
Presented on Unigraphics User Group 1999 Spring Conference: Managing design evolution, March 14-18, Newport Beach, California, USA

1

OBJECT TECHNOLOGY DEVELOPMENT AND UNIGRAPHICS

Graeme Britton

Associate Professor

School of Mechanical and Production Engineering

Nanyang Technological University

Nanyang Avenue

SINGAPORE 639798

Ma Yong Sheng,

Project Leader,

QuickMould Development Team,

Gintic Institute of Manufacturing Technology,

71 Nanyang Drive,

SINGAPORE 638075.

Tor Shu Beng

Associate Professor

School of Mechanical and Production Engineering

Nanyang Technological University

Nanyang Avenue

SINGAPORE 639798

INTRODUCTION

Gintic Institute of Manufacturing (Gintic), Nanyang

Technological University and the National Computer

Board (Singapore) have been involved in developing a

commercial Object Oriented (OO) software product for

the last three years. The product is CAD software for

designing plastic injection moulds; it is called

QuickMould. One of the objectives of this project was to

develop a capability in Singapore to undertake

commercial, OO, CAD/CAPP software development

projects. We chose Unigraphics (UG) as our platform

because it has an extensive development toolkit and

Unigraphics Solutions provide very good support. A

major disadvantage in building on top of UG is it is not

Object Oriented, although the development toolkit does

support C and C++ compilers.

In this paper, we share our experience in building up an

OO development team and environment using the UG

CAD platform. It should be noted that we write our code

in C++ and initially we were developing solely on

HPUX. We now have the capability to develop on either

HPUX or Windows NT.

SOFTWARE PROCESS METHODOLOGY

Object Oriented Pte. Ltd. (OOPL), an Australian

company, has developed a full lifecycle, object-oriented,

software engineering process suitable for commercial

software development. It is called Mentor
TM
. Mentor

was chosen for our project because it is a full lifecycle

methodology and allows incremental and iterative

software development.

A software engineering process is a time-sequenced set of

process units that is used to transform a user’s

requirements into a software system. Mentor’s software

engineering process covers the development of object-

oriented software systems, from initiation to deployment.

It encompasses all aspects of the software engineering

process, including requirements gathering, system design,

implementation, testing, project management and quality.

Mentor also provides the key elements required for ISO

9000 quality accreditation and has been used by a

number of organisations as part of their overall quality

system.

Figure 1 shows the underlying principles and constructs

used within Mentor, arranged as a set of building blocks.

Presented on Unigraphics User Group 1999 Spring Conference: Managing design evolution, March 14-18, Newport Beach, California, USA

2

The foundation of Mentor is the set of fundamental

Object Oriented concepts; for example, class, object,

inheritance, etc. The next level is the infrastructure and

software development languages that enable

implementation of the concepts.

The third level, also built on the fundamental concepts, is

a set of techniques that detail the tasks and guidelines for

constructing models. Mentor incorporates a number of

techniques derived from other OO methods including

Booch, the Object Modelling Technique, Object Oriented

Software Engineering, Responsibility Driven Design and

MOSES. Mentor’s techniques are notation independent.

This pragmatic approach makes it possible to use a

number of different graphical notations within Mentor, as

long as the underlying concepts supported by the notation

are defined by Mentor.

The techniques need to be packaged as process units

before they are useful for commercial development

projects. Process units make the techniques robust and

usable in industrial settings by providing such things as

deliverables templates, resources requirements and

review guidelines. They are the reusable building blocks

of industrial strength approaches. In short, process units

provide the activities, guidelines and tasks that are

applied within a software engineering process that is used

to execute a software project.

The version of Mentor we used provided definitions for

17 process units: software lifecycle model, concept

exploration, progamme development, requirements

modelling, alternative evaluation, user interface

modelling, system modelling, sub-system modelling,

component modelling, repository modelling, prototyping,

acceptance testing, installation, post deployment review,

retirement, project management and quality assurance.

The process units are executed within the framework of a

lifecycle (next level in Figure 1) and the lifecycle is

defined by a software engineering process, which is

defined within an architecture (top level).

In 1996, one software engineering process, known as

M-SEP1, was defined within Mentor. It consists of three

related software lifecycles:

• Programme Lifecycle

• Product Lifecycle

• Project Lifecycle

The relationship between these software lifecycles is

shown in Figure 2. Essentially, the Programme Lifecycle

consists of a set of projects, each of which undergoes a

Project Lifecycle. The software lifecycles are briefly

described below.

Figure 1: The fundamental principles underlying Mentor.

SEPA

SEP

Software Lifecycles

Process Units

Object Oriented Techniques

Object Oriented Technology

Object Oriented Concepts

Software Engineering Process Architecture:

A framework to guide the development of

“Software Engineering Processes”.

Software Engineering Process:

A defined sequence of processes within

specific lifecycles.

Fundamental underlying concepts

e.g. classes, objects.

Infrastructures, frameworks, class

libraries, CORBA, MFC, C++,

Smalltalk.

A set of practices & principles to develop

some output, e.g., object modelling, CRC

carding, scenario analysis.

Program, product, & project lifecycles.

Industrial strength set of activities that

transform inputs to outputs e.g. requirements

modelling.

Presented on Unigraphics User Group 1999 Spring Conference: Managing design evolution, March 14-18, Newport Beach, California, USA

3

In large projects there are often many individual projects

that are in some way centrally co-ordinated or managed.

A coherent and related set of projects is known as a

programme of work. A Programme Lifecycle is a

software lifecycle that defines a series of phases for such

a programme of work. A Programme Lifecycle therefore

encompasses a set of projects and may last for many

years. It consists of the following phases:

• Overall Programme Definition

• Development Programme

• Post Programme Review

A software system usually has a life-span longer than the

individual project that created it. Some software systems

may have a very long life-span during which they are

modified, enhanced and patched. The complete life-span

of a software system is modelled within M-SEP1 as the

Product Lifecycle. The Product Lifecycle describes the

entire life-span of a software system from initial

development through to decommissioning. It consists of:

• Major Software Releases

• Minor Software Releases

• Patch Software Releases

• Decommissioning

Each project undertaken on a software system follows a

software lifecycle called the Project Lifecycle. The

Project Lifecycle defines the phases and software

processes for developing a software system from

initiation to deployment. It consists of the following

phases:

• Project Initiation

• Business Investigation

• System Definition

• Development

• System Acceptance

• Deployment and Review

We used the Project Lifecycle for our project.

SOFTWARE DEVELOPMENT ENVIRONMENT

All software development requires a development

environment. You can develop team-based, OO

applications using the Microsoft Integrated Development

Environment (IDE). In 1996 when we looked at IDE, we

found that it supported version control but was not really

efficient for structured builds, although this could be

done. To guarantee code quality you also need additional

tools for memory checking and code coverage.

Product

Lifecycle

Project

Lifecycle

Major Software

 Release

Minor

Software

Release

Decomissioning

Patch
Software
Release

Patch
Software
Release

Overall

Programme

Definition

Development Programme

Programme

Lifecycle

Project

Initiation
Business

Investigation
System

Definition
Development

System

Acceptance

Deployment

and

Review

Post

Programme

Review

Project 1

Project 2

Project 3

Figure 2: Software lifecycles of Mentor’s software engineering process (M-SEP1).

Presented on Unigraphics User Group 1999 Spring Conference: Managing design evolution, March 14-18, Newport Beach, California, USA

4

For several reasons (not relevant to this paper) we chose

to develop on HPUX. As Mentor is based on component

modelling, we needed to set up a development

environment to support this. The key issues we

addressed were:

• Version Control and Automatic Builds: For version

control and automatic builds we used CVS and

makeit (both freeware) which were customised for us

by OOPL. Initially we developed on HPUX and

then ported across to the other operating platforms.

We can now do automatic, structured builds on

HPUX, Sun Unix and Windows NT. It should be

noted our development environment is capable of

handling digital documents (e.g. requirement

specifications) as well as code.

• Support Tools: The UG development environment

has some unusual features. We had no success in

getting commercial support tools to work with UG

on the Unix operating system. We finally managed

to get NuMega BoundsChecker (Visual C++ edition)

to work in the Windows NT environment. So now

we develop on Windows NT and then port from

there. Currently we are in the process of

implementing NuMega TrueCoverage.

• Code Standards: The HPUX compiler is very

forgiving, but Windows NT is not. So if you are

programming for multiple platforms then it is

advisable to base your C++ programming standards

on Windows NT.

LESSONS LEARNT

We started our project with a team of 5 people who had

no OO experience at all. Thus we had to train the team in

OO concepts, C++ programming, Mentor and the UG

toolkit. This was a major challenge. OOPL were

contracted to provide the following: Mentor manuals,

training in Mentor, training in C++ programming,

Mentors to assist us in implementing Mentor and sub-

contract programming. Some lessons we learnt are:

• Architecture: As UG is not Object Oriented it is

necessary to provide an interface between the UG

database and the main OO program. This can be

done two ways depending on the circumstances. The

first and easiest method is simply to provide

interface objects to write to and read from the UG

database. The second method is to build an OO

infrastructure on top of UG. This is what we did

because we wanted a platform technology that could

be used to develop applications over different

application domains.

• Incremental and Iterative Development: Normally

incremental and iterative development is used as a

strategy for delivering the software to a client. As

our team was new to OO and Mentor, we decided to

use this approach for training. We took a small part

of the project and used it as a mini-project in order

to take the team through one project lifecycle

(excluding testing and deployment). This was very

successful because it helped the team relate the

requirement specifications and system models to the

C++ code. We recommend this approach if you are

new to OO.

• Learning Takes Time: One of the very painful

lessons we learnt was that the learning curve was

much longer than we anticipated. It has taken our

team about 2 years to develop expertise in

requirements modelling, system modelling,

component modelling, C++ and UG API’s.

• Discipline is Vital for Team-based Projects: All

team-based projects require discipline to ensure

project deadlines are met and software quality. We

could not have achieved the results we did without

the discipline provided by Mentor.

• Team Organisation: A common practice for OO

development projects is to have a GUI specialist to

do all the user interface design and coding. We tried

this approach during our min-project, but found that

it was not suitable because of overloading of the

specialist. CAD application development is very

interactive and it is better for each developer to

develop the interface as part of his or her component.

It is necessary to enforce GUI standards if this is

done, otherwise components will not have the same

look and feel.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions of the

other QuickMould team members, especially, Dr. Lee

Eng Wah, Group Manager, MIT Division, Gintic, who is

also the project manager for the project; and Jason Cheng

and Lee Han Boon.

The authors also gratefully acknowledge the National

Computer Board (Singapore), which funded the project,

and Object Oriented Pte. Ltd., which provided the

software process support.

