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Abstract. This paper is a continuation to our work [20] concerning the persistence of lower
dimensional tori on resonant surfaces of a multi-scale, nearly integrable Hamiltonian system.
This type of systems, being properly degenerate, arise naturally in planar and spatial lunar

problems of celestial mechanics for which the persistence problem ties closely to the stability

of the systems. For such a system, under certain non-degenerate conditions of Rüssmann type,
the majority persistence of non-resonant tori and the existence of a nearly full measure set of

Poincaré non-degenerate, lower dimensional, quasi-periodic invariant tori on a resonant surface
corresponding to the highest order of scale is proved in [6] and [20], respectively. In this work,
we consider a resonant surface corresponding to any intermediate order of scale and show the

existence of a nearly full measure set of Poincaré non-degenerate, lower dimensional, quasi-
periodic invariant tori on the resonant surface. The proof is based on a normal form reduction

which consists of a finite step of KAM iterations in pushing the non-integrable perturbation to

a sufficiently high order and the splitting of resonant tori on the resonant surface according to
the Poincaré-Treshchev mechanism.

1. Introduction

With respect to the symplectic structure dx ∧ dy on Tn × Rn, we consider a multi-scale, real
analytic, nearly integrable Hamiltonian system of the form

H(x, y, ε) = H0(yn0) + εm̄1H1(yn1) + · · ·+ εm̄αHα(ynα) + εm̄α+1P (x, y, ε),(1.1)

where x = (x1, · · · , xn)> ∈ Tn, y = (y1, · · · , yn)> ∈ G with G ⊂ Rn being a bounded closed
region, ε > 0 is a small parameter, α, ni, m̄j , i = 0, 1, · · · , α, j = 1, 2, · · · , α + 1, are positive
integers such that n0 ≤ · · · ≤ nα := n, m̄1 < m̄2 < · · · < m̄α < m̄α+1, yni = (y1, · · · , yni)

>,
i = 0, 1, · · · , α, and the perturbation P depends on ε smoothly. We note that ynα = y.

Multi-scale, nearly integrable Hamiltonian systems of the form (1.1) are rooted in many problems
of celestial mechanics, for instance, the restricted three-body problem coupling two massive bodies
with a body of very small mass. The multiple scales are due to the significant differences in masses
and distances between the bodies. Averaging and normalization techniques lead to a Hamiltonian
of the form (1.1) which is nearly integrable but admits properly degeneracy in the integrable part
(see e.g. [2, 13, 14, 15, 18]). Indeed, all terms Hi, i = 0, 1, · · · , α−1, in (1.1) only depend on parts
of the action variables.
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The majority persistence of quasi-periodic invariant tori in a multi-scale, nearly integrable sys-
tem like (1.1) is an important problem concerning the (metric) stability of the system. The two-
scale case was first studied by Arnold in [1] under a degeneracy-removing condition that H0 + εH1

satisfies either Kolmogorov or iso-energetic non-degenerate condition. The case of general scales
was treated in a recent work of Han, Li, and Yi [6] under the following degeneracy-removing
condition of Bruno-Rüssman type:

A∗) There is a positive integer N such that

Rank{∂l
yΩ∗(y) : 0 ≤ |l| ≤ N} = n, ∀ y ∈ G,

where

(1.2) Ω∗(y) =: (∇ŷn0 H0(yn0),∇ŷn1 H1(yn1), · · · ,∇ŷnα Hα(ynα))>,

ŷn0 = yn0 , ŷni = (yni−1+1, · · · , yni
)>, ∇ŷni denotes the gradient with respect to ŷni , for each

i = 1, 2, · · · , α respectively, and the matrix {∂l
yΩ∗(y) : 0 ≤ |l| ≤ N} consists of coefficients of

simultaneous Taylor expansions of components of Ω∗(·) at y up to order N .

We refer the reader to [15] and references therein for applications of the main result in [6] to
the stability problem of certain spatial three body problems.

Like in the case of standard nearly integrable Hamiltonian systems, an important approach
in studying the existence of quasi-periodic motions in the resonant zone of a multi-scale, nearly
integrable Hamiltonian system is to show the persistence of lower dimensional, quasi-periodic
invariant tori split from resonant ones according to the Poincaré-Treshchev mechanism (see [9, 10,
19]). More precisely, consider the integrable part of (1.1):

Nε(y) = H0(yn0) + εm̄1H1(yn1) + · · ·+ εm̄αHα(ynα),

and set

(1.3) ω∗ε (y) =: ∇Nε(y) = (ω∗,n0
ε (y), εm̄1 ω̂∗,n1

ε (y), · · · , εm̄α , ω̂∗,nα
ε (y))>.

To work with a fixed resonant type, we let g be a subgroup of Zn, called resonant group, and
consider the g-resonant surface

O0(g, G) = {y ∈ G : 〈k̂nj , ∇ŷnj Hi(y)〉 = 0, 0 ≤ j ≤ i ≤ α, k ∈ g},(1.4)

where for each k = (k1, · · · , kn)> ∈ g, k̂n0 = (k1, · · · , kn0)
> and k̂nj = (knj−1+1, · · · , knj )

>, j =
1, · · · , α. We note that if y ∈ O0(g, G), then 〈k, ω∗ε (y)〉 = 0, k ∈ g, and thus, for any ε > 0, ω∗ε (y)
is a resonant frequency vector of resonant type characterized by g.

In [20], we have treated the case that resonance occurs at the highest ε-order term Hα of the
integrable part. Under a non-degenerate condition on O0(g, G) resembling A∗), we showed the
majority persistence of Poincaré non-degenerate sub-tori on the resonant surface O(g, G), where
g = {0} ⊕ ĝα with ĝα being a subgroup of Znα−nα−1 .

In this work, we pay attention to the more general case that resonance occurs among some lower
ε-order terms HI+1, · · · ,Hα, where 0 ≤ I < α is a fixed integer such that

A1) nI < nI+1 in (1.1).

To characterize resonances among the last (nα − nI)-components of the frequency map ω∗ε (y),
we restrict the resonant group g to the form

g = {0} ⊕ ĝI+1 ⊕ · · · ⊕ ĝα,
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where for each j = 1, · · · , α − I, ĝI+j ⊂ ZnI+j−nI+j−1 is a subgroup of ZnI+j−nI+j−1 . Then each
k ∈ g can be expressed as k = (0, k̂nI+1 , · · · , k̂nα)>, where k̂nI+j ∈ gI+j , j = 1, · · · , α− I, and the
g-resonant surface O0(g, G) becomes

O(g, G) = {y ∈ G : 〈k̂nI+j ,∇ŷnI+j Hi(y)〉 = 0, ∀k̂nI+j ∈ ĝI+j , I < I + j ≤ i ≤ α}.
If there exists 1 ≤ j0 < α− 1 such that nI+j0 = nI+j0+1, then we take ĝI+j0+1 = ∅ and

g = {0} ⊕ ĝI+1 ⊕ · · · ⊕ ĝI+j0 ⊕ ĝI+j0+2 ⊕ · · · ⊕ ĝα.

In this case, the g-resonant surface becomes

O1(g, G) = {y ∈ G : 〈k̂nI+j ,∇ŷnI+j Hi(y)〉 = 0,

∀k̂nI+j ∈ ĝI+j , i ≥ I + j, 1 ≤ j ≤ α− I, j 6= j0 + 1}.

Let K̂I+1
2 = (τ̂nI+1, · · · , τ̂nI+d1) be an (nI+1 − nI) × d1 integral matrix whose columns form

the basis of gI+1, and let K̂I+1
1 = (ι̂nI+1, · · · , ι̂nI+m1) be an (nI+1 − nI) × m1 integral matrix

such that det(K̂I+1
1 , K̂I+1

2 ) = 1, where m1 + d1 = nI+1 − nI . For each j = 2, 3, · · · , α − I, also
let K̂I+j

2 = (τ̂nI+j−1+1 · · · τ̂nI+j ) be an (nI+j − nI+j−1)× (nI+j − nI+j−1) integral matrix whose
columns consist of a basis of ĝI+j . Clearly, K̂I+j

2 is of the full rank nI+j − nI+j−1.

We make the following assumptions:

A2) In the case nI+1 < nI+2, HI+1 is ĝI+1-non-degenerate on O(g, G), i.e., ∀y ∈ O(g, G),

det (K̂I+1
2 )>

∂2HI+1

∂(ŷnI+1)2
(y)K̂I+1

2 6= 0,

det
∂2HI+j

∂(ŷnI+j )2
(y) 6= 0, j = 2, · · · , α− I.

In the case nI+1 = nI+2 < nI+3, either HI+1 or HI+2 is ĝI+1-non-degenerate on O(g, G)
and for any y ∈ O(g, G),

(1.5) det
∂2HI+j

∂(ŷnI+j )2
(y) 6= 0,

j = 3, · · · , α− I.

The consideration of the second case above is motivated by the example in Section 5.

Remark 1.1. For each j = 2, · · · , α−I, if ĝI+j is of the full rank nI+j−nI+j−1, then the condition
(1.5) implies that

det (K̂I+j
2 )>

∂2HI+j

∂(ŷnI+j )2
(y)K̂I+j

2 6= 0, ∀y ∈ O(g, G),

i.e., each HI+j is ĝI+j-non-degenerate.

Denote

K̂2 =




K̂I+1
2 0 · · · 0
0 K̂I+2

2 · · · 0
· · · · · ·
0 0 · · · K̂α

2




(n−nI)×d

, K̂1 =




K̂I+1
1

0
...
0




(n−nI)×m1

,

and
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K1 =
(

I O

O K̂1

)

n×m

, K2 =
(

O

K̂2

)

n×d

, K0 = (K1,K2),

where d =: n− nI+1 + d1, m =: nI + m1. Then the g-resonant surface can be expressed as

O(g, G) = {y ∈ G : 〈k̂nI+j ,∇ŷnI+j Hi(y)〉 = 0, ∀k̂nI+j ∈ ĝI+j , I < I + j ≤ i ≤ α}
= {y ∈ G : K>

2 Ω∗(y)〉 = 0}.
We note that under conditions A1) and A2), the map K>

2 Ω : G → Rd is of maximal rank, and
consequently, O(g, G), as the kernel of this map, is a m-dimensional, real analytic sub-manifold of
G.

We also assume the following non-degenerate condition of Bruno-Rüssman type:

A3) There is a positive integer N such that

Rank{∂l
yK>

1 Ω∗(y); 0 ≤ |l| ≤ N} = m, ∀ y ∈ O(g, G).

The subgroup g induces a symplectic transformation which uniquely determines the following
splitting of resonant tori T ε

y :

y → y, x →
(

ϕ

ψ

)
∈ Tm × Td,

where (
ϕ

ψ

)
= K>

0 x.

Under the new coordinate, the unperturbed motion of (1.1) becomes



ϕ̇ = ωε(y),
ψ̇ = 0,
ẏ = 0,

where

ωε(y) = K>
1 ω∗ε (y) = (ω0

ε(y), · · · , εm̄I ω̂I
ε(y), εm̄I+1 ω̂I+1

ε (y))>.(1.6)

It follows that for each y ∈ O(g, G), the resonant torus T ε
y is foliated into invariant m-tori

T ε
y (ψ) = Tm × {ψ} × {y}, ψ ∈ Td

with linear flows {ϕ0 + ωε(y)t} × {ψ} × {y}.

With respect to the multi-scale Hamiltonian (1.1), we now introduce degeneracy-removing con-
ditions of Poincaré-Treshchev type, similarly to the case of standard nearly integrable Hamiltonian
systems ([10, 19]). Consider h0 : Td ×O(g, G) → R:

h0(ψ, y) =
∫

Tm

P̃ (ψ, ϕ, y)dϕ,

where

P̃ (ψ, ϕ, y) = P ((K>
0 )−1

(
ϕ

ψ

)
, y, 0).

For each y ∈ O(g, G), a m-torus T ε
y (ψ) of the unperturbed system is said to be Poincaré non-

degenerate if ψ is a non-degenerate critical point of h0(·, y), i.e., ∂h0
∂ψ (ψ, y) = 0 and ∂2h0

∂ψ2 (ψ, y) is
non-singular. By the implicit function theorem, if there exists one Poincaré non-degenerate m-
torus, then in its neighborhood there is an analytic family of them. Thus, instead of assuming the
existence of one such torus, we assume the following condition:
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A4) There is a real analytic function ψ : O(g, G) → Td such that T ε
y =: T ε

y (ψ(y)) is a Poincaré
non-degenerate m-torus for each y ∈ O(g, G).

We will show that Poincaré non-degeneracy is an important mechanism for the majority persis-
tence of these m-tori on O(g, G). We refer this mechanism as the Poincaré-Treshchev mechanism
because it was first discovered by Poincaré for the maximal resonance and generalized by Treshchev
for general resonances, in standard nearly integrable Hamiltonian systems.

Let b =: 24d2(N + 1), d = rank g, and N be as in A3). Our main result states as follows.

Main Theorem. Assume the condition A1) and let g be a resonant group satisfying conditions
A2) - A4). Then there exist an ε0 > 0 sufficiently small and Cantor sets Oε ⊂ O(g, G), 0 < ε < ε0

with |O(g, G) \ Oε| = O(ε
ι

2bN ) for some fixed constant 0 < ι < 1
3 such that for each 0 < ε < ε0 the

Hamiltonian(1.1) admits a CN−1 Whitney smooth family of quasi-periodic, invariant m-tori T̂ ε
y ,

y ∈ Oε. Moreover, for each y ∈ Oε and 0 < ε < ε0, T̂ ε
y and its frequency vector are only slightly

deformed from those of the unperturbed Poincaré non-degenerate m-torus T ε
y .

Remark 1.2. (1) We note that the Main Theorem actually holds when the Hamiltonian (1.1) is
of the class C∞. The proof follows from our proof in Section 3 and Section 4 with more derivative
estimates involved.

(2) The Main Theorem also holds on a sub-manifold M of G if the condition A2)-A4) are
assumed to hold on M instead. In particular, if M is taken as an energy surface {H0 = h0, H1 =
h1, · · · , Hα = hα}, then the Main Theorem will lead to a persistence result for lower-dimensional
tori in the iso-energetic case. To prove such result on a sub-manifold M , one applies the same
iterative scheme in this paper with M in place of G then uses the measure estimate on a sub-
manifold contained in [4]. We note that the validity of assumptions A2)-A4) on M now depends
on both choices of sub-manifold M and resonant group g, which can be a non-trivial matter in
applications.

The proof of the above result uses the approaches of our early work [20] but involves more
complicated technical treatments. In Section 2, we reduce (1.1) to a resonant-splitting normal
form containing multi-scale tangential frequencies, i.e., for each ξ ∈ O(g, G),

H(x, y, z, ξ, ε)

= eε(ξ) + 〈ωε(ξ), y〉+
δ

2
〈
(

y

z

)
, εm̄I+1M(ξ, ε)

(
y

z

)
〉+ δh(y, ξ, ε) + δεm̄αP (x, y, z, ξ, ε),

where (x, y, z) ∈ Tm × Rm × R2d, δ = ε
m̄α+1−m̄α

2 . Unlike the case of a standard nearly integrable
Hamiltonian system considered in [9] - [11], the appearance of the multi-scale frequency vector
ωε is a major obstacle for standard KAM iterations to apply because in order to carry out such
iterations small divisor conditions on ωε require that the perturbation is of at least an order of
O(ε2(N+6)c∗), where

c∗ =
α∑

i=1

m̄i(ni − ni−1),

which needs not be the case in many applications (see the examples in [14] or Section 5 of this
paper). Thus, in Section 3, we perform a finite step of iterations to the resonant-splitting normal
form to obtain an improved Hamiltonian with the new perturbation in a desired order. This
finite step of iterations is carried out using small divisor conditions relating to the ε-independent
frequency map Ω∗ in order to have concrete controls of sizes of both phase and frequency domains.
We note that if the perturbation in the original Hamiltonian is already in the order of O(ε2(N+6)c∗)
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(see e.g., [3]), then a finite step of quasi-linear iterations is not necessary and the excluding measure
for the persistence of invariant, quasi-periodic, m-dimensional tori can be improved to an order of
O(ε

12c∗
N ).

The rest sections are organized as follows. In Section 4, we apply the standard KAM iterations
to the improved normal form to complete the proof of Main Theorem. In Section 5, we adopt
a multi-scale, nearly integrable celestial system of 3-degree of freedom from [14, Section 4.4] to
show the validity of conditions A1)-A3) on certain resonant surfaces. We left the condition A4)
unchecked because of the unavailability of an explicit perturbation. We remark that, as a generic
condition, the condition A4) is satisfied by generic perturbations. It should also be largely satisfied
by particular perturbations which are not highly degenerate, simply because of the freedom of
choosing resonance types in verifying this condition.

Through the rest sections, we let g be the resonant group considered in the Main Theorem. We
use the symbol | · | to denote absolutely value for constant, vector norm and matrix norm induced
by vector norm and the Lebesgue measure of a set. Also, we use | · |D to denote the sup-norm of
vector or matrix functions on a domain D and for each r, s > 0,

D(r, s) = {(x, y, u, v) ∈ Tm × Cm × Cd × Cd : |Im x| < r, |y| < s, |z| < s}
denotes a complex neighborhood of Tm × {0} × {0} × {0}.

2. Normal form

In this section, we reduce the Hamiltonian (1.1) into a resonant-splitting normal form near the
family of Poincaré non-degenerate m-tori T ε

ξ , ξ ∈ O(g, G). Firstly, we expand the Hamiltonian
(1.1) at each ξ ∈ O(g, G) and obtain the following parametrized Hamiltonian

H(x, y, ε)

= 〈ω∗ε (ξ), y − ξ〉+
1
2
〈Γ̂(ξ, ε)(y − ξ), y − ξ〉+ εm̄α+1P (x, y, ε) + O(|y − ξ|3)(2.1)

up to the omission of a constant, where ω∗ε (ξ) is of the form (1.3). For each j = 0, 1, · · · , α, denote
ξnj = (ξ1, · · · , ξnj )

>, ξ̂nj = (ξnj−1+1, · · · , ξnj )
>, where ξn0 = ξ̂n0 and ξnα = ξ. Then the matrix

Γ̂(ξ, ε) in (2.1) can be expressed as

Γ̂(ξ, ε) = Γ̂0(ξn0) + · · ·+ εm̄α Γ̂α(ξnα),

where

Γ̂i(ξni) =

(
∂2Hi

∂yni2 (ξni) 0
0 0

)

n×n

, i = 0, 1, · · · , α.

Denote

Γ̂i,j(ξni) =:
∂2Hi

∂(ŷni)2
(ξni), j = 0, 1, · · · , α.

Then, for each j = 0, 1, · · · , α, the matrix Γ̂i(ξni) can be rewritten as

Γ̂i(ξni) =




Γ̂i,1(ξni) ∗ · · · ∗
∗ Γ̂i,2(ξni) · · · ∗ O
... · · · . . .

...
∗ ∗ · · · Γ̂i,i(ξni)

O O




n×n

, ∀ 0 ≤ i ≤ α,
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where ∗ denotes constant matrices independent of ε and O denotes zero matrices of appropriate
dimension.

Secondly, we consider the linear symplectic transformation

y − ξ = K0p,

q = K0
>x,(2.2)

under which the Hamiltonian (2.1) becomes

H̄(p̄, p, q, ξ, ε)

= 〈ωε(ξ), p̄〉+
1
2
〈Γ̄(ξ, ε)p, p〉+ εm̄α+1 P̂ (p, q, ξ, ε) + O(|p|3),(2.3)

where p̄ is first m-components of p, ωε(ξ) = K>
1 ω∗ε (ξ) is as in (1.6), Γ̄(ξ, ε) = K0

>Γ̂(ξ, ε)K0, and
P̂ (q, p, ξ, ε) = P ((K0

>)−1q, ξ + K0p, ε). Rewrite Γ̄(ξ, ε) as

Γ̄(ξ, ε) = Γ̄0(ξn0) + · · ·+ εm̄α Γ̄0(ξnα),

where Γ̄i(ξni) = K>
0 Γ̂i(ξni)K0, i = 0, 1, · · · , α. For each i = 0, 1, · · · , α, we further express Γ̄i(ξni)

as

Γ̄i(ξni) =
(

Γ̄11
i Γ̄12

i

Γ̄21
i Γ̄22

i

)
,

where Γ̄11
i , Γ̄12

i , Γ̄21
i , Γ̄22

i are m ×m, m × d, d ×m, d × d blocks, respectively. It is easy to see
that Γ̄12

i , Γ̄21
i , Γ̄22

i are zero matrices for each i = 0, 1, · · · , I.

For each i = I + 1, · · · , α, we have

Γ̂22
i =




Γ̄i,I+1 ∗ · · · ∗
∗ Γ̄i,I+2 · · · ∗ O
...

...
. . .

...
∗ ∗ · · · Γ̄i,i

O O




d×d

,

where ∗ denote constant matrices independent of ε and O denote zero matrices of appropriate
dimension. More specifically, Γ̄i,I+j = (K̂I+j

2 )>Γ̂i,I+jK̂
I+j
2 , for i = I + 1, · · · , α, j = 1, · · · , i.

Let p = (p̄, pd)> ∈ Rm × Rd and q = (ϕ,ψ)>. The Hamiltonian (2.3) then becomes

H(ϕ,ψ, p̄, pd, ξ, ε) = 〈ωε(ξ), p̄〉+
1
2
〈εm̄I+1Γ(ξ, ε)p, p〉

+h(p̄, pd, p, ξ, ε) + εm̄α+1 P̄ (ϕ,ψ, p̄, pd, ξ, ε),(2.4)

where

Γ(ξ, ε) =
(

O Γ12(ξ, ε)
Γ21(ξ, ε) Γ22(ξ, ε)

)

n×n

,(2.5)

Γı(ξ, ε) = Γ̄ı
I+1 + εm̄I+2−m̄I+1 Γ̄ı

I+2 + · · ·+ εm̄α−m̄I+1 Γ̄ı
α , (ı) = (12), (21), (22),(2.6)

h(p, ξ, ε) = h1(p̄, ξ, ε) + h2(p, ξ, ε),(2.7)

h1(p̄, ξ, ε) = O(|p̄0|2 + · · ·+ εm̄I |p̄I |2 + εm̄I+1 |p̄|2),
h2(p, ξ, ε) = O(εm̄I+1 |(p̄, pdI+1)|3 + · · ·+ εm̄α |(p̄, pdα)|3),

p̄j = (p1, · · · , pnj
)>, j = 0, 1, · · · , I,

pdI+j = (pm+1, · · · , pnI+j
), j = I + 1, · · · , α, pdα = pd,

P̄ (ϕ,ψ, p̄, pd, ξ, ε) = P̂ (ϕ,ψ + ψ(ξ), p̄, pd, ξ, ε).
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As to be seen later, lower order terms h(p, ξ, ε) will play an important role during the finite KAM
iterations, since they simply cannot be included in the perturbation.

Rewrite the matrix Γ22(ξ, ε) as


Γ̄I+1,I+1 + O(ε) O(εm̄I+2−m̄I+1) · · · O(εm̄α−m̄I+1)
O(εm̄I+2−m̄I+1) εm̄I+2−m̄I+1(Γ̄I+2,I+2 + O(ε)) · · · O(εm̄α−m̄I+1)

...
...

. . .
...

O(εm̄α−m̄I+1) O(εm̄α−m̄I+1) · · · εm̄α−m̄I+1 Γ̄α,α




d×d

.

Then it is easy to verify that

det Γ22(ξ, ε) = ε
Pα

j=1(m̄I+j+1−m̄I+j)nj (
∏

I+1≤I+j≤α

det Γ̄I+j,I+j − o(ε)),

where “O, o” are asymptotic orders involving constants depending on ε. Since by A2) and Re-
mark 1.1, all sub-matrices {Γ̄I+j,I+j} are non-singular, we deduce that Γ22(ξ, ε) is non-singular for
all ξ ∈ O(g, G), as ε sufficiently small.

Denote

Ωε(ξ) = (ω0
ε(ξ), · · · , ω̂i

ε(ξ), · · · , ω̂I+1
ε (ξ))>, ξ ∈ O(g, G),(2.8)

where ωi
ε, i = 0, 1, · · · , I + 1, are as in (1.6). Then

(2.9) ∂l
ξΩε(ξ) = ∂l

ξK
>
1 Ω∗(ξ) + O(ε), l = 0, 1, · · · , N, ξ ∈ O(g, G),

where Ω∗ is as in (1.2). For fixed positive constants γ0, τ > max{m(m + 1) − 1, N(N + 1) − 1},
consider sets

Λε = {ξ ∈ O(g, G) : |〈k,Ωε(ξ)〉| > γ0

|k|τ , ∀0 6= k ∈ Zm}, 0 < ε ¿ 1.

It follows from A3), (2.9) and the standard measure estimate under Rüssmann conditions ([21, 22])
that

(2.10) |O(g, G) \ Λε| = O(γ
1
N
0 ).

Next, we separate the first-order resonant terms from the perturbation P̄ . For each ξ ∈ Λε,
expand P̄ as

P̄ (ϕ,ψ, p, ξ, ε) =
∑

k∈Zm

hk(ψ, ξ)e
√−1〈k,ϕ〉 + O(|p|2)

= h0(0, ξ) +
1
2
〈ψ, Γ̃(ξ)ψ〉+

∑

k∈Zm\{0}
hk(ψ, ξ)e

√−1〈k,ϕ〉

+O(|p|2) + O(|ψ|3),(2.11)

where Γ̃(ξ) = ∂2h0
∂ψ2 (ξ) and hk(ψ, ξ) =

∫
Td P̄ (ϕ,ψ, 0, ξ)e

√−1〈k,ϕ〉dϕ, k ∈ Zn. Consider

Sξ
ε (q, Y ) = 〈Y, q〉+ εm̄α+1

∑

k∈Zm\{0}
Ske

√−1〈k,ϕ〉, ξ ∈ Λε,

where Sk =
√−1hk(ψ,ξ)
〈ωε(ξ),k〉 , k ∈ Zn. Then {Sξ

ε} generates the following Whitney smooth family of real
analytic, symplectic transformations on (Tm × Rd)× Rn:

(q, p) = (ϕ,ψ, Y ) : q =
∂Sξ

ε (q, Y )
∂Y

, p =
∂Sξ

ε (q, Y )
∂q

, ξ ∈ Λε.
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More specifically, we have

p̄ = Ȳ +
√−1εm̄α+1

∑

k∈Zm

kSke
√−1〈k,ϕ〉 = Ȳ + O(εm̄α+1),

and
pd = Y d +

√−1εm̄α+1
∑

k∈Zm\{0}

1
〈k, ωε(ξ)〉

∂hk

∂ψ
e
√−1〈k,ϕ〉 = Y d + O(εm̄α+1),

where Y = (Ȳ , Y d)> ∈ Rm×Rd. Under this family of symplectic transformations, the Hamiltonian
(2.4) becomes

H(ϕ,ψ, Ȳ , Y d, ξ, ε)

= 〈ωε(ξ), Ȳ 〉+
1
2
〈εm̄I+1Γ(ξ, ε)Y, Y 〉+

1
2
〈εm̄α+1 Γ̃ψ, ψ〉

+h(Y, ξ, ε) + O(εm̄α+1 |Y |2) + O(ε2m̄α+1) + O(εm̄α+1 |ψ|3).

Finally, the rescaling Y → ε
m̄α+1−m̄α

2 Y yields that

H̃ =
H(ϕ,ψ, ε

m̄α+1−m̄α
2 Ȳ , ε

m̄α+1−m̄α
2 Y d, ξ, ε)

ε
m̄α+1−m̄α

2

= 〈ωε(ξ), Ȳ 〉+
ε

m̄α+1−m̄α
2

2
〈εm̄α Γ̃ψ, ψ〉+ ε

m̄α+1−m̄α
2 〈εm̄I+1Γ(ξ, ε)Y, Y 〉+ ε

m̄α+1−m̄α
2 h(Y, ξ, ε)

+O(εm̄α+1+
m̄α+1−m̄α

2 |Y |2) + O(ε
3m̄α+1+m̄α

2 ) + O(ε
m̄α+1+m̄α

2 |ψ|3).
By replacing ϕ, Ȳ , Y d, ψ, H̃, ε

m̄α+1−m̄α
2 with x, y, u, v, H, δ respectively, we obtain the following

resonant-splitting normal form:

H(x, y, z, ξ, ε) = N + δεm̄αP,(2.12)

where

N = 〈ωε(ξ), y〉+
δ

2
〈
(

y

z

)
, εm̄I+1M(ξ, ε)

(
y

z

)
〉+ δh(y, z, ξ, ε),

M(ξ, ε) =
(

O M12

M21 M22

)

(m+2d)×(m+2d)

,(2.13)

M12(ξ, ε) =
(

Γ12 O
)
m×2d

, M21(ξ, ε) =
(

Γ21

O

)

2d×m

,

M22(ξ, ε) =
(

Γ22 O

O εm̄α−m̄I+1 Γ̃

)

2d×2d

,

h(y, z, ξ, ε) = h1(y, ξ, ε) + h2(y, z, ξ, ε),(2.14)

h1(y, ξ, ε) = O(|y0|2 + · · ·+ εm̄I |yI |2 + εm̄I+1 |y|2),
h2(y, z, ξ, ε) = O(εm̄I+1 |(y, uI+1)|3 + · · ·+ εm̄α |(y, u)|3 + εm̄α |v|3),

yj = (y1, · · · , ynj
)>, j = 0, 1, · · · , I, y = p̄,

uI+j = (pm+1, · · · , pnI+j
), j = 1, · · · , α− I, uα = u = pd,

P (x, y, z, ξ, ε) = O(εm̄α+1−m̄α |(y, u)|) + O(εm̄α+1) + O(|ψ|3),
and Γ12, Γ21 are as (2.6). We note that M22 is non-singular and M>

12 = M21 for each ξ ∈ Λε and
ε sufficiently small. Let 0 < r0 ¿ 1 be fixed and s0 = ε

m̄α+1−m̄α
6 for sufficiently small ε > 0. Then

the normal form (2.12) is real analytic in (x, y, z) ∈ D(r0, s0) and Whitney smooth in ξ ∈ Λε.
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Denote γb
0 = ε

ι(m̄α+1−m̄α)
2 , µ0 = ε

(1−ι)(m̄α+1−m̄α)
2 , where 0 < ι < 1

3 is fixed and b = 24d2(N + 1).
Then we have

|∂l
ξP |D(r0,s0)×Λε

= γb
0s

2
0µ0, ∀l ≤ N.(2.15)

3. Improving the Resonant Splitting Normal Form

In this section, we will perform a finite step of quasi-linear KAM iterations to the normal form
(2.12) in order to push the perturbation to a desired high order. We start from the parametrized
real analytic Hamiltonian (2.12) and re-write it as

H0(x, y, z, ξ, ε)(3.1)

= e0
ε(ξ) + 〈ω0

ε(ξ), y〉+
δ

2
〈
(

y

z

)
, εm̄I+1M0(ξ, ε)

(
y

z

)
〉+ δh0(y, ξ, ε) + δεm̄αP 0(x, y, z, ξ, ε),

where (x, y, z) ∈ D(r0, s0), ξ ∈ Λ0 =: Λε, e0
ε ≡ 0, and ω0

ε =: ωε, M0 =: M , h0 =: h, and P 0 =: P
are as in (1.6), (2.13), (2.14), and (2.15) respectively . In the following, we show the quasi-linear
iteration process from the ν-th step to the ν + 1-th step. For simplicity, we omit the subscript at
the ν-th step and denote the ν + 1 step by +.

Assume that, after the ν-th iterative step, we obtain the following smooth family of real analytic
Hamiltonians

H(x, y, z, ξ, ε)(3.2)

= eε(ξ) + 〈ωε(ξ), y〉+
δ

2
〈
(

y

z

)
, εm̄I+1M(ξ, ε)

(
y

z

)
〉+ δh(y, ξ, ε) + δεm̄αP (x, y, z, ξ, ε),

where (x, y, z) ∈ D(r, s) for some smaller 0 < r < r0, 0 < s < s0, ξ ∈ Λ ⊂ Λ0 ⊂ O(g, G), ωε, M, h
are of the same forms as in (1.6), (2.13), (2.14) respectively, and

|∂l
ξP |D(r,s)×Λ < γbs2µ, |l| ≤ N

for some constant 0 < µ < µ0. For each ξ ∈ Λ, we write

ωε(ξ) = (ω0
ε(ξ), · · · , εm̄i ω̂i

ε(ξ), · · · εm̄I+1 ω̂I+1
ε (ξ))>,

and denote

Ωε(ξ) = (ω0
ε(ξ), · · · , ω̂i

ε(ξ), · · · , ω̂I+1
ε (ξ))>.(3.3)

For the ν + 1-th step, we will find a smooth family of symplectic transformations Φ+, to yield a
new smooth family of real analytic Hamiltonians H+ = H ◦ Φ+ of the same form as (2.12) whose
perturbations P+ are dramatically smaller on new frequency and phase domains.
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Define

r+ =
r

2
+

7
16

r0,

γ+ =
γ

2
+

γ0

4
,

s+ =
1
8
αs, α = µ

1
3 ,

K+ = ([log
1
µ

] + 1)3,

Diα = D(r+ +
i− 1

8
(r − r+),

i

8
αs), i = 1, 2, · · · , 8,

D+ = Dα = D(r+, s+),

D̂(s) = D(r+ +
7
8
(r − r+), s),

Λ+ = {ξ ∈ Λ : |〈k,Ωε(ξ)〉| > γ

|k|τ },

Γ(r − r+) = e
r0
108

∑

0<|k|≤K+

|k|χe−|k|
r−r+

8 ,

where χ = 2(N + 1)(4d2 + 1)τ , τ > n− 1 is fixed.

In the rest of the paper, besides c, ci, i = 0, 1 · · · , 9 are also intermediate constants which are
independent of ε and the iteration process.

3.1. Truncation. For each ξ ∈ Λ, we write the perturbation P into Taylor-Fourier series, i.e.,

P =
∑

k∈Zm,ı, ∈Z+

pkıy
ıze

√−1〈k,x〉.

Let

R =
∑

|k|≤K+

(pk00 + 〈pk10, y〉+ 〈pk01, z〉+ 〈y, pk20y〉+ 〈z, pk11y〉+ 〈z, pk02z〉)e
√−1〈k,x〉

be the truncation of the Taylor-Fourier series of P up to the order K+.

Lemma 3.1. Assume that

(H1)
∫ ∞

K+

td+N+3e−t
r−r+

16 dt ≤ µ.

Then there is a constant c1, such that for any |l| ≤ N , ξ ∈ Λ,

|∂l
ξ(P −R)|D7α

≤ c1γ
bs2µ2, |∂l

ξR|D7α
≤ c1γ

bs2µ.

Proof. See Lemma 3.1 in [11]. ¤
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3.2. Quasi-linear homological equation. For each ξ ∈ Λ+, we will construct a symplectic trans-
formation φ1

F to the Hamiltonian H as the time-1 map of the flow φt
F generated by a Hamiltonian

F of the following form:

F =
∑

0<|k|≤K+

(fk00 + 〈fk10, y〉+ 〈fk01, z〉+ 〈y, fk20y〉

+〈z, fk11y〉+ 〈z, fk02z〉)e
√−1〈k,x〉 + 〈f001, z〉,(3.4)

where fkı are (matrix valued) functions of (ξ, ε) and fk20, fk02 are symmetric for each k. The
transformed Hamiltonian then reads

H ◦ φ1
F = N ◦ φ1

F + δεm̄α(P −R) ◦ φ1
F

= N + {N, F}+ δεm̄αR +
∫ 1

0

{(1− t){N, F}, F} ◦ φt
F dt

+δεm̄α

∫ 1

0

{(1− t)R, F} ◦ φt
F dt + δεm̄α(P −R) ◦ φ1

F

= N + δεm̄α([R]− 〈p001, z〉) + ({N, F}+ δεm̄αR− δεm̄α [R]−Q + δεm̄α〈p001, z〉)(3.5)

+
∫ 1

0

{(1− t){N, F}, F} ◦ φt
F dt + δεm̄α

∫ 1

0

{R, F} ◦ φt
F dt + δεm̄α(P −R) ◦ φ1

F + Q,(3.6)

where [R] =
1

(2π)d

∫

Td

R(x, ·)dx.

To average out the resonant terms among R, we will determine the Hamiltonian F by solving
the following quasi-linear homological equation

(3.7) {N, F}+ δεm̄α(R− [R] + 〈p001, z〉)−Q = 0,

where

Q = −
∑

0<|k|≤K+

〈δεm̄I+1
∂h2

∂z
, J(fk01 + fk11y + fk02z + f>k02z)〉e

√−1〈k,x〉(3.8)

−〈δεm̄I+1
∂h2

∂z
, Jf001〉

which contains all terms in {N, F} of size O(δεm̄αs3µ) and thus can be included in the new
perturbation term. We note that, by introducing the modified term Q, the homological equation
(3.7) modifies the linear equations used in the standard KAM iterative scheme.

Now, if (3.7) is solvable on ξ ∈ Λ+, then the transformed Hamiltonian H ◦φ1
F is of the following

form:

H ◦ φ1
F = N + δεm̄α([R]− 〈p001, z〉) + P̄+,

where

P̄+ = δεm̄α

∫ 1

0

{(1− t)(R− [R] + 〈p001, z〉) + R, F} ◦ φt
F dt + δεm̄α(P −R) ◦ φ1

F(3.9)

+
∫ 1

0

{Q,F} ◦ φt
F dt + Q.

This is the main idea of the quasi-linear KAM scheme.
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3.3. Solving the homological equation. Write M into blocks

M =
(

O M12

M21 M22

)
,(3.10)

where M12, M21, M22 are m × 2d, 2d ×m, 2d × 2d blocks of M respectively. Substituting (3.4),
[R], (3.8) into (3.7), we have

−
∑

0<|k|≤K+

√−1〈k, ωε(ξ) + δ∂yh + δεm̄I+1M12z〉(fk00 + 〈fk10, y〉

+〈fk01, z〉+ 〈y, fk20y〉+ 〈z, fk02z〉)e
√−1〈k,x〉

+
∑

0<|k|≤K+

(〈δεm̄I+1M21y + δεm̄I+1M22z, J(fk01 + fk11y + fk02z + f>k02z)e
√−1〈k,x〉

+〈δεm̄I+1M21y + δεm̄I+1M22z, Jf001〉
= −

∑

0<|k|≤K+

δεm̄α(pk00 + 〈pk10, y〉+ 〈pk01, z〉+ 〈y, pk20y〉+ 〈z, pk11y〉+ 〈z, pk02z〉)e
√−1〈k,x〉

−δεm̄α〈p001, z〉.
By comparing coefficients of the same order terms in the above, we obtain the following equations
for all ξ ∈ Λ+, 0 < |k| ≤ K+:

L0kfk00 = δεm̄αpk00,(3.11)
L1kfk01 = δεm̄αpk01,(3.12)
L2kfk02 = δεm̄αpk02,(3.13)

M22Jf001 = −εm̄α−m̄I+1p001,(3.14)
L0kfk10 = δεm̄αpk10 − δεm̄I+1M12Jf001,(3.15)

L0kfk20 = δεm̄αpk20 − 1
2
δεm̄I+1(M12Jfk11 − f>k11JM21),(3.16)

L1kfk11 = δεm̄αpk11 − δεm̄I+1(f>k02 + fk02)JM21,(3.17)

where

L0k =
√−1〈k, ωε(ξ) + δ∂yh + δεm̄I+1M12z〉,

L1k =
√−1〈k, ωε(ξ) + δ∂yh + δεm̄I+1M12z〉I2d − δεm̄I+1M22J,

L2k =
√−1〈k, ωε(ξ) + δ∂yh + δεm̄I+1M12z〉I4d2 − (δεm̄I+1M22J)⊗ I2d − I2d ⊗ (δεm̄I+1JM22).

We first solve equations (3.11)-(3.14), then use the estimates of f001, fk11, fk02 to solve equations
(3.15)-(3.17).

For any 0 < |k| ≤ K+, denote k = (k̂0, · · · , k̂j , · · · , k̂I+1), where k̂n0 = (k1, · · · , kn0), k̂j =
(knj−1+1, · · · , knj

), j = 1, · · · , I and k̂I+1 = (knI+1, · · · , knI+m). For some j = 0, · · · , I + 1, let k̂j

be the first nonzero components of k. Then equation (3.11) becomes

L̃0k = δεm̄α−m̄j pk00,

where L̃0k = 〈k̂j , ω̂j
ε(ξ) + O(δs)〉+ · · ·+ εm̄I+1−m̄j 〈k̂I+1, ω̂I+1

ε (ξ) + O(δs)〉.

Assume that

(H2) max{s, δs}Kτ+1
+ ≤ o(γ0).
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Then

|L̃0k| ≥ |〈k̂j , ω̂j
ε + O(δs)〉| − |O(εm̄j+1−m̄j ))K+|

≥ |〈k,Ωε(ξ)〉| − |(O(δs)K+| − |O(εm̄j+1−m̄j ))K+|
≥ γ

2|k|τ .

Combining the above with the estimate

|∂l
ξL0k| ≤ εm̄j c|k|, |l| ≤ N

and the inductive equations

∂l
ξL
−1
qk = −

l∑

l′=1

Cl′
l (∂l−l′

ξ L−1
qk ∂l′

ξ Lqk)L−1
qk , |l| ≤ N,

we have

(3.18) |∂l
ξL
−1
0k | ≤ c

|k|(|l|+1)τ+|l|

εm̄I+1γ|l|+1
, |l| ≤ N.

It follows that for each 0 < |k| ≤ K+, ξ ∈ Λ+, equation (3.11) is uniquely solvable and the solution
fk00 satisfies

|∂l
ξfk00| ≤ cδεm̄α−m̄I+1 |k||l|+(|l|+1)τs2µe−|k|

τ

.(3.19)

To solve equation (3.12), we let k̂j , for some j = 0, · · · , I + 1, contains the first non-zero
components of k and rewrite L1k as

L1k = εm̄j L̃1k,(3.20)

where

L̃1k =
√−1〈k̂j , ω̂j

ε(ξ) + O(δs)〉I2d + εm̄j+1−m̄j
√−1〈k̂j , ω̂j

ε(ξ) + O(δs)〉I2d + · · ·
+εm̄I+1−m̄j

√−1〈k̂I+1, ω̂I+1
ε (ξ) + O(δs)〉I2d − δεm̄I+1−m̄j M22J

=
√−1〈k,Ωε + O(δs)〉I2d − δεm̄I+1−m̄j M22J.

Then equation (3.12) becomes
L̃1kfk10 = δεm̄α−m̄j pk01.

For each ξ ∈ Λ+, 0 < |k| ≤ K+, it follows from (H2) that

|〈k,Ωε + O(δs)〉| ≥ |〈k,Ωε〉| − |O(δs)K+| ≥ γ

2|k|τ .

Since

|detL̃1k| ≥ |〈k̂j , ω̂j
ε〉|2d(1− (

2|k|τδεm̄I+1−m̄j

γ
)2 + · · ·+ (

2|k|τδεm̄I+1−m̄j

γ
)2d),

≥ γ2d

2d+1|k|2dτ
,

we see that for each ξ ∈ Λ+, 0 < |k| ≤ K+, L̃1k is invertible and

|L̃−1
1k | = |adjL̄1k

detL̃1k

| ≤ c
|k|2dτ+2d−1

γ2d
.(3.21)

This, together with the estimate

|∂l
ξL̃1k| ≤ c|k|, |l| ≤ N,(3.22)

implies that

(3.23) |∂l
ξL̃
−1
1k | ≤ c

|k||l|+(|l|+1)2dτ

|γ|2d(|l|+1)
, |l| ≤ N.
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Hence for each ξ ∈ Λ+, 0 < |k| ≤ K+ equation (3.12) is uniquely solvable to yield solution

fk01 = δεm̄α−m̄j L̃−1
1k pk01

which satisfies the estimate

|∂l
ξfk01| ≤ cδεm̄α−m̄I+1 |k||l|+(|l|+1)2dτsµe−|k|

τ

, |l| ≤ N.(3.24)

Similarly, equation (3.13) is uniquely solvable for each ξ ∈ Λ+, 0 < |k| ≤ K+ whose solution
satisfies estimates

|∂l
ξfk02| ≤ cδεm̄α−m̄I |k||l|+(|l|+1)4d2τµe−|k|

τ

, |l| ≤ N,(3.25)

|δεm̄I+1∂l
ξ(f

>
k02 + fk02)JM21| ≤ cδεm̄α |k||l|+(|l|+1)4d2τµe−|k|

τ

, |l| ≤ N.

By (3.23) and (3.25), we also see that equation (3.17) is uniquely solvable for each ξ ∈ Λ+, 0 <
|k| ≤ K+ whose solution satisfies the estimates

|∂l
ξfk11| ≤ cδεm̄α−m̄I+1 |k||l|+(|l|+1)4d2τsµe−|k|

τ

, |l| ≤ N.(3.26)

Similarly, it follows from (3.18) and (3.26) that the equation (3.16) is uniquely solvable for each
ξ ∈ Λ+, 0 < |k| ≤ K+ whose solution satisfies the estimates

|∂l
ξfk20| ≤ cδεm̄α−m̄I+1 |k||l|+(|l|+1)4d2τµe−|k|

τ

, |l| ≤ N.(3.27)

To solve equation (3.14), we assume that

(H3) |∂l
ξM12 − ∂l

ξM
0
12|, |∂l

ξM22 − ∂l
ξM

0
22| ≤ µ

1
4 , |l| ≤ N , ξ ∈ Λ+.

Then

|(M22)−1|Λν ≤ |(M0
22)

−1|Λ0

1− |M22 −M0
22|Λν |(M0

22)−1|Λ0
≤ 2|(M0

22)
−1|Λ0 .

Recall that

M0
22(ξ, ε) =

(
Γ22 O

O εm̄α−m̄I+1 Γ̃

)
,

where Γ22, Γ̃ are defined as in (2.6), (2.11) respectively. It is easy to see that

|(Γ22)−1| = 1
|det Γ22| |(Γ

22)∗| ≤ O(
1

εm̄α−m̄I+1
),

where (Γ22)∗ is the adjoint matrix of M . Since

(M0
22)

−1 =
(

(Γ22)−1 O

O 1
εm̄α−m̄I+1

Γ̃−1

)
,

where |Γ̃−1| = O(1), we have

|(M0
22)

−1| ≤ O(
1

εm̄α−m̄I+1
).

It follows that equation (3.14) is uniquely solvable for each ξ ∈ Λ+, 0 < |k| ≤ K+ whose solution
satisfies the estimates

|∂l
ξf001| ≤ |M−1||p001| ≤ csµ, |l| ≤ N,(3.28)

|δεm̄I+1M12Jf001| ≤ cδεm̄I+1 |M12M
−1
22 ||p001| ≤ cδεm̄αsµ, |l| ≤ N.
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Finally, it follows from (3.18) that equation (3.15) is solvable for each ξ ∈ Λ+, 0 < |k| ≤ K+

whose solution satisfies estimates

|∂l
ξfk10| ≤ cδεm̄α−m̄I+1 |k||l|+(|l|+1)τsµe−|k|

τ

, |l| ≤ N.(3.29)

With the solvability of (3.11)-(3.17), the Hamiltonian F in (3.4) is now well defined.

Lemma 3.2. Assume (H2), (H3) and let F be as in (3.4). Then, there exists a positive constants
c2 such that on D̂(s)× Λ+,

|F |, |Fx|, s|Fy|, s|Fz| ≤ c2s
2µΓ(r − r+) + c2s

2µ,

and

|∂l
ξ∂

i
x∂

(p,q)
(y,z)F | ≤ c2µΓ(r − r+)

for all 0 ≤ |l|, |i| ≤ N, 0 < |p|+ |q| ≤ 2.

Proof. It follows directly from (3.19) - (3.28). ¤

Lemma 3.3. Assume that

(H4) c2µΓ(r − r+) + c2µ < 1
8 (r − r+);

(H5) c2sµΓ(r − r+) + c2sµ < s+.

Then for each 0 ≤ t ≤ 1, the transformation

φt
F : D3 → D4

is well defined, real analytic, and depends on ξ ∈ Λ+ smoothly. Moreover, there is a constant c3

such that

|∂l
ξ(φ

t
F − id)|D(s)×Λ+ ≤ c3sµΓ(r − r+)(3.30)

for all |l| ≤ N, 0 ≤ t ≤ 1, i = 0, 1, where D = ∂(x,y,z).

Proof. It immediately follows from Lemma 3.2. ¤

3.4. New Hamiltonian. Denote Φ+ := φ1
F . Lemmas 3.2-3.3 imply that for each ξ ∈ Λ+ the

transformation Φ+ : D(r+, s+) → D(r, s) is well defined, real analytic and symplectic. The new
Hamiltonian after transformation is defined on D+ × Λ+ as follows:

H+ =: H ◦ Φ+ = N+ + δεm̄αP+,

N+ = N + δεm̄α([R]− 〈p001, z〉)
= e+

ε (ξ) + 〈ω+
ε (ξ), y〉+

δ

2
〈
(

y

z

)
, εm̄I+1M+(ξ, ε)

(
y,

z

)
〉+ δh+(y, ξ, ε),

P+ =
1

δεm̄α
P̄+ =

1
δεm̄α

∫ 1

0

{Q,F} ◦ φt
F dt +

1
δεm̄α

Q(3.31)

+
∫ 1

0

{(1− t)(R− [R] + 〈p001, z〉) + R, F} ◦ φt
F dt + (P −R) ◦ φ1

F ,
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where P̄+ is defined as (3.9), e+
ε is a smooth function on Λ+ and

e+
ε (ξ) = eξ(ξ) + δεm̄αp000,(3.32)

ω+
ε (ξ) = ωε(ξ) + δεm̄αp010,(3.33)

M+(ξ, ε) =
(

O M12

M21 M22

)
+ 2εm̄α−m̄I+1

(
O p011

p>011 p002

)
,(3.34)

h+(y, z, ξ, ε) = h1(y, ξ, ε) + εm̄α〈p020y, y〉+ h2(y, z, ξ, ε)(3.35)

= O(|y0|2 + · · ·+ εm̄I+1 |yI+1|2) + h2(y, z, ξ, ε).

Rewrite ω+
ε as

ω+
ε := (ω̂+,0

ε , · · · , εm̄I+1 ω̂+,I+1
ε )>,

where ω̂+,j
ε is an nj −nj−1 dimensional vector for each j = 0, · · · , I and ω̂+,I+1

ε consists of the last
m− nI components of ω+

ε . Let

Ω+
ε (ξ) = (ω̂+,0

ε (ξ), · · · , ω̂+,I+1
ε (ξ))>.

The following lemmas give estimates of the new Hamiltonian.

Lemma 3.4. There exits a constant c4 > 0 such that the followings hold for all 0 ≤ |l| ≤ N :

|∂l
ξ(e

+
ε − eε)|Λ+ ≤ c4δε

m̄αγs2µ,

|∂l
ξ(ω

+
ε − ωε)|Λ+ ≤ c4δε

m̄αγsµ,

|∂l
ξ(Ω

+
ε − Ωε)|Λ+ ≤ c4ε

m̄α−m̄I+1γsµ,

|∂l
ξ(M

+ −M)|Λ+ ≤ c4ε
m̄α−m̄I+1γµ,

|∂l
ξ(h

+ − h)|Λ+ ≤ c4ε
m̄αγµ.

Proof. It follows from (3.32)-(3.35). ¤

Lemma 3.5. Assume that

(H6) c5γsµKτ+1
+ ≤ γ − γ+.

Then, for all 0 < |k| ≤ K+, ξ ∈ Λ+,

|〈k,Ω+
ε (ξ)〉| > γ+

|k|τ .(3.36)

Proof. It follows from (3.33) that there is a constant c4 > 0 such that for all |l| ≤ N ,

|∂l
ξ(Ω

+
ε (ξ)− Ωε(ξ))|Λ+ ≤ c4ε

m̄α−m̄I+1γsµ.

This, together with (H6), implies that

|〈k,Ω+
ε (ξ)〉| ≥ |〈k,Ωε(ξ)〉| − |〈k, (Ω+

ε (ξ)− Ωε(ξ))| ≥ γ+

|k|τ ,

for all 0 < |k| ≤ K+, ξ ∈ Λ+. ¤

Lemma 3.6. Let

∆ = γb(s2
+sµΓ(r − r+) + s2

+sµ + s2µ2 + s2µ2Γ2(r − r+))

and assume that

(H7) c0∆ ≤ γb
+s2

+µ+,
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where c0 = max{1, c1, · · · , c7}. Then

|∂l
ξP

+|D+×Λ+ ≤ γb
+s2

+µ+, |l| ≤ N.

Proof. Combing estimates (3.8), (3.24) - (3.26), (3.28) with Lemma 3.2, we have

|Q|D+×Λ+ ≤ δεm̄I+1 |∂h2

∂z
||J(fk01 + fk11y + fk02z + f>k02z)e

√−1〈k,x〉|

+δεm̄I+1 ||M12
∂h2

∂z
||p001|

≤ cδεm̄αγb(s2
+sµΓ(r − r+) + s2

+sµ).

It follows that there exists a positive constant c6 such that the following estimates hold for any
|l| ≤ N :

1
δεm̄α

|∂l
ξQ|D+×Λ+ ≤ c6(γbs2

+sµΓ(r − r+) + γbs2
+sµ),

1
δεm̄α

|
∫ 1

0

∂l
ξ{Q,F} ◦ φt

F dt|D+×Λ+ ≤ c6γ
bs2µ2Γ2(r − r+).

By Lemmas 3.1-3.2, there exits a positive constant c7 such that for any |l| ≤ N ,

|∂l
ξ(P −R) ◦ φ1

F |D+×Λ+ ≤ c7γ
bs2µ2,

|∂l
ξ

∫ 1

0

{(1− t)(R− [R] + 〈p001, z〉) + R, F} ◦ φt
F dt|D+×Λ+ ≤ c7γ

bs2µ2Γ2(r − r+).

The lemma now follows from above estimates and the definition of P+ in (3.32). ¤

3.5. Improved Hamiltonian normal form. In this subsection, we will improve the Hamiltonian
(3.1) by performing the quasi-linear iterative scheme from ν = 0 to some step ν∗ in order to obtain
a new Hamiltonian H∗ with the perturbation P ∗ of a sufficiently high order. Tracing quantities
defined at the beginning of Section 3, we have the following iterative sequences:

rν = r0(1− 1
4

ν∑

i=1

1
2i+1

),

sν =
1
8
αν−1sν−1, αν = µ

1
3
ν ,

µν = µ1+ι̂
ν−1, for some fixed ι̂ ∈ (0, ι),

Kν = ([log(
1

µν−1
)] + 1)3,

Λν = {ξ ∈ Λν−1 : |〈k,Ων−1
ε (ξ)〉| > γν−1

|k|τ , 0 < |k| ≤ Kν}

for ν = 1, 2, · · · .

It is easy to verify that

(3.37) µν = µ
(1+ι̂)ν

0 ≤ ε
(1−ι)(1+ι̂)ν

6 , ν = 1, 2, · · · .

The assumptions (H1), (H4)-(H7) and part of (H2) that

δsν−1K
τ+1
ν ≤ sν−1K

τ+1
ν = o(γ0)

are easily seen to hold for all ν = 1, 2, · · · as long as ε is sufficiently small. However, the other part
of (H2), i.e.,

εKτ+1
ν = o(γ0)(3.38)
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can only hold for a finite number of ν’s. More precisely, let

ν∗ =
[
log(2(N + 6)c∗ + log 8d2(N + 1) + 1)− log(1− ι)

log(1 + ι̂)

]
+ 1,(3.39)

where [x] denotes the maximal integer less than x and c∗ =
∑α

i=1 m̄i(ni − ni−1). A simple
computation shows that (3.38) holds as long as (1 + ι̂)ν∗(1 − ι)ε1−2ι is bounded from the above
by a constant that is independent of ν∗, i.e., (H2) holds for all ν = 1, 2, · · · , ν∗ as long as ε is
sufficiently small. Finally, (H3) holds for all ν because

|∂l
ξ(M

ν(ξ, ε)−M0(ξ, ε))|Λν

≤ |∂l
ξ(M

ν(ξ, ε)−Mν−1(ξ, ε))|Λν + · · ·+ |∂l
ξ(M

1(ξ, ε)−M0(ξ, ε))|Λ1

≤ γb
0µ

1
4
0 (

1
2µ

+ · · ·+ 1) ≤ µ
1
4
0 .

With the validity of these assumptions, the quasi-linear iterative scheme can be performed
inductively from step ν = 0 to the step ν∗. When ν = ν∗, we obtain the following improved
Hamiltonian normal form

H∗ =: Hν∗(3.40)

= e∗ε(ξ) + 〈ω∗ε (ξ), y〉+
δ

2
〈
(

y

z

)
,M∗(ξ, ε)

(
y

z

)
〉+ δh∗(y, ξ, ε) + δP ∗(x, y, z, ξ, ε)

defined on D(r∗, s∗) × Λ∗, where r∗ = rν∗ , s∗ = sν∗ , e∗ε = eν∗
ε , ωε = ων∗

ε , h∗ = hν∗ , M∗ =
εm̄I+1Mν∗ , P ∗ = εm̄αP ν∗ , Λ∗ = Λν∗ .

By (3.39) and Lemma 3.6, we have

(3.41) |∂l
ξP

∗|D(r∗,s∗)×Λ∗ ≤ εm̄α+ιs2
∗ε

16d2(N+1)(N+6)c∗ ≤ γ
16d2(N+1)(N+6)
∗ s2

∗µ
2
∗, |l| ≤ N,

where γ∗ = εc∗ , µ∗ = ε
m̄α+ι

2 .

3.6. Measure estimate. By A3) and (2.9), we have

Rank{∂l
ξΩ

0
ε : 0 ≤ |l| ≤ N} = m, ∀ξ ∈ Λ0.

It follows from Lemma 3.5 that

Rank{∂l
ξΩ

i
ε : 0 ≤ |l| ≤ N} = m, ∀ξ ∈ Λi, i = 1, · · · , ν∗.

Using Lemma 3.5 and the standard measure estimate under Rüssmann condition (see [22] or
Lemma 4.2 of the present paper), we have

|Λ0 \ Λ∗| =
ν∗∑

i=1

|Λi−1 \ Λi| ≤
ν∗∑

i=1

∑

Ki≤|k|≤Ki+1

(
γi

|k|τ )
1
N = O(γ

1
N
0 ) = O(ε

ι(m̄α+1−m̄α)
2bN ).

This, together with (2.10), yields that

(3.42) |O(g, G) \ Λ∗| = O(ε
ι

2bN ).
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4. Proof of the Main Theorem

In this section, we will perform an infinite steps of standard KAM iterations to the improved
Hamiltonian normal form (3.40) to prove the Main Theorem. First, we consider the following
rescalings

y → γ
8d2(N+1)(N+6)
∗ s∗µ∗y, z → γ

8d2(N+1)(N+6)
∗ s∗µ∗z, H∗ → H∗

γ
8d2(N+1)(N+6)
∗ s∗µ∗

to the normal form (3.40). The re-scaled Hamiltonian reads

H0 =:
H∗

γ
8d2(N+1)(N+6)
∗ µ∗

=: e0(ξ, ε) + 〈ω0(ξ, ε), y〉+ δP0(x, y, z, ξ, ε)

which is defined on region D(r0, s0) × Λ0, where r0 =: r∗, s0 =: s∗, Λ0 = Λ∗, e0(·, ε) = e∗ε,
ω0(·, ε) = ω∗ε , and

P0 =
〈(y

z

)
,M∗(y

z

)〉+ h∗(y, ξ, ε) + P ∗

γ
8d2(N+1)(N+6)
∗ s∗µ∗

.

It follows from (3.41) that

|∂l
ξP0|D(r0,s0)×Λ0 ≤ |∂l

ξP
∗|+ |〈(y

z

)
, ∂l

ξM
∗(y

z

)〉|+ |∂l
ξh
∗(y, z, ξ, ε)|

γ
8d2(N+1)(N+6)
∗ s∗µ∗

≤ γ
8d2(N+1)(N+6)
∗ s∗µ∗, |l| ≤ N.

Denote γ0 =: γ
2(N+6)
∗ , µ0 =: µ∗, a =: 4d2(N + 1). We then have

|∂l
ξP0|D(r0,s0)×Λ0 ≤ γa

0 s0µ0, |l| ≤ N.

4.1. Iteration and convergence. Consider the following sequences

rν = r0(1−
ν∑

i=1

1
2i+1

),

sν =
1
8
αν−1sν−1,

αν = µ
1
2
ν ,

µν = c0µ
6
5
ν−1,

γν = γ0(1−
ν∑

i=1

1
2i+1

),

Kν = ([log(
1

µν−1
)] + 1)3η,

Λν = {ξ ∈ Λν−1 : |〈k, ων−1〉| > γν−1

|k|τ , 0 < |k| ≤ Kν},

ν = 1, 2, · · · , where η ≥ log 2
log 6−log 5 is a fixed constant.

We have the following iteration lemma.

Lemma 4.1. Let ε be sufficiently small. Then the followings hold for all ν = 1, 2, · · · .
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1) There is a sequence of smooth families of symplectic, real analytic, near identity transfor-
mations

Φν
ξ : D(rν , sν) → D(rν−1, sν−1), ξ ∈ Λν

such that

Hν = Hν−1 ◦ Φν
ξ =: eν(ξ, ε) + 〈ων(ξ, ε), y〉+ δPν ,

where

|∂l
ξων − ∂l

ξω0|Λν
≤ γa

0µ0,

|∂l
ξPν |Dν×Λν

≤ γa
νsνµν

for all |l| ≤ N .
2) Λν = {ξ ∈ Λν−1 : |〈k, ων−1〉| > γν−1

|k|τ ,Kν−1 < |k| ≤ Kν}.
3) The Whitney extensions of

Ψν =: Φ1
ξ ◦ Φ2

ξ ◦ · · · ◦ Φν
ξ

converge CN uniformly to a smooth family of symplectic maps Ψ∞ on D( r0
2 , 0)×Λ∞, where

Λ∞ =
⋂

ν≥0

Λν ,

so that

Hν = H0 ◦Ψν−1 → H∞ =: H0 ◦Ψ∞ = e∞ + 〈ω∞, y〉+ δP∞,

where e∞ = limν→∞ eν , ω∞ = limν→∞ ων , and P∞ = limν→∞ Pν satisfies

∂j
(y,z)P∞|D(

r0
2 ,0)×Λ∞ = 0, |j| ≤ 2.

Proof. It follows from arguments similar to those in [6, Section 4]. ¤

The iteration lemma above shows that, for sufficiently small ε > 0 and each ξ ∈ Λ∞, Tm × {0}
is a real analytic, invariant, Diophantine torus of H∞ of Diophantine type (γ∞, τ), where γ∞ =
limν→∞ γν . Moreover, these m-tori form a Whitney smooth family.

4.2. Measure estimate of Λ∞. Let Oε = Λ∞. We now estimate the measure |O(g, G) \ Oε|.

Lemma 4.2. ([22, Lemma 2.1]) Suppose that g(x) is a p-times differentiable function on the
closure Ī ⊂ I, where I is a finite open interval. Let Ih = {x : |g(x)| ≤ h, x ∈ I}, h > 0. If on
I, |g(p)(x)| ≥ D > 0, where D is a constant, then |Ih| ≤ c7h

1
p , where c7 = 2(2+3+ · · ·+p+D−1).

For each ν = 0, 1, · · · and k ∈ Zm \ {0}, denote

Rν+1
k = {ξ ∈ Λν : |√−1〈k, ων〉| ≤ γν

|k|τ }.

Then

(4.1) Λ0 \ Λ∞ =
∞⋃

ν=0

⋃

Kν<|k|≤Kν+1

Rν+1
k (ξ).

Consider functions

gν
k,0(ξ) = 〈 k

|k| , ων(ξ, ε)〉.
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By Lemma 4.1 1) and Lemma 4.2, it is easy to see that there is a positive constant c8 such that

|∂
Ngν

k,0

∂ξN
|Λν ≥ c8ε

c∗ ,

where c∗ =
∑α

i=1 m̄i(mi −mi−1). It follows from Lemma 4.2 that there exists a positive constant
c9 independent of ε such that

|Rν+1
k | ≤ c(2 + 3 + · · ·+ 1

c8εc∗
)
ε

2(N+6)c∗
N

|k| τ
N

≤ c9
ε

12c∗
N

|k| τ
N

.

It follows that

|Λ0 \ Λ∞| ≤
∞∑

ν=0

∑

Kν<|k|≤Kν+1

|Rν+1
k | ≤ c9ε

12c∗
N

∞∑
ν=0

∑

Kν<|k|≤Kν+1

1
|k| τ

N
= O(ε

12c∗
N ).

Recall that Λ0 = Λ∗. Combining the above with (3.42) yields that

|O(g, G) \ Oε| ≤ |O(g, G) \ Λ∗|+ |Λ0 \ Λ∞| ≤ O(ε
12c∗

N ) + O(ε
ι

2bN ) = O(ε
ι

2bN ).

Now, tracing back all the symplectic transformations involved in Sections 2-4, proof of the Main
Theorem is completed.

5. An Example

In [14, Section 4.4], the following normalized Hamiltonian of 3-degree-of-freedom is derived from
the orbiting dust problem which describes the effect of radiation pressure on dust particles revolving
around an idealized planet in a planar circular orbit around a star:

Hε = −Y0 − ε3

2Y 6
0

(Y1 + Y2)(5(Y1 + Y2)3 − 4Y0(Y1 + Y2)2 + 3Y 2
0 (Y1 + Y2)− 2Y 3

0 )(5.1)

−3ε13µ2

8Y 8
0

(29Y 2
1 + 20Y1Y2 + 4Y 2

2 − 2Y0(3Y1 + Y2)) + ε17P (Y, ϕ, ε),

where Y = (Y0, Y1, Y2)> ∈ R3, Y0 > 0, ϕ ∈ T3, and µ is a fixed constant. It is real analytic in
a neighborhood of a relative equilibrium and depends on ε smoothly. The existence of a positive
measure set of quasi-periodic invariant 3-tori of (5.1) is shown in [14, Section 4.4] based on the
main result of [6].

We now examine the possible existence of lower dimensional tori of (5.1) in the resonance zone
by showing the validity of assumptions A2), A3) with respect to certain resonant type. Thus the
Main Theorem is applicable to this example if the assumption A4) holds for certain particular
perturbation term. As remarked at the end of Section 1, the condition A4) is satisfied by generic
perturbations. It is also well-expected that it can be largely satisfied by particular perturbations
which are not highly degenerate because of the freedom of choosing resonance types in verifying
this condition.

Rewrite the Hamiltonian as

Hε = H0(Y0) + ε3H1(Y ) + ε13H2(Y ) + ε17P (Y, ϕ, ε),(5.2)
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where

H0(Y0) = −Y0,

H1(Y ) = − 1
2Y 6

0

(Y1 + Y2)(5(Y1 + Y2)3 − 4Y0(Y1 + Y2)2 + 3Y 2
0 (Y1 + Y2)− 2Y 3

0 ),

H2(Y ) = − 3µ2

8Y 8
0

(29Y 2
1 + 20Y1Y2 + 4Y 2

2 − 2Y0(3Y1 + Y2)).

We restrict Y ∈ G in (5.2), where G is a given bounded closed region in (0,∞) × R2. Then
Hamiltonian (5.2) is a special case of (1.1) with with n0 = 1, n1 = n2 = 3, m̄1 = 3, m̄2 =
13, m̄3 = 17. Since n0 < n1, A1) holds with I = 0.

Denote

ωε(Y ) = (
∂H0

∂Y0
+ ε3 ∂H1

∂Y0
+ ε7 ∂H2

∂Y0
, ε3 ∂H1

∂Y1
+ ε7 ∂H2

∂Y1
, ε3 ∂H1

∂Y2
+ ε7 ∂H2

∂Y2
)>,

Ω∗(Y ) = (
∂H0

∂Y0
,
∂H1

∂Y1
,
∂H1

∂Y2
) =: (Ω∗0,Ω

∗
1,Ω

∗
2)
>.

Motivated by the fact that ∂H0
∂Y0

≡ −1, the resonance of ωε cannot occur at the first integrable term
H0. Since ∂H1

∂Y1
= ∂H1

∂Y2
and n1 = n2 = 3, we consider the resonant subgroup

g = {0} ⊕ ĝ1,

where ĝ1 is a subgroup of Z3 spanned by K2 = (0, 1,−1)>. Denote

K1 =




1 0
0 0
0 −1


 .

Then det(K1,K2) = 1 and the g-resonant surface in G reads

O(g, G) = {Y ∈ G : K>
2 Ω∗(Y ) = 0} = {I ∈ G : 38Y1 + 12Y2 − 4Y0 = 0}.

To verify the g-non-degenerate condition A2) for H2 on O(g, G), we note that

∂2H1

∂Y 2
1

=
∂2H1

∂Y1∂Y2
=

∂2H1

∂Y 2
2

,(5.3)

∂2H2

∂Y 2
1

= −174µ2

8Y 8
0

,
∂2H2

∂Y1∂Y2
= −60µ2

8Y 8
0

,

∂2H2

∂Y2∂Y1
= −60µ2

8Y 8
0

,
∂2H2

∂Y 2
2

= −24µ2

8Y 8
0

.

It yields that

det K̂>
2

∂2H2

∂(Ŷ 2)2
K̂2 =

∂2H2

∂Y 2
1

+
∂2H2

∂I2
2

− 2
∂2H2

∂Y1Y2
6= 0, ∀Y ∈ O(g, G),

where Ŷ 2 = (Y1, Y2)>. Hence H2 is g-non-degenerate on O(g, G), i.e., A2) holds.
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To verify the degeneracy removing condition on O(g, G), we note that K>
1 Ω∗ = (Ω∗0,−Ω∗2)

> =:
(Ω0,Ω1)>. By (5.3), it is easy to verify that

Rank




Ω0 Ω1

∂Ω0

∂Y0

∂Ω1

∂Y0
∂Ω0

∂Y1

∂Ω1

∂Y1
∂Ω0

∂Y2

∂Ω1

∂Y2



≡ 2

on O(g, G), i.e., A3) holds for N = 1.

Summarizing up the above, we have the following result.

Corollary. Consider the Hamiltonian (5.1) and the rank-1 subgroup g spanned by (0, 1,−1)>.
If A4) holds for the perturbation P on the resonant surface O(g, G), then the Main Theorem is
applicable to yield a family of quasi-periodic, invariant 2-tori of the Hamiltonian (5.1).

Remark 5.1. Though a validation of A4) depends on the particular expression of P (Y, θ, 0), one
can give more specific validation of this condition in term of Fourier series

P (I, θ, 0) =
∑

k=(k1,k2,k3)∈Z3

Pk1,k2,k3(I)e
√−1〈k,θ〉.

Using the form of K1, K2, we have

ϕ =
(

ϕ1

ϕ2

)
= K>

1 θ =
(

θ0

−θ2

)
∈ T2, ψ = K>

2 θ = θ1 − θ2 ∈ T.

Hence the function h0 : T×O(g, G) → R can be expressed as

h0(ψ, Y ) =
∫

T2
P̃ (ϕ,ψ, Y )dϕ =

∫

T2
P (ϕ1, ψ − ϕ2,−ϕ2, Y, 0)dϕ

=
∑

k∈Z3

Pk1,k2,k3(Y )
∫

T2
e
√−1(k1ϕ1−(k2+k3)ϕ2+k2ψ)dϕ

=
∑

k1=0,k2+k3=0

Pk1,k2,k3(I)e
√−1k2ψ =

∑

j∈Z
P0,j,−j(Y )e

√−1jψ.

Thus, to verify A4), one only needs to find, for a fixed Y0 ∈ O(g, G), a non-degenerate critical point
ϕ0 of h0(·, Y0), because the Implicit Function Theorem then implies the existence of a neighborhood
UY0 of Y0 and a real analytic family ψ(Y ) of non-degenerate critical points of h0(·, Y ) for Y ∈ UY0 .

Remark 5.2. After verifying A4), it then follows from the Main Theorem that there exists a Can-
tor subset Oε ⊂ O0(g, G) := O(g, G) ∩ UY0 of positive Lebesgue measure such that the unperturbed
quasi-periodic 2-tori T ε

Y (ψ(Y )) = T2 × {Y } × {ψ(Y )}, Y ∈ Oε, of the Hamiltonian (5.1), persist
as ε sufficiently small. To be more precise, by taking the the constants n0 = 1, n1 = n2 = 3, m̄1 =
3, m̄2 = 13, m̄3 = 17, N = 1, we have

c∗ =
2∑

i=1

mi(ni − ni−1) = 6

and hence 2(N + 6)c∗ = 84 > 17. This means that one needs to perform a finite step of iterations
to push the order of the perturbation as higher as O(ε84) in order to carry out the standard KAM
iterations. It also follows from the Main Theorem that the excluding measure has the estimate
|O0(g, G) \Oε| = O(ε

1
96 ) by taking ι = 1

4 , N = 1, d = 1.
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