
 1

Abstract--This paper presents the detailed object definition,
design, and implementation of a Standard Component Library
(SCL), which provides parametric component models for the
convenience of designers. With more than 200 types of components
from different suppliers being implemented, it is believed that the
object design of this module has generic nature and can be
expanded for most mechanical standard components in a
collaborative environment. The advantages of this implementation
are the ease of use and simple customization. In this paper,
QuickMould architecture framework is also introduced.

Index Terms—Object Oriented Methods, Manufacturing,
Design Automation, and CADCAM

I. INTRODUCTION

LASTIC injection mould design is a tedious task. Due
to market competition, mould designers have to compress
their design time as much as possible. To reduce the

modification effort, parametric design approach is usually used.
Hence, specialized mould design tools based on CAD software
are highly demanded. In the market, several mould design
packages have been available, e.g. iMouldwork [1], IKMould
[2], MoldWizard [3]. Very often, outsourced components
(known as standard components) are used. Making 3D
parametric models available for such components to mould
designers will significantly reduce the design lead-time and
cost, and enhance design flexibility. QuickMould is a software
package for designing plastic injection moulds in a 3D
environment. It is developed on top of Unigraphics CAD /
CAM software, and implemented in full object oriented
approach [4][5]. This paper focuses on the standard component
library (SCL) module of Quickmould. Comparing with other
standard component libraries available in the market,
QuickMould SCL is very easy to be expanded with user-
defined components without programming effort.

In the early half of 1990s, as reported by Johannesson [6],
Culley et al. [7] and Lodenstein et al. [8] that, there existed

QuickMould research project was sponsored by former National Computer

Board (now renamed as the infocom Development Authority) of Singapore,
and jointly developed by Nanyang Technological University (NTU) and Gintic
Institute of Manufacturing Technology (Gintic), Singapore. Currently,
QuickMould is being used as a research package in NTU.

Y. -S. Ma (telephone: 65-6790-5913, e-mail: mysma@ ntu.edu.sg), S. B.
Tor and Graeme A. Britton are associate professors, school of MPE, NTU, 50
Nanyang Avenue, Singapore 639798. S. B. Tor is also the head of
manufacturing engineering division.

T. Wijaya is a final year student of NTU.

** LEAVE TWO LINES HERE FOR IEEE TO ADD THE PUBLICATION

NUMBER AND OTHER CONFERENCE INFORMATION.

some computer-based standard component catalogues. They
contain 2D geometry data and are hard-coded so that the
components can be selected and automatically put on the
working drawing. Some programs can generate standard
components [8] instead of retrieving existing CAD models.
However such programs are specifically designed for fixed
vendors, and are difficult to be adopted by others due to the
variations of component definitions. Qamhiyah [9] presented
a strategy for the automatic generation of customized libraries
of form features and basic design shapes by coding convexity
of B-rep loops and their neighborhoods. However, this
method needs the user’s input on a theoretical threshold value
for convexity coding. To capture more information from
designers, Deng et al [10] and Zhang et al [11] extended
object representations to mechanical functions and tried to
develop a generic scheme for conceptual synthesis domain.
Ragli et al. [12] focused on the archival and reuse of design
intent by using a ‘signature structure’. However, their work
requires end-users to have high-level understanding about
design engineering background and to cross a major hurdle of
adapting to the end-users’ knowledge processing cycles. More
recently, EDS Inc released Unigraphics v18 software with
knowledge fusion (KF) capability [13]. This technology
enables the user to capture design intent in a declarative
manner in a macro command file. However, such a package
requires highly experienced knowledge workers instead of
designers. In the recent trend of collaborative engineering, to
reduce the dependency to vendors for open-structured
geometrical modeling services, Shah et al [14] developed a 3-
layer communication architecture to wrap up geometrical
modeler functions into a neutral “plug-compatible’
definitions. Contradicting to their original objective, to
implement their idea, the support from all vendors of
geometrical modelers is required. It has been recognized that
CAD libraries are very useful for reusing design knowledge
and engineering data. Although many software tools have
been developed for mould design [1] [2] [15] [16] [17], but it
was not well researched on how the end users can incorporate
their own components into a predefined library. The research
work reported in this paper is aiming to increase the
knowledge contents of standard component elements in a
CAD library, and to enable users to incorporate new elements
with ease in an open architecture.

Design, Definition and Implementation of a
Component Library for Mechanical Design

Y. -S. Ma, S. B. Tor, Graeme A. Britton and T. Wijaya

P

 2

II. QUICKMOULD ARCHITECTURE

Fig. 1 shows the QuickMould 4-layer architecture. The first

layer of essential technology infrastructure includes Visual C++
(VC++), Microsoft Foundation Classes (MFC), and API
modules provided with Unigraphics software, i.e. UG/Open
API, UIStyler. The second layer is the application
Infrastructure. This layer contains the basic domain support for
QuickMould. “Repository” provides the mechanism to wrap
and access QuickMould data in CAD data structure, i.e. UG
entities. “Currency” provides the basic classes, e.g. typical
assemblies, components, and a table of mould assemblies and
components (known as dictionary), that facilitate information
representation, sharing and exchanging among various
modules/objects in QuickMould. “UDO” provides the
mechanism to store QuickMould information through UG’s
User Defined Objects (UDOs). The key characteristic of UDOs
is that they enable persistent links for application objects with
UG entities. “Attributes” provides the data repositories of
QuickMould attached to appropriate CAD entities. The third
layer contains 10 QuickMould functional modules: Parting
Line, Undercut Mechanism, Mould Base Library, Cooling
Line, Gate-Runner, Standard Component Library (SCL),
Ejectors, Bill of Materials (BOM), Global Boolean Operations
(GBO) and Global Component Transformation. Each module is
a set of specialized design processes chained by user interfaces
and implemented with automated or semi-automated
QuickMould functions. The top layer of QuickMould
architecture contains the system modules, i.e. QM_Main, Start-
up Wizard, Assembler, Sub-system and Drawing.

This paper is going to introduce the Standard Component
Library (SCL) module only. The functions and design of other
modules are out of the scope of this paper. SCL module
provides functions such as loading user-selected component
templates, modifying dimensions or feature configurations, and
updating geometric models. The user can not only select from
available components, but also incorporate their own
components into the library. QuickMould SCL has contained
over 200 types of standard mould components from several
manufacturers, such as Misumi, Hasco and DME.

III. INDUSTRIAL CATELOGUE

To study existing commercial catalogues, a Misumi

catalogue of “Standard Components for plastic Molds” [18] is
used. Fig. 2 shows a type of components extracted, i.e. “sprue
bushings – shoulder type with taper”. Usually, components
are classified in a family structure with type identifications.
As shown in the figure, this page contains several catalogue
numbers, with a form like “SBT_”. Here, the ‘_’ at the end of
the string reflect the variations in specifications or the feature
configurations. For standard components, it is common to
have several sets of specifications for a common or a set of
geometric configuration(s) in order to meet the needs in
different application contexts and to reduce redesign effort. In
this “sprue bushings” example, “SBTM”, “SBTD”, and
“SBTS” are different due to materials used while “SBTMH”,
“SBTDH” and “SBTSH” are the corresponding derived types
with string eliminators. These catalogue numbers are referred
to as major types. Similarly, under a major type, there could
be several feature configurations for the detailed geometry. In
Misumi terminology, they are referred to as subtypes and
alterations.

In “sprue bushings” example as shown in Fig. 3, the
alterations are made for runner openings at the bottom cone,
i.e. from “AIW” to “CLQ”; for head geometry (“KC”); for
runner holder (“ZC”), and/or for customized length (“LKC”).
It can be seen that, although there are different configurations
and alterations for a type of component, many common
parameters are used. For example in Fig. 2, “D”, “L”, “SR”,
“P”, “A”, are common key parameters. Dimensions are
specified according to sizes, and many of them are
constrained. Take an example, for the sizes from “10” to
“16”, the range for the length (“L”) is given from 0 mm to 100
mm, while for the sizes above “16”, the range can be from 0
mm to 150 mm. As to examples of constrains, some are
applicable to all cases, e.g. “D > V >= α+2” while some of
them are conditional to a particular configuration or
alteration, e.g. “S >= α+2” in the alteration “ZC”. Other
properties worth mentioning are tolerances, ordering code,
delivery lead-time, material specifications, etc. Ideally, all
these properties should be included and managed in the
proposed CAD component library.

Application
Infrastructure

Repository Currency UDO Attribute
s

QuickMould Sub-modules

Undercut Mechanism

Cooling Line

Gate-Runner

Mould Base Library

Ejectors

BOM

Utilities Parting Line

Standard Component Library

Boolean Operations

Drawing

QM_Main Startup Wizard

Assembler Sub-system

QuickMould System

Essential Technology
Infrastructure MFC VC++ UG/Open API UIStyler

User
Interfaces

UIs for
individual

Sub-
modules

Main UI

Fig. 1 QuickMould Architecture

Fig. 2 Specifications of sprue bushings [18]

 3

IV. QUICKMOULD SCL APPROACH

Traditionally, parametric modeling is used to store re-usable
CAD models where the geometry is modeled with changeable
dimensions. Take Misumi catalogue [18] as an example, it
contains 21 categories with 195 subtypes. Further more, for
each subtype, there could be many alterations. Assuming the
average number of alterations for each category is 8, then, if we
use the traditional parametric modeling approach, there has to
be 1560 CAD models. This number has already been
prohibitive for implementation.

In QuickMould, each type of standard components is
implemented with three related files as one item in the library,
i.e. a CAD template file, a feature configuration (CFG) file, and
a dimension data file. Their relationships are shown in Figure
4. In the run time, the variations of feature configurations,
alterations, dimensions, constraints, etc. are captured as
associated properties in an object.

Based on existing component catalogues, standard

components are classified systematically according to their
categories (or major types) and features, alterations,
dimensions, etc. With a formal convention, each component
structure can be consistently described in an ASCII text file. It
is called feature CFG file in QuickMould terminology. Such a
file specifies the choices for subtypes, alterations, and key
parameters used. The contents of CFG files will be further

introduced in sub-section B. A parametric CAD template has
to be developed to model the geometry. A dimension data file
is used to store predefined dimension values provided by the
vendors as the default for different sizes.

In such an approach, the library program can load the CAD
template model into the working assembly design, and then
based on the information read from the feature configuration
and dimension data files, the user can select subtypes,
alterations, and dimension values (Fig. 5(a)), etc. The user can
also further modify the detailed dimensions to meet his exact
requirements (Fig. 5(b)).

A. CAD Model Templates
Each major type of components is represented by one

template. Hence a standard component template is loaded
according to the selection of the major type. In each pre-
defined template, geometrical features are parametrically
defined, and those features related to subtypes and alterations
are embedded in the template as optional ones. They are
controlled by “logical expressions” [3], which can suspend or
activate features according to feature configuration
requirements.

In the template file, there could be two solids, i.e. the real
component solid (compulsory), and a “space” solid (optional),
which is defined as the typical space required for
accommodating the real component in assembly. They are
defined in a parametric manner and associative to each other.
Through “space” definitions, the related features on other
components can be made associated to the standard
components used. Hence, it enables associative modifications
with the native UG reference mechanism, including positional
and dimensional changes.

Geometric expressions are grouped into two levels. The
first level contains those that are related to the key component
parameters, and are essential for the function of the
component or related to other components in assemblies. The
second level expressions are for component geometry
constructions, where detailed feature dimensions are defined.
This level of expressions is made related to the key
expressions. When updating those key expressions by
program, the lower level expressions are subsequently
updated automatically. CAD model template files are
organized in a directory tree structure according to the
suppliers, categories and major types.

B. Feature Configuration (CFG) Files
Standard component library is designed to be generic to all

types of mechanical parts. To enable this requirement, feature
CFG files are used to define individual components with a
standard convention.

A feature CFG file (e.g. sprue_bushes.cfg for the example
shown in Fig. 2 and 3) is started with the catalogue numbers
(“sbtm, sbtd, … sbtsh”), which are named as “major types”. In
this example, there are six major types specified. Next, the
related CAD template and the dimension data filenames are
given, e.g. “sbt_.prt” and “sprue_bushes.dat”. The following

Fig. 3 Alterations for sprue bushings [18]

Catalogue Component Specifications

Configuration file
(types, alterations)

Data file
(Sizes)

CAD template file
Feature configurations
(To on/off sub-types

& alterations)

Fig. 4 Conceptual relationships among the three files

 4

record specifies the parameter symbol representing the size. In
this case, “D” is specified. Then, in the next section, the
available subtypes are listed. Among subtypes, they are
exclusive to each other. This means that at any time, only one
of them is effective. Subtype names read from this CFG file
will also appear on the user interfaces for the user’s selection
when loading the component (see Fig. 5(a)). They provide the
choices available for subtypes and the keys to change the
effective configuration for the loaded component.

Next, alterations are organized as groups. Similar to the
subtypes, in each group, member alterations are exclusive to
each other. Their specific properties are separately grouped.
For the “sprue bushings”, alterations are divided into three
groups (see Fig. 3). Alteration “KC” alone is one group while
alterations “AIW” to “ZC” belong to the second group.
Alteration “LKC” forms the third one. It is clear that
combinations of alterations from the same group are not
meaningful. To enforce this rule, on the user interface as shown
in Fig. 5, only one alteration can be toggled on for each group.
For example, combination of “AIW” and “ZC” is not available
as given in the catalogue (Fig. 3). For alterations from different
groups, they can coexist simultaneously. For example, “KC”
and “ZC” alterations can be selected together.

The next record type is for key parameters and their

corresponding expressions in the CAD template, where they are
associated to the geometrical features of the CAD model. SCL
distinguishes two types of key parameters, those to be
displayed on the loading/editing user interfaces and those that
are not supposed to be modified/customized by the user. In the
given example, key parameters “L”, “A”, … “SR”, etc. are
displayable while “OD” and “α” are not (see Fig. 2 and Fig.
5(b)). All parameters are assigned with the values stored in the

dimension data file when the component is initially loaded,
but the user can only modify displayable ones through SCL
UIs.

For a component, constraints are also included in the
feature CFG file. The format likes “V >= α+2”. They are
very important to keep features valid and data consistent.
These constraints are read into the component object buffer
and being checked whenever necessary to make sure they are
satisfied.

In the CFG file, sections are arranged according to its
applicable scope. So far, what have been introduced are the
attributes or properties that are applicable to all subtypes and
alterations. There are attributes defined in specific sections
that are unique to a particular major type, subtype, or an
alteration, e.g. icon bitmap files for subtype/alteration
identification, some key dimensions, constraints, etc.

Tolerances for each parameter are recorded with the upper
and lower limits. Since they are associated with key
parameters, and they can be updated and listed according to
the application. This provides a possible link to the technical
specifications when creating the component/mould plate
drawings. Other additional attributes, such as material, default
delivery time, prices, etc. are included as well. For example,
the purchasing order has to give specific code for the item
name, type, size, alterations etc. A method has been
implemented in SCL class to interpret the format given in the
CFG file, e.g. “sub_type @D-@L-SR-P-A-V-G-alterations-
end”, and then retrieve the values from the relevant key
parameters from CAD model and generate the order code as
“SBTM 25 – 45.5 – SR23 – P4.5 – A4 – V20.0 – G5-AXW8-
KC”. In fact, the prices for certain companies, like MISUMI,
is also set according to the type, sizes and dimensions of the
components, hence, it has to be derived automatically from
the CAD model parameters.

Different companies may use quite different format of
catalogues and hence the major types, sub types, etc need to
be organized differently. However, the approach to organize
CAD libraries and the generic data (attributes) structure is still
valid due to the commonality of industrial practices.

C. Dimensional Data Files
For each size of a standard component, the vendor usually

provides a set of default parameter values so that its
manufacturing activities can be predefined and cost
minimized. The dimension data file contains the default
values of key parameters for all the available sizes. Each
parameter is considered to have a range from the minimum to
the maximum with a minimum increment except its current
value. Allowed ranges specified are checked when the user
edits parameters with the UI shown in Fig. 5(b).

V. DATA STRUCTURE OF “QM_STD_COMP” CLASS

To represent a standard component in a CAD session, a
class named as “QM_STD_COMP” has been defined. To
simplify the presentation of the class definition structure, a

Fig. 5
 (b) Parameters editing UI (a) SCL main UI

 5

“Macro” type pseudo-program format is used in the following
description below. For simplicity reason, a single property or
function mentioned in this paper could represent a single or a
cluster of attribute(s) or method(s).

A “QM_STD_COMP” object’s properties can be clustered
into two groups, i.e. persistent properties and buffer ones.
Persistent properties are static and stored in the form of CAD
attributes. They are associated to a CAD component pointer
during the run-time session. The component pointer is included
in the “QM_STD_COMP” object properties. However, similar
to most of CAD systems, UG initiates entities during the run
time as a data structure, and the pointer to an entity is assigned
during the run time and is only valid for the current session. On
the other hand, a “QM_STD_COMP” object has to be
associated with a CAD component persistently such that its
private properties are stored after closing the current UG
session and can be retrieved when QuickMould reinitiates the
object in the next session. This problem is solved by using User
Defined Objects (UDOs).

QuickMould maintains a list of its entity pointers named as
currency dictionary. With this dictionary, QuickMould objects
are dynamically mapped with their corresponding UG
geometric entities. Among persistent properties, the name of
supplier, category and major types provide the input to locate
the feature CFG file with a predefined naming convention for
library directories and files. Once the CFG file is identified, the
CAD template and the dimension data files can be uniquely
retrieved.

The properties contained in the buffer block are for editing

and supporting UI functions because typically, SCL allows user
to set their choices and then confirm by clicking “Apply” or
“OK” button at the bottom of the UI (See Fig. 5). In another
situation, when the user edits an existing “QM_STD_Comp”
object, they may cancel their modifications made with UI
elements. Others include alteration groups that allows the user
to select, constraints to verified before accepting the user’s
input, displayed parameters that are editable by the user. Here,

displayed parameters have to be differentiated from key
parameters. Note that some properties are associated to the
CFG file. For example, the effective constraints, key
parameters and their expressions, and displayed parameters
have to be updated systematically for different combinations
of major types, subtypes, alterations, sizes, etc.

As to the class methods, there are four levels. The most
bottom level is the access methods. The second level methods
are common “foundation functions”, including string
manipulation, expression interpretation and evaluation, etc.
The third level is “functional methods” to cater for parameter
editing, e.g. expressions backing-up, evaluation, modification,
updating and restoring. Functions in this level also include
“Activate_sub_type()”, “Generate_size ()”, etc. These
methods are enablers that provide the flexibility for a
predefined standard component to be applied with different
configurations and dimensions. The highest level is
“Application Methods”. Their functions are elaborated in the
following section in more detail.

VI. QUICKMOULD SCL APPLICATIONS

A. Adding a Mould Component
When the user starts the SCL module, a

“QM_STD_COMP” object is first initiated. SCL module will
assign the object attributes step by step. To add a component,
the user needs to select a parent assembly part to which the
component is added. Then the SCL module main dialogue
box (Fig. 5(a) is generated. The program checks the available
catalogues in different directories and creates a pull-down
menu under the “Supplier” button. Once the user confirmed
the supplier, e.g. “Misumi”, then the defined component
templates are checked in this catalogue. They are listed in two
levels, i.e. “Category” and “Major Type” in the UI as shown
in Fig. 5(a). Other available choices, such as subtypes and
alterations, are retrieved from the feature CFG file, and
incorporated into the UI. The user can select different items
from the pull-down menus. Note that the bitmaps indicating
the active selections are displayed in the UI. For adding a new
component, the user also needs to click “Edit Component
Parameter” button, SCL will then display the “Edit
Parameters” dialogue box, as shown in Fig. 5(b). With this
UI, the user can select the size he wants. All the default
parameters related to each size are retrieved from the
dimension data file. Finally, the user clicks “Apply” button to
load the selected component.

At this moment, appropriate “QM_STD_Comp” object
attributes are instantiated. It calls class methods to complete
the following steps: (a) insert the loaded component into
assembly, (b) retrieve key dimensions from the dimension
data file and update the geometry; (c) rename the component
to localize it in the current project directory; (d) convert the
component into a QM component and list it in the currency
dictionary. Then the loaded component is shown as in Fig.
6(a). If the user wants to modify the size, the user can click on
the “size” button shown in Fig. 5(b), e.g. from “10” to “25”,

(b) Size 25, KC, ZC
Fig. 6 A sprue bushing component loaded

(a) Size 10, KC, ZC

 6

then the key parameters are updated. Once the user clicks “OK”
or “Apply”, the CAD model are updated accordingly (see Fig.
6). When the QM exits from the SCL scope, this
“QM_STD_Comp” object’s properties are mapped back to the
attributes of the component, and this “QM_STD_Comp” object
is destroyed.

B. Modifying an Existing Mould Component
To edit an inserted standard component, the SCL module

runs a method to let the user select the target, then all the
QuickMould related attributes associated with the selected
component are retrieved and the corresponding attributes in this
“QM_STD_COMP” object will be updated. The same SCL UI
as shown in Fig. 5(a) is then established after searching
available library items as well as the attributes of the existing
component. Actually, its feature CFG file is read again, and the
information for the available configurations and the respective
selection option menus and buttons are updated. This standard
component can now be edited. The rest procedures are very
similar to the adding process; hence they are not further
described.

C. Deleting a standard component.
Methods have been implemented to delete the selected

standard component from the project assembly, and delete its
part, configuration and data files from the current project
directory as well. Simultaneously, the related currency object
and dictionary pointer in the session are also cleaned.

VII. DISCUSSION, CONCLUSIONS AND SUGGESTIONS

Considering the possible big number of combinations of
major types, subtypes and alterations, if the implementation
were done for every type, the implementation could be tedious.
However, after the implementation, it has been demonstrated
that this approach can be very efficient. This is because CAD
templates, configuration and data files can be combined/shared
as much as possible. The big advantage of this approach is that
the end users do not need to program the library elements but
just to follow certain procedural conventions to produce the
template models and a pair of text files. For future work, it is
suggested to automate the configuration combinations based on
some common elements of features with generative approach.
Considering the scalability for an Application Service Provider
(ASP) business model, due to large amount of data to be
managed, the authors suggest an XML based Object-oriented
database to be built to support the library. Further research
work is still needed.

In summary, this proposed CAD library is flexible enough
for a wide range of standard components. They are defined by

using component templates, CFG files and data files. The
reported data structure and software module framework can
be used as a foundation for future collaborative design
environment over the Internet.

REFERENCES
[1] M. W. Fu, J. Y. H. Fuh, and A. Y. C. Nee, “Core and Cavity

Generation Method in Injection Mould Design,” Int. J. of Prod. Res.
Vol. 39, pp. 121-138, 2001.

[2] C. K. Mok, K. S. Chin, and John K. L. Ho, “An interactive knowledge-
based CAD system for mould design in injection moulding processes,”
Int. J. of Advanced Manuf. Technology vol. 17: pp. 27-38, 2001.

[3] Unigraphics Solutions Inc. UG Documentation Help. Maryland
Heights, MO, 2000.

[4] G. A. Britton, Y. -S. Ma and S. B. Tor, “Object Technology
Development and Unigraphics”, Proceedings of Unigraphics User
Group 1999 Spring Conference: Manage design evolution, Newport
Beach, California, USA.

[5] G. Britton, S. B. Tor and Y. Wang, “Virtual concurrent product
development of plastic injection mould”, Proc Instn Mech Engrs Vol.
214 Part B, pp. 165-168, 2000.

[6] H. L. Johannesson, “Computer Aided Part Design Based On Standard
Component Interface Geometry, “ Advances in Design Automation,
vol. 32-2, pp. 347-352, 1991.

[7] S. J. Culley and S. J. Webber, “Implementation requirements for
electronic standard component catalogues,” Proceedings of the IME
Part B: J. of Eng. Manuf., vol. 206, pp. 253-260, 1992.

[8] M. A. Lodenstein, D. M. Romps, and P. Tran, “Development of mold
design software,” Paper presented at the Society of Plastic Engineers
Annual Technical Conference – ANTEC, Brookfield, CT 1, pp. 1090-
1093, 1994.

[9] A. Z. Qamhiyah, “A Strategy for the Construction of Customized
Design Libraries for CAD,” Computer Aided Design, vol. 30, pp. 897-
904, 1998.

[10] Deng Y. –M., Britton G. A., and Tor S. B., “A design Perspective of
Mechanical Function and Its Object-Oriented Representation Scheme”,
Engineering with Computers, V14, n4, 1998, pp. 309-320.

[11] W. Y. Zhang, S. B. Tor, and G. A. Britton, “A prototype knowledge-
based system for conceptual synthesis of design process”, Int. J. Adv.
Manuf. Tech. vol.17, pp. 549-557, 2001.

[12] W. C. Regli, V. A. Cicirello, “Managing Digital Libraries for
Computer-Aided Design,” Computer-Aided Design, vol. 32, pp. 119-
132, 2000.

[13] EDS Inc, “Knowledge Fusion for Designers”, Student Guide, MT15130
– Version 18.0, November 2001.

[14] J. J. Shah, Hiren Dedhia, Viren Pherwani and Sachin Solkhan.
“Dynamic interfacing of applications to geometric modeling services
via modeler neutral protocol”, Computer-Aided Design, Vol. 29, No
12, pp 811-824, 1997.

[15] S. W. Lye, and H. Y. Yeong, “Computer-Assisted Mould Design for
Styrofoam Products,” Computers in Industry, vol. 18, pp. 117-126,
1992.

[16] S. B. Tor, S. G. Lee, Y. H. S. H. Chung, “A two-stage collapsible core
for injection moulded plastic parts with internal undercuts”, Int. J. of
Machine Tools and Manufacturing, Vol. 40, pp1215-1233, 2000.

[17] T. L. Neo, K. S. Lee, “Three-Dimensional Kernel Development for
Injection Mould Design,” Int. J. of Advanced Manuf. Tech., vol. 17,
pp. 453-461, 2001.

[18] MISUMI Corporation, Face Standard Components for Plastic Molds
(May 1993 -> Apr. 1996), 2-CHOME, TOYO, KOTO-KU, TOKYO,
135, JAPAN.

