
 1

Abstract-- MoldWizard™ is a software product of Unigraphics
Solutions Inc. It offers a special process based solution for plastic
injection mold design. This paper describes the tooling design
knowledge encapsulated in four modules of MoldWizard™, i.e.
Cooling Channels, Gate and Runner, Electrode and Sub-Insert.
Conceptual ideas are briefly explained.

Index Terms—Design Automation, CADCAM, Manufacturing,
and Knowledge Engineering

I. INTRODUCTION

CCORDING to the definition of SME [SME1999],
CAD interoperability should cover the relationship

between a KBE system and a CAD platform. However, to
transfer information from CAD to knowledge-based
Engineering (KBE) systems is very difficult because KBE
systems rely heavily on the design intent to perform activities
such as cost estimating or DFX analyses. The intelligence
added to CAD geometry is either stripped off by the
translation software or unrecognizable by KBE system. In
addition, many CAD systems are unable to completely and
unambiguously capture design intent. On the other hand,
transfering KBE intelligence to CAD systems is equally
challenging because there is no mechanism to enable such
information flow. One way to bridge these gaps is to build
design intent into the CAD system in the form of process
wizards. Basically, a wizard is a set of sequenced UI interfaces
to guide the users to complete certain interactions. Wizard
tools can bridge the gap between human experiences and
computer based activities. MoldWizard™ is such a wizard for
plastic mould design. This paper describes the conceptual
design for four modules, i.e. Cooling Channels, Gate and
Runner, Electrode and Sub-Insert.

II. COOLING CHANNELS

In current industry practice, straight solid cylinders are
created to represent cooling channels. In the cases of blind

MoldWizard™ and Unigraphics™ are products of Unigraphics Solutions
Inc. This work describes the conceptual frame only. The four modules
introduced here were jointed developed by Gintic Institute of Manufacturing
Technology (Gintic) in Singapore and Unigraphics Solutions Inc., USA.

Y. -S. Ma (telephone: 65-6790-5913, e-mail: mysma@ ntu.edu.sg), is
currently an associate professors, school of MPE, NTU, 50 Nanyang Avenue,
Singapore 639798.

Y. -Q. Lu, is a group manager of Gintic Institute of Manufacturing
Technology (Gintic), 71 Nanyang Drive, Singapore 638075.

Z. Li is an R & D project leader of Unigraphics Solutions Inc, 10824 Hope
Street, Cypress, CA 90630, USA.

** LEAVE TWO LINES HERE FOR IEEE TO ADD THE
PUBLICATION NUMBER AND OTHER CONFERENCE INFORMATION.

channels, the cylinders are chamfered at the blind ends to
make them appear as drilled blind holes. When the design is
finalized, all channels are united to form a cooling circuit. The
reasons for using solids instead of "hole" features are as
follows:
• The creation of cooling holes/channel entails several time-

consuming, manual tasks;
• Solids representation enables cooling circuit drawing

without cavity or core block, mold plates, etc.
• Repositioning holes requires many more steps.

However, using native Unigraphics Modeling functions to
create cooling solid cylinders has some shortcomings. Except a
number of steps required, no intelligent representations for
cooling channels. For example, cooling cylinders cannot be
identified specifically. This is important because the cooling
channels need to be used for thermal analysis purpose. There
is also no orientation and connectivity information Therefore,
there is a need to have a customized module for designing
cooling channels. The aim of this system is to provide
substantial automation and intelligence (smart association) in
the process of cooling solids generation.

A. Definitions
In MoldWizard™, the definition of cooling circuit is a set of

holes, which are connected to each other with an inlet and an
outlet. A cooling circuit may have several holes but can also
be only one hole. Some common cooling “hole” terminology is
shown in Fig. 1. In the CAD model, holes are represented
initially with their centerlines with special attributes to specify
the hole parameters. For every cooling hole, its base point and
tip point are made associated with penetrating faces except the
blind tip point. In the Unigraphics™ terms, they are "smart
points". Solids are then generated by the program and united
as the volume representation of cooling circuits. A cooling
solid is the tub solid created by sweeping along a guiding line,
which is a “smart” line because it connects two smart points.
Hence, in turn, base on this smart line, the tub cylinder is
“smart” too due to Unigraphics reference mechanism. All the
guiding lines within a cooling circuit form a guide path.
Different “hole” types are defined in Fig. 2. Related attributes
need to be assigned to the guiding lines. They are used to
regenerate “hole” solids when never necessary. Within
MoldWizard™, all the mold assembly components are
organized with the UG assembly tree structure. By default, a
cooling line (CL) component is specially created for cooling
solids under the mould assembly.

Associative Design and Knowledge Automation
in MouldWizard

Y. –S Ma, Y. –Q Lu, and Z. Li

A

 2

Fig. 1 Some Common Cooling Hole Terminology

Fig. 2 Types of cooling hole ends

B. Functional Design
Cooling line module provides the following functions with

the association of a cooling circuit with related faces:
• Creating cooling circuit with smart guide path,
• Adding /Removing curve from guide path,
• Modification/Reposition of guide path,
• Deleting of cooling circuit guide path,
• Creation of cooling solid,
• Modification of the cooling solid, and
• Deleting of the cooling solid.

To create the first guiding line of the guide path, the user
needs to select a face as the inlet penetrating face of the
circuit. A smart point will be created on the face. The default
drilling direction (the direction to generate the first cooling
guiding line) will be set to the reverse direction of the face
normal. The user can flip the direction if he wants.

The user can dynamically drag the guiding line, or input the
length, or indicate another face for a through hole. For a
through hole, another smart point will be created since the
guiding line ends at the selected face. Guiding lines are
sequenced. After creating one guiding line, 5 directions can be
selected for the next one: +X, -X, +Y, -Y, +Z, -Z and User
Defined. If there is no intersection between the guide path and
the drilling face, the guide path will be extended automatically
along the reverse direction of the indicated direction to find
the drilling point on the face. Please refer to Fig. 3.

The designer may use balance circuits if the mold is
designed with a balanced multi-cavity pattern, so that a
separate circuit is used for each cavity section. Otherwise,
unbalance ones may be used. In the balance design, when the
user selects a face in core/cavity insert, a waved face is created
in the product part. Smart points, guide paths and cooling
solids are created in the product part too while the related
waved guide paths and solids are created in CL part. Hence,
the same cooling circuit can be copied by using the CL
component pattern in UG assembly. In the unbalance design,

when user selects a face in core/cavity, a waved face will be
created in the CL part, and smart objects, guide paths and
cooling solids will be created in the same part.

Fig. 3 Extension of the input line

C. Design options
The algorithms can be grouped into the following six groups,
i.e. the creation of simple blind hole, simple through hole,
counter-bore blind hole, counter-bore through hole at one end,
counter-bore through hole at the both ends, and finally,
multiple solids cooling channel. Other algorithms include
editing and deleting cooling lines. They are not explained in
this paper due to limited space. The user's input sequences are
differentiated with corresponding algorithm branches. For
example, for creating a simple blind hole, user's selection
sequences can be any of the three options, i.e. (1) just the inlet
penetrating face, or (2) the inlet penetrating face and then an
existing perpendicular reference cooling hole, or (3) simply an
exist cooling hole collinear to the intended one. Take an
example, for the second case, after getting the inlet vector, the
additional selection of another cooling channel only serves to
adjust the inlet point in either the y or z direction (see Fig. 4
from point F to E). Although an inlet vector has already been
determined when the user first selects the inlet face, the vector
position is adjusted when the user picks the reference cooling
hole.

Fig. 4 Alteration of Inlet Position via Cooling Hole Selection

Drill-through end

Counter-bored end

Blind end

Blind end with extension

Indicated vector
and length

Extended
guiding line

Insert block Hole base point

Hole direction
vector

Hole
tip point Inlet face

1
2

Exit face

Previous
guiding line

Indicated vector
and length Extended

guiding line

Penetrating face

F

C

A

E
B

D

 3

The values in the default cooling line data file are updated
with the user’s choice of preferred initial values when he/she
quit the cooling dialog. Individual entries to different fields of
the UIs are verified against preset conditions. For example,
consider the pre-condition that the counter-bore diameter must
be greater than the respective hole diameter.

Fig. 5 A Typical Multiple Solid Cooling Channel

A special feature implemented is a method to create a
multiple solids cooling channel (see Fig. 5) to achieve the
association among collinear individual holes. In order to
achieve this, the start and tip points of each hole is “tied” to an
appropriate parent. The result of this is that when the parent is
being modified, the child will be notified of the modification.
Fig. 5 shows the association concepts. Assuming the first
cooling hole (middle one) is created via “Create a counter-bore
through hole with two faces, the base point of the hole is “tied”
to Face_1 and the tip point of the hole is “tied” to Face 2. Any
modification to, such as offsetting, these faces will affect the
depth of the hole. The creation of the left counter-bore through
hole (Both Ends) has more flexibility. The user can create it
via two planar faces (Face 1 and the most left face) or via a
cooling hole and a planar face (the middle hole and the most
left face). The difference between the two methods is that the
parent of the left hole base point is Face 1 in the first instance
and the tip point of the first hole in the second case. In the first
case, the first hole can slide along face_1 without affecting the
left hole, by thus creating 2 misalign holes. In the second case,
if the first hole is made to slide along the same face, the middle
hole will follow suit too. This association between the two
holes creates a multiple solids channel. Similarly, the third
blind hole (right side) can be created via the middle hole too.
The end result is a cooling channel consisting of three
associated cooling holes.

III. GATE AND RUNNER MODULE

In current industry practice, there is no consistent approach
to create gate models by mold designers. The gates modeled
are non-parametric. If the gates have to be modified due to
product modifications, the gate models have to be completely
re-built. In the case of multiple-cavity molds, the gates are
usually modeled individually. Very often, when modification

is required, the effort is tedious and cumbersome. The creation
of the runner system involves the modeling the primary runner,
branch runners and cold slug wells. Using native
Unigraphics™ applications, this could involve the creation of
guide strings (curves), cross-sectional curves and a host of
other features. A substantial number of interactive operations
are needed to create a complete runner design, especially in
the case of multiple-cavity molds. Therefore, there is a need
for a software module to enable mold designers to expedite the
process of gate and runner creation and modification.

A. Assembly Structure
There are 3 possible structures to organize gates: (1) All

gates are parametric solids and are accommodated in a single
gate-runner component under the top mould assembly. With
this structure, gates can be retrieved with three steps, i.e.
detecting the layout, calculating the matrix and importing the
gate part from library several times according to indicated
position and the matrix. The advantage of this structure is the
simple assembly tree. However, gates cannot be associated to
any smart objects because of the constraint of importing part.
Reference point is fixed values rather than an object pointer.
When the layout changes, all gates do not move accordingly.
All gates are individual solids without any link. Although it is
possible to modify all gates in a batch within the Gate/Runner
module, but when the user modifies a gate through native UG
functions out of the module, the related gates cannot be
updated. (2) All gates are components under the gate/runner
sub-assembly. The tree structure is shown in Fig. 6.

Fig. 6 Assembly structure of option 2

Implementation can be carried out by detecting the layout

first and calculating the matrix. Program then add all
gate/runner components as instances according to indicated
position and the matrix. Since the gate/runner components are
instances, if the user modifies a gate through native UG
function, the related gates update accordingly. The
disadvantage is when there are a lot of components in multi-
cavities case, since all gate/runner components are not
associated to any smart object due to the same reason as
described in Option 1. When the layout changes, all of them
become mismatched. When one of them is re-positioned, the
related ones do not move. (3) Balanced gate/runners are
stored as components under core/cavity sub-assemblies,
unbalanced gates are stored as components under gate/runner
sub-assembly (see Fig. 7). Waved solids are formed in the
Gate/runner component for the display and selection purpose.
The advantages for this option are numerous. When the
gate/runners are balanced, if the user modifies one with native
UG function, the related gates update accordingly. The

Channel
collinear axis

FACE 1
FACE 2

FACE 3

Gate/runners
Top assembly

Layout Core 1

Cavity 1 Cavity n Cavity 2

Core 2

Core n
…

…
Gate/
Runner
1

Gate/
runner
2

Gate/
Runner
n

…

 4

structure is not complex, as generally there are not many
unbalanced gates. When a balanced gate/runner is re-
positioned by either re-positioning, the related gates move.
When the layout changes, all gate/runners move accordingly.
In the multi-gate cases, the association between gates can be
achieved. (In Fig. 7, “gate/runner 2.2” … “gate/runner 2.m”
indicate instances of “gate/runner 2.1”). Base on above
comparison, option (3) is chosen. All gates and runner
channels generated by this module are solid bodies. The user
can subtract these solid bodies from the core and cavity inserts
with boolean functions.

Fig. 7 Assembly structure of option 3
As to gates, based on the above functional requirements, a

gate library has been created in MoldWizard™. The following
pre-defined gate types are included in the gate library:
rectangular, fan, submarine, pin, film and stepped pin. There is
an option for users to choose between a balanced gate pattern
and an unbalanced gate pattern. If the user chooses a balanced
pattern, the gates in all cavities of the layout will be generated
at the same time. The positioning of gates makes use of the
associative method used by the Standard Parts module of
MoldWizard™. The user selects a transformation method and
an association option for the positioning. A new gate name has
to be specified if non-associative copy is chosen.

For runner creation, some definitions are needed. Guide
string refers to the curves along which runner solids are
generated by sweeping the runner cross-section profiles. Guide
pattern refers to the sketch defining the runner channel
patterns. Usually, runner guide strings are created using
Unigraphics lines and arcs. In this work, commonly used guide
string patterns are made available (see Fig. 8); hence it is very
efficient for multiple-cavity molds. Runner channels can be
generated using specified cross-sectional topology (see Fig. 9)
along with the guide strings. All the pre-defined cross-sections
are parametric and the user can easily modify the sections via a
UI dialog. Similarly, the user can select a pre-defined guide
pattern from a standard library and specifies the necessary
parameters through a UI dialog (see Fig. 10).

IV. ELECTRODE MODULE

In mould making industry, using EDM to machine cavity is
a common practice. To create an electrode, the following
steps will be involved: (a) Creating an inverse shape of a
portion or the whole of a mold impression component (i.e.
core insert, integer core, cavity insert, integer cavity and sub-
inserts, including certain types of gates); (b) Adding a base to
the inverse shape (in practice, the base is tightened to a holder
and the latter is fixed to the CNC machine when machining the

electrode as well as the EDM machine when use it to make the
core/cavity); (c) Adding a reference coordinate system to the
electrode for machining purposes, and (d) Adding other
reference features, such as chamfers, to the base to indicate the
front side so that the electrode is positioned correctly during
the EDM process. The above generally involves a substantial
number of steps and the aim of this module is to reduce the
effort required by the end-user in the electrode generation
process.

H-shaped O-shaped S-shaped
Fig. 8 Typical runner channel guide string types

 C P T H S

Fig. 9 Typical runner cross-section profiles

(a) (b) (c) (d) (e)
Fig. 10 Implemented runner patterns

A. Definitions
An electrode consists of mainly two portions, i.e. the

electrode head and the base. The electrode of any portion of
the cavity is represented as an associative solid and stored in a
designated sub-assembly. The assembly structure is created as
illustrated in Fig. 11.

Fig. 11 Assembly structure for the electrode module
The working part in the above assembly structure is

“PE_COVER_CORE”. An sub-assembly “PE_ELECTRODE”
is added to “pe_top” to contain all electrodes. Its components
are named with the suffix “_ELEC” appended to the original
working part name, e.g. “PE_COVER_CORE_ELEC”. A

Part for
electrode

Wave linked
part created
from the
working
part

Working
part

…
Cavity n

Gate/runners
Top assembly

Layout Core 1

Cavity 1 Cavity 2
Core 2

Core n
…

Gate/
Runner
1.1

Gate/
runner
1.2

Gate/
Runner
1.n

…

Gate/
Runner
2.1

Gate/
runner
2 .2

Gate/
Runner
2.m

…

 5

UG/WAVE[3] linked original part (with the same name) is
added to this node too. The display part is then set to the
electrode parent part (“ PE_COVER_CORE_ELEC”) so that
user can see and select geometry from the UG/WAVE linked
part of the working part. A separate part is created for every
electrode and each is set as the working part when the
electrode is being created. The rationale of using the assembly
structure described above is to avoid copying all the geometry
of the working part into the electrode part, which would
occupy a lot of space. Only when needed is some geometry
from the working part copied with UG/WAVE links to the
electrode part. For example, if the user decides to create the
electrode head by a trimming operation form the parting sheet,
then only the parting sheet is wave-copied to electrode part.

B. Functional Description
In order to serve the requirements for creating electrodes,

the module provides facilities to perform the following
functions (and sub-functions, where appropriate): creation of
enveloping block for electrode, creation of electrode head,
editing of electrode head, creation of electrode base, editing of
electrode base, and creation of reference coordinate system at
highest point of electrode for EDM/CNC setup.

Base

Inverse
shape

Coordinate
system

Fig. 12 An electrode diagram

A simple diagram is shown in Fig. 2. The above functions

are briefly described individually below. It is assumed that the
cross-section of the electrode head takes the shape of either a
circle or a rectangle when viewed from the top of the main
core or cavity insert. Interactively, a sketch is built on a datum,
which is offset by an adjustable distance from the core/cavity.
After the user confirms the dimensions of the sketch, the
sketch is extruded in opposite directions to form the
enveloping block. Functions have been built to help user to
position and dimension the sketch.

An electrode head should be automatically created with face
taking from the impression at a specific location within the
main core or cavity insert. The electrode head can be
generated by either of the following two methods, as specified
by the user. In the first method, the enveloping block is
trimmed by the large trimming sheet that has been generated
by the parting process. In the second method, where the large
trimming sheet does not exist, the core/cavity is copied, and
this copy is subtracted from the enveloping block.

When a user moves the positions and sizes of the sketch, the
electrode head will be modified accordingly.

A function has been available is to create the electrode base
(see Fig. 13) with the electrode block (either a solid
rectangular block or a cylinder), in a position and orientation

specified with reference to the electrode head. A separate
block representing the electrode base, with two chamfers at its
corners to indicate its front orientation is automatically
created. An offset face of the electrode head may also be
created if tool wearing has to be considered. The user inputs
include a reference face on the electrode block, the base
normal direction, the position of its lower face, and its
dimensions. Of course, the electrode base can be repositioned
or resized.

Front face of
electrode base

Inverse shape of
electrode block

Face on inverse shape
to be offset to base

Fig. 13 Rectangular electrode base

For CNC or EDM origin setting up purpose, a coordinate
system at the highest point of the electrode block to be used as
a reference point for machining purposes. The coordinate
system will be horizontally positioned at the midpoint of the
electrode block’s bounding box (see Fig. 14).

Midpoint of bounding box
for electrode block

Input planar face

Fig. 14 Reference point for an electrode

V. SUB-INSERT MODULE

Normally, sub-inserts are created after the creation of the
main core and cavity inserts. The purpose to create sub-insert
is to simplify the impression machining and to reduce the cost.
In other words, a portion of the impression’s profile is used to
create the sub-insert head. The process of creating the entire
sub-insert can be divided into the following tasks: Creation of
sub-insert head, Creation of sub-insert body, Creation of
positioning and orientation features, and Creation of fastening
features.

A sub-insert usually has a body to hold the head. In some
cases, however, sub-insert bodies are not created and the sub-
insert head is directly mounted onto a mold plate. In all cases,
the generation of the entire sub-insert shall not modify any
existing solids. The sub-insert will be created as separate
solids. This module is very similar to the electrode module
except that the sub-insert head does not need to use the
reversed impression face. Therefore, due to the paper space
limit, this module is not elaborated here.

 6

VI. INTERACTION

Clearly, in each of the module, many user interaction
scenarios are involved. UI design is critical for wizard
application. They cannot be extensively described here. Some
example UIs used in the Gate and Runner module are shown in
Fig. 15, Fig.16 and Fig.17 to illustrate the concepts. The
graphical interactions within CAD environment are not
included.

Fig.15 Main UI for gate design module

(a) Guiding string shapes (b) Guiding string patterns

Fig.16 Runner creation UIs

VII. CONCLUSION

In this paper, four modules of MoldWizard™ are
introduced. The mold design rules are embedded in the
algorithms of these modules. The design ideas are
implemented in a generic modular manner. The emphasis is
put on the "design procedures" and “built-in” engineering
consideration, especially related to the geometrical association
to the plastic part model. User preferred sequences are
analyzed and streamlined with very flexible data support has
enabled effectiveness and efficiency in the software
application. These modules have now been integrated as part
of the MoldWizard™ version 2.0, and being widely used all
over the world.

(a) Select existing curves as guiding string (b) Runner cross-section patterns

Fig.17 Runner creation UIs

ACKNOWLEDGMENT

The authors would like to acknowledge that the work
presented in this paper is the result of teamwork by the
Computer Aided Product Technology group of Gintic Institute
of Manufacturing Technology, Singapore, with the close
technological and technical support from UGS Inc, Cypress,
USA. The actual implementation of MoldWizard may be
updated or enhanced hence it can be different from the content
of this paper.

REFERENCES
[1] "Virtual Enterprise Integration: Creating a Sustainable Manufacturing

Life Cycle", CASA/SME Tech Trend Report 2000, Web Site:
www.sme.org/casa.

[2] G. A. Britton, Y. S. Ma, and S. B. Tor, "Object Technology
Development and Unigraphics", Proceedings of Unigraphics User
Group 1999 Spring Conference: Managing Design Evolution, New
Beach, California, USA.

[3] EDS Inc. "User Guide for Unigraphices v18 (User Functions)".
[4] R. G. W. Pye, Injection Mould Design. The Plastic and Rubber Institute,

London and New York, 1982.

MoldWizard Re-position Dialog

Select a Gate

Fan Gate
Film Gate
Pin Gate

Rectangular
Gate

Step Pin Gate
Submarine Gate

Select a Gate

