GEOPH421

Homework 3

Due Nov 7, Thursday (in class)

Problem 1 ($\mathbf{3 0} \mathbf{~ p t) : ~ T h i s ~ p r o b l e m ~ a i m s ~ t o ~ s o l v e ~ t h e ~ f o l l o w i n g ~ f o u r ~}$ simultaneous equations

$$
\begin{array}{lr}
\frac{x^{3} y \sqrt{z}}{w}=2 & \frac{y^{3} z^{4} \sqrt{w}}{x}=4 \\
\frac{z^{3} w^{3} \sqrt{x}}{y}=8 & x y z w=16
\end{array}
$$

Find and report values for the four quantities $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w matrix inverse while using the Least Squares approach. (Note: if you don't think this is a linear problem, think again. You have to come up with a clever way to turn these equations into a set of a linear problem first before solving. Meaning, turn the multiplications of x, y, and zs into some sort of additions through an operation that you learned from high-school math.) You must write the revamped $\mathbf{A X}=\mathbf{D}$ on paper ($\sim 80 \%$ work on paper), where \mathbf{X} contains variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$, and w (but not necessarily just $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$). As the last step, implement this linear problem using Matlab to get the final answer for \mathbf{X} (using the inv() function, check matlab help, $\sim 20 \%$ work, need to attach code).

Problem 2 (40 pt): Consider 4 blocks labeled a through d as shown. The capital letters A through F denote the summation of two block values vertically, horizontally and diagonally, e.g.,, $A=a+c, C=a+b, E=a+d$ and so on. Need to attach code for some parts.

(1) (10 pt) Given values of A, B, C and E (assume they are observations), define data vector, model vector, and sensitivity matrix for a linear
inverse problem based on the configuration above (how do you set that up?).
(2) (5 pt) If $A=4, B=-3, C=-1$, and $E=0$, find the least squares solution (can use Matlab)
(3) (10 pt) If $A=7, B=-2, C=-1, D=7, E=2$, and $F=2$, define data vector, sensitivity matrix, and model vector. Find the least-squares solution. Why is the total misfit non-zero? Calculate the misfit (dataprediction) for each datum.
(4) Consider a set of data $A=3, B=2, C=1$, and $D=4$.
4.1(5 pt) Try and see if you can find least-squares solution and comment on whether and why it is achievable (or not).
4.2(10 pt) Find damped least-squares solution using norm damping. Plot the norm (L2) misfit and model parameters as a function of the damping parameter. Comment on your result and explain what is happening physically as you vary the damping parameter.

Problem 3 (25 pt): Synthetic Seismogram Calculation

(1) Make a new directory, Copy content of \sim jgu/geop624/lab6/ to this directory cp $\sim y g u /$ geop $624 /$ sources/* .
(2) You should see a file called runexp.e. This is an executable file that contain a bunch of commands that include computation of Green's function (myreflectivity), synthetic seismogram output by convolving the source (mysynd_new), and filtering (applyfilter) for a given station seismic record.
(3) Run program runexp.e by runexp.e
(4) The selected output files for mysynd_new program are exp_st1.V exp_st1.R exp_st1.T (Vertical, Radial and Transverse, respectively). The output files after filtering (this filtering programs applies a buttersworth filter just like SAC2000) are exp_st1.V.filt, exp_st2.V.filt, and exp_st2.V.filt, respectively.
(5) Look at the seismogram exp_st1.V by

xmgrace exp_st1.V

(6) Identify P, S and surface waves on exp_st1.V or exp_st1.T.
a. Predicted P time $=\quad$ Observed P time $=$
b. Average Rayleigh wave time $=\quad$ Phase velocity $=$
c. Predicted S time $=\quad$ Observed S time $=$
d. Average Love wave time $=\quad$ Phase velocity $=$
e. Look at your model, roughly how deep roughly do you think the surface wave at this frequency range goes? Give reasoning.

