELL2D and CELL3D. A CELL2D contains a list of 

CFACEs, each of which point to faces that are double-sided 

and both-outside. A CELL3D contains a list of CSHELLs. A 

CSHELL represents a connected set of CFACEs that bound 

the 3D region of the cell. A CELL is attached to the normal 

ACIS topology in the LUMP level which represents a 

bounded, connected region in space, whether the set is 3D, 

2D, 1D, or a combination of dimensions. Each CFACE has a 

pointer to a face in the lump and use it in FORWARD or 

REVERSE sense. For detail of history-dependent feature 

model evaluation on the basis of cellular model, please refer 

to [8]. 
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Figure 1.  Cellular Topology 

  
3. Schema Definition for Proposed Database 

 

On the basis of cellular model and mapping mechanism 

described in [9], a feature-oriented database is designed. 

 

3.1 Geometrical Representation 

 

A partial cellular topology-based feature-oriented database 

schema is created as shown in Fig. 2. In the schema 

definition, (1) those attributes with suffix “_id” (but without 

“REF”) represent object identifiers (OIDs), which are the 

globally unique and immutable object identifier generated by 

DBMS and allow the corresponding row object to be referred 

to from other objects; (2) those attributes with “_id (REF)” 

are a kind of built-in data type provided by DBMS which 

encapsulates a reference to a row object of a specified object 

type; (3) an arrow represents REF relationship between 

object types, e.g. attribute edge_id in the COEDGE table, 

which has the REF data type and is used as a reference 

pointing to the edge object in the edge table; and (4) 

abbreviation ‘F’ represents “the first”; ‘N’ represents “the 

next” and ‘P’ represents “the previous”.  
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Figure 2. Partial Database Schemas for Geometrical 

Representation. 

 

Note that not all the surface types and curve types are 

illustrated in Figure 2. Instead, plane is used as an example 

type. With the surface_type attribute defined in SURFACE 

object table, different kinds of surface types can be identified. 

Similarly with the curve_type attribute defined in EDGE 

object table, different kinds of curve types can be identified; 

line is an example option. Such kind of simplification will 

not affect the validity of this proposed database schema. 

In the database schema definition, there exist many lists, 

which are an aggregate data type. For example, a shell 

contains a list of faces. In order to consistently manage 
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aggregate data type, the following two methods will be 

adopted on the basis of mapping mechanisms. 
For ordered list which contains topological-related entities 

(e.g. a shell contains a list of faces which are topologically 

related), we follow the way of ACIS native data structure. 

This is realized by defining link relations in the object data 

structure, as illustrated in Fig. 3. In the list owner entity 

object table, only the first member of the list will be recorded 

by the entity’s ID, which can uniquely identify the first list 

member in the list member entity object table. Then in the list 

member entity object table, the next list member in the list 

will be explicitly recorded by its ID, which is used to identify 

the next list member. With such a data structure, each 

member of the list can be identified. Note that the last list 

member in a list will have a NULL next_entity_id pointer.  

 
ENTITY(list owner)

entity_id

F_listmember_id(REF)

ENTITY(list member)

entity_id

next_entity_id(REF)

next

 
Figure 3. Linked List for Ordered List. 

 

For unordered list (e.g. a feature contains a list of 

constraints), the schema shown in Fig. 4 is designed to 

collect each member of a list from the target object table. 

Such a list shall be defined as REF data type with name 

list_id which refers to list object in the entity_list object table 

by list_id. A nested table called id_list stores all the list 

members’ ids in the nested table. Within the nested table, 

entity_type is used as a vector to decide from which object 

table we can get the list members. Entity_id uniquely identify 

entities from entity table. An implicit system generates 

nested_table_id, and correlates the parent row object with the 

row objects in the nested table. 
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Figure 4. Generic Schema for Non-ordered List. 

   

 

3.2 Generic Feature Representation in Database 

 

On the basis of the previous work [8], a generic feature 

representation in database can be expressed as shown in Fig. 

5. A feature has feature_id, feature_name, part_id and 

domain as its attributes. The feature_id attribute is an OID, 

which can uniquely identify a feature object in database. 

Feature_name combined with topological entity name, 

provide basic indexing for solving persistent naming problem 

during feature model re-evaluation. Part_id specifies which 

part a particular feature belongs to. Domain has enumeration 

data type, which can be design, manufacturing, CAE and so 

on. A feature also contains a list of feature elements, a list of 

constraints and a list of parameters. 
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Figure 5. Generic Feature Representation in Database. 

 

Here, feature_element list refers to feature geometric 

elements (e.g. cells, faces, edges or vertices that belong to a 

feature). These feature elements are earmarked by 

feature_labels. Each feature_label has a feature_id, which 

identifies the owning feature of the label. The 

reference_entity_id can uniquely identify the 

referenced_entities by entity_id stored in entity table (entity 

here may be a geometrical entity or a feature).   

By using feature labels together with the functional 

methods of the geometry reference layer in the unified 

feature model, higher-level feature information can be 

associated with low-level geometrical entities; and the 

information model can be established by searching the 

relevant attributes and re-instate the feature model. 

Dimensions and tolerances are regarded as a kind of 

constraint bounded to certain geometrical entities.  

A constraint of a feature can be uniquely identified by 

constraint_id. Constrained_entity_list identifies constrained 

entity from the entity table by entity_id and entity_type. The 

element number of parameter_list is not fixed until the 

specific feature type is determined. For parameter_list of a 
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specific feature instance, each list element will be treated as 

an attribute of the feature. 

 

3.3 Product and Part Representation in 

Database 

 

Given the geometry and generic feature representation 

schema, product representation in a feature-oriented database 

can be created as shown in Fig. 6. In this work, we only focus 

on the original feature representation of the product and the 

related parts. Other product-level and part-level related 

information is not addressed completely here. 
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Figure 6. Product Representation in Database. 

 

A product is identified by product_id. A product (the top 

assembly) may contain a number of subassemblies, parts or 

components which are assembled with some assembly 

features. All the assembly features within a module are listed 

in its assembly_feature_list, which is defined for the top 

assembly and each sub-assembly of the product. For each 

assembly feature, a list of part_ids (or module_ids) is used to 

identify the related member parts (modules) in the part 

(module) table. An assembly may have new level sub-

assemblies which could be referred by 

subassembly_feature_id in the assembly feature table. In the 

product, subassembly, and part table, design_feature_list, 

manufacturing_feature_list and other_application 

feature_list are stored, which are used to organize feature 

model for different views at different levels. For example, all 

design features of a modular subassembly are stored in the 

associated design feature table. By feature_id and 

feature_type, various types of design features can be 

identified from the specific design feature tables. At the 

geometric entity level, different kinds of features are built on 

the basis of the cellular model. 

 

3.4 Integration Solid Modeler with Database 
 

The solid modeler has been tightly integrated in four layers in 

order to manage product and process information (see Fig. 7). 

First, its API functions are called constantly which are 

encapsulated within the feature manipulation methods during 

the collaboration sessions between the end users and the 

application server. Second, all the geometrical entities are 

manipulated and their run-time consistency maintained 

through the solid modeler’s implicit runtime data structure 

module. Third, it also provides runtime functional support 

directly to the end users via commands dynamically. Fourth, 

the solid modeler has also to support the repository 

operations via the DB manager. 
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Figure 7. Integration of Modeler with Database. 

 
In the proposed architecture of the web-based feature 

modeling system [8], database manager (DB manager) is 

responsible for managing the geometrical entities via the 

solid modeler runtime model and manipulating the data 

elements to be stored and extracted in the database for 

different applications. With the support of a solid modeler, 

the database manager can provide data manipulation 

functions such as save, restore and validate functions. These 

functions are fundamental to support different applications.  

 

4. Case Study 

 

In the prototyped system, the feature-oriented product 

database has been established on the basis of proposed 

database schemas. For database server, ORACLE 9i, an 

object-relational database is adopted. ACIS, solid modeler 

has been tightly integrated with the database. In this section, 

a simple part is used to illustrate how feature information is 

represented in the proposed feature-oriented database. 

Fig. 8 illustrates the creation of a simple part with two 

features, namely a base_block feature and a through_slot 

feature. The base_block feature is created by two diagonal 

coordinate points, which are derived from the parameters of 
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the block, i.e. length, width, height and its position point. The 

through_slot is positioned by specifying three coplanar 

constraints. The first constraint is the start face of slot that 

coplanes with front face of base_block. The second constraint 

is the end face of the through_slot which is coplanar with the 

back face of base_block. Then, the third is the top face of the 

feature that is supposed to be aligned with the top plane of 

the base block. Other parameters such as the length, width 

and depth of the slot are applied as dimensional constraints. 

Finally, the part is created. 
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Figure 8. A Case Part. 
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Figure 9. Cellular Model of the Case Part. 

 

The cellular model of the example part is shown in Fig. 9. 

There are two cells (each one contains a cshell) in the cellular 

model of the part; one for the base_block and the other for 

the through_slot. Due to the overlapping of the two cells, 

three double-sided faces are generated, namely, F1, F2 and F3. 

Each double-sided face has two corresponding cell faces, one 

contributes to the cell of the base_block and the other to the 

cell of the slot. Note that, the cellular model of the example 

part (built with non-regular Boolean operation) keeps three 

additional faces (shaded faces with names F10, F11 and F12) 

and two more edges (E24 and E25) shown in Fig. 9 in 

comparison with the traditional B-rep final part geometry 

obtained by regular Boolean operation as shown in Fig. 10. 

These extra elements help to maintain the explicit feature 

shape in the part model. As they have the characteristic of 

not-on-boundary, the B-rep evaluation of cellular model can 

be easily carried out by doing boundary detection and 

removing entities that are not on the boundary. Note that in 

Figs. 9 and 10, only faces, edges, vertices and two corner 

points are labeled; other geometrical information (e.g. co-

edges, loops) is not included. 
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Figure 10. The Final B-rep Part Geometry. 

 

Based on the proposed database schema, such a part can be 

represented in database as shown in Fig. 11. In the part table, 

two design features, namely, base_block feature and slot 

feature are recorded with IDs. By block_ID, the block feature 

can be recognized from block feature table. All attributes of a 

block feature are stored in block feature table. Among all the 

parameters, two positions, which are defined by two vertices 

(V15 and V10), are used to fix the position and orientation of 

block. Each vertex can be identified by vertex_ID in the 

vertex point table. Vertex point table contains all the vertex 

of the example part. All the feature elements (cell list, face 

list, edge list and vertex list) of the block feature are stored as 

a list of feature labels identified by label_IDs. Due to the 

space limit, only face elements (B_L0~B_L6) are taken as 

examples to explain how feature labels can be used to get 

low-level feature elements. Other feature elements works in 

the same way. By the lable_ID and the corresponding 

face_ID stored in feature label table, the face elements (e.g. 

F0, F4, F5, F6, F7, F8, F9) can be recognized in the face table. 

By using the slot_ID, the slot feature can be identified from 

the through_slot feature table. All the attributes of 

through_slot feature are stored in the feature table.  

The position field contains a vertex_ID (V4) which 

uniquely identify a vertex point in the vertex point table. All 

the face elements of the slot feature are stored as a list of 
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feature labels (S_L0~S_L6). In feature label object table, by 

the label_ID and the corresponding face_ID, all the face 

elements (e.g. F0, F1, F2, F3, F4, F8, F9) can be recognized 

from the face table. 
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Figure 11. Database Representation of the Case Part. 

 

In the slot feature table, constraints are stored in the 

constraint_list. By the constraint_type and constraint_ID, 

different kinds of constraints can be identified from various 

constraint tables, e.g. coplanar_constraint and 

distance_constraint tables. In this case, coplanar constraint 

with IDs of C0 , C1, and C2 are stored in the 

coplanar_constraint table. For coplanar constraint with ID 

C0, the constrained feature elements (constrained_entity) can 

be identified by feature and element names. Similarly, the 

referenced feature elements (referenced_entity) can be 

identified by feature name, element name. For C0, the feature 

name is through_slot1. The element name is F8, which point 

to the face in face table. Coplanar_constraint with ID C1 and 

C2 are processed in the same way. Note that in this example, 

geometrical and topological entities such as shell, face, loop, 

coedge are stored across different tables (see Fig. 2). In this 

way, low-level geometrical data and high-level feature 

information can be represented in the feature-oriented 

database. 

5. Conclusions 
 

In this paper, the design of a feature-oriented database is 

enhanced on the basis of cellular topology. Detail 

geometrical representation, feature representation and 

product representation are investigated. The integration of 

solid modeler with feature-oriented database is described. 

Based on the case study and working prototype system, it can 

be concluded that information sharing among different 

applications and Web enabled engineering collaboration can 

be realized on the basis of feature-oriented database. 
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