Associations in a Unified Feature

G. Chen
Y.-S. Ma'

e-mail: mysma@ntu.edu.sg
G. Thimm
S.-H. Tang

School of Mechanical & Aerospace Engineering,
Nanyang Technological University,

50 Nanyang Avenue,

Singapore 639798, Singapore

product life cycle

1 Introduction

Historically, computer-aided tools, such as computer-aided de-
sign (CAD), computer-aided process planning (CAPP), and
computer-aided manufacturing (CAM) systems were developed to
support individual product development life-cycle stages; they are
design, process planning, and manufacturing, respectively. Since
these stages are interrelated, concurrent engineering which re-
quires system integration among these stages, is commonly ap-
plied. However, because of complex product models, high pres-
sure from time-to-market requirements, and distributed production
environments, the efficiency of concurrent engineering approach
has not been fully achieved.

The major obstacles for true system integration are incompat-
ible data structures and the lack of data associations across these
stages. Features are considered as a means to overcome these
obstacles by clustering and transferring data to a higher abstrac-
tion level. Publications reviewed in [1] propose to share data from
the design stage to other stages by using design-by-feature or
feature recognition approaches. However, due to the inherent ri-
gidity of traditional feature definitions in design-by-feature ap-
proaches and the nongeneric nature of feature recognition algo-
rithms, current commercial tools mainly use features to provide
high-level geometric representations to facilitate certain product
development tasks, such as the design of parametrized product
geometry. The integration of the design stage with other stages is
still limited only to geometry. Recent research showed that fea-
tures can represent involved product information rather than only
pure geometry by grouping data types together [2-6].

Feature-based integration of different product lifecycle stages
attracted a lot of attention [7—12]. However, the respective results
have limited impact on industrial practices due to the following
reasons:

1. Most works focused only on the integration of the detail
design with the process planning stage. However, a detail
design represents only a single solution from the view of
the required product functionality. It is common that the
conceptual design is changed or enhanced along with the
progress of different life-cycle stages. Consequently, the
detail design must be modified iteratively. The detail de-
sign has also to be evolved, continuously, in order to

]Corresponding author.

Contributed by the Engineering Informatics (EIX) Committee of ASME for pub-
lication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING.
Manuscript received January 5, 2005; revised manuscript received February 14,
2006. Guest Editors: R. Sriram, S. Szykman, D. Durham.

114 / Vol. 6, JUNE 2006

Copyright © 2006 by ASME

Modeling Scheme

Features allow one to associate human knowledge and product geometry. The authors
proposed, in earlier publications, a unified feature modeling scheme with the aim to
maintain the integrity and consistency of a product model. Different application feature
models within and across different product life-cycle stages are integrated, and espe-
cially, nongeometric relations (besides geometric ones) are handled. In this paper, as an
improvement to the previous work, two types of associations are introduced: sharing and
dependency. In the context of conceptual and detail design stages, these associations are
described and the implementation is discussed in detail. [DOI: 10.1115/1.2194910]

Keywords: unified feature modeling, association mechanism, information consistency,

address different specific design aspects. This industrial
requirement stands in a stark contrast to the commercial
systems, where models of life-cycle stages are discon-
nected. Therefore, the exploration of alternative design
solutions is costly as the synchronization of the models
relies on human intervention and a repetition of the same
product development tasks. This has as a consequence
that only one design is explored and that downstream
application optimizations are confined in individual
stages.

2. Most multiple-view feature modeling systems use only
the product geometry to connect lifecycle stages. This is
due to the fact that features mainly define geometry.
However, in real applications, non-geometric associative
relations broadly exist and should be managed systemati-
cally. For example, material specifications are derived
from the product’s functional requirements. At the same
time, they have significant influences on the machining
processes.

3. Relations among different stages, whether they are geo-
metric or nongeometric, are usually not explicitly mod-
elled and maintained during the product development
processes. This makes later product modifications diffi-
cult and commonly impairs model integrity and
consistency.

The proposed unified feature-based modeling scheme solves these
problems by:

1. including the conceptual design, together with the func-
tional requirements, into the multiple-view feature mod-
eling process

2. supporting nongeometric associations across different
stages

3. Assisting in the creation and maintenance of the follow-
ing two aspects of associations:

(a) associations between the canonical form of a feature
and the boundary representation

(b) associations between application features and the facts
in the higher-level knowledge model

The first aspect is necessary to maintain the geometric consis-
tencies among feature models, whereas the second is for
knowledge-based reasoning processes, such as design intent vali-
dation. The framework of the unified feature modeling scheme
proposed in [13] does just this, and this paper reports the contin-
ued effort. Two types of associations used in the unified feature

Transactions of the ASME

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

modeling scheme, sharing and dependency, are introduced with
the implementation described covering the integration of the con-
ceptual and the detail design stages. This paper is organized as
follows. Section 2 reviews the related research works. Section 3
describes the unified feature modeling scheme very briefly. In Sec.
4 and 5, the information flow between the conceptual and the
detail design stages is analyzed in order to identify the required
associations. The implementation of these association types is dis-
cussed in Sec. 6. Criteria for evaluating data validity, integrity,
and consistency are introduced in Sec. 7. A case study is given in
Sec. 8. Finally, discussions and conclusions are given.

2 Related Research

Some of the earlier feature-related research focused on geomet-
ric relations within a feature or among features [14,15]. To main-
tain feature validity, many researchers tried to embed these rela-
tions into feature definitions as constraints [3,16,17]. In addition,
nongeometric relations between features were also recognized to
be important for the validity of a feature model [3,18]. Multiple-
view feature modeling was proposed to represent different product
development stages using different but coherent application fea-
ture models. Connections between these models are established on
the basis of common faces [10,19] or volumetric overlaps [9,11].
However, such connections are applied only to the product geom-
etry. Hoffman and Joan-Arinyo [12] proposed a product master
model to link different views. Each view deposits a part of their
private models into a public repository representing the master
model and associates their private data to the common and shared
data. The master model is responsible for propagating modifica-
tions, while specific applications are responsible for moditying
their data to achieve the interapplication consistency. No imple-
mentation details are mentioned. Ma et al. [5] revealed the impor-
tance of using and maintaining the associative nature of features
during the design processes. An associative feature concept was
proposed to model the associated geometric entities [4,5] via a
generic feature class. It was highlighted that features should be
self-contained and flexible. They should have built-in associative
links, different representation forms, and self-validation methods.
The consistency of relations has to be managed while the geomet-
ric representations pertaining to various life-cycle stages are
evolved. One conclusion from the above-mentioned research is
that feature validity can be represented by constraints on feature
properties (intrafeature relations), relations between different fea-
tures (interfeature relations) as well as relations between features
and other entities (functions).

Recently, Roy and Bharadwaj explored relations among product
function, part behavior, geometry, and specifications [20]. They

faces are important to describe product functions and to determine
product specifications, such as surface finish. They emphasized
the importance of including the conceptual design stage into an
integrated computer-aided product development environment.

Bronsvoort and Noort [8] proposed a framework which in-
cludes conceptual design into a multiple-view feature modeling
system. They discussed some nongeometric relations between the
conceptual design view and other views [8]. However, they used
only geometric relations to connect different views. Furthermore,
knowledge-based reasoning, which is especially indispensable in
the conceptual design and the manufacturing planning stages, was
not mentioned.

Xue et al. [21] and Xue and Yang [22] used various product
information entities, such as functions, geometries, and machining
processes, in a design optimization process. They suggested the
use of features to model different product life-cycle aspects but
did not discuss the semantics of features and consistency control
mechanisms.

Other researchers also contributed to the integration of concep-
tual design with other life-cycle stages. Welch and Dixon used
behavior graphs to relate product function and the product em-
bodiment configurations [23]. Umeda et al. used physical features
to relate product functions and behaviors [24]. A physical feature
is a combination of physical components and phenomenon. Qian
and Gero modeled the mapping relations among the product func-
tions, behaviors, and physical structures [25]. Ranta et al. [26]
proposed a generic ontology map across stages, common-
function-based associations among geometric entities, and a map
of abstract functional requirements to geometric constraints. Bru-
netti and Golob described the data mapping from the conceptual
design to the detail design stages [27]. Brunetti and Grimm used
feature and shape ontologies to support the integration of a
knowledge-based system with CAx systems [28]. The basic on-
tologies for six layers of a shape model (i.e., geometry, topology,
parametrics, form features, application features, and assembly fea-
tures) were described. Pratt and Srinivasan proposed a three-level
architecture (generic, canonical, and embedded levels) to repre-
sent form features in an application-independent way [29]. A list
of basic informational requirements for the application-
independent form-feature representation was identified. The uni-
fied feature modeling scheme [13] extends the associative feature
concept [4] by including nongeometric feature associations.

In general, features can be used not only as building blocks to
develop the product information model within a single stage, but
also as an associative mechanism to link:

1. high-level, knowledge models with low-level, geometric

claim that both spatial and energy transfer relations between part models
[]
TopologicalEntit
ik o ad .. IConstraint
h PR R LRl
0.* 1 v
— Constraint
IAttribute . Priority
g g i T P el
0.* 0.*
. —— 0.* 0.* %
1* *

o o |
described Geometric
attribute 1 Constraint

0.* 0.*
—<>| Featureiodel ‘0—
Assaciation Other
attribute Algebraic Constraints

----- > dependency —D generalization

Fig. 1

Journal of Computing and Information Science in Engineering

——<> aggregation

Constraint

——@ composition

Unified feature definition

JUNE 2006, Vol. 6 / 115

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

1 1 1
Conceptual design Detail design Process planning
knowledge base knowledge base knowledge base
LA) K
1wt 1w — A
Conceptual design [... »| Detaldesign | _____ »| Process planning
feature model [€-w---4 feature model |€mwww-d feature model
T A HED T AN
1 o [
v v v
Product geometric model

------ > represents dependency realations stereotyped as « access ».

Fig. 2 Relations in the unified feature modeling scheme

2. application models of different stages

To achieve these two extensions, inherent relations in the
feature-based modeling process must be identified and represented
as associations. These associations are then used along with the
product development processes. The main idea is to use geometric
and nongeometric associations to propagate modifications as well
as to maintain data validity, integrity, and consistency. These is-
sues are discussed in the Secs. 3-6.

Note that the unified feature modeling approach is quite distinct
from the product life-cycle modeling scheme using the unified
modelling language (UML) [30,31], as proposed by some of the
authors [32]. The main difference to the here-proposed approach
is that the UML-based approach is a model-oriented, high-level
approach, which, by design, ignores detail product information.
However, unlike the unified feature modeling scheme, it is very
suited for modeling the entire product life-cycle and business pro-
cesses.

3 Unified Feature Modeling

The unified feature modeling scheme [13] was proposed as a
new solution for information sharing and integration in a multiple-
view feature modeling system. This scheme is a part of an encom-
passing research project, which tries to develop a Web-enabled,
feature-based, multiapplication-oriented product development
framework. This research project targets on providing an informa-
tion layer above the geometric kernel to integrate different
computer-aided application functions. The unified feature model-
ing scheme is characterized by definitions of unified features and
several association mechanisms.

The unified feature definition provides a generic feature format
and granularity for different product development stages. The uni-
fied feature definition differentiates itself from other feature defi-
nitions by enabling associations among feature entities as well as
among three information layers, features, knowledge bases, and
the geometry. In the object-oriented prototype implementation,
features are implemented as objects. Common characteristics and
behaviors of conceptual design features, detail design features,
and process planning features are extracted as a unified feature’s
member variables and methods. Features of a specific stage are
derived from the unified feature class and hence inherit its vari-
ables and methods. The generic feature definition is given using a
UML diagram [30] (see Fig. 1).

For the reader’s convenience, the UML symbols used in the
figure are explained here. Rectangles represent classes, such as the
UnifiedFeature class. Dashed and directed lines represent depen-
dency relations. The lines are directed from the depending class to
the class on which it depends. Solid and directed lines with trian-
gular, open arrowheads represent generalization relationships,
pointing to the more general class that defines basic properties.
Solid and directed lines with open diamonds represent aggregation
relationships, pointing from the parts to the whole, aggregated
object. Composition (indicated by a filled diamond) is a variation

116 / Vol. 6, JUNE 2006

of a simple aggregation relationship. It describes strong ownership
and coincident lifetime between the parts and the whole. The
ranges indicated at the start and the arrow points of an aggregation
arrow show how many parts can or must be in a whole [30]. For
example, a unified feature may include none or many other unified
features. A circle attached to a class represents an interface (such
as the IAttribute) realized by (undirected lines) the class. Other
classes can use this interface, e.g., the UnifiedFeature class uses
the IArtribute interface.

Four kinds of feature properties are specified for the unified
feature class:

1. Antributes represent those feature properties that can be
represented as a pair of name and value(s). The value(s)
can be of type integer, real, string, or their expressions.
They usually do not directly describe a feature’s geom-
etry. Attributes are further divided into self-described and
associated ones. Self-described attributes represent those
properties of a feature that are independent of geometry,
such as color, material, etc. Associated attributes, in the
form of identifiers, refer to the entities associated to own-
ing features, such as geometric entities, rules, facts, con-
straints, other features, etc. For example, functions and
behaviors in the conceptual design stage or machines and
operations in the process planning stage are represented
as associated attributes.

2. Parameters represent feature properties that control a
feature’s geometry, e.g., the shape, size, position, and ori-
entation.

3. Constraints specify intra- or interfeature associations.

Knowledge-based semantic module

TRule

Inference
engine

P
:((manage »
]

¥
Fired rules

IFact

Feature module
H
¥

€ access»

TFeatureRelation

Feature
relation map

Feature
manager

I manage »
N

~,
~
LY
=,

1
1

Features —— J-------<
IFeature
S gaccessy _ — Operation
B
[
[3
¥
- g accessy ! i« accessy
Geaometric module ' 5

Fig. 3 Information entities and vertical associations in the uni-
fied feature modeling scheme

Transactions of the ASME

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Function_1

decompose

- cause -
[rman

| Function_1.2 | I Function_1.3 |

realize

Behavior_1

consist of

| Behavior_2

Conceptual design feature

State transition

| interact ‘J:

Cor}}p.oﬁéﬁfj

.

Interacting components

:

) '4.5‘.

E Compor‘}e‘,r.}_til
! .

1

~
Interacting geometries

1
1
I
1
| ~
1
1
1
|

Fig. 4 Conceptual design feature

Constraints may be algebraic, geometric, or other types
specified on its variables. Constraints have priorities.

4. Geometric references are a collection of pointers to topo-
logical entities in the product’s geometric model. Since
features are used to describe specific relations among
geometric and nongeometric entities, a feature’s geom-
etry is not necessarily volumetric, connected, or twom-
anifold. Geometric references are not included in the
higher-level knowledge model directly. They serve as the
identifiers to the product’s geometric model.

Associations in the unified feature modeling scheme can be
roughly classified into horizontal and vertical (see Fig. 2). Hori-
zontal ones represent feature associations via common topological
entities. The associated features may belong to the same or differ-
ent life-cycle stages. Vertical associations serve as the intermedi-
ate interfaces upward to the knowledge model and downward to
the geometric model. A more detailed illustration is given in Fig.
3. The rectangles with tabs represent components or modules,
which are modular and replaceable parts of a system. A compo-
nent or a module conforms to and provides the realization of a set
of interfaces [30]. The contents of Fig. 3 are further explained in
Sec. 4.

4 Information Entities

A product information model consists of submodels that corre-
spond to individual development stages. Each of them can be
constructed with three layers: a knowledge-based semantic model,
a geometric model, and a feature model (see Fig. 3):

1. The knowledge-based semantic model comprises abstract
engineering knowledge, which is represented in the form
of rules in this work, existing facts, and reasoning algo-
rithms [33]. The inference engine accesses the knowl-
edge base to find rules that are ready to fire. The fired
rules add new facts to the knowledge base or invoke
feature methods.

2. The geometric model handles geometric and topological
entities of a product.

3. The geometry modeling systems are inherently restricted
in representing nongeometric information. The feature
model, as the intermediate layer between the above two
layers, associates nongeometric information, in the form
of attributes, parameters, constraints, etc., with the geo-
metric model. This feature model also connects the de-
clarative knowledge-based semantics and the procedural

Journal of Computing and Information Science in Engineering

geometry modeling functions. It should be noted here
that via features, application-specific nongeometric enti-
ties, such as functions and behaviors in the conceptual
design stage or machines and operations in the process
planning stage, are involved in the product information
model. These entities support the knowledge-based rea-
soning process and execute the decisions through feature-
based processes, such as feature generation, editing, ob-
ject fusion, sharing, messaging, and deletion. Usually,
they are not directly linked to the product geometry.

Exemplarily, the conceptual design and the detail design stages
are analyzed hereafter to identify these entities. Major tasks in the
conceptual design stage include function decomposition, functions
to physical components mapping, and the determination of critical
dimensions and specifications [34]. These tasks are often carried
out with the assistance of a conceptual design knowledge base. As
shown in Fig. 4, the functions of a mechanical product are gener-
ally realized through behaviors of single components or behav-
ioral relations between components. If a state is defined as a set of
properties (e.g., position, orientation) of the owning component,
then the behavior of a component can be represented by these
states and state transitions. Usually, the state of a component is
changed (hence, displaying a specific behavior) due to the inter-
actions with other components.

Relations between primitive design functions that could not be
further decomposed, required behaviors, and respective states of
interacting components, determine critical characteristics of the
product, and hence, they are modeled as conceptual design fea-
tures. Conceptual design features can be understood as guiding
constraints in the detail design stage.

The conceptual design features are derived from the unified
feature class (see Fig. 1):

1. Self-described attributes record data related to the behav-
ior represented by the feature, such as the initial state, the
end state, and other characteristics. The associated at-
tributes could refer to related functions, behaviors, rules,
or other conceptual design features.

2. Parameters are characteristics of interacting geometries,
such as their shapes, sizes, positions, and orientations.

3. Constraints are specified on attributes, parameters, or be-
tween conceptual design features.

4. As the product’s physical structure is not detailed in this
stage, conceptual design features have to allow the rep-
resentation of incomplete, inaccurate product specifica-

JUNE 2006, Vol. 6 / 117

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Conceptual design application

Conceptual design knowledge base

Conceptual design rules ‘

le

‘ Conceptual design facts |
Fi ———’J

Inference engine

Trigger

Firedrules

Conceptual
design JTMS

Antecedent "Manage

Antecedent Justification

3

Generaté\‘

|Consequent

Publish

Conceptual design
feature and its properties

Derive

Shared
Database

Detail design application

Extract conceptual design features

Detail design knowledge base

| Detail designrules ‘

facts L

Publish Part of

¥

Across-domain
feature dependencies

Part of

Publish

| Detail design —/I_J
Detail design
JTMB
Manage
Antecedent]
- Antecedent Justification
Fired rules
Gener‘atNsl | Consequent
Detail design feature and
its properties Derive

Fig. 5 Feature dependencies between the conceptual design and detail design

tions, such as the value range used in [35]. A conceptual
feature could include parametrized but nonmanifold ge-
ometries. In such cases, default values, interpolations, or
even a symbolic object may be used. In this way, the
conceptual design feature model provides an abstract rep-
resentation of the product.

It is possible to define a generic and abstract conceptual design
feature class that is suitable for all mechanical products. For each
specific type of product, it is necessary to develop a set of stan-
dard conceptual design subfeatures that reflect commonly used
specific functions and behaviors of components at different levels
of subassemblies, level by level, until the whole product has been
covered.

In the detail design stage, the geometric shape, all dimensions,
and specifications are determined. The detail design feature model
is developed by using the conceptual design features as guiding
constraints. The consistency of detail design features with the
primitive design functions is ensured through their relations with
the corresponding conceptual design features. The attributes, pa-
rameters, and constraints specified in the conceptual design fea-
ture model are usually mapped into the detail design stage. Ge-
ometries outlined by conceptual design features are materialized
or refined by detail design features. Detail design features can also
be created or modified due to DFX considerations, such as design
for machining or design for assembly.

5 Associations

The validity of an information model is evaluated through as-
sociations among its composing entities. For example, a feature’s

118 / Vol. 6, JUNE 2006

validity depends on whether constraints specified on it are satis-
fied. To determine whether a constraint is satisfied or not, the
entities and variables to which the constraint refers have to be
evaluated and validated. Associations are also indispensable for
propagating modifications. In this section, two new association
types, namely, the sharing and dependency, are introduced. Their
implementation is described in Sec. 5.1.

5.1 Sharing. Sharing association represents the relationship
that different features refer to the same geometric or topological
entities in the geometric model. If the shared geometric or topo-
logical entity is modified, then all the depending features must be
notified and validated.

For example, explicitly specified product geometry in the con-
ceptual design stage are shared via the conceptual design features
and the corresponding detail design features. Sharing associations
are also encountered frequently within a single stage, such as two
detail design features sharing the same face either fully or par-
tially. Sharing associations can be classified as a type for
common-geometry-based feature associations.

More specifically, sharing associations are realized through as-
signing and associating feature’s geometric references with the
corresponding geometric or topological pointers. The feature
model carries only the pointers to the geometric or topological
entities, not the actual geometry. Hence, this association mecha-
nism enables different features to be associated with the same
geometric or topological entity.

5.2 Dependency. Because of the inherent sequential nature of
the product development processes, new data entities are gener-

Transactions of the ASME

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Assumptions -------

Rules or Constraints

Simple Nodes -

_-- Justification

Composite or alternative solutions

Fig. 6 JTMS-based dependency network

ated by procedures from other data entities belonging to the same
application or different applications. For example, a detail design
feature is generated to materialize a conceptual design feature.
This kind of relation is represented with dependency associations.
Dependency associations are used to describe geometric and non-
geometric relations. Figure 5 shows the partial dependency asso-
ciations in both conceptual and detail design stages.

5.2.1 Dependencies Between the Knowledge Base and the
Feature Model. As shown in Fig. 5, if a feature (or its properties)
is created by a knowledge-based reasoning process, then it is, by
default, associated with the respective rules and facts using a de-
pendency association [36]. Later feature modifications have to be
validated against the rules that create the feature. It should be
noted here that dependency associations also exist within the
knowledge base: consequent facts of a fired rule depend on its
antecedent facts.

The knowledge-based system establishes the first kind of non-
geometric associations between features: common-rule-based fea-
ture association. For example, two conceptual design features can
be used together as a pair to realize a specified function by firing
a function-to-feature mapping rule. Another example is the order
of two process planning features necessary to fulfill the machining
requirement, which is also constrained with a rule.

In certain cases, the expert system may not find valid rules to
fire. In these cases, the designer may follow the traditional design
routine and create features and specify constraints without rule
support. Designers may also define new rules. These rules are
saved in the knowledge base for future use. In general, an expert
system should be regarded as an assistant to the designers.

5.2.2 Single-Stage Intra- or Interfeature Dependencies. In-
trafeature dependencies exist between constraints and the con-
strained attributes or parameters. For example, values of con-
strained feature properties depend on the constraints as well as
values of other relevant properties. In addition, a value of a fea-
ture parameter may depend on values of properties of geometric
entities used by the feature. The properties of features may also
have dependency associations through constraint specifications,
which are interfeature dependencies. Again, referring to Fig. 5,
both intra- and interdependencies are recorded and managed by a
justification-based truth maintenance system (JTMS) module in
each life-cycle stage.

It should be noted that a geometric entity class includes its
properties as well as its manipulation methods, which are based
on the modeling functions of the geometric modeler. Dependency

Journal of Computing and Information Science in Engineering

associations control the values of geometric properties, whereas a
modification of an actual geometric object can only be carried out
via geometric modeler methods.

5.2.3 Interfeature Dependencies Across Multiple Stages. De-
pendencies across different stages are maintained in a shared da-
tabase as shown in Fig. 5. Usually, in the conceptual design stage,
the geometry of a feature is not fully defined. The resulted entities
could be, for instance, only surface shapes, abstract mechanism
concepts, or parametrized volumes without assigning detailed
properties. An abstract conceptual design feature has its concrete
counterparts in the detail design feature model. Because a concep-
tual design feature represents a primitive design function that is
usually realized through the interactions between a few compo-
nents, it is very likely that an individual conceptual design feature
is transformed into several features belonging to different compo-
nents in the detail design stage. On the other hand, one detail
design feature may also participate in the realizations of several
conceptual design features. Such feature object dependency asso-
ciations are the second kind of nongeometric associations between
features.

Feature attributes, parameters, or constraints specified in the
conceptual design feature model are transformed into attributes,
parameters, or constraints for corresponding detail design fea-
tures. For example, a parameter of a conceptual design feature
may be transformed into a constraint between two detail design
features of different components. A conceptual design constraint
could be related to several constraints in the detail design feature
model. Such feature property dependency associations are the
third kind of nongeometric associations across features of differ-
ent stages.

6 Implementation of Sharing and Dependency Asso-
ciations

To prove the feasibility, a prototype system was developed us-
ing MICROSOFT VISUAL C++ 6.0, ACIS 7.0, and MYSQL 5.0.0. This
section describes the implementation of the sharing and depen-
dency associations, in detail.

6.1 Implementing Dependency Associations. As shown in
Fig. 5, a JTMS is used to implement dependency associations in
different life-cycle stages. Figure 6 shows the concept of JTMS
network. According to the definitions in [37], two major types of
entities are defined in the implemented JTMS node and justifica-
tion. Nodes correspond to the entities in the inference engine:

JUNE 2006, Vol. 6 / 119

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

rules, facts, functions, machines, constraints, features, feature
properties, and so on. Three kinds of JTMS nodes are shown:
premises (circles with a black triangle), assumptions (squares),
and simple nodes (circles). Justifications (dashed circles) represent
primitive reasoning processes, i.e., if the antecedent nodes are all
believed, then also the consequent nodes.

The current prototype system is developed using an ACIS geo-
metric kernel. For convenience, the dependency associations are
defined as ACIS entities using an object-oriented approach because
ACIS supports user-defined classes with saving and restoring
mechanisms. The system automatically extracts data from objects
of user-defined and its built-in classes.

The JTMS cooperates with the inference engine (a rule-based
expert system and a constraint solver) to realize the problem-
solving capability. Whenever a dependency association is gener-
ated, the corresponding JTMS nodes and justifications are auto-
matically inserted into the JTMS dependency network via the
association class generation method. Then each simple node
records its direct related justifications, including antecedent and
consequent ones (for later change propagation) and its current
belief status.

Whenever a modification to the JTMS dependency network oc-
curs, such as adding or retracting assumptions, the JTMS depen-
dency network is searched for affected nodes as well as related
justifications and both are recursively updated. The result is a new
status of each affected JTMS node or a rejection of the modifica-
tion on the basis of contradicting beliefs. As a result, an associa-
tion network is established and updated along with the product
modeling processes.

Using the knowledge-feature associations, engineering intents
can be represented explicitly as rules in the product model instead
of implicit and tedious constraints or attributes. The associations
between the knowledge-based model entities and the feature
model entities are implemented as dependency type.

An embedded forward-chaining rule-based expert system is
used to incorporate engineering rules into the feature-based mod-
eling system. The major classes of the expert system are illus-
trated in Fig. 7. The rule class comprises antecedent and conse-
quent patterns. The prototype system supports users in defining
rules according to their specific requirements, regardless of the
purpose of each rule, either a function decomposition rule, a func-
tion feasibility checking rule, or a function-to-feature mapping
rule. The rule-based reasoning mechanisms, including pattern
matching, forward chaining, etc., are implemented generically in-
stead of being confined in a particular domain.

In each application, the inference engine matches the input facts
with applicable rules and fires them. The input facts can be, for
example, primitive design functions in the conceptual design stage
or the input conceptual design features in the detail design stage.
Feature creation and editing commands are specified as conse-
quent actions of a rule. When a rule fires, features, feature prop-
erties or interfeature constraints are created or modified as the
rule’s consequents. Dependency associations between features and
a knowledge base are automatically established by the system. It
should be noted that such feature entities can also be interactively
created. In that case, they are transformed into new facts and
inserted into the knowledge base by the corresponding entity cre-
ation methods. The facts are linked to the corresponding entities
through a unique entity identifier in the fact objects.

6.2 Implementing Sharing Associations. In the current
implementation, each application feature class has its geometry
creation and manipulation functions. Feature geometry is created
by an invocation of such functions and inserted into the product’s
geometric model. The created topological entities are then associ-
ated with the feature through the features’ geometric references.

During the prototype development, we encountered the problem
that although features are initially directly linked to the boundary
representation. Later, Boolean operations on the boundary repre-
sentation may destroy these links due to feature interactions.
Hence, the prototype system uses, instead of a boundary represen-
tation model, an ACIS cellular model. The cellular topology is
used to preserve these links (see Fig. 8). Feature geometric refer-
ences actually refer to cellular entities, i.e., cells, cell faces, or cell
edges [19]. These cellular entities further correspond to topologi-
cal entities in the boundary representation.

Each cell carries attributes that record its properties, such as its
owning features and the material status, depending on whether the
cell contributes to the part solid or not. Cells never volumetrically
overlap. Whenever feature interaction occurs, the overlapping por-
tions are converted into new cells. Since they belong to both in-
teracting features, they record the both features into their respec-
tive owner lists. The sharing associations between features are
therefore established automatically via the cellular model. The
feature cells are not discarded from the part geometric model as
long as the feature exists. In a case in which a feature’s geometry
does not belong to the final product geometry, the corresponding
cells are marked as void, but are not removed. By using this
approach, the canonical definitions of features and their cells are

KnowledgeBase Rule
. »——————
ruleList ruleBase
factList antecedentPatternList
@—— consequentPatternList
patlemMatehQ) firedStatus Pallem
ruleSelection() truthStatus
changePropagation(} salience fact
relation
value
® truthStatus
ruleList
actionList
- truthCheck(y
Fact actionInvocation(}
ruleList LP
patternList |
changePropagation() AntcecdentPattern | I ConsequentPattern |
—{> sgeneralization —@p composition

Fig. 7 Class diagram of the prototype rule-based expert system

120 / Vol. 6, JUNE 2006

Transactions of the ASME

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Non-manifold boundary
representation

Featiure model

Feature-1

| Feature-2

Ll
| Feature-n }‘

Cellular model

|

,f T
Cell-2 |< |

|

| Body
[

| Shell

|
Face
[

Loop |

/ |
1
I —

| Vertex I

Fig. 8 Relations among feature model, cellular model, and the boundary

representation

Actuation pin

Slider body

Fig. 9 Wire-frame picture of the slider mechanism

persistently linked to the boundary representation. Traditional fea-
ture interaction problems [17], especially the naming inconsis-
tency, can hence be avoided.

If the geometry of a conceptual design feature has been explic-
itly specified, it is associated permanently with the corresponding
detail design features by sharing cells, i.e., both features refer to
the same cells. Such cells can even be nonsolid entities. When one
of the owning features is modified, the corresponding cells’ owner
lists are searched to find other associated features for validation.

6.3 Interapplication = Communication and Change
Propagation. It is assumed in this work that each application has
its own specific feature classes that other applications cannot ac-

Conceptual Design Rule I:

Slant guiding pin hole

Fig. 10 Wire-frame picture of the slider body component

cess directly. On the other hand, these applications must commu-
nicate and exchange data with each other. The developed proto-
type system therefore uses a shared relational database manager,
MYSQL [38], to address the communication problem. All applica-
tions publish their data to the shared database. Other applications
can access and inquire the shared data through the database.
When an interapplication dependency association is estab-
lished, it and the involved data are stored in this database. When
an application modifies its private model, it must check the data-
base for relevant interapplication associations. If such associations
exist, a validity-checking process is triggered. The involved appli-

IF the function is “Create an external undercut region of a molding™

THEN decompose it into " Form the undercut region during the molding process”™

and “Release the undercut prior to the ejection process”

Fig. 11 Conceptual design rule for function decomposition

Journal of Computing and Information Science in Engineering

JUNE 2006, Vol. 6 / 121

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Function hierarchy

Current Functions: Create an extemnal undercut region of a molding
Actions: New Function 1: ate feature | ’ et |
@® | Decompose Verb: lform Noun_1: lundercut Noun_2:
(" Cause - - - -
Description: |[Form the undercut region during the molding process
(" Caused by
New Function 2: | / ting fest |
Clesr contents Verb: |release Noun_1: [undercut Nown2 [
Description: |Release the undercut prior to the ejection process
New Function 3: | existing feat |
Verh: Noun_1: Noun_2:
Description: |
New Function 4: ature. | e |
Verb: Noun_1: Noun_2:
Description: |
OK | Apply | Cancel |

Fig. 12 Dialog box for establishing a function hierarchy, interactively

cations are responsible for maintaining the consistency, while the
shared database is a medium for storing common data, interappli-
cation associations, and change propagation.

For each modification made in an application, the application’s
JTMS dependency network is first searched for affected nodes.
They are validated to ensure the modification is locally accepted
within this application. In a second step, the association table in
the shared database is searched for related features in other appli-
cations. The found features or feature properties are propagated to
the corresponding applications for global validity check. These
two processes are transparent to the designer, to whom only the
invalid results are presented and efforts for maintaining the model
consistency are reduced.

7 Criteria for Evaluating Information Validity

A general requirement for a valid product information model is
its consistency within each partial model and among them. The
detailed evaluation criteria are classified into three levels:

1. A feature is valid if

(a) the feature’s geometric references point to valid topo-
logical entities

(b) the values of feature parameters are consistent with
the product’s geometric model

(c) all constraints on the feature are satisfied

(d) any feature property, if included in the JTMS depen-

dency network, has a belief status, i.e., its supporting
justification is labeled as believed

2. A model of an individual stage is valid if

(a)
(b)

all features in the model are valid
in its knowledge base, the antecedent conditions of all

122 / Vol. 6, JUNE 2006

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

fired rules, which are used for generating attributes or
parameters of, or constraints specified on, any existing
feature, are satisfied

dependency associations among the consequent facts
and the respective feature attributes, parameters, or
constraints, hold. For example, if a consequent fact is
derived from, or used by some feature properties, the
required feature properties must exist

cellular entities referred to by the geometric refer-
ences of any existing feature must exist and have a
status (material or void, on the boundary or not on the
boundary) that agrees with the feature sequence in its
owning feature list

all of the existing sharing and dependency associa-
tions hold

(©)

(d)

(e)

3. The conceptual and detail design are consistent if

(a) sharing associations between the conceptual design
features and the corresponding detail design features

hold

(b) each feature in the conceptual design is linked to fea-
tures in the detail design via valid dependency asso-
ciations

(c) each feature property or interfeature constraint in the

conceptual design has its valid counterparts (might be
one-to-many or many-to-one relations) in the detail
design

8 Case Study

The conceptual and detail design models of a slider mechanism
for a plastic injection mold are used as the example case for the
unified feature modeling process. The interapplication associa-
tions in the mechanism are illustrated to show their implementa-

Transactions of the ASME

Functions:

P,
Frii Frig Fri3d Frig

! -+
' n

i
FlLz

Comceptuat b % Tl T s BTN _
design foatu |Ifanmt| [Encl\o\se . |Pr?p pml&?de | IRes:tnctl
dr Cuger \’i é \’: &
Iteractivg | Slider | | Stider | [stider | [Shder | [Shger | [Shider |
Sorponents: Idolding | | Corefcawity plates | [Unlmown| [Undmown| |Guide rail] | Stopper |
Logends: — —— s el . /<‘A ‘~\
Decarnpose Canse Fralized by And Constraint

F1: Createan external undercut region of a molding

F1.1: Fonn the undercut region during the molding process

~ F1.1.1: Iprint the nndercut region ueing the slider head

F1.1.2 Enclose the itrpression arex

‘,'I F1.1.3: Position: the shider head

/™ F1.14 Restrict the slider head

¢

" F1.2: Release theundercut prior to the gjection process

i

]

Primitive - 1

Fl.2
fimetions %

4 Jf F1.2.1: Propel the slider body
F1.2.2 Guide the rnowement of the slider hody

Restrict the movernent of the sider hody

“ F2: Put theslider back to its molding position

\
g

5 (Z.1: Propel the slider hody

(L— F2.2: Guide the movement of the slider body

FZ2.3: Posttinn the slider hesd

Fig. 13 Function hierarchy in the conceptual design

tion methods. Slider mechanisms are usually used to deal with the
external undercuts of a plastic part in mold design [39].

The actuation device pushes the slider forward to its molding
position before the melting plastic is injected into the closed mold
cavity. The slider is kept in its molding position during the injec-
tion and cooling processes. The slider head forms the external
undercut. Before the part is demoulded, the slider moves back-
ward to release the undercut. Figure 9 shows a wire-frame picture
of the slider mechanism assembly, whereas Fig. 10 illustrates the
slider body, which is the object being designed.

8.1 Conceptual Design Stage. The conceptual design process
begins with the function decomposition and ends with the map-
ping from the primitive design functions to the conceptual design
features.

The main design function of a slider mechanism can be sum-
merized as “create an external undercut region of a molding”
[39]. Using the predefined (see Fig. 11) or interactively specified
(see Fig. 12) function decomposition rules, this main design func-
tion is further decomposed until primitive design functions are
obtained (Fig. 13).

A primitive design function is defined as a function that needs
not further decomposition as it can be matched to a predefined
conceptual design feature. In Fig. 13, ten primitive design func-
tions are generated and the corresponding seven conceptual design
features are created. The number of final conceptual design fea-
tures is less than the number of primitive design functions due to

Journal of Computing and Information Science in Engineering

function clustering. The users can also define new rules via the
user interface (UI) as shown in Fig. 14. The user-specified func-
tion decomposition relations are also stored as rules for future use.
Figure 15 shows one of the generated conceptual design features,
PROPEL, in its symbolic abstract form. The behavior, represented
by this feature, can be described as a driving component pushes a
driven component in a particular direction for a specific distance.
The conceptual design feature data are saved in the database. The
system also permits the user to specify values or value ranges for
feature properties (Fig. 16). Thus, a solution space, rather than a
single solution point, is specified.

The design of a slider mechanism includes choosing the type of
the actuation mechanism. According to the size of the undercut
(especially its depth) as well as the required clamping and opening
forces, the slider can be actuated by a heel cam, angular pins, or
hydraulic units. The principle requirements for selecting a particu-
lar type of actuation are to facilitate mold opening and to provide
sufficient clamping force.

In this case study, the depth of undercut is associated with one
of the properties of a conceptual design feature (the PROPEL
feature’s face orientation property). This association is represented
as an algebraic constraint

D=Lsin ¢

where D is the depth of the undercut; L is the working length of
actuation device; and ¢ is the face orientation property of the

JUNE 2006, Vol. 6 / 123

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Rule Name: 'Funcﬁon—Feature Mapping Rule 2

Antecedetn Pattern:

Consequent Pattern:

New Fact: Value
Action: ICreate v I

Fact [Funcon | Condiion: [oquaito v | Value: [oropelthe sidel
Fact IFuncﬁon v] Condition: I vI Value:
Fact: lFunclion v] Caondition: I v' Value:

Fact: lFunction v] Value: |

New Feature Type: |prgpel v I Existing Feature Name: - I

oK | Cancel |

Fig. 14 User interface for defining a new rule

PROPEL feature.
In the conceptual design stage, the above design principle is
roughly represented by the following rules:

1. If ¢ is <15 deg, then use a heel cam (to simplify the
assembly).

2. If ¢ is between 15 deg and 25 deg, then use angular pins.

3. If ¢ is >25 deg, then use hydraulic units.

During a conceptual design session, the appropriate rule will fire
and generate constraints specified on the PROPEL feature’s face
orientation property.

UNIFA - [UNIFA1]

8.2 Detail Design Stage. In the detail design stage, the user
loads and extracts information from the conceptual design. The
user may choose (i) to develop the detail design on the basis of the
existing conceptual design and thus create an integrated model
with the built-in associations, or (ii) to create a separate detail
design first and add the required associations afterward.

In both situations, the system supports the association of detail
design features with conceptual design features. Figure 17 shows
the dialog box used to establish an association between the face
orientation property of the PROPEL feature of the conceptual de-
sign, and the orientation property of the hole feature of the detail

7] I ew Feahre Eoa attrbute ¢
BECEEEEL

ufef_propel
Ready

NUM |

Fig. 15 PROPEL conceptual design feature

124 / Vol. 6, JUNE 2006

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

Transactions of the ASME

Feature Properties i! Angle Constraint

Please choose afeature property to constrain:

driven face shape
driving face shape

face Ianath

face position
face width
propel direction
propel distance

(degree)

Cancel

OK Apply

Driving vectorx: |1 Y. o Z
Driven vector X

Minimum angle:

] Y. |0 Z

Maximum angle:
(degree)

s 5

OK Cancel

Fig. 16 Specifying the value ranges of the properties of the PROPEL feature

design. The hole feature is used to accommodate the actuation pin.
These interapplication associations are stored in the database for
later inquiry and change propagation. The prototype system can
create the detail design of the slider mechanism as shown in Fig.
10.

8.3 Design Modification and Change Propagation. During
the detail design stage, suppose the user modifies the hole feature
on the “slider body” part by changing its orientation (Fig. 10).
Then the feature-editing method searches the JTMS dependency
network and the shared database automatically. Because the hole
feature is generated (together with other detail design features) to
realize the conceptual design feature PROPEL, it is identified as
the associated feature. Furthermore, one of the properties of the
PROPEL feature—face orientation—is found to be an associated
entity of the property (hole orientation angle) of the modified hole
feature. Then the values of the cylindrical face orientation are
temporarily changed in the shared database. A message about the
modification, which includes feature name, feature identifier,
property name, and new value of the property, is sent to the con-

ceptual design application. After receiving the modification, the
conceptual design application checks the validity of the modifica-
tion using the new values of the face orientation.

If no related constraints are violated or if a constraint is violated
but can be resatisfied, a “valid” message is sent to the detail de-
sign application. Otherwise, a message about the modification be-
ing rejected as well as the violated rules or constraints is sent.
Similarly, changes to the conceptual design may require further
changes in the detail design. For example, if the face orientation
of the PROPEL feature becomes <15 deg or >25 deg, major
changes in the detail design is needed, i.e., the type of the actua-
tion device has to be changed. This is not purely a geometric
modification since clamping forces and the smoothness of the
movement of the actuation device need to be considered together
by using rule-based reasoning when choosing a suitable type of
the actuation. Only after all intra- and interapplication constraints
are checked and satisfied, the initial feature modification is glo-
bally accepted.

Feature Relations between Concept and Detail

Current conceptual design features:

Properties of the selected feature:

propel_DirX -~ e hole_Depth
propel_DirY — Relations: hole_Dia
propel_DirZ
propel_Dis hole_OnY
propel_Length hole_OnZ
ropel_MShape A hole_PosX

hole_PosY
propel_OriY hole_PosZ
propel_OriZ
nrnnel PnsX b

OK Apply Cancel

Current detail design features:

block_27450

Properties of the selected feature:

Fig. 17 Dialog box for feature association

Journal of Computing and Information Science in Engineering

JUNE 2006, Vol. 6 / 125

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

9 Discussions and Conclusions

First, product development processes, such as, for example,
product conceptualization, detailed design, and process planning,
can be regarded as a set of decision-making processes, for in-
stance, choosing a specific structure (shape, dimension, etc.),
specifying material properties, or determining machining se-
quence. These decisions are all results of reasoning processes
based on built-in system knowledge or human experience. Tradi-
tional computer-aided systems are either data oriented or knowl-
edge oriented. Without coherently integrating the data- and
knowledge-oriented approaches, engineering intents must be em-
beded as rigid data-oriented entities as well as geometric or alge-
braic constraints. They are implicit and inflexible. Explicitly in-
corporating knowledge rules into a feature modeling system
enables designers to specify their intents more effectively.

Second, well-defined features, which include geometric refer-
ences, attributes, parameters, and constraints, represent applica-
tion semantics, collectively, and provide an interface by which a
feature object can communicate with both knowledge-based and
geometric entities. On the other hand, feature properties, whether
geometric or nongeometric, can be associated. This allows for a
better information consistency control than with geometric rela-
tions alone.

Third, including the conceptual design stage into a multiple-
view feature modeling scheme provides a solution space for
downstream application optimizations; they are hence not rigidly
confined to the existing design. Alternative solutions can be more
conveniently explored to improve the overall product in quality,
performance, and cost.

In conclusion, this paper introduces two generic types of asso-
ciations used in the unified feature modeling scheme, sharing and
dependency. These generic association types provide a basis for

1. embedding knowledge-based systems into CAX systems
2. integrating different CAx systems

The implementation of these association types is also discussed.
Maintaining and using these associations enable feature-based
collaborative and concurrent engineering. The unified feature defi-
nition and the two proposed association types establish an effi-
cient intermediate information association layer, which automizes
the maintainence of product models’ validity, integrity, and con-
sistency.

In the future, the prototype system will be further improved to
overcome the following two limitations:

1. direct communication between applications. A distributed
system for collaborative modification propagation among
applications with more effective communication method
(such as an agent-based mechanism) will be explored.

2. potential interapplication dependency loops. A more ge-
neric and robust across-domain change evaluation algo-
rithms need to be developed.

References

[1] Shah, J. J., and Mantyla, M., 1995, Parametric and Feature-Based CAD/CAM:
Concepts, Techniques, and Applications, Wiley, New York.

[2] Laakko, T., and Mantyla, M., 1993, “Feature Modeling by Incremental Feature
Recognition,” Comput.-Aided Des., 25(8), pp. 479-492.

[3] Vieira, A. S., 1995, “Consistency Management in Feature-Based Parametric
Design,” Proc. of ASME 1995 Design Engineering Technical Conference, Bos-
ton, ASME, New York, Vol. 2, pp. 977-987.

[4] Ma, Y.-S., and Tong, T., 2003, “Associative Feature Modeling for Concurrent
Engineering Integration,” Comput Ind., 51(1), pp. 51-71.

[5] Ma, Y.-S., Tor, S. B., and Britton, G. A., 2003, “The Development of a Stan-
dard Component Library for Plastic Injection Mould Design Using an Object
Oriented Approach,” Int. J. Adv. Manuf. Technol., 22(9-10), pp. 611-618.

[6] Ma, Y.-S., Britton, G. A., Tor, S. B., Jin, L.-Y., Chen, G., and Tang, S.-H.,
2004, “Design of a Feature-Object-Based Mechanical Assembly Library,”
Comput. Aided Des. App., 1(1-4), pp. 379-403.

[7] de Kraker, K. J., Dohmen, M., and Bronsvoort, W. F., 1997, “Maintaining
Multiple Views in Feature Modeling,” Proc. of 4th ACM Symposium on Solid

126 / Vol. 6, JUNE 2006

Modeling and Applications, Atlanta, ACM, New York, pp. 123-130.
[8] Bronsvoort, W. F., and Noort, A., 2004, “Multiple-View Feature Modeling for
Integral Product Development,” Comput.-Aided Des., 36(10), pp. 929-946.
[9] Han, J. H., 1996, “3D Geometric Reasoning Algorithms for Feature Recogni-
tion,” Ph.D. dissertation, University of Southern California, Los Angeles.

[10] de Martino, T., Falcidieno, B., and Habinger, S., 1998, “Design and Engineer-
ing Process Integration Through a Multiple View Intermediate Modeler in a
Distributed Object-Oriented System Environment,” Comput.-Aided Des.,
30(6), pp. 437-452.

[11] Subramani, S., and Gurumoorthy, B., 2003, “Associativity Between Feature
Models Across Domains,” Proc. of 8th ACM Symposium on Solid Modeling
and Applications, Seattle, ACM, New York, pp. 316-321.

[12] Hoffman, C. M., and Joan-Arinyo, R., 1998, “CAD and the Product Master
Model,” Comput.-Aided Des., 30(11), pp. 905-918.

[13] Chen, G., Ma, Y.-S., Thimm, G., and Tang, S.-H., 2004, “Unified Feature
Modeling Scheme for the Integration of CAD and CAx,” Comput. Aided Des.
Appl., 1(1-4), pp. 595-602.

[14] Karinthi, R. R., and Nau, D., 1992, “An Algebraic Approach to Feature Inter-
actions,” IEEE Trans. Pattern Anal. Mach. Intell., 14(4), pp. 469-484.

[15] Brunetti, G., de Martino, T., Falcidieno, B., and Habinger, S., 1995, “A Rela-
tional Model for Interactive Manipulation of Form Features Based on Alge-
braic Geometry,” Proc. of 3rd ACM Symposium on Solid Modeling and Appli-
cations, Salt Lake City, ACM, New York, pp. 95-103.

[16] Mandorli, F., Cugini, U., Otto, H. E., and Kimura, F., 1997, “Modeling With
Self Validation Features,” Proc. of 4th ACM Symposium on Solid Modeling
and Applications, Atlanta, ACM, New York, pp. 88-96.

[17] Bidarra, R., and Bronsvoort, W. E, 2000, “Semantic Feature Modeling,”
Comput.-Aided Des., 32(3), pp. 201-225.

[18] Regli, W. C., and Pratt, M. J., 1996, “What are Feature Interactions?” Proc. of
ASME Design Engineering Technical Conference and International Computers
in Engineering Conference, Irvine, CA, ASME, New York.

[19] Bidarra, R., de Kraker, K. J., and Bronsvoort, W. F., 1998, “Representation and
Management of Feature Information in a Cellular Model,” Comput.-Aided
Des., 30(4), pp. 301-313.

[20] Roy, U., and Bharadwaj, B., 2002, “Design With Part Behaviors: Behavior
Model, Representation and Applications,” Comput.-Aided Des., 34(9), pp.
613-636.

[21] Xue, D., Yadav, S., and Norrie, D. H., 1999, “Knowledge Base and Database
Representation for Intelligent Concurrent Design,” Comput.-Aided Des.,
31(2), pp. 131-145.

[22] Xue, D., and Yang, H., 2004, “A Concurrent Engineering-Oriented Design
database Representation Model,” Comput.-Aided Des., 36(10), pp. 947-965.

[23] Welch, R. V., and Dixon, J. R., 1992, “Representing Function, Behavior and
Structure During Conceptual Design,” Design Theory and Methodology -
DTM’92, ASME, Scottsdale, AZ, pp. 11-18.

[24] Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., 1996,
“Supporting Conceptual Design Based on the Function-Behavior-State Mod-
eler,” Artif. Intell. Eng. Des. Anal. Manuf., 10(4), pp. 275-288.

[25] Qian, L., and Gero, J. S., 1996, “Function-Behavior-Structure Paths and Their
Role in Analogy-Based Design,” Artif. Intell. Eng. Des. Anal. Manuf., 10(4),
pp. 289-312.

[26] Ranta, M., Mantyla, M., Umeda, Y., and Tomiyama, T., 1996, “Integration of
Functional and Feature-Based Product Modeling—The IMS/GNOSIS Experi-
ence,” Comput.-Aided Des., 28(5), pp. 371-381.

[27] Brunetti, G., and Golob, B., 2000, “A Feature-Based Approach Towards an
Integrated Product Model Including Conceptual Design information,”
Comput.-Aided Des., 32(14), pp. 877-887.

[28] Brunetti, G., and Grimm, S., 2005, “Feature Ontologies for the Explicit Rep-
resentation of Shape Semantics,” Int. J. Comput. Appl. Technol., 23(2/3/4),
pp. 192-202.

[29] Pratt, M. J., and Srinivasan, V., 2005, “Towards a Neutral Specification of
Geometric Features,” Int. J. Comput. Appl. Technol., 23(2/3/4), pp. 203-218.

[30] Booch, G., Rumbaugh, J., and Jacobson, L., 1999, The Unified Modeling Lan-
guage User Guide, Addison-Wesley, Reading, MA.

[31] Rumbaugh, J., Jacobson, 1., and Booch, G., 2005, The Unified Modeling Lan-
guage Reference Manual, 2nd ed., Addison-Wesley, Reading, MA.

[32] Thimm, G., Lee, S. G., and Ma, Y.-S., 2006, “Towards Unified Modeling of
Product Life-Cycles,” Comput Ind. 57, pp. 331-341.

[33] Riley, G., and Giarratano, J., 2004, Expert Systems: Principles and Program-
ming, Cambridge, Mass, Thomson Course Technology.

[34] Pahl, G., and Beitz, W., 1996, Engineering Design: A Systematic Approach,
2nd ed., Springer, New York.

[35] Guan, X., Duffy, A. H. B., and MacCallum, K. J., 1997, “Prototype System for
Supporting the Incremental Modeling of Vague Geometric Configurations,”
Int. J. Comput. Appl. Technol., 11(4), pp. 287-310.

[36] Chen, G., Ma, Y.-S., Thimm, G., and Tang, S.-H., 2005, “Knowledge-Based
Reasoning in a Unified Feature Modeling Scheme,” Comput. Aided Des.
Appl., 2(1-4), pp. 173-182.

[37] Forbus, K. D., and de Kleer, J., 1993, Building Problem Solvers, MIT Press,
Cambridge, MA.

[38] MySQL, 2006, MySQL 5.1 Reference Manual, http://dev.mysgl.com/doc/
refman/5.1/en/, MySQL Inc., Cupertino, CA 95014.

[39] Pye, R. G. W., 1989, Injection Mould Design: A Textbook for the Novice and a
Design Manual for the Thermoplastics Industry, 4th ed., Longman Scientific &
Technical, New York.

Transactions of the ASME

Downloaded 12 Sep 2007 to 129.128.138.201. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm

