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Abstract--This paper presents the detailed object definition, 
design, and implementation of a Standard Component Library 
(SCL), which provides parametric component models for the 
convenience of designers. With more than 200 types of components 
from different suppliers being implemented, it is believed that the 
object design of this module has generic nature and can be 
expanded for most mechanical standard components in a 
collaborative environment. The advantages of this implementation 
are the ease of use and simple customization. In this paper, 
QuickMould architecture framework is also introduced. 
 

Index Terms—Object Oriented Methods, Manufacturing, 
Design Automation, and CADCAM 

I. INTRODUCTION 

LASTIC injection mould design is a tedious task. Due 
to market competition, mould designers have to compress 
their design time as much as possible. To reduce the 

modification effort, parametric design approach is usually used. 
Hence, specialized mould design tools based on CAD software 
are highly demanded. In the market, several mould design 
packages have been available, e.g. iMouldwork [1], IKMould 
[2], MoldWizard [3]. Very often, outsourced components 
(known as standard components) are used. Making 3D 
parametric models available for such components to mould 
designers will significantly reduce the design lead-time and 
cost, and enhance design flexibility. QuickMould is a software 
package for designing plastic injection moulds in a 3D 
environment. It is developed on top of Unigraphics CAD / 
CAM software, and implemented in full object oriented 
approach [4][5]. This paper focuses on the standard component 
library (SCL) module of Quickmould. Comparing with other 
standard component libraries available in the market, 
QuickMould SCL is very easy to be expanded with user-
defined components without programming effort.  

In the early half of 1990s, as reported by Johannesson [6], 
Culley et al. [7] and Lodenstein et al. [8] that, there existed 

 
QuickMould research project was sponsored by former National Computer 

Board (now renamed as the infocom Development Authority) of Singapore, 
and jointly developed by Nanyang Technological University (NTU) and Gintic 
Institute of Manufacturing Technology (Gintic), Singapore. Currently, 
QuickMould is being used as a research package in NTU. 

Y. -S. Ma (telephone: 65-6790-5913, e-mail: mysma@ ntu.edu.sg), S. B. 
Tor and Graeme A. Britton are associate professors, school of MPE, NTU, 50 
Nanyang Avenue, Singapore 639798. S. B. Tor is also the head of 
manufacturing engineering division. 

T. Wijaya is a final year student of NTU.  
 
** LEAVE TWO LINES HERE FOR IEEE TO ADD THE PUBLICATION 

NUMBER AND OTHER CONFERENCE INFORMATION. 

some computer-based standard component catalogues. They 
contain 2D geometry data and are hard-coded so that the 
components can be selected and automatically put on the 
working drawing. Some programs can generate standard 
components [8] instead of retrieving existing CAD models. 
However such programs are specifically designed for fixed 
vendors, and are difficult to be adopted by others due to the 
variations of component definitions. Qamhiyah [9] presented 
a strategy for the automatic generation of customized libraries 
of form features and basic design shapes by coding convexity 
of B-rep loops and their neighborhoods. However, this 
method needs the user’s input on a theoretical threshold value 
for convexity coding. To capture more information from 
designers, Deng et al [10] and Zhang et al [11] extended 
object representations to mechanical functions and tried to 
develop a generic scheme for conceptual synthesis domain. 
Ragli et al. [12] focused on the archival and reuse of design 
intent by using a ‘signature structure’. However, their work 
requires end-users to have high-level understanding about 
design engineering background and to cross a major hurdle of 
adapting to the end-users’ knowledge processing cycles. More 
recently, EDS Inc released Unigraphics v18 software with 
knowledge fusion (KF) capability [13]. This technology 
enables the user to capture design intent in a declarative 
manner in a macro command file. However, such a package 
requires highly experienced knowledge workers instead of 
designers. In the recent trend of collaborative engineering, to 
reduce the dependency to vendors for open-structured 
geometrical modeling services, Shah et al [14] developed a 3-
layer communication architecture to wrap up geometrical 
modeler functions into a neutral “plug-compatible’ 
definitions. Contradicting to their original objective, to 
implement their idea, the support from all vendors of 
geometrical modelers is required. It has been recognized that 
CAD libraries are very useful for reusing design knowledge 
and engineering data. Although many software tools have 
been developed for mould design [1] [2] [15] [16] [17], but it 
was not well researched on how the end users can incorporate 
their own components into a predefined library. The research 
work reported in this paper is aiming to increase the 
knowledge contents of standard component elements in a 
CAD library, and to enable users to incorporate new elements 
with ease in an open architecture.  
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II. QUICKMOULD ARCHITECTURE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 shows the QuickMould 4-layer architecture. The first 

layer of essential technology infrastructure includes Visual C++ 
(VC++), Microsoft Foundation Classes (MFC), and API 
modules provided with Unigraphics software, i.e. UG/Open 
API, UIStyler. The second layer is the application 
Infrastructure. This layer contains the basic domain support for 
QuickMould. “Repository” provides the mechanism to wrap 
and access QuickMould data in CAD data structure, i.e. UG 
entities. “Currency” provides the basic classes, e.g. typical 
assemblies, components, and a table of mould assemblies and 
components (known as dictionary), that facilitate information 
representation, sharing and exchanging among various 
modules/objects in QuickMould. “UDO” provides the 
mechanism to store QuickMould information through UG’s 
User Defined Objects (UDOs). The key characteristic of UDOs 
is that they enable persistent links for application objects with 
UG entities. “Attributes” provides the data repositories of 
QuickMould attached to appropriate CAD entities. The third 
layer contains 10 QuickMould functional modules: Parting 
Line, Undercut Mechanism, Mould Base Library, Cooling 
Line, Gate-Runner, Standard Component Library (SCL), 
Ejectors, Bill of Materials (BOM), Global Boolean Operations 
(GBO) and Global Component Transformation. Each module is 
a set of specialized design processes chained by user interfaces 
and implemented with automated or semi-automated 
QuickMould functions. The top layer of QuickMould 
architecture contains the system modules, i.e. QM_Main, Start-
up Wizard, Assembler, Sub-system and Drawing.  

This paper is going to introduce the Standard Component 
Library (SCL) module only. The functions and design of other 
modules are out of the scope of this paper. SCL module 
provides functions such as loading user-selected component 
templates, modifying dimensions or feature configurations, and 
updating geometric models. The user can not only select from 
available components, but also incorporate their own 
components into the library. QuickMould SCL has contained 
over 200 types of standard mould components from several 
manufacturers, such as Misumi, Hasco and DME.  

III. INDUSTRIAL CATELOGUE 

To study existing commercial catalogues, a Misumi 

catalogue of “Standard Components for plastic Molds” [18] is 
used. Fig. 2 shows a type of components extracted, i.e. “sprue 
bushings – shoulder type with taper”. Usually, components 
are classified in a family structure with type identifications. 
As shown in the figure, this page contains several catalogue 
numbers, with a form like “SBT_”. Here, the ‘_’ at the end of 
the string reflect the variations in specifications or the feature 
configurations. For standard components, it is common to 
have several sets of specifications for a common or a set of 
geometric configuration(s) in order to meet the needs in 
different application contexts and to reduce redesign effort. In 
this “sprue bushings” example, “SBTM”, “SBTD”, and 
“SBTS” are different due to materials used while “SBTMH”, 
“SBTDH” and “SBTSH” are the corresponding derived types 
with string eliminators. These catalogue numbers are referred 
to as major types. Similarly, under a major type, there could 
be several feature configurations for the detailed geometry. In 
Misumi terminology, they are referred to as subtypes and 
alterations.  

In “sprue bushings” example as shown in Fig. 3, the 
alterations are made for runner openings at the bottom cone, 
i.e. from “AIW” to “CLQ”; for head geometry (“KC”); for 
runner holder (“ZC”), and/or for customized length (“LKC”). 
It can be seen that, although there are different configurations 
and alterations for a type of component, many common 
parameters are used. For example in Fig. 2, “D”, “L”, “SR”, 
“P”, “A”, are common key parameters. Dimensions are 
specified according to sizes, and many of them are 
constrained. Take an example, for the sizes from “10” to 
“16”, the range for the length (“L”) is given from 0 mm to 100 
mm, while for the sizes above “16”, the range can be from 0 
mm to 150 mm. As to examples of constrains, some are 
applicable to all cases, e.g. “D > V >= α+2” while some of 
them are conditional to a particular configuration or 
alteration, e.g. “S >= α+2” in the alteration “ZC”. Other 
properties worth mentioning are tolerances, ordering code, 
delivery lead-time, material specifications, etc. Ideally, all 
these properties should be included and managed in the 
proposed CAD component library. 
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Fig. 2 Specifications of sprue bushings [18] 
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IV. QUICKMOULD SCL APPROACH  

Traditionally, parametric modeling is used to store re-usable 
CAD models where the geometry is modeled with changeable 
dimensions. Take Misumi catalogue [18] as an example, it 
contains 21 categories with 195 subtypes. Further more, for 
each subtype, there could be many alterations. Assuming the 
average number of alterations for each category is 8, then, if we 
use the traditional parametric modeling approach, there has to 
be 1560 CAD models. This number has already been 
prohibitive for implementation.  

In QuickMould, each type of standard components is 
implemented with three related files as one item in the library, 
i.e. a CAD template file, a feature configuration (CFG) file, and 
a dimension data file. Their relationships are shown in Figure 
4. In the run time, the variations of feature configurations, 
alterations, dimensions, constraints, etc. are captured as 
associated properties in an object.  

 
 
 
 
 
 
 
 
 
Based on existing component catalogues, standard 

components are classified systematically according to their 
categories (or major types) and features, alterations, 
dimensions, etc. With a formal convention, each component 
structure can be consistently described in an ASCII text file. It 
is called feature CFG file in QuickMould terminology. Such a 
file specifies the choices for subtypes, alterations, and key 
parameters used. The contents of CFG files will be further 

introduced in sub-section B. A parametric CAD template has 
to be developed to model the geometry. A dimension data file 
is used to store predefined dimension values provided by the 
vendors as the default for different sizes. 

In such an approach, the library program can load the CAD 
template model into the working assembly design, and then 
based on the information read from the feature configuration 
and dimension data files, the user can select subtypes, 
alterations, and dimension values (Fig. 5(a)), etc. The user can 
also further modify the detailed dimensions to meet his exact 
requirements (Fig. 5(b)).  

A. CAD Model Templates 
Each major type of components is represented by one 

template. Hence a standard component template is loaded 
according to the selection of the major type. In each pre-
defined template, geometrical features are parametrically 
defined, and those features related to subtypes and alterations 
are embedded in the template as optional ones. They are 
controlled by “logical expressions” [3], which can suspend or 
activate features according to feature configuration 
requirements.  

In the template file, there could be two solids, i.e. the real 
component solid (compulsory), and a “space” solid (optional), 
which is defined as the typical space required for 
accommodating the real component in assembly. They are 
defined in a parametric manner and associative to each other. 
Through “space” definitions, the related features on other 
components can be made associated to the standard 
components used. Hence, it enables associative modifications 
with the native UG reference mechanism, including positional 
and dimensional changes. 

Geometric expressions are grouped into two levels. The 
first level contains those that are related to the key component 
parameters, and are essential for the function of the 
component or related to other components in assemblies. The 
second level expressions are for component geometry 
constructions, where detailed feature dimensions are defined. 
This level of expressions is made related to the key 
expressions. When updating those key expressions by 
program, the lower level expressions are subsequently 
updated automatically. CAD model template files are 
organized in a directory tree structure according to the 
suppliers, categories and major types. 

B. Feature Configuration (CFG) Files 
Standard component library is designed to be generic to all 

types of mechanical parts. To enable this requirement, feature 
CFG files are used to define individual components with a 
standard convention.  

A feature CFG file (e.g. sprue_bushes.cfg for the example 
shown in Fig. 2 and 3) is started with the catalogue numbers 
(“sbtm, sbtd, … sbtsh”), which are named as “major types”. In 
this example, there are six major types specified. Next, the 
related CAD template and the dimension data filenames are 
given, e.g. “sbt_.prt” and “sprue_bushes.dat”. The following 

Fig. 3 Alterations for sprue bushings [18] 
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record specifies the parameter symbol representing the size. In 
this case, “D” is specified. Then, in the next section, the 
available subtypes are listed. Among subtypes, they are 
exclusive to each other. This means that at any time, only one 
of them is effective. Subtype names read from this CFG file 
will also appear on the user interfaces for the user’s selection 
when loading the component (see Fig. 5(a)). They provide the 
choices available for subtypes and the keys to change the 
effective configuration for the loaded component. 

Next, alterations are organized as groups. Similar to the 
subtypes, in each group, member alterations are exclusive to 
each other.  Their specific properties are separately grouped. 
For the “sprue bushings”, alterations are divided into three 
groups (see Fig. 3). Alteration “KC” alone is one group while 
alterations “AIW” to “ZC” belong to the second group. 
Alteration “LKC” forms the third one. It is clear that 
combinations of alterations from the same group are not 
meaningful. To enforce this rule, on the user interface as shown 
in Fig. 5, only one alteration can be toggled on for each group. 
For example, combination of “AIW” and “ZC” is not available 
as given in the catalogue (Fig. 3). For alterations from different 
groups, they can coexist simultaneously. For example, “KC” 
and “ZC” alterations can be selected together. 

 

    
 
 
The next record type is for key parameters and their 

corresponding expressions in the CAD template, where they are 
associated to the geometrical features of the CAD model. SCL 
distinguishes two types of key parameters, those to be 
displayed on the loading/editing user interfaces and those that 
are not supposed to be modified/customized by the user. In the 
given example, key parameters “L”, “A”, … “SR”, etc. are 
displayable while “OD” and “α” are not (see Fig. 2 and Fig. 
5(b)). All parameters are assigned with the values stored in the 

dimension data file when the component is initially loaded, 
but the user can only modify displayable ones through SCL 
UIs.  

For a component, constraints are also included in the 
feature CFG file. The format likes “V >= α+2”. They are 
very important to keep features valid and data consistent. 
These constraints are read into the component object buffer 
and being checked whenever necessary to make sure they are 
satisfied.  

In the CFG file, sections are arranged according to its 
applicable scope. So far, what have been introduced are the 
attributes or properties that are applicable to all subtypes and 
alterations. There are attributes defined in specific sections 
that are unique to a particular major type, subtype, or an 
alteration, e.g. icon bitmap files for subtype/alteration 
identification, some key dimensions, constraints, etc.  

Tolerances for each parameter are recorded with the upper 
and lower limits. Since they are associated with key 
parameters, and they can be updated and listed according to 
the application. This provides a possible link to the technical 
specifications when creating the component/mould plate 
drawings. Other additional attributes, such as material, default 
delivery time, prices, etc. are included as well. For example, 
the purchasing order has to give specific code for the item 
name, type, size, alterations etc. A method has been 
implemented in SCL class to interpret the format given in the 
CFG file, e.g. “sub_type @D-@L-SR-P-A-V-G-alterations-
end”, and then retrieve the values from the relevant key 
parameters from CAD model and generate the order code as 
“SBTM 25 – 45.5 – SR23 – P4.5 – A4 – V20.0 – G5-AXW8-
KC”. In fact, the prices for certain companies, like MISUMI, 
is also set according to the type, sizes and dimensions of the 
components, hence, it has to be derived automatically from 
the CAD model parameters.  

Different companies may use quite different format of 
catalogues and hence the major types, sub types, etc need to 
be organized differently. However, the approach to organize 
CAD libraries and the generic data (attributes) structure is still 
valid due to the commonality of industrial practices.  

C. Dimensional Data Files 
For each size of a standard component, the vendor usually 

provides a set of default parameter values so that its 
manufacturing activities can be predefined and cost 
minimized. The dimension data file contains the default 
values of key parameters for all the available sizes. Each 
parameter is considered to have a range from the minimum to 
the maximum with a minimum increment except its current 
value. Allowed ranges specified are checked when the user 
edits parameters with the UI shown in Fig. 5(b).  

V. DATA STRUCTURE OF “QM_STD_COMP” CLASS 

To represent a standard component in a CAD session, a 
class named as “QM_STD_COMP” has been defined. To 
simplify the presentation of the class definition structure, a 

Fig. 5  
 (b) Parameters editing UI  (a) SCL main UI 
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“Macro” type pseudo-program format is used in the following 
description below. For simplicity reason, a single property or 
function mentioned in this paper could represent a single or a 
cluster of attribute(s) or method(s). 

A “QM_STD_COMP” object’s properties can be clustered 
into two groups, i.e. persistent properties and buffer ones. 
Persistent properties are static and stored in the form of CAD 
attributes. They are associated to a CAD component pointer 
during the run-time session. The component pointer is included 
in the “QM_STD_COMP” object properties. However, similar 
to most of CAD systems, UG initiates entities during the run 
time as a data structure, and the pointer to an entity is assigned 
during the run time and is only valid for the current session. On 
the other hand, a “QM_STD_COMP” object has to be 
associated with a CAD component persistently such that its 
private properties are stored after closing the current UG 
session and can be retrieved when QuickMould reinitiates the 
object in the next session. This problem is solved by using User 
Defined Objects (UDOs).  

QuickMould maintains a list of its entity pointers named as 
currency dictionary. With this dictionary, QuickMould objects 
are dynamically mapped with their corresponding UG 
geometric entities. Among persistent properties, the name of 
supplier, category and major types provide the input to locate 
the feature CFG file with a predefined naming convention for 
library directories and files. Once the CFG file is identified, the 
CAD template and the dimension data files can be uniquely 
retrieved.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The properties contained in the buffer block are for editing 

and supporting UI functions because typically, SCL allows user 
to set their choices and then confirm by clicking “Apply” or 
“OK” button at the bottom of the UI (See Fig. 5). In another 
situation, when the user edits an existing “QM_STD_Comp” 
object, they may cancel their modifications made with UI 
elements. Others include alteration groups that allows the user 
to select, constraints to verified before accepting the user’s 
input, displayed parameters that are editable by the user. Here, 

displayed parameters have to be differentiated from key 
parameters. Note that some properties are associated to the 
CFG file. For example, the effective constraints, key 
parameters and their expressions, and displayed parameters 
have to be updated systematically for different combinations 
of major types, subtypes, alterations, sizes, etc.  

As to the class methods, there are four levels. The most 
bottom level is the access methods. The second level methods 
are common “foundation functions”, including string 
manipulation, expression interpretation and evaluation, etc. 
The third level is “functional methods” to cater for parameter 
editing, e.g. expressions backing-up, evaluation, modification, 
updating and restoring. Functions in this level also include 
“Activate_sub_type()”, “Generate_size ()”, etc. These 
methods are enablers that provide the flexibility for a 
predefined standard component to be applied with different 
configurations and dimensions. The highest level is 
“Application Methods”. Their functions are elaborated in the 
following section in more detail. 

VI. QUICKMOULD SCL APPLICATIONS 

A. Adding a Mould Component 
When the user starts the SCL module, a 

“QM_STD_COMP” object is first initiated. SCL module will 
assign the object attributes step by step. To add a component, 
the user needs to select a parent assembly part to which the 
component is added. Then the SCL module main dialogue 
box (Fig. 5(a) is generated. The program checks the available 
catalogues in different directories and creates a pull-down 
menu under the “Supplier” button. Once the user confirmed 
the supplier, e.g. “Misumi”, then the defined component 
templates are checked in this catalogue. They are listed in two 
levels, i.e. “Category” and “Major Type” in the UI as shown 
in Fig. 5(a). Other available choices, such as subtypes and 
alterations, are retrieved from the feature CFG file, and 
incorporated into the UI. The user can select different items 
from the pull-down menus. Note that the bitmaps indicating 
the active selections are displayed in the UI. For adding a new 
component, the user also needs to click “Edit Component 
Parameter” button, SCL will then display the “Edit 
Parameters” dialogue box, as shown in Fig. 5(b). With this 
UI, the user can select the size he wants. All the default 
parameters related to each size are retrieved from the 
dimension data file. Finally, the user clicks “Apply” button to 
load the selected component.  

At this moment, appropriate “QM_STD_Comp” object 
attributes are instantiated. It calls class methods to complete 
the following steps: (a) insert the loaded component into 
assembly, (b) retrieve key dimensions from the dimension 
data file and update the geometry; (c) rename the component 
to localize it in the current project directory; (d) convert the 
component into a QM component and list it in the currency 
dictionary. Then the loaded component is shown as in Fig. 
6(a). If the user wants to modify the size, the user can click on 
the “size” button shown in Fig. 5(b), e.g. from “10” to “25”, 

(b) Size 25, KC, ZC 
Fig. 6 A sprue bushing component loaded 

(a) Size 10, KC, ZC 
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then the key parameters are updated. Once the user clicks “OK” 
or “Apply”, the CAD model are updated accordingly (see Fig. 
6). When the QM exits from the SCL scope, this  
“QM_STD_Comp” object’s properties are mapped back to the 
attributes of the component, and this “QM_STD_Comp” object 
is destroyed. 

B. Modifying an Existing Mould Component 
To edit an inserted standard component, the SCL module 

runs a method to let the user select the target, then all the 
QuickMould related attributes associated with the selected 
component are retrieved and the corresponding attributes in this 
“QM_STD_COMP” object will be updated.  The same SCL UI 
as shown in Fig. 5(a) is then established after searching 
available library items as well as the attributes of the existing 
component. Actually, its feature CFG file is read again, and the 
information for the available configurations and the respective 
selection option menus and buttons are updated. This standard 
component can now be edited. The rest procedures are very 
similar to the adding process; hence they are not further 
described.  

C. Deleting a standard component. 
Methods have been implemented to delete the selected 

standard component from the project assembly, and delete its 
part, configuration and data files from the current project 
directory as well. Simultaneously, the related currency object 
and dictionary pointer in the session are also cleaned.  

VII. DISCUSSION, CONCLUSIONS AND SUGGESTIONS 

Considering the possible big number of combinations of 
major types, subtypes and alterations, if the implementation 
were done for every type, the implementation could be tedious. 
However, after the implementation, it has been demonstrated 
that this approach can be very efficient. This is because CAD 
templates, configuration and data files can be combined/shared 
as much as possible. The big advantage of this approach is that 
the end users do not need to program the library elements but 
just to follow certain procedural conventions to produce the 
template models and a pair of text files. For future work, it is 
suggested to automate the configuration combinations based on 
some common elements of features with generative approach. 
Considering the scalability for an Application Service Provider 
(ASP) business model, due to large amount of data to be 
managed, the authors suggest an XML based Object-oriented 
database to be built to support the library. Further research 
work is still needed. 

In summary, this proposed CAD library is flexible enough 
for a wide range of standard components. They are defined by 

using component templates, CFG files and data files. The 
reported data structure and software module framework can 
be used as a foundation for future collaborative design 
environment over the Internet.  
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