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Abstract
For a quasi-periodically forced oscillator, response solutions are quasi-periodic ones
having the same frequencies as that of the forcing function. Typically being the most
stable or robust ones, they form an important class of oscillatory solutions of the
oscillator. Since the introduction of the notion in the 1950s, response solutions have
been extensively studied in regularly perturbed, quasi-periodically forced oscillators
with large, small, or zero damping coefficientswith recent advances beingmade toward
some singularly perturbed and highly or completely degenerate cases. The aim of the
present paper is to make a general investigation toward the existence and stability
properties of response solutions in singularly perturbed, quasi-periodically forced
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oscillators of the normal form

{
θ̇ = ω,

ż = εαA(ε)z + εα+β f (θ, z, ε), (θ, z) ∈ T
d × R

2,

where α ∈ R and β > 0 are constants, ω ∈ R
d is the forcing frequency vector,

0 < ε � 1 is a parameter, and f is of a finite order of smoothness. The normal form
includes strongly damped oscillators of the form

ẍ + 1

ε
ẋ − g(x) = εχ1 f (ωt), x ∈ R

1

and damping-free oscillators with large potentials of the form

ẍ − 1

ε
g(x) = εχ2 f (ωt), x ∈ R

1,

where χ1, χ2 are constants. With respect to the normal form, we show the existence
of Floquet response tori for all or the majority of sufficiently small ε > 0 in three
typical cases. Not only do our results on response solutions and their stabilities extend
some existing ones in both regularly and singularly perturbed cases by allowing finite
smoothness of potential and forcing functions, but also they provide new insides to
the nature of these solutions, for instance the coexistence of response solutions of both
hyperbolic and elliptic types in a given quasi-periodically forced, degenerate nonlinear
oscillator.

Keywords Response solutions · Degenerate oscillators · Quasi-periodic forcing ·
Singular perturbations

Mathematics Subject Classification Primary 34J40 · 34C27; Secondary 34E20

1 Introduction

Consider quasi-periodically forced, perturbed second-order differential equations of
the form

ẍ + cẋ + λg(x) = εχ f (ωt, x, ẋ), x ∈ R
1, (1.1)

where ω = (ω1, · · · , ωd) ∈ R
d is a d-dimensional forcing frequency vector for some

integer d > 1, 0 < ε � 1 is a small parameter, χ is a constant, c and λ are either
constants or dependent on ε, and f : Td × R

2 → R
1 and g : R1 → R

1 are smooth
functions with g(0) = 0. A solution of (1.1) is said to be a response solution if it
is quasi-periodic with the same frequency vector ω as that of the forcing function f .
These solutions form an important class of oscillatory solutions of equations (1.1)
especially when they are oscillators. They are typically the most stable or robust
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oscillatory solutions, represent the simplest harmonic responses to the external forcing,
and reveal some synchronizing behaviors of the oscillators (Corsi and Gentile 2012).

Response solutions of (1.1) have been extensively studied when f , g are real ana-
lytic and the equation is regularly perturbed, i.e., c, λ, χ are constants with χ > 0.
In the case that (0, 0) is a non-degenerate equilibrium of the first-order system corre-
sponding to the unperturbed equation of (1.1), the existence of response solutions of
(1.1) for ε sufficiently small has been shown in classical works of Stoker (1950) and
Moser (1965) for cases |c| � 1 and c = 0, respectively. The work Moser (1965) is
in fact among one of the pioneer works in KAM theory. While the existence problem
is simple in the former case because of the hyperbolic nature of the equilibrium, it is
however highly non-trivial in the later case because of the perturbation of the ellip-
tic equilibrium and the involvement of small divisor problems in KAM iterations, in
which Diophantine forcing frequencies, the reversibility of f in t , and a coupling non-
resonance condition between ω and eigenvalues of the linearization at (0, 0) - known
as a Melnikov condition in the modern literature, need to be assumed, and a small
Lebesgue measure set of ε in the vicinity of 0 needs to be excluded for the existence of
response solutions. The result in Moser (1965) was later shown to also hold in certain
cases when c is sufficiently small (Braaksma and Broer 1987; Friedman 1967). More
recent studies of response solution of (1.1) focused on cases when (0, 0) is a degen-
erate equilibrium of the first-order system corresponding to the unperturbed equation
of (1.1). In the degenerate cases, response solutions are found, as an important mech-
anism, by perturbing relative equilibria of certain averaged equation of (1.1). It turns
out that response solutions exist for all ε sufficiently small if the relative equilibria are
hyperbolic and ω is of Brjuno type, while they exist for all ε sufficiently small, with
the exception of a small Lebesgue measure set, if ω is of Diophantine type and the
relative equilibria are elliptic, without reversibility and Melnikov conditions (Corsi
and Gentile 2012, 2015, 2017; Gentile 2007; Hu and Liu 2018; Si and Yi 2020, 2022;
You 1998). We refer the reader to Broer et al. (2005, 2006, 2013, 1996), Hanßmann
(1998, 2004, 2007), Lou andGeng (2017),Wang et al. (2017) for other studies relating
to response solutions under regular perturbations.

Comparing with the regular perturbation cases, response solutions are much less
known when (1.1) is singularly perturbed, i.e., when c or λ depends on ε in a singular
way and/or χ < 0. One relatively well-studied singularly perturbed case of (1.1) is
the strongly damped oscillator

ẍ + 1

ε
ẋ − g(x) = εχ1 f (ωt), x ∈ R

1 (1.2)

with the so-called resistor-inductor-varactor circuit system (Matsumoto et al. (1984))
and ‘ship roll and capsize’ system (Thompson (1997)) as particular physical examples.
To bemore specific,when f , g are real analytic,χ1 = 0, and the equation g(x)+[ f ] =
0, where

[ f ] = 1

(2π)d

∫
Td

f (θ)dθ
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is the average of f , admits a root of odd order, it is shown in Calleja et al. (2013),
Corsi et al. (2013, 2014), Gentile (2010, 2012), Gentile and Vaia (2021) that response
solutions of (1.2) exists for all ε sufficiently small. In the case that f , g are of finite
order of smoothness, it is shown in Wang and de la Llave (2020) that if [ f ] = 0,
g(0) = 0, and g′(0) �= 0, then for sufficiently small σ > 0, (1.2) admits a response
solution for each ε ∈ (σ, 2σ). Except these results on the strongly damped oscillator
(1.2), the existence of response solutions in singularly perturbed cases of (1.1) is
widely open, including the case of a damping-free oscillator with large potential

ẍ − 1

ε
g(x) = εχ2 f (ωt), x ∈ R

1 (1.3)

which has roots in describing oscillatory standing waves of forced Kdv equations with
small dispersion (see e.g. Blyuss (2002)).

The present work aims at making some general studies of response solutions of
(1.1) in the singularly perturbed cases. For the sake of generality, we will consider the
following finitely smooth, first-order normal form

{
θ̇ = ω,

ż = A(ε)z + εα+β f (θ, z, ε), (θ, z) ∈ T
d × R

2,
(1.4)

where ω ∈ R
d is a Diophantine frequency vector with Diophantine constants γ > 0

and τ > d − 1, i.e.,

|〈k, ω〉| >
γ

|k|τ , ∀k ∈ Z
d \ {0},

α ∈ R and β > 0 are constants, f ∈ Cm+μ̃(Td × Br × 
ε∗ ,R
2) for some natural

number m and real number 0 < μ̃ < 1, with Br := {z = (z1, z2) ∈ R
2 : |z| ≤ r}

for a fixed r > 0 and 
ε∗ = (0, ε∗) for some ε∗ > 0 sufficiently small, and A
is a 2 × 2 - matrix-valued function of ε with possible singularity at ε = 0. We
refer to an invariant, quasi-periodic d-torus of (1.4) with the frequency vector ω as
a response torus. In applying the normal form to the problem of response solutions
of (1.1) in the singularly perturbed cases, one first reduces the oscillators, in the
vicinity of appropriate relative equilibria, into the normal form whose response tori
then correspond to response solutions of the original oscillators.

For the normal form (1.4), we will consider the following canonical cases of the
matrices A(ε):

(C1): A(ε) =
(

εα1λ1(ε) 0
0 εα2λ2(ε)

)
,whereα1, α2 ∈ R such thatmax{α1, α2} = α

and λi (ε) ∈ C1[0, 1] with λi (0) �= 0, i = 1, 2;

(C2): A(ε) = εα

(
λ2(ε) λ1(ε)

−λ1(ε) λ2(ε)

)
, where λi (ε) ∈ C1[0, 1] with λi (0) �= 0,

i = 1, 2;

(C3): A(ε) = εα

(
0 λ(ε)

−λ(ε) 0

)
, where λ(ε) ∈ C1[0, 1]with λ(0) �= 0 and α �= 0

is assumed in this case.
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Wenote that thematrices are hyperbolic in both cases (C1) and (C2), and are elliptic
in the case (C3). Our main result of the paper states as follows.

Main Theorem Consider (1.4) and assume m ≥ 3d in cases (C1), (C2) and m >

6τ + 5 in the case (C3). Denote

m̃ =
{
m − 2d, in cases (C1), (C2);
m − 4[τ ] − 5, in the case (C3).

Then, there exists a ε∗ > 0 sufficiently small and a C1 family of invertible, Cm̃-smooth
transformations�ε : Td×Br → T

d×Br/2, ε ∈ Eε∗ , where Eε∗ equals (0, ε∗) in cases
(C1), (C2) and is a Cantor subset of (0, ε∗) with Lebesgue measure meas(Eε∗) ∼ ε∗
in the case (C3), which, for each ε ∈ Eε∗ , transforms (1.4) into the system

{
θ̇ = ω,

ż = Ăz + H̆(θ, z, ε),
(1.5)

where Ă = A + O(εα+β) is a constant matrix for each ε ∈ Eε∗ and H̆ = O(|z|2).
Consequently, for each ε ∈ Eε∗ , (1.4) admits a Floquet, C

m̃-smooth response torus.

Remark

(1) We remark that the theorem above holds in the real analytic context, i.e., if (1.4)
is real analytic in θ , then so are the transformations and response tori stated in the
Main Theorem. This can be easily seen from our proof of the theorem.

(2) The theorems will be proved via KAM iterations and analytic approximation tech-
nique. Concerning cases (C1) and (C2) in particular, we do so in order to obtain
Floquet response tori which not only characterize their stabilities but also their
nearby dynamical behaviors. We remark that the existence of response tori in
cases (C1) and (C2) can be proved simply via the uniform contraction mapping
principle by considering the family of maps

Tεx(θ) = εα+β

∫ 0

∞
e−As P f (x(θ + ωs)), θ + ωs)ds

+εα+β

∫ 0

−∞
e−As(I − P) f (x(θ + ωs), θ + ωs)ds

on an appropriate function space in C0(T2,R2), where P denotes the project to
the stable eigenspace of A. For cases (C1) and (C2), not only will this approach
requires no Diophantine condition on ω, but also it will yield response tori of the
class Cm (see e.g. Yi (1993a) for a much more general situation).

(3) With theFloquet form (1.5), the stability of the response tori can be analyzed.Using
certain stability results of parameterized, normally hyperbolic invariant manifolds
(see e.g. Yi (1993b)) after a time re-scaling if necessary, one can conclude that
a response torus obtained in the Main Theorem is asymptotically stable (resp.
unstable) if both λ1(0) and λ2(0) are negative in the case (C1) or λ2(0) is negative
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in the case (C2) (resp. one of λ1(0) and λ2(0) is positive in the case (C1) or λ2(0)
is positive in the case (C2)). In the case (C3), the stability type of response tori will
depend on the nature of eigenvalues λ(ε) of Ă(ε) for ε ∈ Eε∗ , i.e., for each ε ∈ Eε∗ ,
the response torus is asymptotically unstable (resp. stable) if Reλ(ε) > 0 (resp.
Reλ(ε) < 0), and if Reλ(ε) = 0, then Ă(ε) is elliptic and only linear stability of
the response torus can be concluded.

(4) For finitely smooth Hamiltonian systems, KAM theory has been well-developed
using the Jackson-Moser-Zehnder analytic approximation technique (see e.g.,
Salamon and Zehnder 1989; Salamon 2004; Zehnder 1975, 1976 for nearly inte-
grable cases and Chierchia and Qian (2004) for partially nearly integrable cases).
The proof of theMain Theorem above will use the same approximation technique.
However, due to the multi-scale nature of (1.5), special cares are needed for both
analytic approximations and KAM iterations in the proof.

We will show under certain conditions that the Main Theorem above indeed yields
the existence of response solutions for singularly perturbed oscillators (1.2) and (1.3)
when f , g are sufficiently smooth and ω is Diophantine. More precisely, with respect
to (1.2) with χ1 ∈ (−1,∞), we will show that if ω is Diophantine and the equation
g(x)+ εχ1[ f ] = 0 admits a non-degenerate root for each 0 ≤ ε � 1, then (1.2) has a
response solution for each 0 < ε � 1. In the case χ1 = 0, this result partially extends
those of Corsi et al. (2013, 2014), Gentile (2010, 2012), Gentile and Vaia (2021) to the
finitely smooth case, and those of Calleja et al. (2013); Wang and de la Llave (2020)
to allow a wider range of parameters. With respect to (1.3) with χ2 ∈ (−1,∞), we
will show that if g(x0) = 0, g′(x0) > 0 for some x0, then (1.3) admits a response
solution for each 0 < ε � 1, and if g(x0) = 0, g′(x0) < 0 for some x0, then there is
an almost full Lebegue measure Cantor subsetD of 0 < ε � 1 such that (1.3) admits
a response solution for each ε ∈ D. Besides singularly perturbed problems, the Main
Theorem above can also be applied to regularly perturbed, degenerate oscillators of
the form

ẍ + λxl = ε f (ωt), x ∈ R
1,

where λ �= 0 is a constant, 0 < ε � 1 is a parameter, l > 1 is an integer, andω ∈ R
d is

Diophantine. Not only does such an application extend the results of Si and Yi (2020,
2022) to finitely smooth cases, but also it asserts the coexistence of both hyperbolic
and elliptic types of response solutions for the same λ.

In applying the Main Theorem to some of these oscillators in the hyperbolic cases,
a novelty of our normal form reduction is to solve finitely smooth homological equa-
tions using Diophantine conditions instead of hyperbolicity of eigenvalues at relative
equilibria, simply because these eigenvalues can depend on the parameter in a singular
way.

The rest of this paper is organized as follows. Section2 is a preliminary section in
which we summarize some notions, recall the analytic approximation technique for
smooth functions, and establish some technical lemmas. We prove the Main Theorem
in Sect. 3 using analytic approximations and KAM iterations. In Sect. 4, we consider
applications of our Main Theorem to three type of quasi-periodically forced nonlin-
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ear oscillators, i.e., strongly damped oscillators, damping-free oscillators with large
potentials, and degenerate harmonic oscillators.

2 Preliminary

In this section, we give some notations, review the classical approach of analytic
approximations, and establish some technical lemmas.

2.1 Notations

For simplicity, we use the same symbol | · | to denote both absolute values of a real
number and a norm in an Euclidean space. LetU be a region in a Euclidean spaceRn .
For any bounded function f on U valued in an Euclidean space Rm , we use | f |U to
denote the sup-norm of f on U . For any C� function f on U with respect to some
real number � > 0, if 0 < � < 1, then we denote

| f |C�(U ) = sup
x,y∈U , 0<|x−y|<1

| f (x) − f (y)|
|x − y|� + sup

x∈U
| f (x)|,

and if � > 1, then we denote

| f |C�(U ) =
∑

|k|≤[�]
|∂k f |Cμ(U ),

where μ = � − [�] < 1, and for each multi-index k = (k1, · · · , kn) ∈ N
n , |k| =

k1 + · · · + kn . If f also depends on a parameter ε in an open setD ⊂ (0, 1) and is C1

in ε, then we denote

| f |C�(U ),D = sup
ε∈D

(| f |C�(U ) + ε|∂ f

∂ε
|C�(U )).

Let Td = R
d/(2πZ)d be the standard d-torus. For given r , s > 0, we denote

T
d
s := {θ = (θ1, . . . , θd) ∈ C

d/(2πZ)d : |Imθ j | ≤ s, j = 1, 2, . . . , d}

as the complex s-strip neighborhood of Td , denote

Br := {z ∈ C
n : |z| ≤ r}

as the complex extension of the r -ball Br := {z ∈ R
n : |z| ≤ r} in an Euclidean

space Rn , and denote

D(s, r) = T
d
s × Br .
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For any analytic function F on D(s, r) valued in some complex vector space Cm , we
define

‖F‖s,r = sup
(θ,z)∈D(s,r)

|F(θ, z)|,

and, if F also depends on a parameter ε in a set D ⊂ (0, 1) C1-Whitney smoothly,
then we define

‖F‖s,r ,D = sup
ε∈D

(
‖F‖s,r + ‖ε ∂F

∂ε
‖s,r

)
,

where the derivative with respect to ε is taken in the sense of Whitney. For any n ×m
matrix-valued function P = (Pi j ) on D(s, r)×Dwhich is analytic in (θ, z) ∈ D(s, r)
and C1-Whitney smooth in ε ∈ D, we define

‖P‖s,r ,D = max
1≤i≤n

m∑
j=1

‖Pi j‖s,r ,D.

If F or P is independent of z, then we define ‖F‖r ,D and ‖P‖r ,D similarly.

2.2 Analytic Approximations

The following approximation result is commonly referred to as the JMZ (Jackson-
Moser-Zehnder) Lemma, whose proof can be found in Chierchia and Qian (2004),
Salamon and Zehnder (1989), Salamon (2004), Zehnder (1975), Zehnder (1976).

Lemma 2.1 Let K be a radially symmetric, C∞ function in R
n which is compactly

supported in a ball Ba and satisfies

∂αK(0) =
{
1, if α = 0,
0, if α �= 0.

For each 0 < r ≤ 1 and F ∈ C0(Rn), consider the family of convolutions

Sr F(x) = 1

rn

∫
Rn

K (
x − y

r
)F(y)dy,

where K is the inverse Fourier transform of K. Then, Sr , 0 < r ≤ 1, is a family of
operators from C0(Rn) into the linear space of entire functions on C

n satisfying the
following properties for any � > 0:

(1) There exists a constant c = c(�, n) > 0 such that for each 0 < r ≤ 1, F ∈ C�(Rn),
and α ∈ N

n with |α| ≤ �, we have

sup
|Imx |≤r

|∂α(Sr F(x)) −
∑

|β|≤�−|α|
∂α+β F(Rex)(iImx)β

β! |≤c|F |C�r�−|α|, x ∈C
n,
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sup
|Imx |≤δ

|∂α(Sr (x)) − ∂α(Sδ(x))| ≤ c|F |C�r�−|α|, x ∈ C
n, 0 ≤ δ ≤ r ,

|Sr F − F |Cp(Rn) ≤ c|F |C�(Rn)r
�−p, 0 ≤ p ≤ �,

|Sr F |Cp(Rn) ≤ c|F |C�(Rn)r
�−p, p ≤ �.

(2) If F ∈ C�(Rn) is periodic in some variables, then so are the approximating
functions Sr F in the same variables.

In performing KAM iterations to a finitely smooth differential system, one needs to
use a sequence of real analytic approximations to its vector field, for which estimates
on the convergent rate of the approximations are ultimately important. To approximate
the ε-dependent vector field in (1.5) under the norms defined above, we will use the
following convergent rate result which is a reformulation of that in Chierchia and Qian
(2004) (see also Li et al. (2023)).

Lemma 2.2 Let F : Td × Br × D → R
m be a function which is of the class C� in

(θ, z) ∈ T
d × Br and of the class C1 in ε ∈ D, where Br is the r-ball in Rn for some

r > 0 andD ⊂ (0, 1) is an open set, and d, n,m ≥ 1 are integers. Then for any given
deceasing sequence {rν : ν = 0, 1, · · · } with rν → 0 as ν → ∞, there is a sequence
Fν : Td

rν × R
n
rν × D → C

m, where R
n
rν = {y ∈ C

n : |Imy| ≤ rν}, ν = 0, 1, · · · ,
which are real analytic for each fixed ε and of the class C1 in ε, such that

|Fν − F |C p(Td×Br ),D ≤ c|F |C�(Td×Br ),Dr
�
ν , 0 ≤ p ≤ �,

‖Fν+1 − Fν‖rν+1,rν+1,D ≤ c|F |C�(Td×Br ),Dr
�
ν+1,

ν = 0, 1, · · · , where c is a constant depending only on �, d, n,m.

Proof Without loss of generality, we letm = 1. Using a standardC∞ cut-off function,
we can easily obtain an extension F̃ of F to T

d × R
n × D such that F̃ is C� in

(θ, z) ∈ T
d × R

n and C1 in ε ∈ D, and

|F̃ |C |α|(Td×Rn),D ≤ C |F |C |α|(Td×Br ,D), ∀α ∈ Z
n+, |α| ≤ �,

where C is a constant depending only �, d, n.
For a monotone decreasing sequence rν , ν = 0, 1, · · · , with rν → 0, let

Fν = Srν F̃, ν = 0, 1, · · · .

Using Lemma 2.1 and the fact that

∂(Sr F̃)

∂ε
= Sr

∂ F̃

∂ε
, r > 0,
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we have

sup
ε∈D

{
|Fν − F |C p(Td×Br ) + ε|∂(Fν − F)

∂ε
|C p(Td×Br )

}

≤ c|F |C�(Td×Br ),Dr
�
ν , 0 ≤ p ≤ r ,

sup
ε∈D

⎧⎨
⎩ sup

Tn
rν+1

×Rn
rν+1

|Fν+1 − Fν | + ε sup
Tn
rν+1

×Rn
rν+1

|∂(Fν+1 − Fν)

∂ε
|
⎫⎬
⎭

≤ c|F |C�(Td×Br ),Dr
�
ν ,

ν = 0, 1, · · · , where c > 0 is a constant depending only on �, d, n. ��

2.3 A Finitely Smooth Homological Equation

The following lemma will be used for reducing a finitely smooth, quasi-periodically
forced nonlinear oscillator into a normal form.

Lemma 2.3 Consider the homological equation

∂ωV (θ) − λV (θ) = F(θ), θ ∈ T
d ,

where d > 1 is an integer, λ is a real constant, ∂ω = ω · ∂
∂θ

for some Diophantine
vector ω ∈ R

d with Diophantine constants γ > 0 and τ > d − 1, F ∈ Cm+μ(Td)

with average [F] = 0 for some integer m ≥ d + [τ ] + 2 and real number 0 < μ < 1.
Then, the equation admits a unique solution V ∈ Cm−d−[τ ]−1(Td) with zero-average
such that

‖V ‖Cm−d−[τ ]−1 ≤ C‖F‖Cm+μ,

where C = Cd
γ

∑∞
j=0

1
j2−(τ−[τ ]) with Cd > 0 being a constant depending only on d.

Proof Substituting Fourier expansions V (θ) = ∑
k∈Zd\{0} Vkei〈k,θ〉 and F(θ) =∑

k∈Zd\{0} Fkei〈k,θ〉 into the homological equation and comparing the coefficients,
we have

Vk = Fk
i〈k, ω〉 − λ

, k ∈ Z
d \ {0},

implying that V is uniquely solvable from the homological equation if its Fourier
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series converges. Now,

‖V ‖Cm−d−[τ ]−1 ≤
∑
|k|>0

|Vk ||k|m−d−[τ ]−1 ≤
∑
|k|>0

|Fk |
|i〈k, ω〉 − λ| |k|

m−d−[τ ]−1

≤
∑
|k|>0

‖F‖Cm (Td )|k|τ
γ |k|m |k|m−d−[τ ]−1

≤ ‖F‖Cm+μ(Td )

∞∑
j=0

Cd

γ
jd−1 j−m+τ jm−d−[τ ]−1

≤ Cd

γ
‖F‖Cm+μ(Td )

∞∑
j=0

1

j2−(τ−[τ ]) .

Hence, the Fourier series of V converges and the lemma is proved. ��

Remark 2.1 We note that if λ �= 0, then the solution V of homological equation above
can be solved and estimated without assuming a Diophantine condition on ω, so that
both lower bound ofm and the regularity of V can be significantly improved. However,
in our applications considered in this paper, λ typically depends on a small parameter
and we would like to have a parameter-independent upper bound of an appropriate
norm of V in order to obtain a desired norm form (1.4).

3 Proof of Main Theorem

In this section, we prove the Main Theorem by using analytic approximations, KAM
iterations, and Whitney extensions. For simplicity, we make the ε-dependence of all
ε-dependent functions implicit and use the symbol ‘�’ to denote ‘≤’ up to a positive
constant multiple that is independent of KAM iterations.

We fix 0 < μ1 < min{β, μ̃} and 0 < ε∗ � 1, and denote


ε∗ = (0, ε∗), δ = ε
β
2∗ , s = η

2
m , r = s1+μ1 such that ηs

m−2
2 r = ε

β
2∗ .

Then for each ε ∈ 
ε∗ (1.4) becomes

{
θ̇ = ω,

ż = εαA∗z + εαδηs
m−2
2 r f (θ, z),

(3.1)

where A∗ = ε−αA.
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3.1 KAM Iterations

In the case (C3),wefix a0 < μ2 < m−6τ+5
6 . Then,m > 6τ1−1,where τ1 = τ+1+μ2.

Let μ > 0 be given such that

μ <

⎧⎨
⎩
min

{
m+μ̃
m+μ1

− 1, m−2d+μ1
m+μ1

,
m+1−3d+2μ1

m−1

}
, in cases (C1), (C2),

min
{

m+μ̃
m+μ1

− 1, m−4τ1+μ1
m+μ1

,
m+1−6τ1+2μ1

m−1

}
, in the case (C3).

Setting η0 = η, s0 = s, r0 = r , we consider the sequences

ην+1 = η1+μ
ν , sν = η

2
m
ν , rν = s1+μ1

ν ,

s(i)
ν =

{
sν − (sν−sν+1)i

m−2d+2 , i = 0, 1, · · · ,m − 2d + 2, in cases (C1), (C2),
sν − (sν−sν+1)i

m−4[τ1] , i = 0, 1, · · · ,m − [4τ1], in the case (C3),

ν = 0, 1, · · · . In the case (C3), we also let γ0 = γ 2 and consider the sequence

γν = γ0

2ν
.

According to Lemma 2.2, we can rewrite (3.1) as

{
θ̇ = ω,

ż = Az + εαδ
∑∞

ν=0 fν(θ, z),

where, as ε ∈ 
ε∗ is varying, fν : Td
sν ×R

2
rν → C

2 is a smooth family of real analytic
functions satisfying

‖
ν∑

i=0

fi − ηs
m−2
2 r f ‖Cm+μ̃(Td×Br ),
ε∗ , ‖ fν‖sν ,rν ,
ε∗ � ηs

m−2
2 rsm+μ̃

ν ,

for all ν = 0, 1, · · · .
The KAM iterations concern the construction of a sequence of invertible transfor-

mations φ0, φ1, · · · such that for each ν = 0, 1, · · · , the inverse of the transformation
φν = φ0 ◦ φ1 ◦ · · · ◦ φν transforms

{
θ̇ =ω,

ż=εαA∗z + εαδ
∑ν

i=0 fi (θ, z),
(0ν)

to a system of the form

{
θ̇ = ω,

ż = (εαAν +εαδQν(θ))z + εαδFν(θ) + εαδHν(θ, z), (θ, z) ∈ D( sν2 , rν), ε ∈ Eν,

(1ν)
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where Eν ≡ 
ε∗ in cases (C1), (C2) for all ν = 0, 1, · · · , and

Eν =
{


ε∗ , if ν = 0,
E1

ν ∩ E2
ν , if ν > 0; with

E1
ν :=

{
ε ∈ 
ε∗ : |〈k, ω〉 − εαImλiν−1(ε)| ≥ εα̃γ 2

ν

|k|τ1 ,∀k ∈ Z
d \ {0}, i = 1, 2

}
,

E2
ν :=

{
ε ∈ 
ε∗ : |〈k, ω〉−εαImλiν +εαImλ j

ν |≥
εα̃γ 2

ν

|k|τ1 ,∀k∈Z
d \ {0}, i, j =1, 2

}

in the case (C3), in which λiν , i = 1, 2, are eigenvalues of Aν for each ν = 0, 1, · · · ,
and α̃ = 0 if α > 0 and α̃ = α if α < 0. Moreover, for all ν = 1, 2, · · · ,

‖Aν − Aν−1‖Eν
� sm∗

ν−1, (3.2)

‖Qν‖ sν
2 ,Eν

� ηνs
m−2
2

ν , (3.3)

‖Fν‖ sν
2 ,Eν

� ηνs
m−2
2

ν rν, (3.4)

‖Hν − Hν−1‖ sν
2 ,rν ,Eν

� sm∗
ν−1, (3.5)

Hν(θ, z) = O(|z|2) uniformly in θ, ε, and ν, (3.6)

where

m∗ =
{
m − 2d + μ1, in cases (C1), (C2),
m − 4τ1 + μ1

2 , in the case (C3).
(3.7)

.

3.2 Transformations and Homological Equations

We now construct the transformations φν , ν = 0, 1, · · · , by solving suitable homolog-
ical equations.We do so by taking advantage of the special nature of A and considering
diagonalizations of the coefficients matrices of the homological equations in order to
obtain a better lower bound of the smoothness order of φν’s.

Lemma 3.1 For given 0 < ε∗ � 1, there exists a smooth family of real analytic
transformations φν : D(sν/2, rν) → D(sν−1/2, rν−1), ε ∈ Eν , ν = 0, 1, · · · , such
that, for each ν = 0, 1, · · · , the inverse of φν = φ0 ◦ φ1 ◦ · · · ◦ φν transforms (0ν) to
(1ν) and φν satisfies

‖φν − id‖ sν
2 ,rν ,Eν

� sm∗
ν−1, (3.8)

‖Dφν − I d‖ sν
2 ,rν ,Eν

� sm∗−1
ν−1 , (3.9)

‖D j (φν − φν−1)‖ sν
2 ,rν ,Eν

� sm∗− j
ν , j = 0, 1, · · · , m̃, ν ≥ 1, (3.10)

where m∗ is as in (3.7).
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Proof We use induction argument. For ν = 0, we let A0 = A∗, Q0 = 0, F0 = 0, and
H0 = f0. Then, we can simply choose φ0 = id. Now suppose that for some given
ν = 1, 2, · · · , φi , i = 1, 2, · · · , ν − 1, are already constructed as stated in the lemma,
i.e., the inverse of φν−1 = φ0 ◦ φ1 ◦ · · · ◦ φν−1 transforms (0ν−1) to (1ν−1) and φν−1

satisfies (3.2)-(3.6) with ν − 1 in place of ν. Consider the homological equations

∂ωVν(θ) = εαAν−1Vν(θ) + εαδFν−1(θ), (3.11)

∂ωUν(θ) = εαAνUν(θ) − εαUν(θ)Aν + εαδGν−1(θ), (3.12)

where Gν−1(θ) = Qν−1(θ) − [Qν−1(·)] + ∂Hν−1(θ,Vν (θ))
∂z − [ ∂Hν−1(·,Vν (·))

∂z ] and

Aν = Aν−1 + δ[Qν−1(·)] + δ

[
∂Hν−1(·, Vν(·))

∂z

]
. (3.13)

If the equations are solvable, then the transformation φν : (θ, Z) �→ (θ, z):

z = (I +Uν(θ))Z + Vν(θ)

transforms (1)ν−1 to

{
θ̇ = ω,

Ż = (Aν + εαδ Q̃ν(θ))Z + εαδ F̃ν(θ) + εαδ H̃ν(θ, Z),
(2ν)

where Aν is as in (3.13) and

F̃ν(θ) = (I +Uν(θ))−1 (Qν−1(θ)Vν(θ) + Hν−1(θ, Vν(θ))) ,

Q̃ν(θ) = (I +Uν(θ))−1((Qν−1(θ) − [Qν−1(·)])Uν(θ)

+
(

∂Hν−1(θ, Vν(θ))

∂z
−
[
∂Hν−1(·, Vν(·))

∂z

])
Uν(θ)),

H̃ν(θ, Z) = (I +Uν(θ))−1
(
Hν−1(θ, (I +Uν(θ))Z + Vν(θ)) − Hν−1(θ, Vν(θ))

−∂Hν−1(θ, Vν(θ))

∂z
(I +Uν(θ))Z

)
.

Let

Gν(θ, Z) = (Dφν)−1 · ( fν(θ, z)) ◦ φν |z=φν(Z) = G0
ν(θ) + G1

ν(θ)Z + G2
ν(θ, Z),

where G0
ν(θ) = Gν(θ, 0), G1

ν(θ) = ∂Gν (θ,0)
∂Z and G2

ν(θ, Z) = Gν(θ, Z) − G0
ν(θ) +

G1
ν(θ)Z = O(|Z |2). Then it is clear that the inverse of φν = φ0 ◦ · · · ◦ φν−1 ◦ φν :

(θ, Z) �→ (θ, z), transforms (0ν) to (1ν) with Aν being defined in (3.13) and

Qν(θ) = Q̃ν(θ) + G1
ν(θ),

Fν(θ) = F̃ν(θ) + G0
ν(θ),

Hν(θ, Z) = H̃ν(θ, Z) + G2
ν(θ, Z).
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We now analyze the solvability of homological equations (3.11), (3.12) and
conduct the corresponding estimates. Let Bν−1 be such that B−1

ν−1Aν−1Bν−1 =
diag{λ1ν−1, λ

2
ν−1}. As ‖Aν−1 − A0‖Eν

� 1 and A0 is a 2 × 2 diagonalizable matrix,
we can choose Bν−1 such that

‖Bν−1‖Eν
‖B−1

ν−1‖Eν
� 1.

Denote V̂ν = B−1
ν−1Vν . Then, (3.11) becomes

∂ω V̂ν(θ) = εα Ãν−1V̂ν(θ) + εαδ F̂ν−1(θ), (3.14)

where Ãν−1 = diag{λ1ν−1, λ
2
ν−1} and F̂ν−1(θ) = B−1

ν−1Fν−1(θ). By witting V̂ν(θ) =
(V̂ 1

ν (θ), V̂ 2
ν (θ))� and F̂ν−1(θ) = (F̂1

ν−1(θ), F̂2
ν−1(θ))�, (3.14) is equivalent to

∂ω V̂
i
ν (θ) = εαλiν−1V̂

i
ν (θ) + εαδ F̂ i

ν−1(θ), i = 1, 2. (3.15)

To solve (3.15), we consider Fourier expansions

V̂ i
ν (θ) =

∑
k∈Zd

V̂ i
ν,ke

i〈k,θ〉, F̂ i
ν−1(θ) =

∑
k∈Zd

F̂ i
ν−1,ke

i〈k,θ〉.

Substituting these Fourier series and comparing coefficients in (3.15) yields

V̂ i
ν,k = εαδ F̂ i

ν−1,k

i〈k, ω〉 − εαλiν−1

, i = 1, 2, k ∈ Z
d .

Hence

‖V̂ i
ν ‖

s(1)
ν−1
2 ,Eν

� δ
∑
k∈Zd

sup
ε∈Eν

⎛
⎝ εα |F̂ i

ν−1,k |
|i〈k, ω〉 − εαλiν−1|

+ εα+1| ∂ F̂ i
ν−1,k
∂ε

|
|i〈k, ω〉 − εαλiν−1|

+ ε2α+1|F̂ i
ν−1,k | · |λiν−1|

|i〈k, ω〉 − εαλiν−1|2
)
e

s(1)
ν−1
2 |k|

� δ‖Fi
ν−1‖ sν−1

2 ,Eν

∑
k∈Zd

sup
ε∈Eν

(
εα

|i〈k, ω〉 − εαλiν−1|
+ ε2α+1 · |λiν−1|

|i〈k, ω〉 − εαλiν−1|2
)
e(

s(1)
ν−1−sν−1

2 )|k|

� δην−1s
m−2
2

ν−1 rν−1

∑
k∈Zd

sup
ε∈Eν

(
εα

|i〈k, ω〉 − εαλiν−1|
. + ε2α+1 · |λiν−1|

|i〈k, ω〉 − εαλiν−1|2
)
e

(
s(1)
ν−1−sν−1

2

)
|k|

= δsm+μ1
ν−1

∑
k∈Zd

sup
ε∈Eν

(
εα

|i〈k, ω〉 − εαλiν−1|
+ ε2α+1 · |λiν−1|

|i〈k, ω〉 − εαλiν−1|2
)
e(

s(1)
ν−1−sν−1

2 )|k|.
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In cases (C1), (C2), since for each i = 1, 2, λiν−1 is a small perturbation of λi0 which
has non-zero real part, we have by noting Eν ≡ 
ε∗ that

‖V̂ i
ν ‖

s(1)
ν−1
2 ,Eν

� δsm+μ1
ν−1

1

infε∈
ε∗ |Reλiν−1|
∑
k∈Zd

e(
s(1)
ν−1−sν−1

2 )|k|

� δsm+μ1
ν−1

1

sdν−1

= δsm+μ1−d
ν−1 .

In the case (C3), we have by definition of Eν that

‖V̂ i
ν ‖

s(1)
ν−1
2 ,Eν

� δsm+μ1
ν−1

∑
k∈Zd

sup
ε∈Eν

(
εα

|〈k, ω〉 − εαImλiν−1|

+ ε2α+1

|〈k, ω〉 − εαImλiν−1|2
)
e

(
s(1)
ν−1−sν−1

2

)
|k|

� δsm+μ1
ν−1

⎛
⎜⎝1+

∑
k∈Zd\{0}

sup
ε∈Eν

(
εα|k|τ1
εα̃γν−1

+ ε2α+1|k|2τ1
ε2α̃γ 2

ν−1

)
e

(
s(1)
ν−1−sν−1

2

)
|k|
⎞
⎟⎠

� δγ −2
ν−1s

m+μ1
ν−1

∑
k∈Zd\{0}

sup
ε∈Eν

|k|2τ1e

(
s(1)
ν−1−sν−1

2

)
|k|

� δγ −2
ν−1s

m+μ1
ν−1 s−2τ1

ν−1

= δγ −2
ν−1s

m+μ1−2τ1
ν−1 � δs

m−2τ1+ μ1
2

ν−1 .

Thus, in all three cases, (3.11) is uniquely solvable to yield a solution Vν which is
smooth in ε ∈ Eν and analytic in θ ∈ T

d
s(1)ν−1/2

such that ‖Vν‖s(1)ν−1/2,Eν
� δsa1ν−1. It

follows that Aν in (3.13) is well-defined and satisfies (3.2).
Similarly, we let Bν be the matrix such that B−1

ν AνBν = diag{λ1ν−1, λ
2
ν−1} ≡ Ãν

and

‖Bν‖Eν
‖B−1

ν ‖Eν
� 1.

Denote Ûν = BνUνB−1
ν ≡ (Û i, j

ν (θ))1≤i, j≤2. Then (3.12) becomes

∂ωÛν(θ) = ÃνÛν(θ) − Ûν(θ) Ãν+1 + εαδĜν−1(θ), (3.16)

where Ĝν−1(θ) = B−1
ν Gν−1(θ)Bν ≡ (Ĝi, j

ν (θ))1≤i, j≤2, which, in components, reads

∂ωÛ
i, j
ν (θ) =

{
(λiν − λ

j
ν)Û

i, j
ν (θ) + εαδĜi, j

ν−1(θ), i �= j,
εαδĜi,i

ν−1(θ), i = j,
(3.17)
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i, j = 1, 2. Since [Gν−1] = 0, a solution Ûν of (3.16)must satisfy [Ûν] = 0. Consider
Fourier expansions

Û i, j
ν (θ) =

∑
k∈Zd\{0}

Û i, j
ν,k e

i〈k,θ〉, Ĝi, j
ν−1(θ) =

∑
k∈Zd\{0}

Ĝi, j
ν−1,ke

i〈k,θ〉.

Then, substituting these Fourier series and comparing coefficients in (3.17) yields

Û i, j
ν,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εαδĜi, j
ν−1,k

i〈k, ω〉 − εαλiν − εαλ
j
ν

, i �= j,

εαδĜi,i
ν−1,k

i〈k, ω〉 , i = j,

for all i, j = 1, 2 and k ∈ Z
d\{0}. Similar to arguments for Vν , we see from the above

Fourier coefficients that (3.16) is solvable to yields a solution Uν which is smooth in
ε ∈ Eν and analytic in θ ∈ T

d
s(2)ν−1/2

such that ‖Uν‖s(2)ν−1/2,Eν
� δsa1ν−1.

By making ε∗ further small if necessary, one can check that

rν(1 + ‖Uν‖ s(2)
ν−1
2 ,Eν

) + ‖Vν‖ s(2)
ν−1
2 ,Eν

≤ rν−1,

which implies that

φν : D
( sν
2

, rν
)

→ D
( sν−1

2
, rν−1

)
, ε ∈ Eν .

It also follows from the estimates of Vν , Uν and Cauchy’s estimate that

‖φν − id‖
s(1)
ν−1
2 ,rν−1,Eν

� sa1ν−1,

‖Dφν − I d‖
s(2)
ν−1
2 ,rν−1,Eν

� sa1−1
ν−1 ,

‖D jφν‖ s
( j+1)
ν−1
2 ,rν−1,Eν

� sa1− j
ν−1 , j = 2, · · · , m̃,

where

a1 =
{
m − 2d + μ1, in cases (C1), (C2),
m − 2τ1 + μ1

2 , in the case (C3).

Since φν = φν−1 ◦φν , (3.8)-(3.10) follow easily from (3.18)-(3.20) and the induction
hypothesis. Properties (3.3)-(3.6) can be also shown by the definitions of Qν , Fν , Hν ,
the estimates of Vν , Uν , and the induction hypothesis. ��
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3.3 Whitney Extensions and Convergence

Consider the sequence βν = ∑ν
i=0

γ
2ν , ν = 0, 1, · · · . By Whitney extension theorem

(Pöschel 1982; Stein 1970), for each ν = 1, 2, · · · and ε ∈ Eν , ψν =: φν − φν−1

can be extended Cm̃-smoothly from D(sν/2, rν) to a function on D(sν/2, βν/2), still
denoted by ψν , satisfying

‖D jψν‖ sν
2 ,

βν
2 ,Eν

� ‖D jψν‖ sν
2 ,rν ,Eν

� sm∗− j
ν , j = 0, 1, · · · , m̃, ν = 1, 2, · · · .

This, for each ν = 1, 2, · · · , results in extensions of φν = ψν +ψν−1+· · ·+ψ1+ id
from D(sν/2, rν) to D(sν/2, βν/2)which we still denote by φν . By making ε∗ further
small if necessary, it follows that

‖φν − id‖ sν
2 ,

βν
2 ,Eν

≤
ν∑

i=1

‖ψ i‖ sν
2 ,

βν
2 ,Eν

�
ν∑

i=1

sm∗
i−1 ≤ βν

2
, (3.18)

‖Dφν − I d‖ sν
2 ,

βν
2 ,Eν

≤
ν∑

i=1

‖Dψ i‖ sν
2 ,

βν
2 ,Eν

�
ν∑

i=1

sm∗−1
i−1 ≤ βν, (3.19)

‖D j (φν − φν−1)‖ sν
2 ,

βν
2 ,Eν

= ‖D jψν‖ sν
2 ,

βν
2 ,Eν

� sm∗− j
ν , j = 0, 1, · · · , m̃,

(3.20)

for all ν = 1, 2, · · · . Consequently, for each ν = 0, 1, · · · , the inverse of φν :
D(sν/2, βν/2) × Eν → D(s0, β0) × E0 transforms (0ν) on D(s0, β0) × E0 to
{

θ̇ = ω,

ż = (εαAν +εαδQν(θ))z+εαδFν(θ)+εαδ H̃ν(θ, z), (θ, z) ∈ D( sν2 ,
βν

2 ), ε ∈ Eν,

(1ν)

where, in virtual of the extension ofφν , H̃ν is aCm̃,1 extension of Hν from D( sν2 , rν)×
Eν to D( sν2 ,

βν

2 ) × Eν . Denote

E∞ = ∩∞
ν=0Eν .

Then, (3.18)-(3.20) also imply that φν is convergent onTd × Br/2×E∞ inCm̃,1-norm
in the sense of Whitney to an invertible transformation φ∞ : Td × Br/2 × E∞ →
T
d × Br × E0. By noting that the vector field of (0ν) converges to that of (4.5) in

Cm̃,1-norm and limν→∞ Qν = 0, limν→∞ Fν = 0 by (3.3), (3.4) respectively, it is
clear that the inverse of φ∞ transforms (4.5), on T

d × Br × E0, to
{

θ̇ = ω,

ż = εαA∞z + εαδ H̃∞(θ, z), (θ, z) ∈ T
d × Br/2, ε ∈ E∞,

where A∞ = limν→∞ Aν and H̃∞ = limν→∞ H̃ν . It is clear that H̃∞(θ, z) = O(|z|2).
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3.4 Measure Estimate

It remains to estimate the measure of E∞ = ∩∞
ν=0Eν in the case (C3). For each

k ∈ Z
d \ {0} and ν = 0, 1, · · · , consider

f iνk(ε) = 〈k, ω〉 − εαImλiν(ε), i = 1, 2,

f i jνk(ε) = 〈k, ω〉 − εαImλiν+1 + εαImλ
j
ν+1, i, j = 1, 2,

and, in the case α > 0, also consider

Ri
νk :=

{
ε ∈ Eν : | f iνk(ε)| <

γ 2
ν

|k|τ1
}

, i = 1, 2,

Ri j
νk :=

{
ε ∈ Eν : | f i jνk(ε)| <

γ 2
ν

|k|τ1
}

, i, j = 1, 2.

Since

d(det Aν(ε))

dε
= d(det(A0 + ∑ν

i=1([Qi (θ)] + [ ∂Gi (θ,Vν (θ))
∂z ])))

dε
,

there is a constant c > 0 such that

|d f
i
νk(ε)

dε
| > cεα−1, |d f

i j
νk(ε)

dε
| > cεα−1, ε ∈ Eν,

for all k ∈ Z
d\{0}, ν = 0, 1, · · · , and i = 1, 2.

For given i = 1, 2 and ν = 0, 1, · · · , if k ∈ Z
d\{0} satisfies γ

|k|τ ≥ 2cεα∗ , then

| f iνk(ε)| ≥ γ

|k|τ − cεα∗ ≥ γ

2|k|τ ≥ γ 2
ν

|k|τ1 , ε ∈ Eν,

implying that Ri
ν,k = ∅. Therefore, γ

|k|τ < 2cεα∗ , and consequently,

measRi
νk ≤ γ 2

ν

c|k|τ1εα−1∗
� γ 2

ν εα∗
|k|1+μ2εα−1∗

� γ 2
ν ε∗

|k|1+μ2
.

It follows that

meas

⎛
⎜⎜⎝

⋃
k∈Zd\{0}
ν=0,1,···

Ri
νk

⎞
⎟⎟⎠ � ε∗

∞∑
ν=0

γ 2
ν

∑
k∈Zd\{0}

1

|k|1+μ2
� γ 2ε∗, i = 1, 2.
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Similarly,

meas

⎛
⎜⎜⎝

⋃
k∈Zd\{0}
ν=0,1,···

Ri j
νk

⎞
⎟⎟⎠ � ε∗

∞∑
ν=0

γ 2
ν

∑
k∈Zd\{0}

1

|k|1+μ2
� γ 2ε∗, i = 1, 2.

Thus, there is a constant c1 > 0 such that

measE∞ ≥ meas
ε∗ − meas

⎛
⎜⎜⎝

⋃
k∈Zd\{0},i=1,2

ν=0,1,···

Ri
νk

⎞
⎟⎟⎠

−meas

⎛
⎜⎜⎝

⋃
k∈Zd\{0},i, j=1,2,

ν=0,1,···

Ri j
νk

⎞
⎟⎟⎠ ≥ ε∗(1 − c1γ

2).

In the case α < 0, we consider sets

Ri
νk :=

{
ε ∈ 
ε∗ : | f iνk(ε)| <

εαγ 2
ν

|k|τ1
}

, i = 1, 2,

Ri j
νk :=

{
ε ∈ 
ε∗ : | f i jνk(ε)| <

εαγ 2
ν

|k|τ1
}

, i, j = 1, 2,

k ∈ Z
d\{0}, ν = 0, 1, · · · . Then similar arguments as the above yield that

measE∞ ≥ ε∗(1 − c2γ
2)

for some constant c2 > 0. In both cases, we see that measE∞ ∼ ε∗ as γ sufficiently
small.

TheMain Theorem is nowproved by taking�ε = (φ∞)−1, Eε∗ = E∞, Ă = εαA∞,
and H̆ = εαδ H̃∞.

4 Response Solutions in Quasi-Periodically Forced Nonlinear
Oscillators

In this section, we consider applications of our Main Theorem to three classes of
quasi-periodically forced nonlinear oscillators: (1) strongly damped oscillators; (2)
damping-free oscillators with large potentials; (3) degenerate harmonic oscillators.

For a forced nonlinear oscillator with d-dimensional frequencies, we refer the
smoothness order of a response solution as that of the response torus of the corre-
sponding reduced system in T

d × R
2. The response solution is said to be Floquet if

its corresponding response torus is.
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4.1 Forced Oscillators with Strong Dampings

Consider the following strongly damped, quasi-periodically forced oscillators

ẍ + 1

ε
ẋ − g(x) = εχ1 f (ωt), x ∈ R

1, (4.1)

where f (ωt) is a quasi-periodic forcing function, ω ∈ R
d is a Diophantine frequency

vector with Diophantine constants γ > 0 and τ > d − 1, 0 < ε � 1 is a parameter,
χ1 ∈ (−1,∞) is a constant, and g ∈ Cm+μ̃(R1), f ∈ Cm+μ̃(Td) for some integer
m > 4d + [τ ] and real number 0 < μ̃ < 1.

Extending existing results Calleja et al. (2013), Corsi et al. (2013, 2014), Gentile
(2010, 2012), Gentile and Vaia (2021), Wang and de la Llave (2020) on strongly
damped oscillators, we consider more general cases of (4.1) by allowing not only
finite smoothness, a full range of small parameter ε, but also the possibility of large
forcing when χ1 ∈ (−1, 0). Our result will also provide stability information of
response solutions.

Consider the equivalent reduced system

⎧⎨
⎩

θ̇ = ω,

ẋ = y,
ẏ = − 1

ε
y + g(x) + εχ1 f (θ)

(4.2)

corresponding to (4.1) and assume the following condition:
(H1) The equation g(x) + εχ1[ f ] = 0 admits a smooth family of solutions x = c(ε)
for 0 ≤ ε � 1 such that dg(c(0))

dx �= 0.

Remark 4.1 We note that if χ ∈ (−1, 0), then for (H1) to hold it is necessary that
[ f ] = 0.

We have the following result.

Corollary 1 Assume the condition (H1). Then, there exists a 0 < ε0 � 1 such that, for
all ε ∈ (0, ε0), (4.1) admits a C1 family of Floquet, Cm−3d−[τ ]−1-smooth response
solutions x(t, ε) = c(ε) + X(ωt, ε), C1-uniformly close to c(0) as ε → 0, such that
their corresponding response tori of (4.2) are asymptotically stable (resp. unstable)
if dg(c(0))

dx < 0 (resp. dg(c(0))
dx > 0).

Proof For simplicity, we suspend the explicit dependence of c(ε) on ε and denote
g′ = dg

dx . We first rewrite (4.2) as

⎧⎨
⎩

θ̇ = ω,

ẋ = y,
ẏ = g′(c)(x − c) − 1

ε
y + h(x − c) + εχ1 f̃ (θ),

(4.3)
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where f̃ (θ) = f (θ)−[ f ] and h(x−c) = g(x)−g(c)−g′(c)(x−c). Letλ1 = λ1(ε) =
−1−

√
4 g′(c)ε2+1
2ε and λ2 = λ2(ε) = −1+

√
4 g′(c)ε2+1
2ε . Then, the transformation φ1ε :

x = x1 + y1 + c,

y = λ2x1 + λ1y1

transforms (4.3) to

⎧⎪⎪⎨
⎪⎪⎩

θ̇ = ω,

ẋ1 = λ1x1 − ε√
1+4g′(c)ε2

(εχ1 f̃ (θ) + h(x1 + y1)),

ẏ1 = λ2y1 + ε√
1+4g′(c)ε2

(εχ1 f̃ (θ) + h(x1 + y1)).
(4.4)

Consider the homological equations

∂ωv1(θ) − λ1v1(θ) = − ε1+χ1√
1 + 4ġ(c)ε2

f̃ (θ),

∂ωv2(θ) − λ2v2(θ) = ε1+χ1√
1 + 4ġ(c)ε2

f̃ (θ).

By Lemma 2.3, these homological equations can be solved to yield solutions vi ∈
Cm−d−[τ ]−1(Td), i = 1, 2, which also depend on ε C1-smoothly.Moreover, it follows
from Lemma 2.3 and simple estimates on derivatives with respect to ε that

‖vi (θ)‖Cm−d−[τ ]−1,
ε
≤ C

ε1+χ1√
1 + 4g′(c)ε2

‖ f̃ ‖Cm+μ(Td ),
ε
, i = 1, 2, 0 < ε � 1,

whereC > 0 is a constant only depending on d and τ . Using v1, v2, the transformation
φ2ε :

θ = θ, x1 = x2 + v1(θ), y1 = y2 + v2(θ)

transforms the system (4.4) into

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = ω,

ẋ2 = λ1x2 − ε√
1+4g′(c)ε2

h′(v1(θ) + v2(θ))(x2 + y2) − ε√
1+4g′(c)ε2

h(v1(θ)

+v2(θ)) − ε√
1+4g′(c)ε2

h̃(x2 + y2, θ),

ẏ2 = λ2y2 + ε√
1+4g′(c)ε2

h′(v1(θ) + v2(θ))(x2 + y2) + ε√
1+4g′(c)ε2

h(v1(θ)

+v2(θ)) − ε√
1+4g′(c)ε2

h̃(x2 + y2, θ),

where h′ = dh
dx and h̃(x2 + y2, θ) = h(v1(θ) + v2(θ) + x2 + y2) − h′(v1(θ) +

v2(θ))(x2 + y2). Now consider the re-scaling φ3ε : x2 → ε
1+χ1
2 x2, y2 → ε

1+χ1
2 y2
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and let φε = φ1ε ◦ φ2ε ◦ φ3ε . Then {φε}0<ε�1 is a C1 family of Cm−d−[τ ]−1-smooth,
invertible transformations whose inverses transform (4.2) to

{
θ̇ = ω,

ż = A(ε)z + ε1+
1+χ1
2 F(θ, z, ε), (θ, z) ∈ T

d × R
2,

(4.5)

where A(ε) = diag{λ1(ε), λ2(ε)}. The existence of Cm−3d−[τ ]−1, Floquet response
tori of (4.5) for all 0 < ε � 1 follows from the Main Theorem in the case (C1)
with α1 = −1 and α2 = 1. By noting that λ1(ε) = − 2

ε
+ O(ε) and λ2(ε) =

g′(c(0))ε + O(ε2), the stability of these response tori follow from Remark (3) after
the Main Theorem. ��

4.2 Forced, Damping-Free Oscillators with Large Potentials

Consider the following quasi-periodic forced, damping-free oscillators with large
potentials:

ẍ − 1

ε
g(x) = εχ2 f (ωt), x ∈ R

1, (4.6)

where f (ωt) is a quasi-periodic forcing function, ω ∈ R
d is a Diophantine frequency

vector with Diophantine constants γ > 0 and τ > d − 1, 0 < ε � 1 is a parameter,
χ2 ∈ (−1,∞) is a constant, and g ∈ Cm+μ̃(R1), f ∈ Cm+μ̃(Td) for some integer
m ≥ 1 and real number 0 < μ̃ < 1. We note that, like the case of strongly damped
oscillators, the forcing coefficients of (4.6) are also allowed to be large when χ2 ∈
(−1, 0).

We assume the following condition:
(H2) The equation g(x) = 0 admits a non-degenerate real root c0.

Consider the reduced system

⎧⎨
⎩

θ̇ = ω,

ẋ = y,
ẏ = 1

ε
g(x) + εχ2 f (θ)

(4.7)

corresponding to (4.6) and denote g′ = dg
dx . Then, we have the following results.

Corollary 2 The followings hold under the condition (H2).

(a) If g′(c0) > 0 and m ≥ 3d, then there exists a 0 < ε0 � 1 such that for all
ε ∈ (0, ε0), (4.6) admits a C1 family of Floquet, Cm−2d -smooth response solutions
x(t, ε) = c0 + X(ωt, ε) which are C1 uniformly close to c0 as ε → 0. Moreover,
the response tori of (4.7) corresponding to these response solutions are unstable
(in fact, they are of saddle type).

(b) If g′(c0) < 0 and m > 6(τ + 1), then there exists a 0 < ε0 � 1 and a Cantor
set D ⊂ (0, ε0) with almost full Lebesgue measure such that for all ε ∈ D, (4.6)
admits a C1 family of Floquet, Cm−4[τ ]−5-smooth response solutions x(t, ε) =
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c0+X(ωt, ε)which are C1 uniformly close to c0 in the sense of Whitney as ε → 0.
Moreover, the response tori of (4.7) corresponding to these response solutions are
linearly stable.

Proof We first re-write (4.7) as

⎧⎨
⎩

θ̇ = ω,

ẋ = y,
ẏ = 1

ε
g′(c0)(x − c0) + 1

ε
h(x − c0) + εχ2 f (θ),

(4.8)

where h(x − c0) = g(x) − g(c) − g′(c0)(x − c0). Then the transformation

x = x1 + c0, y = 1√
ε
y1

transforms system (4.8) to

⎧⎪⎨
⎪⎩

θ̇ = ω,

ẋ1 = 1√
ε
y1,

ẏ1 = 1√
ε
g′(c0)x1 + 1√

ε
h(x1) + ε

1
2+χ2 f (θ).

(4.9)

Under the re-scaling x1 = ε
1+χ2
2 x2, y1 = ε

1+χ2
2 y2, system (4.9) then becomes

⎧⎪⎪⎨
⎪⎪⎩

θ̇ = ω,

ẋ1 = 1√
ε
y1,

ẏ1 = 1√
ε
g′(c0)x1 + 1√

ε
ε

1+χ2
2

h(ε
1+χ2
2 x1)

ε1+χ2
+ 1√

ε
ε

1+χ2
2 f (θ),

which, under a linear, constant transformation in x1, y1, becomes

{
θ̇ = ω,

ż = A(ε)z + ε− 1
2 ε

1+χ2
2 F(θ, z, ε), (θ, z) ∈ T

d × R
2,

(4.10)

where F(·, ε) ∈ Cm+μ̃(Td × R
2) and is of the class C1 in 0 < ε � 1, and

A = A(ε) =
(

0 1√
ε

√|g′(c0)|
sgng′(c0))√

ε

√|g′(c0)| 0

)
.

Applying the Main Theorem to (4.10) with α = − 1
2 , we obtain (a) corresponding

to the case (C1) and (b) corresponding to the case (C3). We note in the case (b) that,
because (4.6) is damping-free, its corresponding limiting matrices Ă(ε) as in (1.5) are
of elliptic type. The stability of the resulting response tori now follows from Remark
(3) after the Main Theorem. ��
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4.3 Forced, Degenerate Harmonic Oscillators

Consider the following degenerate harmonic oscillatorswith small quasi-periodic forc-
ing:

ẍ − λxl = ε f (ωt), x ∈ R
1, (4.11)

where λ �= 0 is a constant, f (ωt) is a quasi-periodic forcing function, ω ∈ R
d is

a Diophantine frequency vector with Diophantine constants γ > 0 and τ > d − 1,
0 < ε � 1 is a parameter, and f ∈ Cm+μ̃(Td) for some integer m > 7[τ ] + d + 8
and real number 0 < μ̃ < 1.

When f is real analytic with [ f ] �= 0, the existence of response solutions of (4.11)
of hyperbolic, elliptic types is shown in Si and Yi (2020, 2022), respectively, for either
positive or negative λ values. Now applying the Main Theorem, not only can we treat
the finitely smooth case of f , but also we can show the co-existence of both type of
response solutions for a given λ when ε is sufficiently small.

We assume the following condition that
(H3) l is even and λ[ f ] < 0.

Consider the reduced system

⎧⎨
⎩

θ̇ = ω,

ẋ = y,
ẏ = λxl + ε f (θ)

(4.12)

corresponding to (4.11). Then, the following result holds.

Corollary 3 Assume that the given l, λ, f satisfy the condition (H3). Then there exists
a 0 < ε0 � 1 and a Cantor set D ⊂ (0, ε0) of almost full Lebesgue measure such
that (4.11) admits two C1 families of response solutions: (a) {X1

ε (ωt)}ε∈(0,ε0), which
are hyperbolic (hence unstable) and of the class Cm−3d−[τ ]−1; and (b) {X2

ε (ωt)}ε∈D,
which are elliptic (hence linearly stable) and of the class Cm−d−5[τ ]−6.

Proof Under the condition (H3), it is clear that the equation

λxl + ε[ f ] = 0

admits two roots x± = ±(
−ε[ f ]

λ
)
1
l . The Jacobian matrices of (4.12) at the relative

equilibria (x±, 0) read as

A± =
(

0 1

±l(−ε[ f ]
λ

)
l−1
l 0

)
,

among which A+ is hyperbolic and A− is elliptic. By translating the relative equilibria
to the origin and using a normal form reduction similar to that in the proof of Corol-
lary 1, we can construct aC1 family of invertible,Cm−d−[τ ]−1-smooth transformations
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which, for ε > 0 sufficiently small, transform (4.12) to the form

{
θ̇ = ω,

ż = Ã±(ε)z + ε
1
2 F±(θ, z, ε), (θ, z) ∈ T

d × R
2,

(4.13)

where

Ã±(ε) = ε
l−1
2l

(
0 1

±l(−[ f ]
λ

)
l−1
l 0

)
.

The corollary now follows from an application of theMainTheorem to (4.13) by taking
α = l−1

2l , with the cases (C1) and (C3) corresponding to ‘+’ and ‘-’ cases of (4.13),
respectively. Again, in the ‘-’ case, because (4.11) is damping-free, its corresponding
limiting matrices Ă(ε) as in (1.5) are of elliptic type. Hence, the stability properties
of the response tori follow from the Remark (3) under the Main Theorem. ��
Remark 4.2 We have not considered applications of the Main Theorem in the case
(C2). Such applications should naturally arise when some appropriate damping terms
are incorporated in oscillators (4.6) or (4.11).

Acknowledgements We would like to thank the referees for their valuable comments and suggestions.

Author Contributions All authors wrote the main manuscript text, all authors reviewed the manuscript
carefully, and all the authors revised the manuscript carefully.

Data Availability No date were used to support this manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Blyuss, K.B.: Chaotic behaviour of solutions to a perturbed Korteweg-de Vries equation. Rep. Math. Phys.
49, 29–38 (2002)

Braaksma, B., Broer, H.: On a quasi-periodic Hopf bifurcation. Ann. Inst. H. Poincaré Anal. Nonlinéaire
4(2), 115–168 (1987)

Broer, H.W., Hanßmann, H., You, J.: Bifurcations of normally parabolic tori in Hamiltonian systems.
Nonlinearity 18, 1735–1769 (2005)

Broer, H.W., Hanßmann, H., You, J.: Umbilical torus bifurcations in Hamiltonian systems. J. Differ. Equ.
222, 233–262 (2006)

Broer, H.W., Hanßmann, H., You, J.: On the destruction of resonant Lagrangean tori in Hamiltonian sys-
tems. In: Johann, A., Kruse, H. P., Rupp, F., Schmitz, F. (eds.) Recent Trends in Dynamical Systems,
Proceedings of a Conference in Honor of Jürgen Scheurle, vol. 13. Springer (2013)

Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Tori in Families of Dynamical Systems: Order
Amidst Chaos. Springer, Cham (1996)

Calleja, R., Celletti, A., de la Llave, R.: Construction of response functions in forced strongly dissipative
systems. Discret. Contin. Dyn. Syst. 33(10), 4411–4433 (2013)

Cheng, H., Si, W., Si, J.: Whiskered tori for forced beam equations with multi-dimensional Liouvillean. J.
Dyn. Differ. Equ. 32, 705–739 (2020)

123



Journal of Nonlinear Science           (2023) 33:114 Page 27 of 28   114 

Chierchia, L., Qian, D.: Moser’s theorem for lower dimensional tori. J. Differ. Equ. 206, 55–93 (2004)
Corsi, L., Gentile, G.: Oscillator synchronisation under arbitrary quasi-periodic forcing. Commun. Math.

Phys. 316, 489–529 (2012)
Corsi, L., Gentile, G.: Resonant motions in the presence of degeneracies for quasi-periodically perturbed

systems. Ergod. Theory Dynam. Syst. 35, 1079–1140 (2015)
Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Non-

linear Differ. Equ. Appl. 24(1), 3 (2017)
Corsi, L., Feola, R., Gentile, G.: Domains of analyticity for response solutions in strongly dissipative forced

systems. J. Math. Phys. 54(12), 122701 (2013)
Corsi, L., Feola, R.,Gentile,G.: Convergent series for quasi-periodically forced strongly dissipative systems.

Commun. Contemp. Math. 16(3), 1350022 (2014)
Friedman, M.: Quasi-periodic solutions of nonlinear ordinary differential equations with small damping.

Bull. Am. Math. Soc. 73, 460–464 (1967)
Gentile, G.: Degenerate lower-dimensional tori under the Bryuno condition. Ergod. Theory Dynam. Syst.

27, 427–457 (2007)
Gentile, G.: Quasi-periodic motions in strongly dissipative forced systems. Ergod. Theory Dynam. Syst.

30(5), 1457–1469 (2010)
Gentile, G.: Construction of quasi-periodic response solutions in forced strongly dissipative systems. Forum

Math. 24, 791–808 (2012)
Gentile, G., Vaia, F.: Response solutions for strongly dissipative quasi-periodically forced systems with

arbitrary nonlinearities and frequencies. J. Differ. Equ. 282, 370–406 (2021)
Han, Y., Li, Y., Yi, Y.: Degenerate lower-dimensional tori in Hamiltonian systems. J. Differ. Equ. 227,

670–691 (2006)
Hanßmann, H.: The quasi-periodic center saddle bifurcation. J. Differ. Equ. 142(2), 305–370 (1998)
Hanßmann, H.: Hamiltonian torus bifurcations related to simple singularities. In: Laude, G.S., Medhin,

N.G., Sambandham,M. (eds.)Dynamic Systems andApplications, pp. 679–685.Dynamics Publishers,
Atlanta, GA (2004)

Hanßmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Systems. Springer, Cham (2007)
Hu, S., Liu, B.: Degenerate lower dimensional invariant tori in reversible system. Discret. Contin. Dyn.

Syst. 38(8), 3735–3763 (2018)
Hu, S., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differ.

Equ. 266(11), 7459–7480 (2019)
Li, J., Qi, J., Yuan, X.: KAM theorem for reversible mapping of low smoothness with application. Discret.

Contin. Dyn. Syst. 43(10), 3563–3581 (2023)
Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequen-

cies. J. Differ. Equ. 263, 3894–3927 (2017)
Moser, J.: Combination tones for Duffings equation. Commun. Pure Appl. Math. 18, 167–181 (1965)
Matsumoto, T., Chua, L.O., Tanaka, S.: Simplest chaotic nonautonomous circuit. Phys. Rev. A 30, 1155–

1157 (1984)
Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Commun. Pure Appl. Math. 35, 653–696

(1982)
Salamon, D.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J. 10(3), 1–37 (2004)
Salamon, D., Zehnder, E.: KAM theory in configuration space. Commun. Math. Helv. 64, 84–132 (1989)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press,

Princeton, NJ (1970)
Si, W., Yi, Y.: Completely degenerate responsive tori in Hamiltonian systems. Nonlinearity 33(11), 6072–

6099 (2020)
Si, W., Yi, Y.: Response solutions in degenerate oscillators under degenerate perturbations. Ann. Henri

Poincaré 23, 333–360 (2022)
Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience Publisher, New York

(1950)
Thompson, J.M.T.: Designing against capsize in beam seas: recent advances and new insights. Appl. Mech.

Rev. 50, 307–325 (1997)
Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans.

Am. Math. Soc. 369(6), 4251–4274 (2017)

123



  114 Page 28 of 28 Journal of Nonlinear Science           (2023) 33:114 

Wang, F., de la Llave, R.: Response solutions to quasi-periodically forced systems, even to possibly Ill-
posed PDEs,with strong dissipation and any frequency vectors. SIAMJ.Math.Anal. 52(4), 3149–3191
(2020)

Xu, X., Si, W., Si, J.: Stoker’s problem for quasi-periodically forced reversible systems with multidimen-
sional Liouvillean frequency. SIAM J. Appl. Dyn. Syst. 19, 2286–2321 (2020)

Yi, Y.: A generalized integral manifold theorem. J. Differ. Equ. 102, 153–187 (1993)
Yi, Y.: Stability of integral manifold and orbital attraction of quasi-periodic motion. J. Differ. Equ. 102,

278–322 (1993)
You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems.

Commun. Math. Phys. 192, 145–168 (1998)
Zehnder, E.: Generalized implicit function theorems with applications to small divisor problems I II. Com-

mun. Pure Appl. Math. 28, 91–140 (1975)
Zehnder, E.: Generalized implicit function theorems with applications to small divisor problems I II. Com-

mun. Pure Appl. Math. 29, 49–113 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Response Solutions in Singularly Perturbed, Quasi-Periodically Forced Nonlinear Oscillators
	Abstract
	1 Introduction 
	2  Preliminary
	2.1 Notations
	2.2 Analytic Approximations
	2.3 A Finitely Smooth Homological Equation

	3 Proof of Main Theorem
	3.1 KAM Iterations
	3.2 Transformations and Homological Equations
	3.3 Whitney Extensions and Convergence
	3.4 Measure Estimate

	4 Response Solutions in Quasi-Periodically Forced Nonlinear Oscillators
	4.1 Forced Oscillators with Strong Dampings
	4.2 Forced, Damping-Free Oscillators with Large Potentials
	4.3 Forced, Degenerate Harmonic Oscillators 

	Acknowledgements
	References


