
A Web-based Collaborative Feature Modeling
System Framework

 Tang S. –H. 1, Ma Y. –S. 1 * and Chen G.2

 1 DRC, School of MPE, Nanyang Technological University, Singapore
 2 CAD/CAM Lab, School of MPE, Nanyang Technological University, Singapore
 * Email address: mysma@ntu.edu.sg (Ma Y. –S.)

Abstract: In this paper, a web-based collaborative feature modeling system framework is
proposed. To integrate CAx applications, a four-layer information model is proposed. STEP
(STandard for the Exchange of Product model data) is extended to build the product model
structure for information sharing. Mapping mechanisms are also investigated to convert the
EXPRESS-defined information types into the database schemas. The generic feature
representation and geometrical data representation in database are given. Mechanisms for
feature validation are explained.

1. Introduction
In a collaborative engineering environment, engineering tasks are always carried
out by a group of distributed engineers who may use different applications.
Therefore, information sharing among product development team members
becomes the bottleneck. Although many research work [2, 3, 4, 5, 6] and
commercial products [7, 8] have been carried out in this area, problems still exist.
They fall into the following two aspects, information loss and data conflict.
 Although many proposed systems are claimed to be CAD-neutral based on STEP
and CORBA, they lack the necessary interoperability so far. In the process of data
exchange, useful information such as features is often lost. Therefore it is not
complete information sharing. On the other hand, CAD data is often stored in a file
format, which means duplicated data and potential conflicts.

2. System Architecture
To enable information sharing among CAx applications, a web-based, database-
driven, and feature-oriented system architecture is proposed as shown in Figure 1.
The proposed system includes clients, application servers and a database server.
The application servers include a web server, an application object server and a
feature object server.
 The web server contains a multiview data access interface (MDAI), a security
manager and a session manager. MDAI provides shared access for multiple users. It
can instantiate different views for different users according to user’s requirements.
Security manager is used to prevent unauthorized access to the product data.
Session manager is responsible for controlling concurrent access by multiple users
of the same data. The application object server provides different application
packages for different users on the basis of feature object server. The product model
manager is responsible for organizing information for multiple applications
according to the user’s requirements. This information includes feature model and

mailto:mysma@ntu.edu.sg

solid model (B-rep). To
maintain the feature
semantics during modelling
operation, such as adding,
deleting and modifying
features, the feature
manager will call the
constraint solver and the
solid modeler to validate
the feature. Details for
feature validation are
explained in section 5. The
constraint solver can check
the validation of all
constraints, which are part
of the feature definition.
The geometrical modeler
can validate feature
geometry. The database
server provides physical
storage for all kinds of data
including product model
data, security management
data and so on. Within the
database, geometrical data
and features for different

applications are stored as data elements across tables so that they can be
reorganized with great flexibility. The solid modeller provides general functions
such as geometry construction, modification, and computation to support higher-
level feature modelling.

user

Database

Feature object server

Feature manager

Application object server

Product model manager

Application 2
view

Application 1
view

Application packages

Web server

Session manager

Security manager

Multiview Data Access Interface
(MDAI)

Data communication channel

Solid modeler

Application 2 features

Constraint solver

DB manager

Application 1 features

Database server

Figure 1. Overall system architecture

3. Information Model

Database
schema

Sub-model 3

programming
language

Neutral
format

Application
layer

information
layer

Sub-model 2Sub-model 1

Representation
layer

database physical layer

Entire product model

EXPRESS specification

Unified feature
model

Application feature
model

Figure 2. Four-layer information model

In this research, the
information model is built on
the basis of an extended
STEP framework. To achieve
integration among CAx
applications, the sharing of a
common product model is
crucial. The shared product
model provides different
views for various
applications. Based on Zha’s
work [9], we propose the
four-layer information model
as showed in Figure 2. The
four layers are application,

information, representation and physical layers. The information layer contains four
components, i.e. EXPRESS specification, application features, unified features and
entire product model (EPM).

EPM describes information across applications, and contains the domain
classification ontology and metadata; the detailed high level feature objects are
organized by different sub-models in the application feature layer. Application
features can provide specific view of the EPM. Next, a unified feature model [10] is
used to specify the generic feature-modelling framework for common definitions of
different application features.

e.g.

e.g.

Solid

product_id
solid_id
closed_shell_id(REF)
C_sys_id(REF)

closed_shell

closed_shell_id
solid_id(REF)
advanced_face_list

advanced_face

advanced_face_id
face_outer_bound_id(REF)
surface_id(REF)
closed_shell_id(REF)

surface(plane)

plane_id
advanced_face_id(REF)
axis_placement_3d(REF)

axis2_placement_3d

axis2_placement_3d_id
direction_id1
direction_id
cartesian_point_id(REF)
C_sys_id(REF)

face_outer_bound

face_outer_bound_id
advanced_face_id(REF)
edge_loop_id(REF)
orientation

direction

direction_id
direction_ratio_x
direction_ratio_y
direction_ratio_z

cartesian_point

cartesian_point_id
x
y
z
C_sys_id(REF)

edge_loop

edge_loop_id
oriented_edge_list
face_outer_bound_id(REF)

oriented_edge

oriented_edge_id
orientation
edge_curve_id(REF)
edge_loop_list

edge_curve

edge_curve_id
oriented_edge_id(REF)
vertex_point_id(edge_end)(REF)
vertex_point_id(edge_end)(REF)
curve_id(REF)
same_sense

curve(line)

line_id
edge_curve_id(REF)
cartesian_point_id(REF)
vector_id(REF)
C_sys_id(REF)

vector

vector_id
magnitude
direction_id(REF)

vertex_point

vertex_point_id
edge_curve_list
cartesian_point_id(REF)

 Figure3. Partial database schema for geometrical representation

 Unified feature model allows different applications to define features with
different configurations based on the predefined candidate types, such as
geometrical representations, and the common processing methods. All the contents
of EPM, application feature model and unified feature model are described in
EXPRESS language.

4. Database Schemas
Under the four-layer information model structure, the entities at different levels
shall be mapped to schema definitions for a potential comprehensive product

database such that arbitrary feature object structure can be represented. Details of
mapping mechanism are given in [11].

A partial geometrical database schema is created according to STEP 42 [12] as
shown in Figure 3. All attributes with suffix id (but without REF) represent object
identifier (OID). A built-in data type called a REF represents the reference to OID.
An arrow here represents such REF relationship between object types.

The generic feature representation in database can be expressed as Figure 4 under
the framework of unified feature model. A feature has feature_id, product_id and
domain as its attribute. A feature also contains a list of referenced entities, a list of
constraints and a list of parameters. Parameters can be uniquely identified by a
parameter_id from parameter table. Referenced_entity of feature includes entities
(e.g. solid, faces, edges and vertices, etc.) or other features. Entity_id can uniquely
identify the referenced entities stored in the entity table. A constraint of a feature
can be uniquely identified by constraint_id. Constrained_entity_list identifies
constrained entity from the entity table by entity_id and entity_type.

5. Maintenance of Feature Validity
Feature validity must be checked during feature modelling operations in order to
maintain the feature semantics. A feature is valid as long as the feature satisfies all
the relevant constraints and the feature geometry is valid. After each feature

modelling operation, the
solid modeller will be
called to validate feature
geometry. Then feature
manager will call
constraints solver to check
all the relevant constraints
to determine if all features
are valid. The constraint
manager maintains all
constraints in a constraint
graph for EPM, which
contains sub-graphs for
specific application views.
Constraint manager solves
constraints by calling the
corresponding solvers
according to different

constraint types. For example, SkyBlue algorithm [13] can be used to solve local
algebraic constraints in design domain. If a conflict of intra-application constraints
occurs, local constraints solver can determine automatically which constraint should
be satisfied first according to the value of constraint_strengh, which is an attribute
of constraint. It is an enumeration data type, which may include several levels, such
as required, strong, medium or weak. Inter-application constraints can also be
solved under the control of constraint manager according to the value of
domain_strength. Its value, which regulates priority sequence of different domains,
is predefined. Any conflict of inter-application constraints will be detected by

Feature

feature_id
product_id(REF)
domain_list
parameter_list
constraint_list
referenced_entity_list

parameter

parameter_id
parent_id(REF)
referenced_entity_list
owner_list
parameter_name
parameter_value
...

constraint

constraint_id
owner list
constraint_attribute
constrained_entity_list
...

entity

entity_id
...

domain

domain_id
domain_name
...

Figure 4. Generic feature representation in database

constraint manager, which can trigger the relevant applications and the constraint
solver to re-evaluate the product model according to domain_strength. Only when
all constraints are checked and feature geometry is validated, does feature
validation finish.

6. Case Study
A case study is carried out to
testify whether product and
process information can be well
managed using the proposed
database schema. The
geometrical entities (e.g. shell,
advanced_face, etc.) of an
example part (block with
through_slot feature) are
explained in figure 5. Adopting
the proposed feature
representation schema, the
example part can be express in a
database as shown in Figure 6.
 Functions for managing

n,

to be developed. These functions are used to org

product informatio such as
save, restore, and validate, have
anize information for different

application views according to users’ requirements. Here, we only briefly explain
the save and restore algorithms. Part information, which includes geometrical data,

features and others, is
represented as ENTITIES.
ENTITY is a virtual class;
it represents common data
and functionality that is
mandatory in all classes
that represent permanent
objects. Save algorithm can
be expressed in step as
follows: (a) Create an
empty entity list and add
the part to be saved to the
list; (b) Get all entities such
as solid, shell and so on
from the part and add them
to a graph map so that
object pointers can be fixed
as unique database object
IDs; (c) Use such object
pointers to call save

 S0

 SHL0
A_F0

A_F1

A_F2

A_F3

A_F4 A_F9

A_F8

A_F7

A_F6

A_F5

V0

V15

V14

V12

V11

V10

V9

V8

V7

V6

V5

V4

V3

V2

V1

E0

E23

E22

E21

E20

E19

E18

E17
E16

E15

E14

E13
E12

E11

E10

E9

E8

E7

E6

E5E4

E3

E2

E1

Figure 5 Geometrical representation of example part

Through slot table
Attributes
Name
Feature_ID: Through_slot
Product_ID
Domain
Referenced entity list:
Advanced_face_ID:AF1
Advanced_face_ID:AF2
Advanced_face_ID:AF3
Parameter list:
Parameter_ID:Length
Parameter_ID:Width
Parameter_ID:Depth
Parameter_ID:Position
Constraint_list:
Constraint_ID:C1

Parameter table
Parent_ID:through_slot
Parameter_ID:Length
Parameter_name:Length
Parameter_value:D(V1,V2)
Referenced_entity_list:
 V1,V2
Parameter_ID:Width
 …
Parameter_ID:Depth
 …
Parameter_ID:Position
…

Advanced_face table:
Advanced_face_ID(A_F1)
Face_bound_ID(F_B0)
Surface_ID(PL0)
Closed_shell_ID(SH0)
Advanced_face_ID(A_F2)
…………
Advanced_face_ID(A_F3)
…………

Vertex_point table:
Vertex_point_ID:V1
Edge_curve_ID:E0,E1,E6
Cartesian_point_ID:P1

Constraint table:
Feature_ID:Through_slot
Constraint_ID:C1
Constraint_content:
4<=Width<=10
Reference_entity_list:
Width

Figure 6 Through_slot feature in database

functions of the specific class (e.g. point.save (), vertex.save ()) to save part data to
the database.
 Restore algorithm has the following steps: (a) All the entity of a part are retrieved
from the database by searching their linked Object IDs; (b) Reconstruct new
objects; (c) Add all the entities to a newly generated object graph map; (d) Convert
these IDs to genuine pointers; (e) Create an entity list and add all the entities to the
list to form the part.

7. Conclusion
In this paper, a framework is proposed to enable information sharing among CAx
applications. The proposed four-layer information model can integrate different
applications with EPM, and allow the manipulation of application-specific
information within sub-models. STEP information model has been extended;
product and process information can be organized for multiple applications with
great flexibility. A generic feature representation schema and a geometrical data
representation schema in databases are given. Mechanism to maintain feature
validation is described.

Reference
[1] Industrial Automation Systems and Integration — Product Data Representation and

Exchange — Part 1: Overview and Fundamental Principles, ISO 10303-1:1994 (E),
ISO, Geneva, 1994.

[2] H. J. Helpenstein, CAD Geometry Data Exchange Using STEP, ECSC-EEC-EAEC,
Brussels-Luxembourg, 1993.

[3] Y.P. Zhang, “An Internet based STEP Data Exchange Framework for Virtual
Enterprises”, Computers in Industry Vol. 41, pp. 51-63, 2000.

[4] T. Dereli and H. Filiz, “A note on the use of STEP for interfacing design to process
planning”, Computer-Aided Design, Vol. 34, pp. 1075-1085, 2002.

[5] R. Bidarra, W.F. Bronsvoort Semantic feature modeling, Computer-Aided Design Vol.
32, pp. 201–225, 2000.

[6] J. Kim and S. Han, Encapsulation of geometric functions for ship structural CAD using
a STEP database as native storage, Computer-Aided Design, Vol. 35, pp. 1161–1170,
2003.

[7] ACS software. http://www.acssoftware.com/.
[8] J. Emmel, “OneSpace-Integrating Collaboration Technology and Enterprise PDM”,

Technical Whitepaper of CoCreate Software GambH, 2000.
[9] X. F. Zha, H. Du, “A PDES/STEP-based Model and System for Concurrent Integrated

Design and Assembly Planning”, Computer-Aided Design Vol. 34, pp. 1087-1110,
2002.

[10] Chen G., Unified Feature Model for the Integration of CAD and CAX, First-year report,
School of MPE, 2003.

[11] Tang S. –H., Ma Y. –S. and Chen G., “A Feature-oriented Database Framework for
Web-based CAx Applications”, accepted by conference of CAD04, 2004.

[12] Industrial Automation Systems and Integration — Product Data Representation and
Exchange — Part 42: Integrated Generic Resources: Geometric and Topological
Representation, ISO 10303-42:1994 (E), ISO, Geneva, 1994.

[13] M. Sannella. “The SkyBlue constraint solver”, Technical Report 92-07-02, Department
of Computer Science and Engineering, University of Washington, 1993.

http://www.acssoftware.com/

	A Web-based Collaborative Feature Modeling System Framework
	1. Introduction
	2. System Architecture
	3. Information Model
	4. Database Schemas
	5. Maintenance of Feature Validity
	6. Case Study
	7. Conclusion
	Reference

