
 397

Design of a Feature-object-based Mechanical Assembly Library

Y. -S. Ma1, G. A. Britton2, S. B. Tor3, L.-Y. Jin4, G. Chen5 and S. -H. Tang6

1Nanyang Technological University, mysma@ntu.edu.sg

2Nanyang Technological University, mgabritton@ntu.edu.sg

3Nanyang Technological University, msbtor@ntu.edu.sg
4iSi-Dentsu Singapore Pte. Ltd, liangyong@isidsgp.com.sg

5Nanyang Technological University, pg02198079@ntu.edu.sg

6Nanyang Technological University, pg0214852@ntu.edu.sg

ABSTRACT

In this paper, a new feature-based assembly library for injection mould bases is presented.

Assembly design feature-object modeling and configuration management are the key technologies

developed. This library is an important functional module of QuickMould, which is a productivity

software tool for plastic injection mould design. Interactions between the library and mould design

processes are realized. This paper also covers the details about the design of the system and the

realization of some major functions, with which, the process of traditional mould design is

simplified and standardized. Consequently, the lead-time for plastic injection mould can be

significantly shortened.

Keywords: Assembly feature; Feature-based design; Injection mould design

1. INTRODUCTION

The procedures for injection mold design are complex

and tedious. A lot of research has been done to improve

the efficiency throughout the spectrum of injection

mould design activities. In 1997, Kruth and Lecluse

developed a system to support mould assembly design

[1], which can only accommodate wire-frame and simple

solid models. Due to the development of 3D parametric

modeling, features have been defined and feature-based

modeling accepted for product development. In the

design stage, geometric features can be instanced,

modified, and located quickly by specifying a minimum

set of parameters, while the feature modeler works out

the details [2, 3, 4]. Object-oriented modeling is a new

way for assembly modeling [5, 6, 7, 8]. Ye et al [9]

proposed a feature-based and object-oriented

hierarchical representation for injection mould assembly.

In recent years, with the development of computer

technologies, more research works have contributed to

the computer tools for injection mould design through

different aspects [10, 11, 12, 13, 14, 15]. Knowledge-

based systems represent another trend for future

development [16, 17]. Currently, some commercial

packages have been available in the market, such as

iMould [18], IKMOULD [16], and MoldWizard [19].

However, there still exist some limitations of traditional

generative modeling methods where geometry of a

design is automatically created according to a set of

"specific" rules implemented. Such systems are usually

too rigid to be adopted in different enterprises or

industries because customers’ individual design

semantics cannot be incorporated.

Fig. 1. QuickMould Architecture [20]

In this work, a new assembly feature-object approach is

developed. It represents assembly design features and

their topology in a more flexible and more convenient

way in an assembly pattern library, via the association of

a template file, a data file and a configuration file. With

the feature-object method, pre-defined modular

assembly models can be customized, added, modified,

retrieved, and deleted more conveniently by the end-

user without any programming effort. The library has

been implemented as a functional module of

 QuickMould System

 Essential Technology

 Infrastructure
UG/Open API UIStyler VC++ MFC

QM_Main Startup Wizard

Assembler Drawing Sub_system

 QuickMould Sub-modules

Mould Base Library

Utilities Parting Line Ejectors Gate_Runner

Standard Component Library

BOM Cooling Line

Undercut_Mechanism

Boolean Operations

 Application

 Infrastructure
Repository Currency UDO Attributes

User

Interfaces

 Main_UI

UIs for

individual

sub-

modules

398

QuickMould, which was designed as a productivity

software tool for plastic injection mould design. It was

targeted to improve the effectiveness of design processes,

and to significantly shorten the design time. QuickMould

adopts a systematic approach for 3D plastic injection

mould design with a set of functional modules to assist

the designer in designing different subsystems of a mould

assembly. These functional modules include, namely,

Interactive Mould-base Library (IML), Interactive Gate

and Runner, Undercut Mechanism, Standard

Component Library [14], Interactive Cooling System

[15], etc. Even though these modules perform separate

functions, they are well integrated and can be switched

from one to another by just the click of a button. Figure

1 shows the overview of QuickMOuld system

architecture. This publication is regarding to the mould

base library module, i.e. IML.

IML provides designer an efficient interface for the

selection of mould bases from the 3D feature-based

library by specifying the supplier, system, standard, type,

size, and plate thickness. It also allows the designer to

customize a standard mould base by changing the

parameters of key components and features.

Furthermore, customized mould bases can be added to

the library for future retrieval. IML has implemented

several catalogues from different commercial suppliers,

such as FUTABA and DME. The parameters and

features of mould base assemblies as well as

components can be easily managed through software

dialogue boxes. The feature-object modeling method

enables systematic interactions between the library and

the design environment.

Fig. 2. An example mould assembly [24] (1: register ring; 2:

sprue bush; 3: cooling channel; 4: runner; 5:cold slug; 6: guide

pin; 7: core plate; 8: guide bush; 9: backing plate; 10: sprue

ejector; 11: riser block; 12: bottom clamping plate; 13: ejector

plate; 14: ejector retaining plate; 15: return pin; 16: ejector pin;

17: core insert; 18: cavity insert; 19: gate; 20: molded part; 21:

cavity insert; 22: top clamping plate; 23: sprue)

2. MOULD BASE ASSEMBLY

A typical mould assembly is shown in Figure 2. The

selection of mould base is a crucial process for the

development of injection mould. Normally, many

suppliers provide varieties of standard mould bases. A

mould base assembly is traditionally classified into

several subassemblies (see Figure 3), such as, namely

fixed, movable and ejection subassemblies. Each

subassembly is made up of other subassembly parts, or

components, such as plates, pins, guiding bushes, and

screws. Dimensional and fitting relationships exist among

these parts and subassemblies. However, according to

different requirements, it is necessary for the designer to

customize certain configurations and dimensions. To

check the design validity, analysis and evaluation during

the different processes of mould design is also very

important. For most mould companies, simplifying the

design of mould bases offers the improvement of

manufacturing productivity and product quality.

Fig. 3. An assembly design feature related to a mould base

assembly structure

3. ASSEMBLY DESIGN FEATURE MODELING

Traditionally, most feature-based design works were

limited in a part, or a component. In the context of

assembly modeling, only a few research works were

reported [21, 22, 23] and they focused on production

assembly planning. As to assembly design features, such

as assembly design patterns, no literature is found;

neither for any feature-based assembly library. In this

Mould

base

Fixed
half

Movable

half

Ejecting unit

Register ring

Sprue bushes

Guide pins

Guide bushes

Top screws

Top clamping plate

Core plate

Backing plate

Riser blocks

Bottom clamping

plate

Top

Bottom screws

Ejector pins

Return pins

Ejector plate

Ejector retaining

Hex screws

Cavity

Guide pin pattern

A

B

Δ

399

work, assembly design feature modeling is focused and a

feature-object approach is developed for the design of a

mould base library, because, in practice, it is quite

common that a mould base assembly is used as a

standard item and is analyzed or evaluated as a whole.

The complex assembly relations that involve several

subassemblies and components are embedded in the

form of design patterns. Comparatively, it is easy to

define features in a single component, but for assembly

associative relations, there exists a lot of concise

modeling work to be done.

For example, the size of the mould base affects the sizes

of all the plates and the support/guide pins. The

thickness values of plates affect other elements, such as

pin lengths and their corresponding bushes or fitting

holes on those plates. Figure 3 gives an example, where

the components across subassemblies associated with a

design pattern, i.e. guide pin pattern, are indicated with

dashed lines.

Fig. 4. The definition of assembly design features and relations

created with other entities

Obviously, the pattern dimensions directly affect the

positions and sizes of those linked components and their

relevant features. Within the mould base assembly, there

exist several such patterns, e.g. top screw pattern, plate

thickness pattern, and so on. The associative nature

cannot be easily generalized in a template form; a more

explicit and flexible approach is needed.

In this work, such associative design relations, like design

patterns, or dimensional relations, or assembly

geometrical constraints are collectively defined as

assembly design features. They are qualified with the

following characteristics:

• These relations are for assembly design purpose

with a clear design intent (any type of features is for

a specific purpose);

• Such relations occur across different components or

subassemblies;

• They are associated with certain assembly design

semantics for the application.

The commonality of properties and behaviors can be

defined with a common object class; hence, they should

be well defined and self-contained. These assembly

design features are another type of associative features

as defined in [15]. It is difficult and unnecessary to apply

hard constraints over all those dimensions or parameters;

but it is rather appropriate to model the patterns in the

object form. Figure 4 shows our proposed object

definition for the assembly design feature and its

relations with other geometrical elements, such as form

features, components, subassemblies and the top

assembly.

Fig. 5. Assembly library system design

The novelty here is that the assembly features are

defined out of the assembly-subassembly-component

framework but as separate entities associated with them.

This definition provides the flexibility to model

Assembly design feature

Reference entities

Key parameters
Dimensions / Constraints

Attributes

Parameter data sets

Component

Reference entities

Form features

Key parameters
Dimensions /

Constraints

Attributes
Configurations

Parameter data sets

Subassembly

Component/subassembly

pointers
Reference entities

Mating conditions

Key parameters
Dimensions / Constraints

Attributes

Configurations

Parameter data sets

Top assembly

Component /subassembly

pointers
Reference entities

Mating conditions

Key parameters
Dimensions / Constraints

Attributes

Configurations

Parameter data sets

Design feature manager

Design Application

User

Suppliers

Configuration files

Data files

Template files

Library elements

Assembly library

Assembly design features

QuickMould User Interfaces

Library manager

Catalogues

Assembly Instances Feature manager

Design model

Design tools

Standards/Types

UI bitmap files

400

relationships across different members of the design. An

assembly design feature uses components or other (sub-)

assemblies in different layers, such as parameters,

attributes, dimensions / constraints, etc. The pre-

requisition is that they are also defined in object manner

and are accessible via multiple layers. The object

definition for components can be found in [14].

4. SYSTEM DESIGN

The system design for this library is shown in Figure 5. In

this work, standard mould base catalogues are classified

according to different suppliers, because they have

different feature definitions and dimensional

conventions. Each catalogue is subdivided according to

different standards or types. For each standard, a CAD

assembly template is built, together with a configuration

file, a data file and the relevant UI bitmap files as shown

in Figure 5.

The configuration file specifies the assembly features

existed within the template and their corresponding

parameters, dimensions as well as other attributes. Once

the user confirms the selection of a standard, an instance

of the assembly is inserted into the design model and its

corresponding assembly features are registered by the

feature manager, which in turn associate it with the

corresponding library source via the library manager.

This feature manager is also responsible to maintain the

validity of each assembly features through a set of

general methods, such as "update_parameters()" and
"evaluate_constraints()", etc. UIs are also dynamically

configured according to the user's selection and the

bitmap files specified in the configuration file. Due to the

object-oriented implementation, any modification within

the given feature-editing environment will be verified

against all the constraints related to the targeting entities,

hence the feature consistency is assured. All feature

attributes are associated to the geometrical entities that

can be persistently maintained in the design model.

Hence, their objects can be reestablished once the

QuickMould program and the design models are loaded,

and in turn they can be managed via the library and the

feature managers.

5. SYSTEM IMPLEMENTATION
The system was developed based on and seamlessly

integrated with UG V18.0, via UG/OPEN API, using

C++ language. Figure 6 shows some of the application

steps with connected UIs. When the library is invoked in

the QuickMould environment, the program automatically

initializes the session and checks for available catalogues,

standards, types, as well as configurations, data and

template files. Then the library resource tree is

established which in turn supports the mould base library

main UI as shown in the upper left corner of Figure 6.

For mould design, if there is no existing mould base,

designers can choose the mould base by specifying the

suppliers, standards, and types (see Figure 6). Once

specified, the corresponding assembly template model is

retrieved from the library to the buffer together with the

configuration file and data file specifying the available

sizes, configurations, dimensional parameters and their

default values. This buffer model can be further modified

or customized interactively via assembly design features.

Modified mould base can be eventually saved into

design model repository as a member subassembly with

the necessary attributes. It can always be retrieved,

edited or deleted as an object within QuickMould

environment. Choosing different options and loading

different parts achieve configuration changes for

components. Form-features are configured with

controlling expressions to turn on or off the relevant

feature candidates and to change the dimensions.

Within QuickMould, a Generic Assembly (GA) class has

been defined. It enables the system to identify existing

modular assemblies instanced from a given assembly

library. To do that, the system cycles the existing

QuickMould objects at the moment of initialization. It

checks the properties of the assembly tree recursively to

find out any subassembly that can match the attributes of

an assembly library element. The iteration continues

until the end of the list. If any has been found, the

corresponding instance object with the embedded

attributes is constructed including the associated

geometric entity pointers. Matching the earmarking

attributes identifies instances from different library source

elements, then the original library catalogues and

standards are re-connected.

In this system, assembly features such as the thickness of

plates, cap screw pattern, guide pin pattern, etc. are

identified and managed. As shown at the center of

Figure 6, when clicking "Edit Parameters" button from

the main UI of the mould base library, a list of defined

assembly features as well as the member components is

compiled and made selectable in another UI menu.

Double click on a feature or a component, its

corresponding editing UI appears. In background, the

feature manager instances the feature object by reading

in its definition from the configuration file and extracting

the related parameters as well as the expression values

from the assembly instance model. The editing UI allows

the designer to input values on specified parameters or

to select the configuration from available feature options.

This editing function can update assembly features or

components of the assembly instance automatically. The

configuration of these UIs is carried out on the fly based

on the configuration file where all the choices of types,

sizes, features, parameters and constraints are specified.

401

Once the user confirms the inputs, the editing function

will check the input selections or values against the

availability of the configuration as well as the legal

parameter value ranges. Relevant constraints are

checked as well. Any change in the key parameters will

be brought into an updating expression file. If no

violation occurs, the corresponding instance of the

assembly model is updated via the links to the assembly

template. Key variables are changed with the newly

generated expressions; hence the involved features in the

assembly model are updated. Correspondingly, other

related features or components will be automatically

modified because of constraints existed. Within a library

assembly template, associative parametric links are

automatically created via relations among expressions

across the assembly model. Such links are retrieved,

managed and saved via a set of feature object

modification methods.

Fig. 6. Some user interfaces for QuickMould mould base library

Figure 7 illustrated a mould base assembly used in a real

design. To delete the mould base in the mould assembly,

the user needs to just click on the “Delete MB” button on

the library main UI as shown in Figure 6.

6. CONCLUSIONS
This paper gives a detailed description about the

systematic design of an interactive mould base library.

This software tool can help the designer of injection

moulds to simplify the mold base design process. This

402

library uses a feature-object method for modeling. The

genetic assembly model in this work has the major

advantage over other tools that it enables different types

and configurations of assemblies being included in a

common library framework. Each library element is

realized via an innovative data structure, which consists

of a configuration file, a CAD assembly template, a data

file and some UI bitmap files. It enables the designer to

customize the mould base from the standard library

elements easily. Customized mould bases can also be

added back to the library for future usage and retrieval.

Constraints have been established within the mould base

assembly via inter-part expressions. By changing one of

the key parameters, related features and components are

correspondingly changed, and the whole assembly

updated. Interactions between the designer and the

mould base have been realized. The system have been

tested and evaluated with many mould designs. It has

demonstrated to be an efficient and effective approach

for the development of other modular assembly libraries.

Fig. 7. A mold base assembly used in a design (partially loaded)

7. FUTURE WORK
There are still some limitations with the system, such as

complete checking for geometric constraints that

occasionally cause runtime errors during the

regeneration of the assembly instances. Further research

and development are needed in this aspect. The

collaborative product development trend has greatly

affected injection mould manufacturing cycle. This work

provides some basis for web-based collaborative product

development. With its modularized design concept, its

potential capacity for collaborative product development

can be further explored.

8. ACKNOWLEDGEMENT

QuickMould© research project was sponsored by the

InfoComm Development Authority (iDA) of Singapore,

and jointly developed by Nanyang Technological

University (NTU) and Singapore Institute of

Manufacturing Technology (SIMTech). After its

commercialization, QuickMould© was adopted by EDS

Inc. and further developed as part of Moldwizard™.

9. REFERENCES
[1] Kruth J. P. and Lecluse D. W., A design support

system using high level mould object, in

Proceedings of the CIRP International Conference
and Exhibition on Design and Production of Dies
and Moulds, 1997, Turkey, pp 19-21.

[2] Aldefeld, B., Variation of geometries based on a

geometric-reasoning method, Computer-Aided
Design, Vol. 20, No. 3, 1988, pp 117-126.

[3] Shah, J. J. and Mantyla, M., Parametric and
feature-based CAD/CAM: concepts, techniques, and
applications, John Wiley and Sons, Inc., 1995.

[4] Otto, H. E., From concepts to consistent object

specifications: translation of a domain-oriented

feature framework into practice, Journal of
computer science & technology, Vol. 16, No. 3,
2001, pp 208-230.

[5] Gorti, S. R., Gupta, A., Kim, G. J., Sriram, R. D.

and Wong, A., An object-oriented representation for

product and design process, Computer-Aided
Design, Vol. 30, No. 7, 1998, pp 489-501.

[6] Bettig, B. and Shah, J., An object-oriented program

shell for integrating CAD software tools, Advances in
Engineering Software, Vol. 30, No. 8, 1999, pp
529-541.

[7] Britton, G. A., Ma, Y. –S. and Tor, S. B., Object

technology development and unigraphics, in

Proceedings, Unigraphics User Group 1999 Spring
Conference: Manage design evolution, 1999,

Newport Beach, California, USA.

[8] Jayaram, S., Wang, Y., Jayaram, U., Lyons, K. and

Hart, P., A Virtual Assembly Design Environment, in

Proceedings of IEEE Computer Graphics and
Applications, Vol. 19, No. 6, 1999, pp 44-50.

[9] Ye, X. G., Fuh, J. Y. H. and Lee, K. S., Automated

Assembly Modeling for Plastic Injection Moulds,

International Journal of Advanced Manufacturing
Technology, Vol. 16, No. 10, 2000, pp 739-747.

[10] Gan, P. Y., Lee, K. S. and Zhang, Y. F., A branch

and bound algorithm based process-planning

system for plastic injection mould bases,

International Journal of Advanced Manufacturing
Technology, Vol. 18, No. 9, 1998, pp 624-632.

[11] Neo, T. L. and Lee, K. S., Three-dimensional kernel

development for injection mould design,

403

International Journal of Advanced Manufacturing
Technology, Vol. 17, No. 6, 2001, pp 453-461.

[12] Fu, M. W., Fuh, J. Y. H. and Nee, A. Y. C., Core

and cavity generation method in injection mould

design, International Journal of Product Research,
Vol. 39, No. 1, 2001, pp 121-138.

[13] Chung, J. and Lee, K., A framework of collaborative

design environment for injection molding,

Computers in Industry, Vol. 47, No. 3, 2002, pp
319-337.

[14] Ma, Y. -S., Tor, S. B. and Britton, G. A., The

development of a standard component library for

plastic injection mould design using an object

oriented approach, International Journal of
Advanced Manufacturing Technology, Vol. 22, No.
9-10, 2003, pp 611-618.

[15] Ma, Y. -S. and Tong, T., Associative feature

modeling for concurrent engineering integration,

Computers in Industry, Vol. 51, No. 1, 2003, pp 51-
71.

[16] Mok, C. K., Chin, S., and Ho, J. K. L., An

interactive knowledge-based CAD system for mould

design in injection moulding processes, International
Journal of Advanced Manufacturing Technology,
Vol. 17, No. 1, 2001, pp 27-38.

[17] Myung, S. and Han, S. K., Knowledge-based

parametric design of mechanical products based on

configuration design method, Expert Systems with
Applications, Vol. 21, No. 2, 2001, pp 99-107.

[18] Lee, K. S., Fuh, J. Y. H., Zhang, Y. F., Li, Z. and

Nee, A. Y. C., IMOLD: An intelligent plastic

injection mold design and assembly system, IES
Journal, Vol. 36, No. 7-12, 1998.

[19] EDS Inc., UG help documentation, Maryland

Height, MO, USA, 2000.

[20] Singapore Institute of Manufacturing Technology

(SIMTech), Quickmould user’s guide, Singapore,
1999.

[21] Mäntylä, M., A modeling system for top-down

design of assembled products, IBM Journal of
Research and Development, Vol. 34, No. 5, 1990,
pp 636-659.

[22] Sugimura, N., Moriwaki, T. and Kakino, T., A study

on assembly model based on STEP and its

application to assembly process planning, in

Proceedings of ASME Japan/USA Symposium on
Flexible Automation, 1996, Vol. 2, pp 791-794.

[23] Pham, D. T. and Dimov, S. S., A system for

automatic extraction of feature-based assembly

information, in Proceedings of the Institution of
Mechanical Engineers Part B-Journal of Engineering
Manufacture, Vol. 213, No. B1, 1999, pp 97-101.

[24] Pye, R. G. W., Injection mould design: a design
manual for the thermoplastics industry, Plastics and
Rubber Institute, London, Godwin, 1983.

