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ABSTRACT 
 

Feature-oriented databases are ideal to support Web enabled collaborative engineering services. To implement a 
feature-oriented database, a solid modeler is incorporated to provide lower-level modeling services. In this paper, 
based on a generic feature definition for different applications and with a four-layer information integration 
infrastructure, the EXPRESS-schemas for the generic feature representation and constraint definition are given. The 
integration of solid modeler with feature-oriented database can be achieved by: Mapping from EXPRESS-defined 
feature model to the runtime solid modeler data structure and to the targeted database schema; Proposing modeler-
based generic algorithms for feature validation and data manipulation in the database; and providing modeler-
supported label-based approach for feature model re-evaluation. 
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1. INTRODUCTION 

Traditionally, solid modelers are designed to support CAD systems, but almost all existing CAD systems are based on 
files for their repositories. Such design is no longer adequate for networked engineering environment. The evolvement 
of Web services demands reliable databases which can support the fine grain information repository. In the previous 
work [12], a four-layer information integration infrastructure is proposed based on the architecture of a feature-
oriented database. Ideally, it will enable information sharing among CAx applications by using the unified feature 
model [5] in the Entire Product Model (EPM), and allows the manipulation of application-specific information with 
sub-models. However, the method to incorporate a solid modeler into the system for providing low-level geometrical 
modeling services remained as a major question for research. Martino et al [9] proposed an intermediate geometry 
modeler to integrate design and other engineering processes with a combined approach of “design-by-feature” and 
“feature recognition”. Bidarra [2, 3] and Bronsvoort [4] proposed a semantic feature model by incorporating ACIS into 
webSPIFF, a web-based collaborative system.  However, integration with a database is not mentioned in above-
mentioned research because it is not clear whether they have managed product data in files or with a database. Kim et 
al [7] describes an interface (OpenDIS) for the integration of a geometrical modeling kernel (OpenCascade) and a 
STEP database (ObjectStore). However, the proposed system does not support features. This research work is to 
investigate the mechanisms to integrate a solid modeler with a feature-oriented database, such that multi-application 
collaboration can be realized over the Web. 
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Fig. 1. Generic feature representation schema 
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2. GENERIC FEATURE MODEL  
To consider integrating a solid modeler with the feature-oriented database, the mapping method between the database 
schemas and the feature definitions to the solid modeler entities is critical. Unified feature model allows different 
applications to define different features with a set of well-defined generic types [5], because it is essential that each 
feature type has well-defined semantics [2]. The semantic attributes specified in each feature definition have to be 
associated with the structured elements of the given feature type. Such elements include feature shape representation 
with parameters, constraints that all feature instances should satisfy, and the non-geometric attributes to be used for 
embedded semantic properties, such as classifications, names, labels, and relations. All types of constraints are used for 
capturing design intent in the context of product shape models. A generic feature representation schema can be 
described in EXPRESS-G as shown in Fig.1. 
 
2.1 Feature Shape Representation 
To represent the shape of a feature means defining feature geometrical and topological constraints or relations with 
parameters and associating these parameters with feature manipulation (creation, modification and deletion) functions. 
The parameters are used to provide user interfaces to create and modify features in the modeling operations. The 
database schemas for geometric entities have been reported in [12]. 
 
2.2 Constraint Definition 
Constraints must be explicitly defined in the feature model to specify relationships among features, geometric or 
topological entities, and to provide invariant characteristics in the model. Constraints may have various types (e.g. 
geometric constraints, tolerance constraints and others). In a feature definition, constraints are regarded as attributes 
attached to a set of associated entities, e.g. geometric and non-geometric entities or even features. Although different 
types of constraints may have different attributes, but they fall into a few common types, which can be generalized as 
shown in Fig. 2. 

constraint

#, #,
Numeric_parameter

#, #,
numerical_parameter

owner_id referenced_entity_id L[0:?]

constraint_strength constraint_sense

strength sense

#, #,
numerical_parameter

constrained_entity_id L[1:?]

#, #,
Descriptive_parameter

constraint_type

#, #,
Numeric_parameter

constraint parameters L[0:?]

 
 

Fig. 2. Constraint representation schema 
 

1) Owner_ID. It uniquely identifies which feature the constraint belongs to. 
2) Constraint_type. Constraint may have various types (e.g. geometric constraint, tolerance constraint and others). 

Different kinds of constraint type relate to different constraint solving functions. 
3) Constraint_parameter. It specifies the value of a constraint’s evaluation functions, e.g. dimensions. 
4) Referenced_entity_ID list. It is a list of pointers of referenced entities, which are used to evaluate the relations with 

those constrained entities. Note, hereafter, geometric entities refer to features, solids, faces, surfaces, edges, curves, 
vertices, points, datum geometries, etc. collectively. 

5) Constrained_entity_ID list. It specifies a list of pointers of entities whose properties are controlled and evaluated by 
the constraint methods with reference to the referenced entities.  

6) Constraint_strength. It is an enumeration data, which may have several levels, such as required, strong, medium 
or weak. It represents the extent that the constraint needs to be imposed when a constraint conflict among a few of 
them. 

7) Constraint_sense. It is used to specify the constraint nature, data structure, and the directions between constrained 
entities and referenced entities. It has the select data type as defined in EXPRESS which maybe directed or 
undirected. A constraint is directed if there is not any closed reference loop among all its constrained entities. A 
constraint is undirected if there are crossed control relations among constrained entities and form a closed 
reference loop among them. For example, if a directed constraint is applied to two lines (line_1 and line_2) and it 
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requires line_2 parallels with reference to line_1, it implies that line_1 has been existed in the model before line_2 
was created. The corresponding undirected constraint would simply assert that line_1 and line_2 are parallel, with 
no implied precedence in their order of creation. 

8) Constraint solving functions. They are responsible for solving constraint conditions and validations according to 
the constraint’s type. 

9) Other manipulation functions. These functions may include attributes access functions, behavior control functions 
and so on. 

 
2.3 Other Feature Properties 
Other feature properties can be defined as follows: 
• General feature attributes- Feature_name and feature_id 
General feature attributes such as feature_name and feature_id shall be realized with instantiation of a specific feature 
according to the application_specific feature definition. These attributes serve as the necessary attributes for searching 
of feature during feature modeling operations. 
• Depended_feature_id_list 
To maintain feature relationship, depended_feature shall be explicitly defined in the feature definition. Feature 
dependency relation definition is described by Biddara [2, 3] as “feature f1 directly depends on feature f2 whenever f1 
is attached, positioned or, in some other way, constrained relative to f2”. Depended_feature_id_list plays an important 
role in maintaining feature dependency graph, and furthermore, feature relations during feature modeling operations. 
• Feature label 
A feature label is attached as an attribute to every face of a particular feature instance. In a feature, its member face 
labels are defined as a list of strings in the definition, to record feature face elements. Then the face corresponding to 
the label is referred as the owner. 
• Domain specification 
Domain specification has the ENUMERATION data type, which represents the application scope such as design, 
manufacturing, assembly and others. By specifying the different domains, multi-views can be supported with certain 
filtering and synchronizing mechanisms. 
• Nature 
The nature of a feature has ENUMERATION data type as well which is either positive or negative. A positive value 
means the instances of the feature are created by adding material. A negative value means forming a feature instance 
is realized by subtracting material. 
 
2.4 Member Functions 
• Attributes access functions 
Attribute access functions shall be defined to manage feature’s attributes. Some functions are common to all types of 
features, e.g. backup(). Others are feature-specific such as findOwner(), findConstraint(), getParameter(), 
setParameter() and so on. Object technology with a proper polymorphism design can be applied well here. 
• Modeling operation functions 
Modeling operation functions (e.g. splitOwner(), mergeOwner()) are used to control the behaviors of feature during a 
modeling operation, e.g. splitting, merging, or translation. 
• Feature evaluation and validation functions 
Feature evaluation functions are responsible for feature model modification. Feature validation functions are used to 
validate feature geometry and solving constraints after each feature modeling operation. These functions will be 
discussed in detail in section 4.  
• Saving and restoring functions 
In order to persistently manage product and process information, which includes feature information, geometrical data 
and other information, saving and restoring functions of the database, which are the interactions between the run-time 
feature model and the database, must be defined in individual feature classes because these functions have to organize 
information for different application views according to users’ requirements. Details will be explained in section 4. 

3. MAPPING MECHANISMS 
To provide lower-level geometrical modeling services, a geometrical modeling kernel is required. In this work, ACIS, a 
commercial package, is incorporated into the proposed system. An EXPRESS-defined and extended STEP feature 
model, which includes geometrical and generic feature representation schemas, is mapped to the data representation 
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schemas in ACIS such that the proposed system will have the required fine grain functionality. On the other hand, this 
feature model needs also to be mapped to the target database schema so that it can be interfaced with a persistent 
repository. 

 
3.1 Mapping From Extended EXPRESS Model To ACIS Workform Format 

3.1.1 Geometry mapping 
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Fig. 3. Mapping of STEP entities and ACIS entities 
 

Generic Feature Definition
Attribute:
Domain: string;
Feature_name: string;
Nature: string;
Owner ID: ENTITY*;
Feature_ID: ENTITY*;
Depend_feature_ID:ENTITY*;
Parameter list:
Parameter1;
Parameter2;
...
Constraint list:
List of Constraint_ID: ENTITY *;

Member functions:
Attribute acess:
getAttribute(),setAttribute()...
Modeling operation:
splitOwner(), mergeOwner()...
Feature validation:
geometryValidation(),
constraintSolving(),
Save and restore:
Save(),
Restore()

Entity
Entity ID: ENTITY*;
Feature_ID: ENTITY*;
Functions:
geometryValidation();

Constraint:
Attribute:
Owner_ID: ENTITY*;
Constraint_ID: ENTITY*;
Constraint_content;
Constraint_strength: int;
Constraint_sense: string;
Constrained_entity:
ENTITY_LIST;
Reference_entity_list:
ENTITY_LIST;
Other attribute:
...

Member function:
getAttribute();
setAttribute();
solveConstraint();

Other function:
...  

Fig. 4. Generic feature definition with ACIS entities 

 
In this research, STEP part 42 [6] is adopted as the geometrical representation schema for all feature models.   The 
geometry and topology entity mapping between ACIS and STEP has been developed as shown in Fig. 3. 
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3.1.2 Generic feature definition under ACIS framework 
ACIS provides ENTITY-ATTRIBUTE architecture [1], under which we can define user-defined attributes (features, 
constraints or others). The following rules are developed and used by the authors for defining features, constraints and 
other attributes in ACIS: 

 Use simple attributes to represent properties such as the material of a body or color of a face. 
 Use complex attributes to represent properties such as features, dimensions, tolerance, or constraints.  
 Use bridging attributes to link an ENTITY with some application-specific, variable length data. 
 Use instruction attributes placed on entities to force certain behavior. 
 Attributes of features and constraints may have various data types, e.g. string, integer or ENTITY pointer. 
 Aggregate data type shall be defined as ENTITY_LIST. The ENTITY_LIST is a variable length associative array of 

ENTITY pointers and provides common functions for the manipulation of its members, e.g. add ENTITY, look up 
ENTITY and [] operator for accessing list member by position. 

 Enumeration data type can be simulated by defining a string as the enumeration member or simply using integer 
data type. 

 Selecting data type can be simulated by using an abstract class and defining specific types of the abstract class. 
On the basis of the above proposed mapping rules, a generic feature definition is created as shown in Fig.4. 
 

3.2 Database Representation Schema 
According to the mapping mechanisms proposed in [12], a geometrical representation schema as well as generic 
feature representation schema in the database has been developed. For details, please refer to [12]. 
 
4. THE INTEGRATION OF THE SOLID MODELER AND THE DATABASE 
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Fig. 5. Partial diagram for the integration of a solid modeler and the feature-oriented database 

The solid modeler has been tightly integrated in four layers in order to manage product and process information (see 
Fig. 5.). First, its API functions are called constantly which are encapsulated within the feature manipulation methods 
during the collaboration sessions between the end users and the application server. Second, all the geometrical entities 
are manipulated and their run-time consistency maintained through the solid modeler’s implicit runtime data structure 
module. Third, it also provides runtime functional support directly to the end users via commands dynamically. Fourth, 
the solid modeler has also to support the repository operations via the DB manager. 
This paper focuses on the forth layer. In the proposed architecture of the web-based feature modeling system [12], 
database manager (DB manager) is responsible for managing the geometrical entities via the solid modeler runtime 
model and manipulating the data elements to be stored and extracted in the database for different applications. With 
the support of a solid modeler, the database manager can provide data manipulation functions such as save, restore 
and validate functions. These functions are fundamental to support different applications. In the following sub-sections, 
feature validation as well as the generic save and restore algorithms are explained. In order to manage the connection 
between the DB manager and the database during saving and restoring processes, OCCI (Oracle C++ Call Interface) 
[10] is adopted as the bridge (see Fig. 5.). 
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4.1 Feature Model Re-evaluation and Constraint Solving 
Once feature operations are specified via User Interfaces (UIs), the product model needs to be modified and updated. 
This process is achieved through feature evaluation. The geometrical model has to be managed to ensure the 
consistency. Here, the run-time product model should be generated via the integrated solid modeler and managed 
based on the database records. All feature evaluation operations call solid modeler APIs to realize the geometrical 
procedures while the rest of the functions are implemented separately. In this way, the details of geometrical operations 
are readily looked after by the solid modeler; hence, the development effort is significantly reduced. Details for feature 
model re-evaluation will be explained in section 5. 
Theoretically, feature validation functions include two kinds: those dealing with the geometry, and those dealing with 
constraints. With the incorporation of a solid modeler, geometry validation functions are not really necessary under the 
proposed design because the solid modeler is responsible for manipulating and validating feature geometry. On the 
other hand, constraint-solving functions need call specific algorithms defined in the individual constraint sub-classes to 
solve different kinds of constraints according to their types. Globally, all the constraints are maintained by the 
Constraint Manager in a constraint graph for EPM (Entire Product Model), which contains sub-graphs for specific 
application views. Constraint manager solves constraints by calling the corresponding solvers according to different 
constraint types. For example, SkyBlue algorithm [11] can be used to solve local algebraic constraints in design 
domain; Degrees of Freedom analysis algorithm [8] can be used to solve geometrical constraints in design domain. If 
conflict of intra-application constraints occurs, local constraints solver can determine automatically which constraint 
should be satisfy first according to the value of constraint_strengh, which is an attribute of constraint defined in section 
2. Inter-application constraints can also be solved under the control of constraint manager according to the value of 
domain_strength. For definition of domain_strength, please refer to section 2. The value of domain_strength can be 
predefined which regulates priority sequence of different domains, or is set by an authorized user. Any conflict of inter-
application constraints will be detected by constraint manager after which the constraints solver can trigger 
corresponding applications to reevaluate the product model according to domain_strength. Only when all constraints 
are checked and feature geometry is validated, does feature validation finish. 
 
4.2 Save Algorithm 
To elaborate, during the saving process, the solid modeler has to extract all the information from its runtime data 
structure and then save them into the database after a format conversion according to the mapping relations as shown 
in Fig. 4. and the database mapping schema described in [12]. The Save algorithm can be expressed in the steps as 
follows (see Fig. 6.): 

Initiate algorithm 
by  selecting the 
part & creating an 
empty entity_list 

Cycle the 
part to get 
all entities 

Create/update 
the entity 
graph and get 
OIDs  

Save entities 
with OIDs 
into the DB 

 
Fig. 6. Save algorithm 

 
1) Select the part to be saved. Create an empty entity list and add the part attributes to be saved to the list;  
2) Cycle all entities (features, topological entities, such as solids, shells, faces, and geometrical entities, such as lines, 

planes, curves, and surfaces) from the part and add them to a graph map so that object pointers can be fixed as 
unique database Object Identifiers (OID). ACIS API functions, e.g. api_get_xxxx(), are used to get all saved 
ENTITIES; 

3) Use such object pointers to call save functions of the specific class (e.g. point.save(), vertex.save() or feature.save()) 
to save part data to the database. 

 
4.3 Restore Algorithm 

 

Get all 
entities of the 
part from DB 

Reconstruct 
entity  objects 
& add them to 
the graph 

Traverse OIDs 
and create 
entities  

Add them 
into  a 
entity_list 
& form a part 

 
Fig. 7. Restore algorithm 

Presented on CAD’05 International CAD Conferences and Exhibitions, June 20-24, 2005, Bangkok, Thailand 
http://www.cadconferences.com 

 



 
7 

In a reverse way, the uploading process is triggered when the product model is being established during the session 
initiation from the database. 
Restore algorithm has the following steps (Fig. 7.):  
1) All the entities of a part are retrieved from the database by searching their linked Object Identifiers (OIDs);  
2) Reconstruct new objects, e.g. features, geometrical entities, topological entities.  Upon reconstruction, all the 

objects will be validated;  
3) Add all the entities to a newly generated object graph map;  
4) Convert these OIDs to genuine pointers;  
5) Create an entity list and add all the entities to the list to form the part. Validation, e.g. geometry and feature 

validation will be carried out during this procedure. 
 
5. FEATURE MODEL RE-EVALUATION 
5.1 Problems Of Historical-dependent System 
For most parametric and history-based modeling system, feature model is re-evaluated by re-executing whole or part 
of the model history. The disadvantages of this method are the high computational cost and the considerable amount 
of storage space [2]. Moreover, history-based model re-evaluation causes ambiguous feature semantics due to the 
static chronological feature creation order in the model history. This is illustrated in the example shown in Fig. 8. The 
simple part consists of a base block and a through hole. Later on, the designer wants to modify the part by adding 
another block and extending the depth of hole so that he can get expected part model as shown in Fig. 8(b). However, 
sometimes unexpected modeling results can be generated by the history-based reevaluation of the model as shown in 
Fig. 8(c)., because the feature creation order is baseblock->hole->block. In order to get the expected part model, the 
precedence order, in this example, should be changed to baseblock->block->hole. This semantic problem is caused 
by the static precedence order in the model history on which model re-evaluation is based. From this example, it is 
clear that the precedence relation among features should be dynamically maintained and updated after each modeling 
operation. 
 

1. base block
2. hole  

(a) Example part at the initial state 

 

 (b) Expected result after modification 

1. base block
2. hole
3. block  

(c) Result of history-based re-
evaluation after modification

Fig. 8. Semantic problem for historical-dependent system 

5.2 Dynamically Maintaining Feature Precedence Order 
In this work, feature precedence order is maintained dynamically based on a feature dependency graph. Feature 
dependency relations are explicitly defined in the feature definition as explained in section 3. The followings are the 
rules for feature precedence determination. 
For dependent features: 

If feature f1 depends on feature f2, then f2 precedes f1. 

Relations between independent features can be determined by feature overlapping detection. Following is the rule for 
feature precedence determination among independent features: 

For two features with different natures, if they overlap with each other, the feature with positive nature always 
precedes the feature with negative nature. 

According to the above rules for feature precedence determination, an algorithm is proposed to dynamically maintain 
feature precedence order after each feature modeling operation. 

1) Find all the features of the part and add them to a graph map (unsorted); 
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2) Partially sort the graph map according the feature dependency graph. This is done by the algorithms 
described in Fig. 9.; 

3) Sort the partially sorted graph with reference to overlap detection result. 
In this way, a global feature precedence order can be updated dynamically after each feature modeling operation. 
 

(For i=1; i<n-1; i++)
{ (for j=i+1, j<n; j++)
  {if (Px

j
>Px

i
)

    {Xm= Xi;
     X

i
=X

j
;

     X
j
=X

m
;

     }
   }
}
Here:
Xi represents any feature in the feature set;
Xj represents depended feature of Xi;
Pxi represents the position of feature Xi in the
feature map;

 

Fig. 9. Algorithm for precedence order generation 
 
5.3 History-independent Feature Model Re-evaluation 
Based on the proposed global feature order generating algorithms, the re-evaluation of the feature model after 
modification can be described as follows: 
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Fi : ith face; S_Li : ith slot_label; B_Li : ith block_label. 

Fig. 10. Feature creation 

5.3.1 Adding a new feature instance 
This is carried out as follows: 

1) Create the shape of the new feature according to feature creation schema; 
2) Attach labels to every face of the feature instance; and 
3) Carry out Boolean operation according to the nature of feature (for positive nature, Boolean union operation 

is carried out; for negative nature, Boolean subtraction is done). 
Feature labels must be properly propagated during the Boolean operation because labels are attached to every face of 
the feature instance. For those feature faces to be kept after Boolean operation and with no overlapping to the base 
block faces, their feature labels are carried into the block. The tricky issue is how to deal with overlapping faces. This 
process is controlled in the splitOwner(), mergeOwner() functions defined in FEATURE_LABEL class. The geometric 
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relation between a pair of overlapping faces – one from the new feature and the other from the base block - i.e. the 
choice that either splitOwner() or mergeOwner() is to be used, is determined by the Boolean operation algorithms. The 
followings are the rules for controlling feature label propagation for overlapping faces during a Boolean operation: 

1) If the owner (face) of a feature label is going to be split, the label should also be propagated to the new faces; 
2) If the owner (face) of a feature label is going to be merged with an existing face that belongs to the base block 

and the owner will be deleted, the label should be propagated to the existing block face. In this case the new 
feature depends on the existing block face. 

Fig. 10. illustrates the creation of a slot feature on the base block. The shape of the slot is first created and labels (S_L) 
are attached to every face of the slot shape. Then Boolean subtraction is carried out as the nature of slot is negative. 
During Boolean operation, all faces of the original slot shape are deleted and three new faces (F2, F3, F4) are 
generated. The top face of original base block is split into two faces (F1 and F5). According to the above rules, slot 
feature labels are attached to three new faces, as well as the two top faces and two side faces of the base block. 
 
5.3.2 Deleting a feature instance 
This is carried out as follows (assuming no other feature depends on the feature to be deleted): 

1) Find all faces labeled only as elements of this feature instance; 
2) Delete these faces and their associated topological and geometrical entities; 
3) Merge the adjacent faces which belong to the same feature. 

To delete the slot feature from the part in Fig. 10., all faces labeled as slot are found first. Then faces (F2, F3, F4) that 
contain only slot label are deleted. Finally, adjacent faces are merged and solid is repaired. 
 
5.3.3 Modifying a feature instance 
To modify a feature instance, we shall first check which features that are involved (to be modified) in the modeling 
operation. This checking is based on the feature dependency graph and global feature precedence order. Then, 
features involved will be removed from the product model first. Then these independent features are updated 
according to the operational requirements. Finally, these modified features are inserted back to the model. 
 

 
Base block 

Rib 1 Rib 2 

Cylinder 

Hole 1 

              (a) The initial case part                                                               (b) Dependency graph of the initial case part 

 
 

Base block

Rib 1 Rib 2 

Cylinder Boss 

Hole 1

Hole 2 

 

             (c) After adding a boss and a hole                                              (d) Dependency graph for the modified part 
 

Fig. 11. Case study model for re-evaluation 
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6. CASE STUDY 
The proposed feature-oriented database has been implemented coupled with a geometrical modeling kernel, ACIS. 
Design features and constraints have been defined and some example parts have been tested. Fig. 11(a). shows an 
example part made up of a base block, two ribs and a hole. Fig. 11(b). shows its feature dependency graph. Fig. 11(c). 
is the result of adding another boss and a hole on the cylinder. Fig. 11(d). gives the new dependency graph after the 
operation. Based on the feature dependency graph, the removal of boss feature can be done by removing the boss as 
well as the hole feature that depends on the boss feature. 
 
7. CONCLUSION 
In this paper, the integration of a feature-oriented database and a solid modeler is presented. The mapping 
mechanisms, from EXPRESS-defined generic feature model entities to ACIS workform format, and the integration with 
the repository database schema are described. Generic algorithms for feature manipulation with the solid molder and 
database methods are also illustrated. Based on the working prototype system, it can be concluded that solid modeler 
can be effectively integrated with the feature-oriented database to provide lower-level geometrical modeling services. 
This kind of integration can further enable information sharing among different applications and Web enabled 
engineering collaboration. Finally, a modeler-supported, history-independent feature model re-evaluation approach is 
described in detail. 
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