
Chapter III

Getting Started With Programming

3.1 Programming and Programming Languages

There are basically three types of files that are found on computers: data file, libraries and programs.
Data files contain information but do nothing with it. Libraries are files are used as a part of one or more
programs. By themselves they do nothing but may be used to provide functionality to a program. Programs,
also called executable files, contain instructions that the computer can natively understand. Fundamentally
all a program does is read and write bits in the computer’s memory.

There are three main approaches to writing a computer program.

Machine code This means writing the program in the computer’s native language.

Assembly code A slightly more human readable version of machine code. The specific instructions that
the computer uses to perform operations are called. These are then translated to machine code.

High level language Here the instruction set of the underlying computer hardware is abstracted away.
The code is generally more human readable and less error prone. This is generally translated into
assembly and then machine code.

We will use the high level languages C and C++ for this class. There are many other languages we could
use, such as FORTRAN and Java. Some of the advantages and disadvantages of C are:

Pros

• C is a small language. C has few built-in features compared with most languages and this means
fewer features to learn. This is generally extended with libraries of functions, such as the C Standard
Library.

• Efficient. C was built to be fast.

• Portable. A properly coded C program can be compiled and run on almost any modern computer.

• Flexible. C is not restricted to scientific computing. You can use C to write any type of program you
can think of.

• Standard Library. C has a large standard library where much of the basic programming work is
already done for you.

1

Tyler Luchko PHYS 234 - 2005 Chapter 3Cons

• Error-prone. It is easy to make mistakes in C programs and can be difficult to find them when they
arise.

• Difficult to read. It is very easy to make C programs that are difficult to read. The writer must
always work to create readable code.

• Difficult to modify. If a program is not specifically written with maintenance in mind it may be as
much work to make a small change as to write a new program from scratch.

3.2 History of C and Computing Languages

The history of C really starts with the history of computing languages. Before graphical user interfaces (GUIs)
and even keyboards programmers had to manually program computers using dip-switches and punch-cards.

The first major advance was assembly language. Assembly did, and still does, allow the programmer
to set individual registers of the central processing unit (CPU). This allowed a completely electronic and
far more general method of computing than ever before. However, this method was still time consuming,
cumbersome and error prone. It also had the disadvantage of not being portable. That is, a program written
for one type of computer could not be run on a different computer without major changes.

The first successful high level language was FORTRAN (FORmula TRANslator) and was completed in
1957. It was a major breakthrough in computing, promising to be as fast as hand written machine code
while reducing the necessary manpower from one scientist and ten engineers to one scientist and, maybe,
one engineer. FORTRAN 77 and 90/95 are still the most popular scientific computing languages for high
performance computing.

The birth of C was almost solely due to the birth of UNIX. C has its roots in several different languages
that were developed during the 1960s, after the original FORTRAN. Most of the languages that influenced C
were used in the early development of UNIX at Bell Laboratories by Ken Thompson and Dennis Ritchie and
a few others. Originally UNIX was written in assembly but this had the problems of being difficult to code,
debug and enhance. Thus, a new language was developed, B. B was based on a language called BPCL which
was based on another language, ALGOL. However, when the team got a new computer it was clear that B
was not good enough. The language was extended and called NB (for ‘New B’) and finally C. Once C was
refined (and the entire UNIX platform rewritten in it) a new, important benefit was realized: portability.
By creating C compilers for different computers UNIX could be easily ported to these computers as well.

C continued to change and evolve through the 1970s and outgrew its UNIX roots. It was no longer
standard to use C on the UNIX platform only. Begin in 1983 the American National Standards Institute
(ANSI) created a standard for C that was completed in 1988. This was further approved by the International
Standards Organization (ISO) in 1990. The version of C that we will be using is this one and is commonly
referred to as ‘ANSI C’ or ‘ANSI/ISO C’.

3.3 Structure of a C Program

It is possible to write a simpler C program than our first example, helloworld.c, but it would be far to boring
to be of any use.

0 /***
1 *A program that prints "Hello, world!" comments
2 ***/
3

4 #include <stdio.h> directive
5

6 int main(){ main function

2

~tluchko/academic/2005/234/lectures/chapter-3/examples/helloworld.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
7 printf("Hello, world!\n"); output
8 return 0; return succesful
9 } end of main and program

This demonstrates the basic structure of a typical C program. Lines 0-2 are comments. These can
actually appear anywhere in our code and are discussed more in Section 3.3.2. Line 4 is a pre-processor
directive that, in this case, tells the compiler that we want to use the stdio library or standard input/output
library. We discuss directives and how the compiler handles them in Sections 3.3.4 and 3.3.1. On line 6 we
declare the main function. This is where our program really starts. When we run our program main is called
by the computer and everything between the {}s is executed. The entire output of the program is on line
7 and will be discussed in Section 3.3.3. Line 8 tells the computer that our program finished successfully.
Finally, line 9 signals the end of our main function that started on line 6.

Note: C is case sensitive. If you type in the above program make sure to type
the characters exactly as you see them.

3.3.1 Compiling Our Code

To run the example above we need to compile it first. The compiler is just another program on the computer
like any other. The source code (the text in the example) is typed into a plain text file. This source file is
really just a data file that is used by our compiler. The compiler takes this source file and translates it into
machine code. This machine code is then an executable file that can run on our computer. We will see more
of the details of how to do this in the lab.

It is useful to know a little bit about the way that the compiler works. It is three step process. The first
step is to run the C pre-processor (CPP). This is really just a search-and-replace program that looks for any
line that starts with a #. The CPP then reads the line and figures out what it needs to place inside our source
file (note that our original file is not actually changed on disk). In the case of line 4 of our example it is
inserting information about our stdio library. The next step changes our modified source code into machine
code called an object file. The final steps is to link all our object files together into a single executable. Since
our example has only one file the last two steps are combined and only an executable is produced.

3.3.2 Comments

Arguably the most important part of our source code is the comments. These are ignored by the computer
but invaluable to the humans who have to read and write the source code. C and most other programming
languages are not easy to read. They do complicated things and even the people who write them forget
what those things are. Thus, it is important to explain in plain english what is happening at each point of
the program. Any program you write should always start with a description of what the program does at
the top along with your name. Commenting and coding style in general will be covered later in the course.

Comments in C always start with /* and end with */. Anything inbetween them is ignored by the
compiler. Comments can go anywhere in the text of the source code as long as they do not fall in the middle
of a word or between quotation marks.

hellocomments.c is our original example with comments scattered throughout. Note that the compiled
program is exactly the same.

0 /***
1 *A program that prints "Hello, world!"
2 ***/
3

4 #include /* 1 */ <stdio.h>
5

6 int /* 2 */ main(/* 3 */) /* 4 */{
7 pr/*comment*/intf("Hello, world!\n"); /* 6 */
8 /* 8 */ return 0/*

3

~tluchko/academic/2005/234/lectures/chapter-3/examples/hellocomments.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
9 10

10 */;
11 /* /* 7 */ */
12 }
13 /* 9 */

3.3.3 Basic Output

The printf command allows us to send text and information to the screen. In helloworld.c we see the
command used to print text. The command requires a string (a list of characters surrounded by quotes).
printf only prints what we tell it to so print a new line we need to use the \n character. printf.c prints
several strings to the screen.

0 /**
1 *An example of using printf
2 ***/
3 Necessary to use printf
4 #include <stdio.h>
5

6 int main(){
7 printf("This is a line of text\n"); There is no new line at the end of this string
8 printf("This is also ");
9 printf("a line of text\n");

10 printf("This is two\nlines of text\n"); There is a new line in the middle of this string
11 printf("\n\n\n"); Three new lines
12 return 0;
13 }

3.3.4 Directives

Directives are used by the CPP to do serach-and-replace on our source code. Two important examples are
#include and #define.

#include Directive

#include is used to include the contents of other files in our own file. For example,

#include <stdio.h>

will find the file stdio.h in a special directory where standard library files are kept and paste the contents
into our file. Similarly,

#include ‘‘path/file’’

will find paste the contents of the file file with path path into our source file.

#define Directive

#define will excute search and replace using the two items that follow it. For examples,

#define PI 3.14159

will search for every instance of PI and replace it with 3.14159.

4

~tluchko/academic/2005/234/lectures/chapter-3/examples/printf.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
3.3.5 Variables

Variables allow us to store information. As we have already seen with integers and floating point numbers
different types of information must be stored in different ways. There are three general variable types
available in C: integers, floating points and characters.

Integers

Integers may be unsigned but are signed by default. There are three different sizes of integers that can
represent different ranges of numbers. The number of bits used by each interger type is dependent on the
type of cpu that is being used. For a 32-bit machine, like the ones we are using, the different types are as
follows

Type Number of Bits Smallest Value Largest Value
short int 16 -32,768 32,767
unsigned short int 16 0 65,535
int 32 -2,147,483,648 2,147,483,647
unsigned int 32 0 4,294,967,295
long int 32 -2,147,483,648 2,147,483,647
unsigned long int 32 0 4,294,967,295

Floating Points

There are three sizes of floating point numbers: float, double and long double. float and double are
also known as single and double precision numbers as double has twice as many bits as float.

Type Number of Bits Smallest Positive Value Largest Value Precision
float 32 1.17× 10−38 3.40× 1038 6 digits
double 64 2.22× 10−308 1.79× 10308 6 digits

The size of long double is not strictly defined but is typically 80 to 128 bits on most 32-bit machines.

Characters

There is only one type of character variable: char. C actually treats this as an 8-bit integer. The numerical
values are then mapped to character values that may or may not be printable.

The most common mapping, and the one used on the computers we will be using, is call ASCII (American
Standard Code for Information Interchange). Other than the characters that are on the keyboard there are
a few more important ones that are encoded.

Name Escape Sequence
Alert (bell) \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \t
Backslash \\
Question mark \?
Single quota \’
Double quota \"

5

Tyler Luchko PHYS 234 - 2005 Chapter 3
Declaration

To use a variable we must declare it first. To declare a variable we must first state the type of variable we
want followed by the name. For example, to define a int variable named myinteger.

int myinteger;

Note that this is a statement so it must end in a ;. More than one variable of the same type may be declared
in the same statement by using a comma to separate the names.

int myinteger, myotherinteger;

Variable names may be composed of letters, numbers and _. The name must start with a letter. It is a
general convention that variable names are always lower case.

int myinteger, myotherinteger;
float float1, float_2;

Variable declaration must be done in main before anything else. This means all varaibles must be declared
as a block and no other commands or statements can interupt.

Assignment

To use a variable we must be able to assign values to it. This is done with the assignment operator =.

myinteger = 42;
float1 = 6.011e-32;

We can also assign the variable when we declare it.

int myinteger = 42, myotherinteger;
float float1 = 6.011e-32, float_2 = 16, product;

Once a variable has a value assigned we can use it.

product = float1 * float_2;

Note that the operators *, /, + and - correspond to ×, ÷, + and −. Standard order of operations rules
apply.

Printing Variables

If we couldn’t get the value of a variable out of our program then our program is useless. The command
to print anything to the screen in C is printf. We have already seen printf in helloworld.c. To print
variables we must insert conversion specifiers into the text. For integers we will use %d for ‘decimal’ and %g
for floating points.

printf("product = %g * %g = %g\n", float1, float_2, product);

Example

A simple example of using variables can be found in volume.c.

0 /**
1 * A program to calculate volume and demonstrate variables.
2 ***/
3

4 #include <stdio.h>

6

~tluchko/academic/2005/234/lectures/chapter-3/examples/volume.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
5

6 int main(){
7 /* declare and assign our variables */ all variables must be de-
8 double volume, height=10, width, length=6e-1; clared here
9

10 width=1.5;
11

12

13 /* caluculate the volume */
14 volume = height * width * length;
15

16 /* print the values of the variables */
17 printf("The dimensions of the box are %g X %g X %g\n", height, width, length);
18 printf("The volume is %g\n", volume);
19

20 return 0;
21 }

3.3.6 Keywords

There are a number of keywords are a part of the C language and have special meaning. As a result you can
not use these for variable or constant names.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

3.4 Mathematical Expressions

As a general rule if a program is going to be useful it has to do math at some point. Doing math in C
involves writing out expressions that are similar to, though not quite the same as, what we would typically
write on paper. Mathematical expressions consist of variables connected by operators. We will explain these
operators and how they interact with different types. Finally, we will explore C’s built-in math library.

3.4.1 Operators

There are many different types of operators in C. For example, mathematical, logical and bit-wise operators.
Logical operators are covered in Section 3.5 and bit-wise operators are beyond the scope of this course.

All operators are either binary or unary and may be non-commutative. The terms ‘unary’ and ‘binary’
refer to whether or not the operator operates on one or two variables at a time. Commutative means that
the order of the variables, or which side of the operator the variable(s) are on, doesn’t matter?

Arithmetic Operators

The arithmetic operators are

7

Tyler Luchko PHYS 234 - 2005 Chapter 3
Operator Binary/Unary Function Commutative

+ unary positive Left side of variable.
- unary negative Left side of variable.
+ binary addition Yes.
- binary subtraction No.
* binary multiplication Yes.
/ binary division No.
% binary remainder No.

Non-commutative operators give different results if the variables involved swap sides about the operator.
For example, + i commutative,

7 + 2 = 2 + 7,

but − is not,
7− 2 6= 2− 7.

When implementing a complex equation we may ask “in what order will our operators be applied?” C
uses the same order of operations that applies to ordinary mathematics. This is sometimes called operator
precedence. The order of precedence is

highest - + (unary)
/ % *

lowest - + (binary)

If in doubt we can always use parentheses to specify the order. Note that we can only use () as other
brackets have special meaning. For example,

a + b * -c equals a + (b * (-c))
a / b - +c equals (a / b) - (+c)
a % b * c equals (a % b) * c

This is demonstrated in the file arithmetic.c

0 /***
1 *demonstration of simple arithmetic
2 **/
3

4 #include <stdio.h>
5

6 int main(){
7 int a=-5, b=7, c=22, d=2;
8 double x=1.23456789, y=55.6, z=-13.4;
9

10 printf("%d + %d * -%d = %d\n", a, b, c, a + b * -c);
11 printf("%d + (%d * (-%d)) = %d\n", a, b, c, a + (b * (-c)));
12

13 printf(" %f / %f - +%f = %f\n", x, y, z, (x / y) - (+z));
14 printf("(%f / %f) - (+%f) = %f\n", x, y, z, (x / y) - (+z));
15

16 printf(" %d %% %d * %d = %d\n", b, c, d, b % c * d);
17 printf("(%d %% %d) * %d = %d\n", b, c, d, (b % c) * d);
18

19 return 0;
20 }

8

~tluchko/academic/2005/234/lectures/chapter-3/examples/arithmetic.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
Increment and Decrement Operators

C offers shorthand notation for incrementing and decrementing a variable by 1. This is done with the
operators ++ and --. These are unary operators but they have slightly different meaning depending on what
side of the variable they appear on. When ++ is used as a single statement the following are equivalent

i = i + 1;
i++;
++i;

Similarly for -- the following statements are equivalent

i = i - 1;
i--;
--i;

The difference appears when the operator is used as part of a larger statement. ++i increments i immediately
while i++ increments i at some time in the future.’ --i and i-- behaves similarly. This is illustrated in the
program incrdecr.c

0 /***
1 *demonstration of increment and decrement operators
2 **/
3

4 #include <stdio.h>
5

6 int main(){
7 int i = 0, j = 1, k = 2;
8

9 1 = i;
10

11 /* prints "i = 0" */
12 printf("i = %d\n",i);
13

14 /* prints "i = 1" */
15 printf("i = %d\n",++i);
16 /* prints "i = 1" */
17 printf("i = %d\n",i);
18

19 /* prints "i = 1" */
20 printf("i = %d\n",i++);
21 /* prints "i = 2" */
22 printf("i = %d\n",i);
23

24 /* prints "i = 1" */
25 printf("i = %d\n",--i);
26 /* prints "i = 1" */
27 printf("i = %d\n",i);
28

29 /* prints "i = 1" */
30 printf("i = %d\n",i--);
31 /* prints "i = 0" */
32 printf("i = %d\n",i);
33

9

~tluchko/academic/2005/234/lectures/chapter-3/examples/incrdecr.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
34 printf("i = %d, j = %d, k = %d\n", i, j, k);
35 printf("i-- + ++j + k-- = %d\n", i-- + ++j + k--);
36 printf("i + j + k = %d\n", i + j + k);
37

38 return 0;
39 }

Note: While C specifies that i++ and i-- will increment i at some point in the
future it does not specify exactly when. The only thing we can be sure of
is that the action will take place before the next statement. Therefore we
must take care when using this version of the operators.

Assignment Operators

Assignment variables allow us to assign new values to our variables. We have already seen = (the simple
assignment operator) but there are a few more for us to consider.

All assignment operators assign from right to left. For example,

i = 1; j = 2;
i = j;

gives i= 2 and j= 2 while

i = 1; j = 2;
j = i;

gives i= 1 and j= 1. Furthermore,

i = 1;

give i = 1 while

1 = i;

makes no sense and will not compile. The left hand side must be a variable.
The remaining assignment operators are called compound assignment operators. These have the general

form v op= expression and are shorthand for v = v op expression. v is a variable while op is one of +, -, *,
/ or %. expression is any mathematical expression. For example,

i += 2;

is the same as writing

i = i + 2;

All of the compound assignment operators are used in compound.c

0 /***
1 *demonstration of compound assignment operators
2 **/
3

4 #include <stdio.h>
5

6 int main(){
7 int i = 10, j = 3;
8

9 /* prints "i = 10" */

10

~tluchko/academic/2005/234/lectures/chapter-3/examples/compound.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
10 printf("i = %d\n",i);
11

12 i += j;
13 /* prints "i = 13" */
14 printf("i = %d\n",i);
15

16 i -= j;
17 /* prints "i = 10" */
18 printf("i = %d\n",i);
19

20 i *= j;
21 /* prints "i = 30" */
22 printf("i = %d\n",i);
23

24 i /= j;
25 /* prints "i = 10" */
26 printf("i = %d\n",i);
27

28 i %= j;
29 /* prints "i = 1" */
30 printf("i = %d\n",i);
31

32 return 0;
33 }

3.4.2 Integer vs. Floating Point Mathematics

Arithmetic operators don’t operate the same on integer and floating point numbers. There are two operators
for which this is important: % and /.

If we use the % operator incorrectly our program simply won’t compile. In this case both operators must
be integers.

For / the effect is more subtle. If both variables are integers then integer division takes place. For
example, the value of 2 / 5 is 0 and not 0.2 when we use only integers.

Type Conversion

When we mix integers and floating points the integer variables are automatically promoted to floating point
variables. This means that 2. / 5 has a value of 0.2. This is because 2. is considered a floating point
number and 5 is promoted to a floating point number.

We can force integers to be treated as floats or doubles by type casting them. This is done with the
general form (type)variable. This is especially useful for variables but can also be used for numeric values.
For example, (double)2/5 has a value of 0.2. The same technique can be used to cast floating points to
integers.

All of these possibilities are shown in typecast.c.

0 /**
1 * A program to demonstrate the role of types in arithmetic
2 ***/
3

4 #include <stdio.h>
5

6 int main(){

11

~tluchko/academic/2005/234/lectures/chapter-3/examples/typecast.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
7 int a = 1, b = 3;
8 double x = 1, y = 3;
9

10 printf("\nIntegers\n");
11 printf("%d / %d = %d\n", a, b, a/b);
12

13 printf("\nType mixing\n");
14 printf("%f / %d = %f\n", x, b, x/b);
15 printf("%d / %f = %f\n", a, y, a/y);
16 printf("%f / %f = %f\n", x, y, x/y);
17

18 printf("\nType cast to double\n");
19 printf("%f / %d = %f\n", (double)a, b, (double)a/b);
20 printf("%d / %f = %f\n", a, (double)b, a/(double)b);
21 printf("%f / %f = %f\n", (double)a, (double)b, (double)a/(double)b);
22

23 printf("\nType cast to int\n");
24 printf("%d / %f = %f\n", (int)x, y, (int)x/y);
25 printf("%f / %d = %f\n", x, (int)y, x/(int)y);
26 printf("%d / %d = %d\n", (int)x, (int)y, (int)x/(int)y);
27

28 return 0;
29 }

3.4.3 math.h

#include <math.h> allows us to use 22 mathematical functions from the C standard library. These are
described below.

double cos(double x)
Cosine of x where x is in radians.

double sin(double x)
Sine of x where x is in radians.

double tan(double x)
Tangent of x where x is in radians.

double acos(double x)
Arc cosine of x where x is between -1 and 1.

double asin(double x)
Arc sine of x where x is between -1 and 1.

double atan(double x)
Arc tangent of x.

double atan2(double x, double y)
Arc tangent of y/x.

double cosh(double x)
Hyperbolic cosine of x.

double sinh(double x)
Hyperbolic sine of x.

12

Tyler Luchko PHYS 234 - 2005 Chapter 3
double tanh(double x)
Hyperbolic tangent of x.

double exp(double x)
e to the power of x.

double frexp(double value, int *exp)
Returns f and sets exp to n such that value= f × 2n.

double ldexp(double x, int exp)
Returns x×2exp

double log(double x)
Natural logarithm of x.

double log10(double x)
Common logarithm of x.

double modf(double value, double *iptr)
Returns the fractional part of x. iptr holds the integer part of value.

double pow(double x, double y)
Returns xy.

double sqrt(double x)
Square root of x> 0.

double ceil(double x)
Round up x to nearest integer.

double fabs(double x)
Floating point absolute value of x.

double floor(double x)
Round down x to nearest integer.

double fmod(double x, double y)
Floating point modulus of x divided by y.

3.5 Logical Expressions

As we had a number of mathematical operators we have a number of logical and relational operators. With
these we can have the computer execute logical and comparison statements.

3.5.1 Boolean Type

Many high level languages have a special binary type. Not so with C. C simply uses integers with the
convention that 0 means false and 1 means true. More generally we will find that 0 means false and
everything else means true. This can lead to some interesting expressions but also can be a powerful tool.

13

Tyler Luchko PHYS 234 - 2005 Chapter 3
3.5.2 Operators

The operators used for logical expressions are

Operator Binary/Unary Function Commutative

> binary greater than No.
< binary less than No
>= binary greater than or equal to No.
<= binary less than or equal to No.
== binary is equal to Yes.
!= binary is not equal to Yes.
! unary logical negation Left of variable.
&& binary logical and Yes.
|| binary logical or No.

When used all of these operators return 1 or 0.

Relational Operators

Relational operators should be familiar from mathematics. These compare two numbers and return 1 if the
statement is true and 0 if the statement is false.

/* prints 1 */
printf(‘‘%d\n’’, 1 < 2);

/* prints 0 */
printf(‘‘%d\n’’, 5.5 >= 16);

Note: Be careful combining these in expressions. Take the example
x < y < z;
This does not test if y is between x and z. Rather, it is evaluated as
(x < y) < z;
So,
x = 7; y = 5;
z = 9;
x < y < z;
evaluates to 1 as x < y gives 0 and 0 is less than 9.

Logical Operators

There are three logical operators: ||, && and !. The || is an or operator, && is an and operator and ! is a
logical negation operator.

If one or both of the variables in question are non-zero then || returns 1. This or is inclusive which is
commonly referred to in everyday language as ‘and/or’.

int on = 1, off = 0;

/* prints 1 */
printf(‘‘%d\n’’,on || off);

/* prints 1 */
printf(‘‘%d\n’’,off || on);

14

Tyler Luchko PHYS 234 - 2005 Chapter 3
/* prints 1 */
printf(‘‘%d\n’’,on || on);

/* prints 0 */
printf(‘‘%d\n’’,off || off);

If both variables are non-zero the && operator returns 1. Otherwise 0 is returned.

int on = 1, off = 0;

/* prints 0 */
printf(‘‘%d\n’’,on && off);

/* prints 0 */
printf(‘‘%d\n’’,off && on);

/* prints 1 */
printf(‘‘%d\n’’,on && on);

/* prints 0 */
printf(‘‘%d\n’’,off && off);

The ! operator changes the value of a integer from 0 to 1 and from non-zero to 0.

int on = 1, off = 0;

/* prints 1 */
printf(‘‘%d\n’’,!off);

/* prints 0 */
printf(‘‘%d\n’’,!on);

Note: && and || both short circuit. That is, when the result of the operator can
be determined from the first variable the second one is not looked at. So, if
the first variable for && is 0 the result must also be 0. Similarly, if the first
variable for || is 1 then the result must be 1. For example,
!y || x/y;
If y is equal to 0 then the || must be true and x/y is not evaluated.

Equality Operators

== and != are the only two equality operators.If the values of both variables are equal then == returns 1
while != returns 0. Alternatively, if the two variables are not equal then == returns 0 while != returns 1.

int a = 10, b = 1, c = a;

/* prints 1 */
printf(‘‘%d\n’’,a == c);
/* prints 0 */
printf(‘‘%d\n’’,a != c);

/* prints 0 */
printf(‘‘%d\n’’,a == b);
/* prints 1 */
printf(‘‘%d\n’’,a != b);

15

Tyler Luchko PHYS 234 - 2005 Chapter 3
3.5.3 Example

The previous examples are incorporated into logic.c

0 /**
1 *Basic use of logic operators
2 ***/
3 #include <stdio.h>
4

5 int main(){
6 int on = 1, off = 0;
7 int a = 10, b = 1, c = a;
8 double w=1, x=2, y=5.5, z=16;
9

10 /* prints 1 */
11 printf("%f < %f --> %d\n", w, x, w < x);
12

13 /* prints 0 */
14 printf("%f >= %f --> %d\n", y, z, y >= z);
15

16 /* prints 1 */
17 printf("%d || %d --> %d\n",on, off, on || off);
18

19 /* prints 1 */
20 printf("%d || %d --> %d\n",off, on, off || on);
21

22 /* prints 1 */
23 printf("%d || %d --> %d\n",on, on, on || on);
24

25 /* prints 0 */
26 printf("%d || %d --> %d\n",off, off, off || off);
27

28 /* prints 0 */
29 printf("%d && %d --> %d\n",on, off,on && off);
30

31 /* prints 0 */
32 printf("%d && %d --> %d\n",off, on, off && on);
33

34 /* prints 1 */
35 printf("%d && %d --> %d\n",on, on, on && on);
36

37 /* prints 0 */
38 printf("%d && %d --> %d\n",off, off, off && off);
39

40 /* prints 1 */
41 printf("!%d --> %d\n",off, !off);
42

43 /* prints 0 */
44 printf("!%d --> %d\n",on, !on);
45

46 /* prints 1 */
47 printf("%d == %d --> %d\n", a, c, a == c);

16

~tluchko/academic/2005/234/lectures/chapter-3/examples/logic.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
48 /* prints 0 */
49 printf("%d !& %d --> %d\n", a, c, a != c);
50

51 /* prints 0 */
52 printf("%d == %d --> %d\n", a, b, a == b);
53 /* prints 1 */
54 printf("%d != %d --> %d\n", a, b, a != b);
55

56 return 0;
57 }

3.6 Branching

Now that we have seen mathematical and logical expressions we can begin to see how we might write programs
that do something useful. However, we don’t have all the tools that we need yet. One of our missing tools is
branching. Branching allows our program to do different things depending on the information it is presented
with and the conditions in the program.

In this section, as we learn the elements of branching, we will apply what we learn to a simple physical
example; calculating the interaction energy of two neutral, spherical particles.

Lennard-Jones Interactions

When modeling and simulating small particles or atoms it is necessary to model their interaction potential
energy. A simple and commonly used model is that of Lennard-Jones

U = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(III.1)

where r is the distance between the centers of the two particles. ε and σ correspond the well depth and
radius of the particle respectively. This potential energy maybe used to model colloids or Nobel gases or it
maybe used as part of the interaction potential for more complicated systems, such as protein or metal ions.

This is known as a pairwise interaction because it is only applied to pairs of particles. To get the total
interaction energy for a system we must add up the energy from all the pairs. This takes a long time if our
system contains a large number of particles. In fact, the amount of time needed is proportional to the square
of the number of particles, i.e. O(N2). Therefore, shortcuts have been produced.

One of the better shortcuts is the switch cutoff. It has the form

U =

4ε

[(
σ
r

)12 −
(

σ
r

)6
]

r < ron

4ε
[(

σ
r

)12 −
(

σ
r

)6
] [

(r2
off−r2)2(r2

off+2r2−3r2
on)

(r2
off−r2

on)3

]
ron < r < roff

0 r > roff.

(III.2)

For distances less than ron we use the original potential energy. When r is between ron and roff the original
potential energy is multiplied by a switching function. This function continuously drops the potential energy
and force to 0 at roff. Beyond roff the potential is now considered 0. See Fig. III.1.

The advantage of this form is that it provides the exact potential and force until the distance ron.
Switching also has the benefit that the force is continuous. The trade off for this is that when the potential
is switched off a repulsive force results (Figure III.1(c)). The magnitude of this force should be small since
roff should be large enough to minimize other truncation effects. It can be further reduced by making the
switching region larger.

A typical cutoff is roff = 2.5σ which corresponds to approximately 1/60th of the well depth for a standard
Lennard-Jones potential.

17

Tyler Luchko PHYS 234 - 2005 Chapter 3

Switch
No Cutoff

r (Å)

U

3.532.521.51

2

1.5

1

0.5

0

-0.5

-1

(a)

Switch
No Cutoff

r (Å)

U

3.43.232.82.62.42.22

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

(b)

Switch
No Cutoff

r (Å)

F

3.43.232.82.62.42.22

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

-0.16

-0.18

-0.2

(c)

Figure III.1: Lennard-Jones cutoff schemes ron = 1 and roff = 1. Switching the potential doesn’t appear to
have much effect on the potential (a), taking a closer look at the cutoff region reveals the differences between
the three schemes (b). The resulting force in the cutoff region is shown in (c). We can see that the switch
potential creates a repulsive while the shifted potential has a discontinuity in the force.

18

Tyler Luchko PHYS 234 - 2005 Chapter 3
3.6.1 if Statement

if statements allow us to selectively run, or not run, certain instructions. It has the form

if(expression) statement ;

This will execute statement if expression is true. This means that condition is considered to be a log-
ical expression and is false if it evaluates to 0. To execute an arbitrary number of expressions we use the form

if(expression){
statements ;

}

This later form is in many cases preferable, even for a single statement, as it is easier to read and is easier
to expand. However, you should be aware of the previous style.

A simple example using an if statement is if-test.c

0 /*************************************
1 *Demonstrates the use of if. Prints
2 *the sign of the user input number.
3 ************************************/
4

5 #include <stdio.h>
6

7 int main(){
8 double x;
9 printf("Input a number: \n");

10 scanf("%lg",&x);
11

12 if(x < 0){
13 printf("x is negative\n");
14 }
15

16 if(x > 0){ Only one of these if statements will execute.
17 printf("x is positve\n");
18 }
19

20 if(x == 0){
21 printf("x is 0\n");
22 }
23

24 return 0;
25 }

19

~tluchko/academic/2005/234/lectures/chapter-3/examples/if-test.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
Note: Be careful to use == and not = in your if statement. If you use the later

an assignment will be performed and the result will be tested as a logical
expression. So, following the example above,

if(x == 0)...

tests if x is equal to 0 while

if(x = 0)...

assigns 0 to x. The result, 0, is evaluated which, in this case, is
always zero. Thus the statement will always fail.

We now have enough tools to write a program to evaluate our Lennard-Jones potential. Our program
will ask the user for the distance between the two particles and then calculate the appropriate interaction
energy. lj-if.c will implement Equation III.2.

0 /***
1 *Implements the Lennard-Jones interaction potential with a switch
2 *cutoff. The user is asked for the distance between the centers of
3 *mass and the potential energy is returned.
4 **/
5

6 #include <stdio.h>
7 #include <math.h>
8

9 int main(){
10 /**
11 *r - the distance between the centers of mass
12 *u - the potential energy.
13 */
14 double r, u;
15

16 /**
17 *ron - the distance at which we turn on switch.
18 *roff - the distance at which we turn off the potential.
19 */
20 double ron = 2.5, roff = 3.;
21

22 /**
23 *sigma - the radius of the particles
24 *epsilon - the depth of the attractive well
25 */
26 double sigma = 1, epsilon = 1;
27

28 /**
29 *r6 - the radius to the 6th power
30 */
31 double r6;
32

33 printf("Input the distance between the centers of mass: \n");
34

35 scanf("%lg",&r);

20

~tluchko/academic/2005/234/lectures/chapter-3/examples/lj-if.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
36

37 if(r == 0){ /* complete overlap */
38 printf("Infinity energy!!!\n");
39 }
40

41 if(fabs(r) < ron){ /* regular Lennard-Jones */
42 r6 = pow(sigma/r, 6);
43 u = 4*epsilon*(r6*r6 - r6);
44 printf("U = %g\n",u);
45 }
46

47 if(fabs(r) >= ron && fabs(r) <= roff){ /* switched Lennard-Jones */
48 r6 = pow(sigma/r, 6);
49 u = 4*epsilon*(r6*r6 - r6);
50 u *= (pow(roff*roff - r*r, 2) * (roff*roff + 2*r*r -3*ron*ron))
51 / pow(roff*roff - ron*ron,3);
52 printf("U = %g\n",u);
53 }
54

55 if(fabs(r) > roff){ /* cutoff */
56 printf("U = 0\n");
57 }
58

59 return 0;
60 }

3.6.2 else Statement

It is easy to think of a situation where we have two cases and want to do something different for each case.
Using an if statement we could write this as we did in the previous section

if(case1){
statement1;

}
if(case2){

statement2;

}

If the two cases are exclusive (they can’t both happen at the same time) we can use the else statement
instead of the second case.

if(case1){
statement1;

} else {
statement2;

}

We can apply this to our problem of testing the sign of numbers

if(x < 0){
printf("x is negative\n");

} else {

21

Tyler Luchko PHYS 234 - 2005 Chapter 3
printf("x is positve\n");

}

This is not quite the same as our original program as 0 is counted as part of the positive numbers. We
can still remedy this with if-else construct by nesting another if-else statement in the else part of the
of the statement we already wrote. This is demonstrated in if-else-test.c

0 /*************************************
1 *Demonstrates the use of if-else
2 *statements. Prints the sign of the
3 *user input number.
4 ************************************/
5

6 #include <stdio.h>
7

8 int main(){
9 double x;

10 printf("Input a number: \n");
11 scanf("%lg",&x);
12

13 if(x < 0){
14 printf("x is negative\n");
15 } else {
16 if(x > 0){
17 printf("x is positve\n");
18 } else {
19 printf("x is 0\n");
20 }
21 }
22 return 0;
23 }

We apply this same form to our Lennard-Jones example in lj-if-else.c.

0 /***
1 *Implements the Lennard-Jones interaction potential with a switch
2 *cutoff. The user is asked for the distance between the centers of
3 *mass and the potential energy is returned.
4 **/
5

6 #include <stdio.h>
7 #include <math.h>
8

9 int main(){
10 /**
11 *r - the distance between the centers of mass
12 *u - the potential energy.
13 */
14 double r, u;
15

16 /**
17 *ron - the distance at which we turn on switch.
18 *roff - the distance at which we turn off the potential.

22

~tluchko/academic/2005/234/lectures/chapter-3/examples/if-else-test.c
~tluchko/academic/2005/234/lectures/chapter-3/examples/lj-if-else.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
19 */
20 double ron = 2.5, roff = 3.;
21

22 /**
23 *sigma - the radius of the particles
24 *epsilon - the depth of the attractive well
25 */
26 double sigma = 1, epsilon = 1;
27

28 /**
29 *r6 - the radius to the 6th power
30 */
31 double r6;
32

33 printf("Input the distance between the centers of mass: \n");
34

35 scanf("%lg",&r);
36

37 if(r == 0){ /* complete overlap */
38 printf("Infinity energy!!!\n");
39

40 } else {
41 if(fabs(r) < ron){ /* regular Lennard-Jones */
42 r6 = pow(sigma/r, 6); Notice that this logic statement has been simplified.
43 u = 4*epsilon*(r6*r6 - r6);
44 printf("U = %g\n",u);
45

46 } else {
47 if(fabs(r) <= roff){ /* switched Lennard-Jones */
48 r6 = pow(sigma/r, 6);
49 u = 4*epsilon*(r6*r6 - r6);
50 u *= (pow(roff*roff - r*r, 2) * (roff*roff + 2*r*r -3*ron*ron))
51 / pow(roff*roff - ron*ron,3);
52 printf("U = %g\n",u);
53

54 } else { /* cutoff */
55 printf("U = 0\n");
56 }
57 }
58 }
59 return 0;
60 }

3.6.3 else if Statement

While an if-else statement is handy and works well if we only have to worry about two cases it becomes
cumbersome when we need to work with multiple possible situations. Rather than using nested if state-
ments we can use make use of one or more else if statements. The if-else if-else construct has the form

if(case1){
statement1

} else if(case2){

23

Tyler Luchko PHYS 234 - 2005 Chapter 3
statement2

}
...
} else if(caseN-1){

statementN-1

} else {
statementN

}

Let’s go back to our sign example. We can now write our sign example as in if-else if-else-test.c.

0 /*************************************
1 *Demonstrates the use of if-else
2 *statements. Prints the sign of the
3 *user input number.
4 ************************************/
5

6 #include <stdio.h>
7

8 int main(){
9 double x;

10 printf("Input a number: \n");
11 scanf("%lg",&x);
12

13 if(x < 0){
14 printf("x is negative\n");
15 } else if(x > 0){
16 printf("x is positve\n");
17 } else {
18 printf("x is 0\n");
19 }
20 return 0;
21 }

Finally, we can clean up our Lennard-Jones example as in lj-if-else if-else.c.

0 /***
1 *Implements the Lennard-Jones interaction potential with a switch
2 *cutoff. The user is asked for the distance between the centers of
3 *mass and the potential energy is returned.
4 **/
5

6 #include <stdio.h>
7 #include <math.h>
8

9 int main(){
10 /**
11 *r - the distance between the centers of mass
12 *u - the potential energy.
13 */
14 double r, u;
15

24

~tluchko/academic/2005/234/lectures/chapter-3/examples/if-else_if-else-test.c
~tluchko/academic/2005/234/lectures/chapter-3/examples/lj-if-else_if-else.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
16 /**
17 *ron - the distance at which we turn on switch.
18 *roff - the distance at which we turn off the potential.
19 */
20 double ron = 2.5, roff = 3.;
21

22 /**
23 *sigma - the radius of the particles
24 *epsilon - the depth of the attractive well
25 */
26 double sigma = 1, epsilon = 1;
27

28 /**
29 *r6 - the radius to the 6th power
30 */
31 double r6;
32

33 printf("Input the distance between the centers of mass: \n");
34

35 scanf("%lg",&r);
36

37 if(r == 0){ /* complete overlap */
38 printf("Infinity energy!!!\n");
39

40 } else if(fabs(r) < ron){ /* regular Lennard-Jones */
41 r6 = pow(sigma/r, 6);
42 u = 4*epsilon*(r6*r6 - r6);
43 printf("U = %g\n",u);
44

45 } else if(fabs(r) <= roff){ /* switched Lennard-Jones */
46 r6 = pow(sigma/r, 6);
47 u = 4*epsilon*(r6*r6 - r6);
48 u *= (pow(roff*roff - r*r, 2) * (roff*roff + 2*r*r -3*ron*ron))
49 / pow(roff*roff - ron*ron,3);
50 printf("U = %g\n",u);
51

52 } else { /* cutoff */
53 printf("U = 0\n");
54 }
55

56 return 0;
57 }

3.6.4 switch Statement

Another conditional or breaking statement that we will we may use (though not often in this course) is
the switch statement. This statement is not capable of evaluating arbitrary logical expressions (thus lim-
iting its usefulness). Rather, it executes a comparison between values. The general format of the statement is:

switch(expression) {
case constant-expression :

statements ;

25

Tyler Luchko PHYS 234 - 2005 Chapter 3
...
case constant-expression :

statements ;
default:

statements ;
}

Individual case statements are often separated by break statements. For example, consider the following

int i;

switch (i){
case 0:
printf("i = 0\n");
break;

case 1:
printf("i = 1\n");
break;

default:
printf("i is not 1 or 0\n");

}

If we leave out the break statement between the first two cases then case 0 would fall through to case 1.
That is, if i equal to 0 in our example we would see the output

i = 0

However, if we left out the break statement as in

int i;

switch (i){
case 0:
printf("i = 0\n");

case 1:
printf("i = 1\n");
break;

default:
printf("i is not 1 or 0\n");

}

For i equal to 0 we would see the output

i = 0
i = 1

but for i equal to 1 we would still see

i = 1

We can make use of this behaviour to combine several case. All of these features are used in seasons.c.

0 /***
1 *Given a date in the format dd/mm/yyyy it outputs the date in the
2 *format month dd, yyyy and informs us of the season. Note that we do

26

~tluchko/academic/2005/234/lectures/chapter-3/examples/seasons.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
3 *not check very hard if it is, in fact, a valid date.
4 **/
5

6 #include <stdio.h>
7 #include <math.h>
8

9 int main(){
10 /**
11 *day - day of the month
12 *month - number of the month
13 *year - four digit year
14 */
15 int day, month, year;
16

17 /* get the date for the user */
18 printf("Enter a date (dd/mm/yyyy): ");
19 scanf("%d/%d/%d", &day, &month, &year);
20

21 /* write out the name of the month */
22 switch(month){
23 case 1:
24 printf("January");
25 break;
26 case 2:
27 printf("February");
28 break;
29 case 3:
30 printf("March");
31 break;
32 case 4:
33 printf("April");
34 break;
35 case 5:
36 printf("May");
37 break;
38 case 6:
39 printf("June");
40 break;
41 case 7:
42 printf("July");
43 break;
44 case 8:
45 printf("August");
46 break;
47 case 9:
48 printf("September");
49 break;
50 case 10:
51 printf("October");
52 break;
53 case 11:
54 printf("November");

27

Tyler Luchko PHYS 234 - 2005 Chapter 3
55 break;
56 case 12:
57 printf("December");
58 break;
59 default:
60 /* they entered an incorrect value for the month */
61 printf("Not a month: %d\n",month);
62 return 1;
63 }
64

65 /* print out the rest of the date */
66 printf(" %d, %d is in the", day, year);
67

68 /* print out the season. We don’t worry too much about the exact
69 that it changes but we try to come close */
70 switch(month){
71 case 1:
72 case 2:
73 printf(" winter");
74 break;
75 case 3:
76 if(day > 21){
77 printf(" spring");
78 } else {
79 printf(" winter");
80 }
81 break;
82 case 4:
83 case 5:
84 printf(" spring");
85 break;
86 case 6:
87 if(day > 21){
88 printf(" summer");
89 } else {
90 printf(" spring");
91 }
92 break;
93 case 7:
94 case 8:
95 printf(" summer");
96 break;
97 case 9:
98 if(day > 21){
99 printf(" fall");

100 } else {
101 printf(" summer");
102 }
103 break;
104 case 10:
105 case 11:
106 printf(" fall");

28

Tyler Luchko PHYS 234 - 2005 Chapter 3
107 case 12:
108 if(day > 21){
109 printf(" winter");
110 } else {
111 printf(" fall");
112 }
113 break;
114 }
115 printf(".\n");
116 printf("In Edmonton this is the");
117

118 /* print out the season in Edmonton */
119 switch(month){
120 case 1:
121 case 3:
122 case 4:
123 case 10:
124 case 11:
125 case 12:
126 printf(" winter");
127 break;
128 case 5:
129 printf(" spring");
130 break;
131 case 6:
132 case 7:
133 case 8:
134 printf(" summer");
135 break;
136 case 9:
137 printf(" fall");
138 break;
139 }
140 printf(".\n");
141

142 return 0;
143 }
144

3.7 Loops

One of the areas where computers excel and humans do not is repetitive tasks. Not only are they more
accurate they are also significantly faster. We can access this important feature of computers in C by using
loops.

There are three different loop structures in C: while, do and for. Each of these loops has its own
advantages and natural uses. However, we will see that the for loop is the most powerful and the one we
will use more of the time.

From the lab you have, or will have seen, one obvious use of loops, iterating over a range of numbers. Other
uses include, but are not limited to, summations of series and iterative solutions to equations. Anywhere we
need to repeat a task we can use a loop.

29

Tyler Luchko PHYS 234 - 2005 Chapter 3
Series Summation: π

Numerical and approximate methods for calculating π have been around for over 2000 years. Before the
advent of computers the value of π was known to over 700 decimal places (not binary places) and was
considered one of the greatest human achievements in its time. It was later shown that there was an error
few hundred places in. Since computers have appeared on the scene π has been calculated to over one trillion
decimal places using advances algorithms, computers and arbitrary precision floating point numbers.

Using the built-in double type in C we can only hold the first fifteen decimal places or so. However, we
can still use the following method to do it. The series representation of arctan(x) is

arctan(x) = x− x3/3 + x5/5− x7/7 . . . (III.3)

Now, we could apply this directly using

π = 4arctan(1) = 4(1− 1/3 + 1/5− 1/7 . . .) (III.4)

but this converges very slowly. It would take us a few hundred iterations to get two or three decimal places.
However, we can write

π = 16 arctan(1/5)− 4 arctan(1/239)

= 16/5− 4/239− (16(1/5)3 − 4(1/239)3)/3 + (16(1/5)5 − 4(1/239)5)/5− (16(1/5)7 − 4(1/239)7)/7 . . .

=
∞∑

i=0

(−1)i 16(1/5)2i+1 − 4(1/239)2i+1

2i + 1
(III.5)

which converges much faster at a rate of about 1.4 decimal places per iteration.

Root Finding: Bisection Method

Often, when faced with a physical problem, we are required to find the roots of an equation. An example of
an iterative method to do this is the bisection method.

To illustrate the bisection method we will find the positive root of the function

y = f(x) = x2 − 1 (III.6)

with an accuracy in x of 10−1. The bisection method is as follows

1. First bracket the root of the equation y = f(x) from above and below at points x = a and x = b. That
is, if a > 0 then we must have b < 0. For our example try a = 0.5 and b = 1.75. See Fig. III.2(a).

2. Calculate the mid-point of the bracket, c = (a+ b)/2, and the value of f(c). In this case c = 1.125 and
f(c) = 1.265625. See Fig. III.2(b).

3. If f(c) > 0 replace the upper bound with c otherwise replace the lower bound with c. In our example
f(c) > 0 so we set b = 1.125. See Fig. III.2(c).

4. If f(c) = 0 or if |a − b| < ε where ε is our maximum error we have found our root. If not return to
Step 2. We have |a− b| > ε so we goto Step 2. See Fig. III.2(d).

3.7.1 while Loop

The while loop repeats a set of instructions while a logical expression is true, hence the name. This has the
general form

while(expression){

30

Tyler Luchko PHYS 234 - 2005 Chapter 3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2

a

b

(a)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2

a

b

c

(b)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2

a

b

(c)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2

0.625

a

b

ε=0.1

(d)

Figure III.2: Illustration of the bisection method for y = x2 − 1.(a) The root is first bracketed by a = .5 and
b = 1.75. (a) the midpoint c = 1.125 is found. (c) f(c) > 0 so set b = c = 1.125. (d) |a− b| > ε so goto (a).

31

Tyler Luchko PHYS 234 - 2005 Chapter 3
statements ;
...

}
We have to be careful with this. If expression is always true then our loop will never exist and we will
have an infinite loop.

If you think back to the first lab you saw a program call yes. This program merely printed y to the
screen over and over. We can now write that program ourselves. You can find it in myyes.c

0 /***
1 *A program that prints "y" over and over.
2 ***/
3

4 #include <stdio.h>
5

6 int main(){
7 while(1){
8 printf("y\n");
9 }

10 return 0;
11 }

Note: If and when you get caught in an infinite loop (it happens to us all) use
<ctrl>-c to force the program to quit.

expression can be any logical statement we like. Often we would like to iterate through the loop a set
number of times. We can do this with the use of a counter variable that we increment each time through
the loop. When we are at the top of the loop we check if it is still smaller than the number of iterations we
wish to do. For example, in myyes10.c we print out y 10 times.

0 /***
1 *A program that prints "y" over and over.
2 ***/
3

4 #include <stdio.h>
5

6 int main(){
7 int i, n =10;
8 i = 0;
9 while(i<n){

10 printf("y\n");
11 i++;
12 }
13 return 0;
14 }

This gives us the tools to sum a simple series. Since we typically (but not always) know how many times
we want to iterate our summation we can use a counter and a while loop to achieve the number of iterations
we require. Let’s say that we want to iterate through our π series ten times. This should give us about 14
digits of π. We might write this mathematically as

π =
9∑

i=0

(−1)i 16(1/5)2i+1 − 4(1/239)2i+1

2i + 1
(III.7)

This may be translated into C as in pi-while.c.

32

~tluchko/academic/2005/234/lectures/chapter-3/examples/myyes.c
~tluchko/academic/2005/234/lectures/chapter-3/examples/myyes10.c
~tluchko/academic/2005/234/lectures/chapter-3/examples/pi-while.c

Tyler Luchko PHYS 234 - 2005 Chapter 3

0 /***
1 *A program to calculate a few digits of pi.
2 **/
3

4 #include <stdio.h>
5 #include <math.h>
6

7 int main(){
8 /**
9 *pi - will hold the value of pi. we must initialize this to 0

10 *sign - this determines whether we are adding or subtracting each term.
11 */
12 double pi=0,sign=-1;
13

14 /**
15 *i - our counter variable
16 *n - the number or iterations
17 */
18 int i, n = 10;
19

20 /* initialize i */
21 i =0;
22 while(i<n){
23 /* flip the sign of sign */
24 sign*=-1;
25 /* add to our previous total */
26 pi+= sign* (16*pow(.2,2*i+1) - 4*pow(1./239.,2*i+1))/(i*2 + 1);
27 /* print out our current iteration and total */
28 printf("%2d\t%.20g\n",i,pi);
29 /* increment i */
30 i++;
31 }
32

33 /* print out the true value of pi truncated at a few decimal places */
34 printf("true\t%.20g\n",3.14159265358979323846);
35 /* print out a number to show the decimal places */
36 printf("\t%.20Lg\n",0.12345678901234567890l);
37 return 0;
38 }

We may not always know how many times we wish to iterate a loop. For example, when using the
bisection method it is rare that we know how many times we have to iterate our algorithm to find our root
with the desired accuracy. In the cases where we do know we probably can find the root easier than we
could the number of iterations. For the bisection method we exit the loop when the difference in our a and
b points is less that our desired accuracy ε. In fact, in bisect-while.c we don’t have a counter variable at
all.

0 /***
1 *This program uses the bisection method to find the positive root of
2 *the equation
3 *
4 *y = x^2 -1

33

~tluchko/academic/2005/234/lectures/chapter-3/examples/bisect-while.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
5 ***/
6

7 #include <stdio.h>
8 #include <math.h>
9

10 int main(){
11 /**
12 *y_a - the value of a*a -1
13 *y_b - the value of b*b -1
14 *y_c - the value of c*c -1.
15 */
16 double y_a, y_b, y_c;
17

18 /**
19 *a - one bracket
20 *b - the other bracket
21 *c - thhe midpoint
22 */
23 double a = .5, b = 1.75, c;
24

25 /**
26 *epsilon - the desired accuracy of our root.
27 */
28 double epsilon = .1;
29

30 /* initialize y_a and y_b */
31 y_a = a*a-1;
32 y_b = b*b-1;
33

34 /* determine if they are the same sign, we cannot continue if they
35 are */
36 if(y_a*y_b > 0){
37 printf("y(a=%g) and y(b=%g) are the same sign\n", y_a, y_b);
38 return 1;
39 }
40

41 /* find c and y_c */
42 c = (a + b) /2;
43 y_c = c*c - 1;
44 /* begin our loop */
45 while(fabs(a-b) > epsilon || y_c == 0){
46

47 /* determine if y_c is the same sign as y_a or y_b */
48 if(y_a*y_c > 0){
49 a = c;
50 y_a = y_c;
51 } else {
52 b = c;
53 y_b = y_c;
54 }
55

56 /* calculate the new midpoint */

34

Tyler Luchko PHYS 234 - 2005 Chapter 3
57 c = (a + b) /2;
58 y_c = c*c - 1;
59

60 /* print information about where we are */
61 printf("a = %9.7g\tb = %9.7g\n",a, b);
62 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
63 }
64

65

66 return 0;
67 }

3.7.2 do Loop

The do loop is similar in structure and use to the while loop but differs in one important aspect; the
continuation check is done at the end of the loop, not the beginning. This is important as it means that the
loop will always run at least once. This makes it natural for problems such as bisection where we wish to
iterate through the problem at lest once before checking our conditional statement.

The general structure of the do loop is

do{
statements ;

}while(expression);

Due to its structure a do loop may also be called a do-while loop. One should also be careful when
writing or reading C programs not to confuse do and while loops. For example, the {} is optional so it is
possible to write

do printf(‘‘i=%d\n’’,i++);
while(i<n);

which is not the same as

printf(‘‘i=%d\n’’,i++);
while(i<n);

The later statement may, in fact, be an infinite loop, depending on the initial value of i.
Casting our summation of π into a do loop we have the program pi-do.c

0 /***
1 *A program to calculate a few digits of pi.
2 **/
3

4 #include <stdio.h>
5 #include <math.h>
6

7 int main(){
8 /**
9 *pi - will hold the value of pi. we must initialize this to 0

10 *sign - this determines whether we are adding or subtracting each term.
11 */
12 double pi=0,sign=-1;
13

14 /**

35

~tluchko/academic/2005/234/lectures/chapter-3/examples/pi-do.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
15 *i - our counter variable
16 *n - the number or iterations
17 */
18 int i, n = 10;
19

20 /* initialize i */
21 i =0;
22 do{
23 /* flip the sign of sign */
24 sign*=-1;
25 /* add to our previous total */
26 pi+= sign* (16*pow(.2,2*i+1) - 4*pow(1./239.,2*i+1))/(i*2 + 1);
27 /* print out our current iteration and total */
28 printf("%2d\t%.20g\n",i,pi);
29 /* increment i */
30 i++;
31 }while(i<n);
32

33 /* print out the true value of pi truncated at a few decimal places */
34 printf("true\t%.20g\n",3.14159265358979323846);
35 /* print out a number to show the decimal places */
36 printf("\t%.20Lg\n",0.12345678901234567890l);
37 return 0;
38 }

Notice that the output of the program is exactly the same as for the while loop version. The only
difference is that the loop will always execute at least once regardless of the value of n.

bisect-do.c is a somewhat different story as it lends itself much better to the do format.

0 /***
1 *This program uses the bisection method to find the positive root of
2 *the equation
3 *
4 *y = x^2 -1
5 ***/
6

7 #include <stdio.h>
8 #include <math.h>
9

10 int main(){
11 /**
12 *y_a - the value of a*a -1
13 *y_b - the value of b*b -1
14 *y_c - the value of c*c -1.
15 */
16 double y_a, y_b, y_c;
17

18 /**
19 *a - one bracket
20 *b - the other bracket
21 *c - thhe midpoint
22 */
23 double a = .5, b = 1.75, c;

36

~tluchko/academic/2005/234/lectures/chapter-3/examples/bisect-do.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
24

25 /**
26 *epsilon - the desired accuracy of our root.
27 */
28 double epsilon = .1;
29

30 /* initialize y_a and y_b */
31 y_a = a*a-1;
32 y_b = b*b-1;
33

34 /* determine if they are the same sign, we cannot continue if they
35 are */
36 if(y_a*y_b > 0){
37 printf("y(a=%g) and y(b=%g) are the same sign\n", y_a, y_b);
38 return 1;
39 }
40

41 /* begin our loop */
42 do{
43 /* calculate the new midpoint */
44 c = (a + b) /2;
45 y_c = c*c - 1;
46

47 /* print information about where we are */
48 printf("a = %9.7g\tb = %9.7g\n",a, b);
49

50 /* determine if y_c is the same sign as y_a or y_b */
51 if(y_a*y_c > 0){
52 a = c;
53 y_a = y_c;
54 } else {
55 b = c;
56 y_b = y_c;
57 }
58

59 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
60

61 }while(fabs(a-b) > epsilon || y_c == 0);
62

63 /* calculate the new midpoint */
64 c = (a + b) /2;
65 y_c = c*c - 1;
66 /* print information about where we are */
67 printf("a = %9.7g\tb = %9.7g\n",a, b);
68 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
69

70

71

72 return 0;
73 }

Note that the statements immediately before and after the loop are now different. Also the order of the
statements inside the loop and the output is different as well. In this case the do fits the structure of our

37

Tyler Luchko PHYS 234 - 2005 Chapter 3
algorithm better. This does not necessarily reduce the amount of code that we write but does make the
translation into C code somewhat easier.

3.7.3 for Loop

The most versatile, powerful and commonly used loop in C is the for loop. In structure and function it is
much like an extended while loop. In fact, it can always be used in place of while in whatever problem we
might be faced with.

The general format of the for loop is

for(initialization ;continuation ;increment){
statements ;

}
initialization is executed only the first time through the loop. continuation is equivalent to the
expression in our while loop. A for loop will continue while continuation is true. Finally, the increment
statement is executed every time through the loop except the first. This is commonly used to increment our
counter variable.

Note: Be careful when you write for statements that you separate
initialization , continuation and increment with ;s and not ,s. The
compiler will usually catch this common mistake but , is also an operator
and is most often used in for loops.

A simple for loop might look something like this

for(i = 0; i < n; i++){
printf(‘‘i = %d\n’’,i);

}

The equivalent statement with a while loop would be

i = 0;
while(i < n){
printf(‘‘i = %d\n’’,i);
i++;

}

Notice that we may use either i++ or ++i to increment our counter in either case. It is the side-effect that
is important (incrementing) not the value of i as the value of continuation as already been determined.
Most programmers choose to use i++. Perhaps this is because it looks more like i is being assigned a new
value.

Using a for loop we may rewrite our π summation as in pi-for.c

0 /***
1 *A program to calculate a few digits of pi.
2 **/
3

4 #include <stdio.h>
5 #include <math.h>
6

7 int main(){
8 /**
9 *pi - will hold the value of pi. we must initialize this to 0

10 *sign - this determines whether we are adding or subtracting each term.
11 */

38

~tluchko/academic/2005/234/lectures/chapter-3/examples/pi-for.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
12 double pi=0,sign=-1;
13

14 /**
15 *i - our counter variable
16 *n - the number or iterations
17 */
18 int i, n = 10;
19

20 /* initialize i */
21 for(i =0;i<n;i++){
22 /* flip the sign of sign */
23 sign*=-1;
24 /* add to our previous total */
25 pi+= sign* (16*pow(.2,2*i+1) - 4*pow(1./239.,2*i+1))/(i*2 + 1);
26 /* print out our current iteration and total */
27 printf("%2d\t%.20g\n",i,pi);
28 /* increment i */
29 }
30

31 /* print out the true value of pi truncated at a few decimal places */
32 printf("true\t%.20g\n",3.14159265358979323846);
33 /* print out a number to show the decimal places */
34 printf("\t%.20Lg\n",0.12345678901234567890l);
35 return 0;
36 }

We can also apply a for loop to our bisection problem as in bisect-for.c

0 /***
1 *This program uses the bisection method to find the positive root of
2 *the equation
3 *
4 *y = x^2 -1
5 ***/
6

7 #include <stdio.h>
8 #include <math.h>
9

10 int main(){
11 /**
12 *y_a - the value of a*a -1
13 *y_b - the value of b*b -1
14 *y_c - the value of c*c -1.
15 */
16 double y_a, y_b, y_c;
17

18 /**
19 *a - one bracket
20 *b - the other bracket
21 *c - thhe midpoint
22 */
23 double a = .5, b = 1.75, c;
24

39

~tluchko/academic/2005/234/lectures/chapter-3/examples/bisect-for.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
25 /**
26 *epsilon - the desired accuracy of our root.
27 */
28 double epsilon = 1e-30;
29

30 /* initialize y_a and y_b */
31 y_a = a*a-1;
32 y_b = b*b-1;
33

34 /* determine if they are the same sign, we cannot continue if they
35 are */
36 if(y_a*y_b > 0){
37 printf("y(a=%g) and y(b=%g) are the same sign\n", y_a, y_b);
38 return 1;
39 }
40

41 /* find c and y_c */
42 c = (a + b) /2;
43 y_c = c*c - 1;
44 /* begin our loop */
45 for(;fabs(a-b) > epsilon || y_c == 0;){
46

47 /* determine if y_c is the same sign as y_a or y_b */
48 if(y_a*y_c > 0){
49 a = c;
50 y_a = y_c;
51 } else {
52 b = c;
53 y_b = y_c;
54 }
55

56 /* calculate the new midpoint */
57 c = (a + b) /2;
58 y_c = c*c - 1;
59

60 /* print information about where we are */
61 printf("a = %9.7g\tb = %9.7g\n",a, b);
62 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
63 }
64

65

66 return 0;
67 }

It is important to note that in the above code initialization and increment are missing. Since these
arguments are missing nothing is done when these would typically be calculated. All the arguments of a for
loop are, in fact, optional. When the initialization and increment are omitted the for loop is exaclty
equivalent to a while loop. Using a for loop as we did, however, is considered poor style as a while loop
is more obvious and easier to read.

The above example doesn’t mean that we should exclude the for loop from the bisection method or
other algorithms that can be written with just a while loop. Consider the case where ε = 1 × 10−30 and
try changing and running the bisect-for.c code. The bisection method is guareenteed to converge except
when we run into problems with the finite precision of numbers. This ε is to small and we enter an infinte

40

Tyler Luchko PHYS 234 - 2005 Chapter 3
loop. We would like to be able to catch such errors. A simple way is to limit the number of iterations
allowed. Once we have exceeded the maximum number of iterations we assume that the algorithm failed or
was programmed incorrectly. This is implemented in bisect-for-2.c

0 /***
1 *This program uses the bisection method to find the positive root of
2 *the equation
3 *
4 *y = x^2 -1
5 ***/
6

7 #include <stdio.h>
8 #include <math.h>
9

10 int main(){
11 /**
12 *y_a - the value of a*a -1
13 *y_b - the value of b*b -1
14 *y_c - the value of c*c -1.
15 */
16 double y_a, y_b, y_c;
17

18 /**
19 *a - one bracket
20 *b - the other bracket
21 *c - thhe midpoint
22 */
23 double a = .5, b = 1.75, c;
24

25 /**
26 *epsilon - the desired accuracy of our root.
27 */
28 double epsilon = 1e-30;
29

30 /**
31 *i - counter
32 *maxiter - maximum number of iterations
33 */
34 int i, maxiter = 100;
35

36 /* initialize y_a and y_b */
37 y_a = a*a-1;
38 y_b = b*b-1;
39

40 /* determine if they are the same sign, we cannot continue if they
41 are */
42 if(y_a*y_b > 0){
43 printf("y(a=%g) and y(b=%g) are the same sign\n", y_a, y_b);
44 return 1;
45 }
46

47 /* find c and y_c */

41

~tluchko/academic/2005/234/lectures/chapter-3/examples/bisect-for-2.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
48 c = (a + b) /2;
49 y_c = c*c - 1;
50 /* begin our loop */
51 for(i=0;(fabs(a-b) > epsilon || y_c == 0) && i < maxiter;i++){
52

53 /* determine if y_c is the same sign as y_a or y_b */
54 if(y_a*y_c > 0){
55 a = c;
56 y_a = y_c;
57 } else {
58 b = c;
59 y_b = y_c;
60 }
61

62 /* calculate the new midpoint */
63 c = (a + b) /2;
64 y_c = c*c - 1;
65

66 /* print information about where we are */
67 printf("a = %9.7g\tb = %9.7g\n",a, b);
68 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
69 }
70

71 /* test if we found the root or not */
72 if(i == maxiter){
73 printf("Maximum iterations execeeded : %d. No roots found.\n",maxiter);
74 }
75 return 0;
76 }

The , Operator

Although we don’t need to use it very often the , operator can make our life and our for loops easier.
Expressions with this operator are of the form

expression1,expression2

expression1 is computed and the value discarded. expression2 is then calculated the value kept as the value
for the entire expression. If expression1 has no side-effect (e.g. there is no assignment) then expression1 is
useless.

Use of the , operator are demonstrated in comma.c

0 /**
1 *Illustrates some uses of the comma operator by summing the integers
2 *from 0 to 9 inclusive
3 ***/
4

5 #include <stdio.h>
6

7 int main(){
8 int i, sum, n = 10;
9

42

~tluchko/academic/2005/234/lectures/chapter-3/examples/comma.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
10 printf("\nFor Loop 1\n");
11 for(i = 0, sum = 0;i<n; i++){
12 sum+=i;
13 printf("%3d -- sum = %3d\n",i, sum);
14 }
15

16 printf("\nFor Loop 2\n");
17 for(i = 0,sum = 0; sum+=i,i<n; i++,printf("%3d -- sum = %3d\n",i, sum));
18

19 printf("\nWhile Loop 1\n");
20 i=0, sum=0;
21 while(sum+=i,printf("%3d -- sum = %3d\n",i, sum),i++,i<n);
22

23 return 0;
24 }

Note: The , operator cannot be used everywhere. An important place it cannot
be used is in arguments to functions like pow(). Here the , has a different
meaning and will be interpretted as extra arguments for the function.

3.7.4 Restricted Jumps

Some algorithms are easiest to implement if we can abandon a single iteration of loop or break out the loop
altogether . This can be done with the keywords break and continue.

break Statement

break takes us from inside of a loop or switch statement to the point just outside the end of the loop or
switch statement. For example, break.c

0 /**
1 *Illustrates the use of ’break’. This code will never count past
2 *’bignumber’.
3 ***/
4

5 #include <stdio.h>
6

7 int main(){
8 int i, bignumber = 10, n = 100;
9 for(i=0; i<n; i++){

10 printf("%d ",i);
11 if(i>=bignumber){
12 printf("\nI don’t know how to count past %d!?!",bignumber);
13 break;
14 }
15 }
16 printf("\n");
17 return 0;
18 }

A good use of the break statement is our bisection method. This is used in bisect-break.c

0 /***

43

~tluchko/academic/2005/234/lectures/chapter-3/examples/break.c
~tluchko/academic/2005/234/lectures/chapter-3/examples/bisect-break.c

Tyler Luchko PHYS 234 - 2005 Chapter 3
1 *This program uses the bisection method to find the positive root of
2 *the equation
3 *
4 *y = x^2 -1
5 ***/
6

7 #include <stdio.h>
8 #include <math.h>
9

10 int main(){
11 /**
12 *y_a - the value of a*a -1
13 *y_b - the value of b*b -1
14 *y_c - the value of c*c -1.
15 */
16 double y_a, y_b, y_c;
17

18 /**
19 *a - one bracket
20 *b - the other bracket
21 *c - thhe midpoint
22 */
23 double a = 0, b = 4, c;
24

25 /**
26 *epsilon - the desired accuracy of our root.
27 */
28 double epsilon = .1;
29

30 /* initialize y_a and y_b */
31 y_a = a*a-1;
32 y_b = b*b-1;
33

34 /* determine if they are the same sign, we cannot continue if they
35 are */
36 if(y_a*y_b > 0){
37 printf("y(a=%g) and y(b=%g) are the same sign\n", y_a, y_b);
38 return 1;
39 }
40

41 /* find c and y_c */
42 c = (a + b) /2;
43 y_c = c*c - 1;
44 /* begin our loop */
45 while(fabs(a-b) > epsilon){
46 if(y_c == 0){
47 printf("%9.7g is an exact root\n",c);
48 break;
49 }
50

51 /* determine if y_c is the same sign as y_a or y_b */
52 if(y_a*y_c > 0){

44

Tyler Luchko PHYS 234 - 2005 Chapter 3
53 a = c;
54 y_a = y_c;
55 } else {
56 b = c;
57 y_b = y_c;
58 }
59

60 /* calculate the new midpoint */
61 c = (a + b) /2;
62 y_c = c*c - 1;
63

64 /* print information about where we are */
65 printf("a = %9.7g\tb = %9.7g\n",a, b);
66 printf("y(c=%9.7g)=%9.7g\n\n", c, y_c);
67 }
68

69

70 return 0;
71 }

continue Statement

continue takes us to the end of the last line in the loop. This is still in the loop so we have not exited it
yet. For example, continue.c

0 /**
1 *Illustrates the use of ’coninue’. This code will ignore negative
2 *numbers.
3 ***/
4

5 #include <stdio.h>
6

7 int main(){
8 int i, n = 100;
9 for(i=-10; i<n; i++){

10 if(i<0){
11 printf("I’m ignoring %d\n",i);
12 continue;
13 }
14 printf("%d ",i);
15 }
16 printf("\n");
17 return 0;
18 }

Note: The goto statement does exist in C. Don’t use it.

45

~tluchko/academic/2005/234/lectures/chapter-3/examples/continue.c

	Getting Started With Programming
	Programming and Programming Languages
	History of C and Computing Languages
	Structure of a C Program
	Compiling Our Code
	Comments
	Basic Output
	Directives
	Variables
	Keywords

	Mathematical Expressions
	Operators
	Integer vs. Floating Point Mathematics
	math.h

	Logical Expressions
	Boolean Type
	Operators
	Example

	Branching
	if Statement
	else Statement
	else if Statement
	switch Statement

	Loops
	while Loop
	do Loop
	for Loop
	Restricted Jumps

