
 117

A Feature-oriented Database Framework for Web-based CAx Applications

Tang S. –H.1, Ma Y. –S.2 and Chen G.3

1Nanyang Technological University, pg02104852@ntu.edu.sg
2Nanyang Technological University, mysma@ntu.edu.sg

3Nanyang Technological University, pg02198079@ntu.edu.sg

ABSTRACT

In this paper, a multi-application and feature-oriented database framework for web-based CAx
applications is proposed based on client-server architecture. The web server provides a multi-view
data access interface (MDAI) through which distributed users can access product and process
information via data network. Application server can provide feature-modeling facilities on the
basis of a geometric modeling kernel as well as DB manager. To enable information sharing among
different applications for collaborative engineering, a four-layer information model is proposed.
The entire product model (EPM) covers information of product entire life cycle. Sub-models,
coming from CAx applications, can be accommodated as specific views of the EPM from an
application-specific viewpoint. Mapping mechanisms are investigated to convert the EXPRESS-
defined feature object information model to the database schemas. The generic feature
representation and geometrical data representation in database is given on the basis of the
proposed mapping mechanisms. The information workflow and mechanisms to control
concurrency and to validate features are also discussed.

Keywords: Feature modeling; Database; STEP; CADCAM; Collaborative engineering

1. INTRODUCTION

1.1 Literature Review

Competition in the global market forces companies to
develop product with the highest quality, at the lowest
price, and more importantly, in the shortest time-to-
market. In order to speed up the product development,
the concept of collaborative engineering occurs. In a
collaborative engineering environment, it is common for
engineering tasks to be carried out by a group of
engineers who may be distributed in terms of both time
and space. Furthermore, different engineering partners
need to use different applications, which means a
product model generated from an application system has
to be shared directly by other ones. Therefore,
information sharing among CAx applications becomes
the bottleneck for collaborative engineering.
ESPRIT’s project 322 “CAD Interface”, was among the
pioneers to realize data exchange among different CAD
systems [19]. The implementation of CAD*I ORACLE
database, which covers geometric data and some
administrative data, enabled data exchange among AIS
modeler, STREAM100 CAD system and CAD*I neutral
files. The results of the project showed that with a
relational database management system, different kinds
of data, applications and operations can be well

managed. The security of the data can be ensured. In
addition, the communication and productivity within the
company has been improved. However, such
preliminary results are not upto the expectations from
CAD suppliers and CAD users. A lot of work has yet to
be done to complete and improve the capabilities and
performances of a product information DBMS. For
example, the information model for CAD*I database
covers only part of the geometric and some
administrative data. It is not enough to represent
different aspects of the entire product life cycle.
In order to describe a product’s entire life cycle,
International Standard Organization (ISO) has been
working on its STandard for the Exchange of Product
model data (STEP) effort since 1984. Currently STEP
contains information, from design to analysis,
manufacture, quality control testing, inspection, and
product support functions [12].
Under the STEP framework, a web-based collaborative
design system is proposed and implemented as
Cyberview by Kang and Kim [14][15]. They presented
an overall architecture, which adopted an open data
standards (STEP and VRML) to allow users from a wide
variety of platforms to access and visualize product
information. Two algorithms, for transforming STEP
geometry schema into an object-oriented database

 118

schema and for mapping geometry schema to VRML,
are presented. However, only geometric data can be
shared among different applications in their research.
High-level information such as features cannot be
shared; it means semantic information was lost.
To retrieve feature information from exchanged data file,
Bhandarkar developed a feature extraction system,
which takes a STEP file as input and produces a form-
feature STEP file [1]. This STEP file can be exchanged
between various companies over the Internet and can
serve as input for further downstream tasks. Similarly, Fu
et al [10] proposed an approach to identify design and
machining features from an exchanged part model. A
multi-level feature taxonomy and hierarchy is described.
Although feature extraction and identification can
partially recognize some feature information from the
exchanged part model, information loss still exists
because these approaches depend on pure geometric
data. For example, feature relationships can not be
recovered from the geometric data model.
Currently, most of the CAx systems are feature-based.
Therefore, feature information must be represented such
that engineering meaning is fully shared among CAX
applications.
To support collaborative feature modeling, a web-based
collaborative system [2], webSPIFF, has been developed
on the basis of the semantic feature modeling system [3].
In the system, a multi-view enhanced feature model
[4][5] is adopted which can maintain feature semantics
among CAx applications. Mechanisms for feature model
validity and feature conversion are described. Martino
[17] proposed to use a multiple view intermediate
modeler to integrate design and engineering process in a
distributed object-oriented system environment. The
intermediate model is both multiview supported and
feature-based by incorporating design-by-feature and
feature recognition approach. Therefore, it can achieve
high-level, semantic data communication among
engineering processes. However, these researches didn’t
mention how to manage the product data, whether in file
format or as database objects. Database allows the
handling of a large volume of data and is generic for
reading, writing, updating and deleting operations. The
DBMS can ensure the security and transparency for the
users of CAD data. Therefore databases are appropriate
tools for information sharing among CAx applications.
Hoffman proposed a product master model to integrate
CAD systems with downstream applications for different
feature views in the product life cycle [11]. A change
protocol proposed can maintain the link between
application proprietary data and the shared product
master model. However, the proposed product master
model contains only shared geometrical data, namely,
the net shape of the product model. To maintain the
association between product master model and the

distributed application proprietary feature semantics will
be very difficult practically.
Kim [16] describes an interface (OpenDIS) between the
geometric modeling kernel and the DBMS for the
implementation of CAD system that uses the STEP
database as the native storage. A prototype CAD system
has been implemented using the OpenCascade
geometric modeling kernel and ObjectStore. The STEP
methodology is used for the database schema. However,
currently, STEP cannot fully cover information for
different CAx applications, particularly for feature-based
design.
Except research effort, there also exist commercial effort
which can support collaborative engineering to some
extend. For example, CAD web portals such as
CAD/CAM-E by CAD/CAM-E Inc. [6], OpenDXM by
ProSTEP [18]. All these web portals are in fact operated
by translator providers. They take certain kinds of file
format as input and generate another file format. During
data translation, useful information such as features may
be lost since different CAx applications define features in
different ways. Therefore, it is not a kind of meaningful
information sharing. There is one commercial system,
OneSpace by Cocreate [9] currently offering some
collaborative modeling capabilities. However, its
modeling facilities are severely constrained by the
modeler at the server, SolidDesigner, and by the model
format into which it converts all shared models [2].

1.2 Existing Problems

Although a lot of research and development work has
been done on data exchange/sharing to enable
collaborative engineering, problems still exist.
� Information loss. Although many proposed systems

claim to be CAD-neutral based on STEP and
CORBA, they lack a certain level of interoperability
so far. In the process of data exchange, useful
information such as features is often lost. Therefore it
is not complete information sharing.

� Duplicated data and conflicts. CAD data is often
stored in a file format, which means duplicated data
and potential conflicts. In addition, files are not
flexible enough to support the multiview functions
required by different applications. For example,
multiple end-users or applications cannot synchronize
definitions and modifications easily for the data
stored in a file.

Therefore, the research work presented in this paper can
be justified, that is to create a web-based feature-
oriented database framework to enable information
sharing among CAx applications.

2. SYSTEM ARCHITECTURE

2.1 Overall System Architecture

 119

To enable information sharing among CAx applications
in a web-based environment, database-driven, feature-
oriented system architecture is proposed as show in Fig.
1.. The proposed system adopts client-server architecture
which includes client, application servers and database
server. The application servers are separated into web
server, application object server and feature object
server.

useruseruseruser

DatabaseDatabaseDatabaseDatabase

Feature object serverFeature object serverFeature object serverFeature object server

Feature managerFeature managerFeature managerFeature manager

Application object serverApplication object serverApplication object serverApplication object server

Product model managerProduct model managerProduct model managerProduct model manager

Application 2Application 2Application 2Application 2
viewviewviewview

Application 1Application 1Application 1Application 1
viewviewviewview

Application packagesApplication packagesApplication packagesApplication packages

Web serverWeb serverWeb serverWeb server

Session managerSession managerSession managerSession manager

Security managerSecurity managerSecurity managerSecurity manager

Multiview Data Access InterfaceMultiview Data Access InterfaceMultiview Data Access InterfaceMultiview Data Access Interface
(MDAI)(MDAI)(MDAI)(MDAI)

Data communication channelData communication channelData communication channelData communication channel

GeometricalGeometricalGeometricalGeometrical
modelermodelermodelermodeler

Application 2 featuresApplication 2 featuresApplication 2 featuresApplication 2 features

Constraint solverConstraint solverConstraint solverConstraint solver

DB managerDB managerDB managerDB manager

Application 1 featuresApplication 1 featuresApplication 1 featuresApplication 1 features

Database serverDatabase serverDatabase serverDatabase server

 Fig. 1. Overall system architecture

2.1.1 Web Server
The web server contains a multiview data access
interface (MDAI), security manager and session
manager. MDAI provides shared access for multiple
users. It can instantiate different views for different users
according to users’ requirement. Security manager is
used to check whether the user has the right to access
the product model data and what kind of access right he
may have. Users are separated into several groups. Each
group has different access right. All this management
data are stored in the database. Session manager is
responsible for controlling concurrent access by multiple
users of the same data.

2.1.2 Application object server

The application object server provides different
application packages for different users such that users
can interactively carry out feature-based operations on
the basis of feature object server. The product model
manager is also responsible for organizing information
for multiple applications according to the user’s
requirements. This information includes feature model
and solid model (B-rep).

2.1.3 Feature object server
The feature object server can provide feature objects for
application packages. To maintain the meaning of a
feature during each feature operation, such as adding
feature, deleting feature and modifying feature, feature
manager will call the constraint solver and the
geometrical modeler to validate the feature. The
constraint solver can check the validation of all
constraints, which are part of the feature definition. The
geometrical modeler can validate feature geometry.

2.1.4 Database server
The database server provides physical storage for all
kinds of data including product model data, security
management data and so on. Within the database,
geometrical data and features for different applications
are stored as data elements across tables. In this manner,
Database manager can reorganize these data elements
for different applications with great flexibility.

2.1.5 Geometrical modeler
The geometrical modeler proposed here provides
general functions such as geometry construction
functions, modification functions, computation functions
and so on for creating, modifying and interrogating solid
models. Therefore, higher-level feature modeling
functions (e.g. create_feature, modify_feature and so on)
can directly call these modeler-provided functions. For
example, a “create_feature” function calls geometry
construction functions (e.g. surface.add()) provided by
geometrical modeler to construct feature geometry. A
feature validate function (e.g. feature.is_feature()) call
modeler-provided functions (e.g. face.is_face()) to check
if the feature geometry is valid.

2.2 Information Flow

In the proposed system, when a user accesses the MDAI
via data network (LAN or Internet), the security
manager, by connecting to the database manager, will
check the user information stored in database, and
decide whether the user has an access right, what kind of
access right he has, and what kind of information
(application-specific view) he wants. Then the
application model is established for the user and a new
session is registered in the session manager. After this,
the user can work on an existing product model via the

 120

database manager, or create a new model to carry out
feature modeling operations. After each feature
operation, such as insertion, modification and deletion,
the geometrical modeler will be called to validate the
feature geometry. Then the feature manager will call
constraints solver to check all the feature constraints
(intra-application constraints and inter-application
constraints) to validate the feature model. Finally, the
finished product model can be stored into the database
by the database manager.

3. INFORMATION MODEL

3.1 Four-layer Information Model

In this research, information model is built on the basis
of an extended STEP framework since STEP is the
international standard and widely accepted by both
vendors and users. However, using only STEP-based
product specification cannot ensure integration, because
inter-relationships and constraints between applications
are not defined in STEP. To achieve integration among
CAx applications, the sharing of a common product
model representation is crucial. The shared product
model provides different views for various applications.
These views are context-dependent interpretations of
self-contained subsets of information of the entire
product model (EPM). Based on Zha’s work [25], we
propose to use four-layer information model as showed

in Fig. 2.. The four layers are application, information,
representation and physical layers. The information layer
contains four components, i.e. EXPRESS specification,
application features, unified features and EPM.

DatabaseDatabaseDatabaseDatabase
schemaschemaschemaschema

Sub-model 3Sub-model 3Sub-model 3Sub-model 3

programmingprogrammingprogrammingprogramming
languagelanguagelanguagelanguage

NeutralNeutralNeutralNeutral
formatformatformatformat

ApplicationApplicationApplicationApplication
layerlayerlayerlayer

informationinformationinformationinformation
layerlayerlayerlayer

Sub-model 2Sub-model 2Sub-model 2Sub-model 2Sub-model 1Sub-model 1Sub-model 1Sub-model 1

RepresentationRepresentationRepresentationRepresentation
layerlayerlayerlayer

databasedatabasedatabasedatabase physical layerphysical layerphysical layerphysical layer

Entire product modelEntire product modelEntire product modelEntire product model

EXPRESS specificationEXPRESS specificationEXPRESS specificationEXPRESS specification

Unified featureUnified featureUnified featureUnified feature
modelmodelmodelmodel

Application featureApplication featureApplication featureApplication feature
modelmodelmodelmodel

Fig. 2. Four-layer information model

Unified_feature_modelUnified_feature_modelUnified_feature_modelUnified_feature_model

TopologyTopologyTopologyTopology DimensionDimensionDimensionDimension ConstraintConstraintConstraintConstraint

Geometry_referenceGeometry_referenceGeometry_referenceGeometry_reference

GeometryGeometryGeometryGeometry ToleranceToleranceToleranceTolerance ParameterizationParameterizationParameterizationParameterization

Design_featureDesign_featureDesign_featureDesign_featureManufacturing_featureManufacturing_featureManufacturing_featureManufacturing_feature Other_applcation_featureOther_applcation_featureOther_applcation_featureOther_applcation_feature

Geometric_represenationGeometric_represenationGeometric_represenationGeometric_represenation

Fig. 3. Unified feature model [7]

EPM describes information across applications, and
contains the domain classification ontology and
metadata; the detailed high level feature objects are
organized by different sub-models in the application
feature layer. Application feature sub-models can
provide specific view of the EPM. Next, the unified

feature model specifies a generic feature modeling
framework and some common definitions for different
applications as described in Fig. 3.. Each application
defines its feature model on the basis of unified feature
model. All EPM, application feature model and unified
feature model are described in EXPRESS language. For

 121

implementation, this EXPRESS-defined information
model must be mapped to database schema (for data

storage), programming language (workform format) and
neutral format (for data communication).

3.2 Unified Feature Model

Solid_modelSolid_modelSolid_modelSolid_model Manifold_solid_brepManifold_solid_brepManifold_solid_brepManifold_solid_brep

Edge_curveEdge_curveEdge_curveEdge_curve

DirectionDirectionDirectionDirection

Cartesian_pointCartesian_pointCartesian_pointCartesian_point

Curve(line)Curve(line)Curve(line)Curve(line)

VectorVectorVectorVector

Face_surface(Plane)Face_surface(Plane)Face_surface(Plane)Face_surface(Plane)

Closed_shellClosed_shellClosed_shellClosed_shell

Edge_loopEdge_loopEdge_loopEdge_loop

MagnitudeMagnitudeMagnitudeMagnitude

Edge_start_vertexEdge_start_vertexEdge_start_vertexEdge_start_vertex Edge_end_vertexEdge_end_vertexEdge_end_vertexEdge_end_vertex

Face_outer_boundFace_outer_boundFace_outer_boundFace_outer_bound

Axis_placement_3DAxis_placement_3DAxis_placement_3DAxis_placement_3D

Advanced_faceAdvanced_faceAdvanced_faceAdvanced_face

Vertex_pointVertex_pointVertex_pointVertex_point

Oriented_edgeOriented_edgeOriented_edgeOriented_edge

Fig. 4. Partial geometrical representation schema [13]

Although different applications define features in
different way, their features are common in having
geometry, topology, dimensions, tolerances, constraints
and parameters as their attributes. In addition, different
application features refer to the same final product
geometry. Therefore, Chen proposed a unified feature
model in 2003 as described in EXPRESS-G in Fig. 3.
[7]. The unified feature model uses a five-layer
architecture. The top layer is the application model layer,
which consists of different application feature models.
The second layer is unified feature layer. A unified
feature has the geometry, the topology, dimensions,
tolerances, constraints and parameters as its attributes,
which form the third layer. The bottom layer is the
geometrical representation layer. An intermediate
geometry_reference layer is used for connecting higher-
level feature specifications with lower-level topological
entities to solve persistent naming problem. Persistent
naming problem comes from the inconsistency between
different representations of solid (e.g. CSG and B_rep)
during model modification and has been well
documented in the literature [8][20]. A lot of effort has
been made to solve the problem, such as B_rep to CSG
conversion [22, 23, 24], consistency verification [21] and
so on. It is one of the most important research topics, but

will not be addressed here. Such a unified feature model
provides a generic feature definition for different
application features.

3.3 Geometrical Representation

Unified feature model still allows different applications to
define features in different ways, but their definition
candidate types, such as geometrical representation, and
the common processing methods are the same. In this
research, STEP part 42 will be adopted, and extended in
the aforementioned aspects, as the geometrical
representation schema for all feature models. Fig. 4. is a
partial geometrical representation schema of
manifold_solid_brep [13].

4. MAPPING MECHANISMS

Under the four-layer information model structure, the
entities at different levels can be mapped into schema
definitions for a potential comprehensive product
database such that the unified flexible feature object
structure can be represented. The following are the rules
for mapping.
� Each entity shall be mapped to an object type. An

object table shall be created for each concrete entity.

 122

e.g.e.g.e.g.e.g.

e.g.e.g.e.g.e.g.

Solid

product_idproduct_idproduct_idproduct_id
solid_idsolid_idsolid_idsolid_id
closed_shell_id(REF)closed_shell_id(REF)closed_shell_id(REF)closed_shell_id(REF)
C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)

closed_shell

closed_shell_idclosed_shell_idclosed_shell_idclosed_shell_id
solid_id(REF)solid_id(REF)solid_id(REF)solid_id(REF)
advanced_face_listadvanced_face_listadvanced_face_listadvanced_face_list

advanced_face

advanced_face_idadvanced_face_idadvanced_face_idadvanced_face_id
face_outer_bound_id(REF)face_outer_bound_id(REF)face_outer_bound_id(REF)face_outer_bound_id(REF)
surface_id(REF)surface_id(REF)surface_id(REF)surface_id(REF)
closed_shell_id(REF)closed_shell_id(REF)closed_shell_id(REF)closed_shell_id(REF)

surface(plane)

plane_idplane_idplane_idplane_id
advanced_face_id(REF)advanced_face_id(REF)advanced_face_id(REF)advanced_face_id(REF)
axis_placement_3d(REF)axis_placement_3d(REF)axis_placement_3d(REF)axis_placement_3d(REF)

axis2_placement_3d

axis2_placement_3d_idaxis2_placement_3d_idaxis2_placement_3d_idaxis2_placement_3d_id
direction_id1direction_id1direction_id1direction_id1
direction_iddirection_iddirection_iddirection_id
cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)
C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)

face_outer_bound

face_outer_bound_idface_outer_bound_idface_outer_bound_idface_outer_bound_id
advanced_face_id(REF)advanced_face_id(REF)advanced_face_id(REF)advanced_face_id(REF)
edge_loop_id(REF)edge_loop_id(REF)edge_loop_id(REF)edge_loop_id(REF)
orientationorientationorientationorientation

direction

direction_iddirection_iddirection_iddirection_id
direction_ratio_xdirection_ratio_xdirection_ratio_xdirection_ratio_x
direction_ratio_ydirection_ratio_ydirection_ratio_ydirection_ratio_y
direction_ratio_zdirection_ratio_zdirection_ratio_zdirection_ratio_z

cartesian_point

cartesian_point_idcartesian_point_idcartesian_point_idcartesian_point_id
xxxx
yyyy
zzzz
C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)

edge_loop

edge_loop_idedge_loop_idedge_loop_idedge_loop_id
oriented_edge_listoriented_edge_listoriented_edge_listoriented_edge_list
face_outer_bound_id(REF)face_outer_bound_id(REF)face_outer_bound_id(REF)face_outer_bound_id(REF)

oriented_edge

oriented_edge_idoriented_edge_idoriented_edge_idoriented_edge_id
orientationorientationorientationorientation
edge_curve_id(REF)edge_curve_id(REF)edge_curve_id(REF)edge_curve_id(REF)
edge_loop_listedge_loop_listedge_loop_listedge_loop_list

edge_curve

edge_curve_idedge_curve_idedge_curve_idedge_curve_id
oriented_edge_id(REF)oriented_edge_id(REF)oriented_edge_id(REF)oriented_edge_id(REF)
vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)
vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)vertex_point_id(edge_end)(REF)
curve_id(REF)curve_id(REF)curve_id(REF)curve_id(REF)
same_sensesame_sensesame_sensesame_sense

curve(line)

line_idline_idline_idline_id
edge_curve_id(REF)edge_curve_id(REF)edge_curve_id(REF)edge_curve_id(REF)
cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)
vector_id(REF)vector_id(REF)vector_id(REF)vector_id(REF)
C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)C_sys_id(REF)

vector

vector_idvector_idvector_idvector_id
magnitudemagnitudemagnitudemagnitude
direction_id(REF)direction_id(REF)direction_id(REF)direction_id(REF)

vertex_point

vertex_point_idvertex_point_idvertex_point_idvertex_point_id
edge_curve_listedge_curve_listedge_curve_listedge_curve_list
cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)cartesian_point_id(REF)

Fig. 5. Partial database schema for geometrical representation

� An entity attribute shall be mapped to a column
with REF data type pointing to the referenced object
of another object table.

� By defining object types, inheritance is directly
supported in the database.

� Enumeration data type is simulated by defining type
array or nested tables. All the enumerators can be
stored in an array or nested table.

� The select data type can be simulated as an attribute
of the object type whose real data type is decided
by the method of the object type. A method of
object type is simple SQL or PL/SQL, which is used
as a discriminant to decide the select data type.

� Object-relational database supports aggregate data
types by the definition of type array and nested
tables. Array types are suitable for fixed-size
aggregate data type. Nested tables are suitable for
aggregations whose sizes are not fixed.

A partial geometrical database schema is created
according to STEP 42 using the proposed mapping
mechanism, see Fig. 5.. All attributes with suffix id (but
without REF) represent object identifier (OID), which is
the globally unique and immutable object identifier
generated by DBMS. An OID allows the corresponding
row object to be referred to from other objects. A built-in

data type called a REF represents such references. A
REF encapsulates a reference to a row object of a
specified object type. An arrow here represents such REF
relationship between object types. For example, in the
oriented_edge table, attribute edge_curve_id has the
REF data type, which is used as a reference pointing to
the edge_curve object in the edge_curve table.
Aggregate data type (one to many relationship) is
expressed as an attribute with suffix list. Here, we use a
generic schema to collect each member of a list from the
target object table, see Fig. 6.. An attribute with suffix list
(aggregate data type) in Fig. 5. and Fig. 7. shall be
defined as REF data type with name list_id which refers
to list object in the entity_list object table by list_id. A
nested table called id_list stores all the list members’ ids
in the nested table. Within the nested table, entity_type is
used as a vector to decide from which object table we
can get the list members. Entity_id uniquely identify
entities from entity table. An implicit system generated
nested_table_id, correlates the parent row object with the
row objects in the nested table. Detailed explanations on
geometry and topology of a manifold_solid_brep, please
refer to [13].

 123

entity_list

list_idlist_idlist_idlist_id
id list(nested table)id list(nested table)id list(nested table)id list(nested table)
owner_id(REF)owner_id(REF)owner_id(REF)owner_id(REF)

id list(nested table)

entity_id(REF)entity_id(REF)entity_id(REF)entity_id(REF)
entity_typeentity_typeentity_typeentity_type
orderorderorderorder

list_owner

list_id(REF)list_id(REF)list_id(REF)list_id(REF)
...

entity

entity_identity_identity_identity_id
...

Fig. 6. Generic schema for aggregate data type

Feature

feature_idfeature_idfeature_idfeature_id
product_id(REF)product_id(REF)product_id(REF)product_id(REF)
domain_listdomain_listdomain_listdomain_list
parameter_listparameter_listparameter_listparameter_list
constraint_listconstraint_listconstraint_listconstraint_list
referenced_entity_listreferenced_entity_listreferenced_entity_listreferenced_entity_list

parameter

parameter_idparameter_idparameter_idparameter_id
parent_id(REF)parent_id(REF)parent_id(REF)parent_id(REF)
constraint_listconstraint_listconstraint_listconstraint_list
referenced_entity_listreferenced_entity_listreferenced_entity_listreferenced_entity_list
owner_listowner_listowner_listowner_list
parameter_nameparameter_nameparameter_nameparameter_name
parameter_valueparameter_valueparameter_valueparameter_value
...

constraint

constraint_idconstraint_idconstraint_idconstraint_id
owner listowner listowner listowner list
constraint_attributeconstraint_attributeconstraint_attributeconstraint_attribute
constrained_entity_listconstrained_entity_listconstrained_entity_listconstrained_entity_list
...

entity

entity_identity_identity_identity_id
...

domain

domain_iddomain_iddomain_iddomain_id
domain_namedomain_namedomain_namedomain_name
...

Fig. 7. Generic feature representation in database

A generic feature representation in database can be
expressed as Fig. 7. under the framework of unified
feature model described in Fig. 3.. A feature has
feature_id, product_id and domain as its attribute. The
feature_id attribute is an OID, which can uniquely
identify a feature object in database. Product_id specifies
which product a particular feature belongs to. Domain
has select data type, which can be design,
manufacturing, CAE and so on that are stored in domain
table. A feature shall also contain a list of referenced
entities, a list of constraints and a list of parameters.
Dimensions and tolerances in Fig. 3. are regarded as a
kind of constraint bounded to certain geometrical
entities. Using the generic schema described in Fig. 6.,
each members of the parameter list can be uniquely
identified by a parameter_id from parameter table. A
parameter has a list of constraints which is stored in
constraint table identified by constraint_id. Constraint
here is used to bound parameter to other constrained
entity. Referenced_entity of feature includes entities (e.g.
faces, edges and vertices) or other features. Entity_id can

uniquely identify the referenced entities stored in entity
table. A constraint of a feature can be uniquely identified
by constraint_id. Constrained_entity_list identifies
constrained entity from the entity table by entity_id and
entity_type.

5. FEATURE MODEL VALIDATION CHECK
Feature validity must be checked during feature
modeling operations in order to maintain the feature
semantics. A feature is valid as long as the feature
satisfies all the relevant constraints (whether intra-
application or inter-application ones) and the feature
geometry is valid. After each feature modeling operation,
the geometrical modeler will be called to validate feature
geometry. Then feature manager will call constraints
solver to check all the relevant constraints to determine if
all features are valid. There are two kinds of constraints
solvers. Local constraints solver processes intra-
application constraints within application-specific view. If
conflict of intra-application constraints occurs, local
constraints solver can determine automatically which
constraint should be satisfy first according to the value of
constraint_strengh, which is an attribute of constraint. It
is an enumeration data type, which may include several
levels, such as required, strong, medium or weak. It
represents the extent that the constraint needs to be
imposed when constraints conflict with each other.
Global constraints solver can solve inter-application
constraints according to the value of domain_strength. Its
value can be predefined which regulates priority
sequence of different domains, or is set by an authorized
user. Any conflict of inter-application constraints will be
detected by global constraints solver after which the
constraints solver can trigger corresponding applications
to reevaluate the product model according to
domain_strength. Only when all constraints are checked
and feature geometry is validated, does feature

validation finish.

6. COLLABORATIVE MODEL OPERATION

As the proposed the system is supposed to support
shared accesses for multiple users, data integrity of EPM
must be maintained while enabling maximum concurrent
access to the data.
Concurrent access of data at the lower level is controlled
by the database locking mechanism and managed at
higher-level by a session manager. Database locks are
used to control concurrent accesses to a data object and
prevent destructive interaction between users accessing
data. The granularity of locking entities will be one of the
many possible research topics to enhance the
performance of the database; no further discussion is
given here. A session manager control the database locks
according to predefined domain_strength. If multiple

 124

users from different domain are requiring for the same
data, the user with highest domain_strength has the
priority to use the data while other users have to wait for
him (can only view the data) until his session is finished.
There are two kinds of sessions, view only session and
edit session. If a user executes a view only session, he
can execute as many queries as he like against any
tables. Other users of the data do not need to wait for
him. When a user creates an edit session to do modeling
operation, all related tables are locked at the row level
after the data of that view is checked out. Therefore, the
session of any other users who want to use the same
data will be suspended by the session manager before
the ongoing session finishes, unless the user has higher
domain_strength (if so, he can send request to session
manager to apply for the control of the data). Multiple
users in the same domain can also access to the same
data concurrently, but only one user can edit the data
under the control of session manager, others can only
view the data until he releases the control. When the
ongoing session is finished and data is checked in,
database will trigger a program automatically to inform
other views to reload the model for further reanalyze.

7. CONCLUSION

In this paper, the web-based, database-driven, and
feature-oriented system architecture is proposed. It
enables information sharing among CAx applications.
The client-server architecture can provide shared access
for multiple users. The proposed four-layer information
model can integrate different applications with EPM, and
allow the manipulation of application-specific
information with sub-models. Building the information
model with reference to STEP makes the proposed
system easier to be implemented and integrated with
other STEP-based applications. With the database
support, product and process information can be
organized for multiple applications with great flexibility.
Geometrical modeler is incorporated into the system to
provide lower level geometrical modeling service, with
which feature-based modeling can be realized. In order
to implement the proposed system, mapping
mechanisms, from STEP-like information model to the
target database schema, is investigated such that flexible
EXPRESS-defined data structure can be converted into
database schema. On the basis of proposed mapping
mechanisms, we further proposed a generic feature
representation scheme and a geometrical data
representation scheme in databases. The mechanism to
control data concurrency is suggested so that multiple
users can concurrently access product and process
information; at the same time, data consistency can be
maintained.

8. REFERENCES

[1] Bhandarkar, M. P., STEP-based Feature Extraction
From STEP Geometry for Agile Manufacturing,
Computer in Industry, Vol. 41, pp. 3-24, 2000.

[2] Bidarra, R., van den Berg, E. and Bronsvoort, W.
F., Collaborative modeling with features,
Proceedings of DETC’01 2001 ASME Design
Engineering Technical Conferences September 9-
12, 2001, Pittsburgh, Pennsylvania.

[3] Bidarra, R., Bronsvoort, W.F., Semantic feature
modeling, Computer-Aided Design Vol. 32, pp.
201–225, 2000.

[4] Bronsvoort, W. F., Bidarra, R. and Dohmen, M.,
Multi-view feature modeling and conversion, 1997.

[5] Bronsvoort, W. F., Bidarra, R., and Noort, A.,
Semantic and multiple-view feature modeling:
towards more meaningful product modeling, 1998.

[6] CAD/CAM-E website. http://www.cadcam-e.com/
[7] Chen G., Unified Feature Model for the Integration

of CAD and CAX, First-year report, School of MPE,
2003.

[8] Chen, X. and Hoffmann, C. M., On Editability of
Feature-based Design, Computer-Aided Design,
Vol. 27, No.12, pp. 905-914, 1996.

[9] Emmel, J., OneSpace Integrating Collaboration
Technology and Enterprise PDM, Technical
Whitepaper of CoCreate Software GambH, 2000.

[10] Fu, M. W., Ong, S. K., Lu, W. F., Lee, I. B. H. and
Nee, A. Y. C., An approach to identify design and
manufacturing features from a data exchanged part
model, Computer-Aided Design, Vol. 35, pp. 979–
993, 2003.

[11] Hoffman, C. M. and Arinyo, R. J., CAD and the
product master model, Computer-Aided Design,
Vol. 30, No. 11, pp. 905–918, 1998.

[12] ISO 10303, Industrial Automation Systems and
Integration — Product Data Representation and
Exchange — Part 1: Overview and Fundamental
Principles, ISO 10303-1:1994 (E), ISO, Geneva,
1994.

[13] ISO 10303, Industrial Automation Systems and
Integration — Product Data Representation and
Exchange — Part 42: Integrated Generic
Resources: Geometric and Topological
Representation, ISO 10303-42:1994 (E), ISO,
Geneva, 1994.

[14] Kang, S. H., Kim, N., Kim, C. –Y., Kim, Y. and
O’Grady, P., Collaborative design using the World
Wide Web, Technical Report TR 97-02 of Iowa
Internet Laboratory, 1997.

[15] Kim, C. –Y., Kim, N., Kim, Y., Kang, S. H. and
O’Grady, P. Distributed concurrent engineering:
Internet-based interactive 3-D dynamic browsing
and markup of STEP data, Technical Report TR
98-02 of Iowa Internet Laboratory, 1998.

 125

[16] Kim, J. and Han, S., Encapsulation of geometric
functions for ship structural CAD using a STEP
database as native storage, Computer-Aided
Design, Vol. 35, pp. 1161–1170, 2003.

[17] Martino, T. D., Falcidieno, B. and Habinger, S.,
Design and engineering process integration through
a multiple view intermediate modeler in a
distributed object-oriented system environment,
Computer-Aided Design, Vol. 30, No. 6, pp. 437-
452, 1998.

[18] OPENDXM overview. http://www.prostep.de/
en/solutions/opendxm/

[19] Raflik, M., CAD*I Database-An Approach to an
Engineering Database, ECSC-EEC-EAEC, Brussels-
Luxembourg, 1990.

[20] Raghothama, S. and Shapiro, V., Boundary
representation deformation in parametric solid
modeling, ACM Transactions on Graphics, Vol. 17,
No.4, pp. 259--286, October 1998.

[21] Raghothama, S. and Shapiro, V., Consistent
updates in dual representation systems, Computer-
Aided Design, Vol. 32, pp. 463--477, 2000.

[22] Shapiro, V. and Vossler, D. L., Construction and
Optimization of CSG Representations, Computer-
Aided Design, Vol. 23, No. 1, pp. 4-20, 1991.

[23] Shapiro, V. and Vossler, D. L., Efficient CSG
Representations of Two Dimensional Solids,
Transactions of ASME, Journal of Mechanical
Design, 113: 292-305, 1991.

[24] Shapiro, V. and Vossler, D. L., Separation for
Boundary to CSG Conversion, ACM Transactions
on Graphics, Vol. 12, No. 1, pp. 35-55, 1993.

[25] Zha, X. F. and Du, H., A PDES/STEP-based Model
and System for Concurrent Integrated Design and
Assembly Planning, Computer-Aided Design Vol.
34, pp. 1087-1110, 2002.

