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Abstract. Given the significance of physical measures in understanding the complexity of dynam-

ical systems as well as the noisy nature of real-world systems, investigating the stability of physical

measures under noise perturbations is undoubtedly a fundamental issue in both theory and practice.

The present paper is devoted to the stochastic stability of physical measures for conservative

systems on a smooth, connected, and closed Riemannian manifold. It is assumed that a conservative

system admits an invariant measure with a positive and mildly regular density. Our findings affirm,

in particular, that such an invariant measure has strong stochastic stability whenever it is physical,

that is, for a large class of small random perturbations, the density of this invariant measure is

the zero-noise limit in L1 of the densities of unique stationary measures of corresponding randomly

perturbed systems. Stochastic stability in a stronger sense is obtained under additional assumptions.

Examples are constructed to demonstrate that stochastic stability could occur even if the invariant

measure is non-physical.

Our approach to establishing stochastic stability is rooted in the analysis of Fokker-Planck equa-

tions associated with randomly perturbed systems. The crucial element in our proof is the establish-

ment of uniform-in-noise estimates in Sobolev spaces and positive lower and upper bounds for the

densities of stationary measures, which are natural yet far-reaching consequences of the conserva-

tiveness of the unperturbed system. Not only do these results have stochastic stability as immediate

results, but also they readily confirm the so-called sub-exponential large deviation principle of sta-

tionary measures. A distinguishing feature of our approach is that it does not rely on uniform,

non-uniform, or partial hyperbolicity assumptions, which are often required in the existing literature

when investigating stochastic stability. Consequently, our study opens up a new avenue for the

exploration of stochastic stability and related issues.
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1. Introduction

Invariant measures are fundamental objects in the study of statistical properties of dynamical sys-

tems and are especially powerful in the characterization of complex dynamics. Among these, physical

measures [27, 52] – those that can be observed – are of notable interest and paramount relevance in

numerous practical applications across various scientific and engineering disciplines. Statistical prop-

erties such as entropy, Lyapunov exponents, and mixing properties, quantified by physical measures,

often provide valuable information about a system’s predictability, sensitivity to initial conditions, and

overall complexity. Since the pioneering work on Axiom A attractors [47, 43, 42, 21], finding physical

measures that can capture the complexity of systems has attracted a lot of attention resulting in a

substantial body of literature. Interested readers are referred to surveys [52, 53] and references therein

for earlier developments, and to [49, 26, 10, 23, 5, 39, 7, 20, 24, 22], to name just a few, for more

recent ones.

Given that real-world systems are intrinsically slightly noisy, investigating the stability of dynam-

ical systems, particularly their key dynamical properties, under small noise perturbations is of both

theoretical and practical significance [28, 37, 17]. This makes it imperative and fundamental to study

the stochastic stability of physical measures, especially those related to complex dynamical behaviours,

that is crucial for making reliable predictions about the long-term behaviours and helps in understand-

ing how noises affect systems’ dynamics. In the present paper, we focus on this issue for conservative

systems.

1.1. Setup. We formulate the problem and present our findings in dimension d ≥ 2; the one-

dimensional case is special and treated separately in Section 4. From now on, we are going to use

some special notations and direct the reader to Subsection 1.3 for their precise meanings.

Let (M, g) be a d-dimensional smooth, connected and closed manifold endowed with a Riemannian

metric g, and denote by Vol the Riemannian volume of M . It is assumed that g is normalized so that

Vol(M) = 1 (see [38, Chapter 16]). Consider the following ordinary differential equation (ODE) over

M :

ẋ = B(x), (1.1)

where B : M → TM is a Lipschitz continuous vector field on M , ensuring the global well-posedness

of (1.1). The system (1.1) is assumed to be conservative (or generalized volume-preserving) in the

sense that (1.1) admits an invariant measure µ0 with a positive density u0 ∈ W 1,p0 for some p0 > d

with respect to Vol. Clearly, div(u0B) = 0 Vol-a.e. (see Lemma 3.1).
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Note that (1.1) may admit many and even infinitely many invariant measures like µ0; typical exam-

ples are rotations on tori with rationally dependent frequencies. In which case, µ0 is a representation

of these invariant measures.

To investigate the stochastic stability of µ0 or any similar invariant measures, we examine the

following small random perturbation of (1.1):

dXε
t = B(Xε

t )dt+ ε2Aε0(Xε
t )dt+ ε

m∑
i=1

Aεi(X
ε
t ) ◦ dW i

t , (1.2)

where 0 < ε � 1 is the noise intensity, m ≥ d, A = {Aεi , i ∈ {0, 1, . . .m}, ε} is a collection of

vector fields on M , {W i
t } are m independent and standard one-dimensional Brownian motions on

some probability space, and the stochastic integrals are understood in the sense of Stratonovich. The

vector fields A are chosen from the admissible class defined as follows.

Definition 1.1 (Admissible class). A collection A of vector fields on M is said to be in the admissible

class A if A = {Aεi , i ∈ {0, . . . ,m}, ε} for some m ≥ d and the following conditions are satisfied:

(A1) there exists p > d such that Aε0 ∈ Lp, Aεi ∈W 1,p for i ∈ {1, . . . ,m}, and

‖Aε0‖p + max
i
‖Aεi‖1,p . 1;

(A2) there exists λ > 0 such that

inf
ε

m∑
i=1

|Aεif |2 ≥ λ|∇f |2 Vol-a.e., ∀f ∈W 1,1.

The condition (A1) is a mild integrability condition. The condition (A2) is a uniform-in-ε posi-

tivity condition, guaranteeing in particular the non-degeneracy of the stochastic differential equation

(SDE) (1.2) when A ∈ A.

It should be pointed out that for A ∈ A, the SDE (1.2) may not be well-posed even in the weak

sense, and therefore, transition probabilities and stationary distributions are hardly defined. However,

it is quite convenient to work with the Fokker-Planck equation associated with the SDE (1.2):

∂tu = L∗εu, (1.3)

where L∗ε is the Fokker-Planck operator, which is the formal L2-adjoint operator of the generator Lε
given by

Lε :=
ε2

2

m∑
i=1

(Aεi)
2 + ε2Aε0 +B.

This weak formalism of the SDE (1.2) is often adopted when its coefficients have low regularity (see

e.g. [19]). We are mostly interested in stationary (probability) measures of (1.2) (that is, stationary

solutions of (1.3) in the class of probability measures) that generalize stationary distributions of SDEs.

The reader is referred to Appendix A for the basics of stationary measures.

According to Theorem A.1, if A ∈ A, then for each ε, the SDE (1.2) admits a unique stationary

measure µε having a positive density uε ∈ W 1,p, where p > d is the same as in (A1). We have

suppressed the dependence of µε and uε on A; this shall cause no trouble. Moreover, the set MA

of all the limiting measures of µε as ε → 0 under the weak*-topology is non-empty thanks to the

compactness of M and Prokhorov’s theorem, and each element in MA must be an invariant measure

of (1.1) [37].

The stochastic stability of an invariant measure of (1.1) is defined as follows.
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Definition 1.2 (Stochastic stability). An invariant measure µ of (1.1) is said to be stochastically

stable with respect to A if MA = {µ} for all A ∈ A.

In the present paper, we mainly focus on addressing the stochastic stability issue of the invariant

measure µ0. The strong admissible class of vector fields is considered in pursuit of stronger results

regarding the stochastic stability.

Definition 1.3 (Strong admissible class). A collection A of vector fields on M is said to be in the

strong admissible class SA if A = {Aεi , i ∈ {0, . . . ,m}, ε} for some m ≥ d and it satisfies (A2) and

(SA1) there exists p > d such that

‖Aε0‖1,p + max
i
‖Aεi‖2,p . 1.

1.2. Statement of main results. Our first result addresses uniform estimates of stationary measures

{uε}ε as well as the stochastic stability of µ0.

Recall that an invariant measure µ of (1.1) is called a physical measure (or physical) if Vol(Bµ) > 0,

where

Bµ :=

{
x ∈M : lim

t→∞

1

t

∫ t

0

δϕs(x)ds = µ under the weak*-topology

}
is referred to as the basin of µ, where ϕt denotes the flow generated by solutions of (1.1).

Theorem A. The following statements hold.

(1) For any A ∈ A, there hold

‖uε‖1,2 . 1 and 1 . minuε ≤ maxuε . 1.

In particular, any µ ∈MA has a density u belonging to W 1,2 and satisfying u, 1
u ∈ L

∞.

(2) If µ0 is physical, then it is stochastically stable with respect to A.

(3) If µ0 is the only invariant measure of (1.1) with a density in W 1,2, then it is stochastically

stable with respect to A.

In the case of either (2) or (3), the limit limε→0 uε = u0 holds weakly in W 1,2 and strongly in Lp for

any p ∈ [1, 2d
d−2 ).

Remark 1.1. We make some comments about Theorem A.

(i) The uniform estimates of {uε}ε, having conclusions in (2) and (3) as immediate consequences,

are natural yet far-reaching consequences of the conservativeness of the unperturbed system

(1.1). Our approach to establishing these uniform estimates builds on analyzing the stationary

Fokker-Planck equation satisfied by uε, namely, L∗εuε = 0 in the weak sense. Developing

uniform-in-ε Harnack’s estimate and Moser iteration for uε plays a crucial role in the proof.

In addition to the implications for stochastic stability, these uniform estimates are key to

the justification of the sub-exponential large deviation principle of {uε}ε (see Remark 1.2).

(ii) It is shown in Corollary 3.1 that µ0 is physical if and only if it is ergodic. The ergodicity of µ0

clearly implies that it is the only invariant measure of (1.1) with a density in W 1,2, yielding

that (2) is stronger than (3). In Theorem B, we construct examples that satisfy (3) while not

fulfilling (2).

(iii) The limit limε→0 uε = u0 holds in L1 for each A ∈ A. In literature, such a result is often

called the strong stochastic stability with respect to A.
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(iv) In the case where B is divergence free, the stochastic stability of the volume Vol with respect

to homogeneous noises (that is, Aε0 = 0 and Aεi = Ai is a constant vector field for each

i ∈ {1, . . . ,m}) was obtained in [1]. This result is straightforward as the unique stationary

measure µε coincides with Vol. It is generalized in Theorem 3.1 that sheds light on the issues

of invariant measure selection by noise and stochastic instability when (1.1) admits multiple

invariant measures like µ0.

Introduced by Kolmogorov and Sinai [47, 48], the stochastic stability of invariant measures, es-

pecially physical measures, has attracted considerable attention and received affirmative results in

many instances. The reader is referred to [37] and references therein for earlier investigations con-

cerning uniquely ergodic systems or systems having relatively simple dynamics. Significant advance-

ments have been achieved in various settings, including uniformly hyperbolic systems [36, 51], sys-

tems that feature spectral gaps applicable to many exponentially mixing piecewise expanding maps

[34, 12, 11, 15, 16, 35], and non-uniformly hyperbolic maps [33, 14, 40, 3, 2, 8, 13, 4, 6, 44, 45].

A distinguishing feature of our results (Theorem A and the subsequent Theorems B and C) is that

they do not rely on uniform, non-uniform, or partial hyperbolicity assumptions, which are typically

required in most previous works. While these hyperbolicity assumptions have become standard in the

geometric or statistical theory of smooth dynamical systems, they are often not met or challenging to

verify in the case of complex systems such as those related to complex fluids. Therefore, our study

opens up a new avenue for the exploration of stochastic stability and related issues.

When µ0 is a physical measure, Theorem A(2) asserts its stochastic stability with respect to A.

While there are an abundance of examples asserting the stochastic instability of µ0 with respect to

A when it fails to be physical (see Remark 3.1), the converse is generally wrong as shown in the

following result. In which, we construct a volume-preserving system where the normalized volume is

stochastically stable but non-physical.

Theorem B. There exist a three-dimensional smooth, connected, and closed Riemannian manifold

M and a smooth divergence-free vector field B : M → TM satisfying the following conditions:

(1) M = M1 ∪M2 and M1 ∩M2 = ∂, where M1 and M2 are three-dimensional smooth, connected

and compact manifolds with a common boundary ∂,

(2) the interior Mo
i of Mi for each i = 1, 2 and the boundary ∂ are invariant under ϕt,

(3) Vol|Mo
i

is strongly mixing for each i = 1, 2,

where ϕt is the flow generated by B. Then, the following hold.

(i) Any invariant measure of ϕt has the form of ν1 + ν2 + ν∂ , where ν1, ν2 and ν∂ are invariant

measures of ϕt when restricted to Mo
1 , Mo

2 and ∂, respectively.

(ii) Vol is neither ergodic nor physical, but it is the only invariant measure of ϕt admitting a

density in W 1,2.

(iii) Vol is stochastically stable with respect to A.

Note that, in the context of the flow ϕt described in Theorem B, both
Vol|M1

Vol(M1)
and

Vol|M2

Vol(M2)
are

physical measures of ϕt. However, it is important to note that neither of them is stochastically

stable with respect to A. This observation prompts an intriguing question since there is a prevailing

belief that physical measures should demonstrate stability under small random perturbations to some

extent. This issue can be attributed to a timescale problem, implying that a physical measure may
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exhibit stochastic stability only over certain finite timescales. The exploration of this matter will be

the subject of future investigations.

The conclusions in Theorem A can be enhanced if additional conditions on u0, A and B are imposed.

Theorem C. Assume u0 ∈W 2,p0 . Suppose there are vector fields Xi : M → TM , i ∈ {1, . . . , n} with

n ≥ d, belonging to W 1,p for some p > d such that

(i) for each i, div(u0Xi) = 0 and [u0Xi, u0B] = 0, where [·, ·] denotes the Lie bracket;

(ii) {Xi}ni=1 spans the tangent bundle TM .

Then, for each A ∈ SA,

(1) ‖uε‖1,q . 1 for all q ≥ 1;

(2) if µ0 is the only invariant measure of (1.1) with a density in W 1,2, then

lim
ε→0

uε = u0 in Cα, ∀α ∈ (0, 1).

Theorem C applies particularly to rotations on tori. In fact, for a rotation on Td := Rd/Zd, we can

choose µ0 as the normalized Lebesgue measure, set n = d, and define Xi := ∂
∂xi

for i ∈ {1, . . . , d}.
Under these choices, the conditions in Theorem C are satisfied.

Consider the case when M is the 2-sphere S2 equipped with the spherical coordinate (φ, θ), where

φ and θ stand for the longitude and latitude, respectively. Let B := ∂
∂θ be the vector field generating

a volume-preserving flow. Straightforward calculations show that if X is a divergence-free vector field

satisfying [X,B] = 0, and B and X are linearly independent, then X must have a component C
sinφ

∂
∂θ

for some C ∈ R \ {0}. Consequently, X does not belong to W 1,p for any p > 2. Hence, the conditions

in Theorem C cannot be satisfied in this case.

Remark 1.2. It is worthwhile to highlight the significance of the conclusions drawn in Theorems A and

C for justifying the sub-exponential large deviation principle (LDP), also known as the zeroth-order

WKB expansion [29].

For randomly perturbed conservative systems, the sub-exponential LDP of invariant measures {µε}ε
concerns the rigorous justification of

uε = Rεe
− 2
ε2
V with minV = 0 and Rε = R0 + o(ε2),

where V and Rε are called the quasi-potential function and prefactor, respectively. Theorems A and

C assert that V = 0, and therefore, Rε = uε has relevant properties.

This outcome sheds light on rigorously justifying the sub-exponential LDP of invariant measures

{µε}ε for randomly perturbed dissipative systems, particularly when the global attractor of the dissi-

pative system is a Riemannian manifold M , and the dissipative system, when restricted to M , is a

conservative system in the same sense as that of (1.1). In such instances, one needs to justify

uε =
Rε
εN−d

e−
2
ε2
V with minV = 0 and Rε = R0 + o(ε2),

where N is the system’s dimension and d is the dimension of M . The dynamics of the dissipative

system on M for sure plays a crucial role in quantifying the limit of uε.

The sub-exponential LDP for randomly perturbed dissipative systems has many applications, in-

cluding classical first exit problems [25], stochastic bifurcations [54, 29], stochastic populations [9], and

the landscape and flux theory of non-equilibrium systems [50]. However, thus far, it has been only

established in scenarios where the global attractor is a non-degenerate equilibrium point [46, 25, 41],

owing to certain essential difficulties.
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We conclude this section by discussing our study in one dimension. The one-dimensional case is

highly exceptional, as the conservative vector field B, which is identified as a function on M , must

either vanish entirely or be sign-definite. We focus on the sign-definite scenario, which is evidently

more interesting. This unique characteristic enables us to provide a significantly more concise proof

of the one-dimensional counterpart of Theorem A(1) and to establish uniform estimates for stationary

measures for a substantially broader range of random perturbations. The corresponding findings are

detailed in Section 4.

1.3. Organization and notation. The rest of the paper is organized as follows. In Section 2, we

establish uniform estimates for the stationary measures of (1.2) when the vector field B is divergence-

free. Section 3 is dedicated to proving Theorems A-C. When the system (1.1) admits multiple invariant

measures like µ0, the problem of invariant measure selection by noise is studied in Subsection 3.3. In

Section 4, we address the one-dimensional case. Appendix A contains a classical result regarding the

existence and uniqueness of stationary measures for SDEs with less regular coefficients. Additionally,

in Appendix B, we collect some commonly used formulas from calculus on manifolds.

Notation. The following list of notations are used throughout this paper.

• d∗ := d
d−2 if d ≥ 3 and fix any d∗ ∈ (1,∞) if d = 2.

• N denotes the set of positive integers, and N0 := {0} ∪ N.

• The (vector-valued) spaces Lp(M), W k,p(M), and Cα(M) are written as Lp, W k,p, and Cα,

respectively.

• The usual Lp-norm and W k,p-norm are denoted by ‖ · ‖p and ‖ · ‖k,p, respectively.

• For constants α(ε) and β(ε) indexed by ε, we write

– α(ε) . β(ε) (resp. α(ε) & β(ε)) if there is a positive constant C, independent of ε, such

that α(ε) ≤ Cβ(ε) for all ε (resp. α(ε) ≥ Cβ(ε) for all ε);

– α(ε) ≈ β(ε) if α(ε) . β(ε) and α(ε) & β(ε).

• For f ∈ C0, minM f and maxM f are written as min f and max f , respectively.

• The integral
∫
M
fdVol is written as

∫
f , and the integral

∫
M
fdµ, where µ is a measure on

M , is written as
∫
fdµ.

• Einstein’s summation convention is used throughout the paper unless otherwise specified.

2. Uniform estimates in the divergence-free case

This section is devoted to uniform estimates for stationary measures of (1.2) under different as-

sumptions on the vector field B. The corresponding result serves as a crucial step in the proof of our

main results, and is of independent interest.

We make the following assumptions on the vector field B.

(A)B B ∈W 1,p0 for some p0 >
d
2 and divB = 0 Vol-a.e.

That is, B is divergence-free and has weak regularity. It is well known that the flow generated by

B, if exists, is volume-preserving. Unfortunately, B ∈W 1,p0 is insufficient for (1.1) to generate such a

flow. But, this causes no trouble at all since the dynamical implication is off the table in this section.

Note that B ∈ Lp1 with some p1 > d thanks to the Sobolev embedding theorem. Hence, Theorem

A.1 applies and yields that if A ∈ A, then for each ε, the SDE (1.2) admits a unique stationary
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measure µε having a positive density uε ∈ W 1,p∗ , where p∗ := min{p1, p} and p is as assumed in

(A1). Moreover,

− ε2

2

∫
Aεif [Aεiuε + (divAεi)uε] +

∫ (
ε2Aε0f +Bf

)
uε = 0, ∀f ∈W 1,2. (2.1)

The following two theorems are the main results in this section.

Theorem 2.1. Assume (A)B. For any A ∈ A, there hold

‖uε‖1,2 . 1 and 1 . minuε ≤ maxuε . 1.

Theorem 2.2. Assume (A)B with p0 > d. Suppose there are vector fields Xi : M → TM , i ∈
{1, . . . , n} with n ≥ d, belonging to W 1,p for some p > d such that

(i) for each i, divXi = 0 and [Xi, B] = 0;

(ii) {Xi}ni=1 spans the tangent bundle TM .

Then, for any A ∈ SA, there holds ‖uε‖1,q . 1 for all q ≥ 1.

The rest of this subsection is devoted to the proof of Theorems 2.1 and 2.2. To proceed with the

proof of Theorem 2.1, we need two lemmas. From now on, we will frequently use some formulas

relevant to calculus on manifolds. The reader is directed to Appendix B for details.

Lemma 2.1. Assume (A)B. For any A ∈ A, we have ‖uε‖1,2 . 1.

Proof. Let A ∈ A. Taking f = uε in (2.1) yields

− ε2

2

∫
Aεiuε[A

ε
iuε + (divAεi)uε] +

∫
(ε2Aε0uε +Buε)uε = 0. (2.2)

Since divB = 0 by (A)B , we derive from the divergence theorem that∫
(Buε)uε =

1

2

∫
Bu2ε = −1

2

∫
(divB)u2ε = 0,

which together with (2.2) leads to

m∑
i=1

∫
|Aεiuε|2 +

∫
(Aεiuε)(divAεi)uε − 2

∫
(Aε0uε)uε = 0.

The assumption (A1) and the Sobolev embedding theorem ensure maxi ‖Aεi‖∞ . 1 and ‖Aε0‖p +

maxi ‖divAεi‖p . 1. Hence, we apply Hölder’s inequality to deduce that

m∑
i=1

∫
|Aεiuε|2 . ‖∇uε‖2‖uε‖r

(
m∑
i=1

‖divAεi‖p + ‖Aε0‖p

)
. ‖∇uε‖2‖uε‖r,

where r :=
(

1
2 −

1
p

)−1
∈ (2, 2d∗). As

∑m
i=1

∫
|Aεiuε|2 & ‖∇uε‖22 ensured by (A2), we arrive at

‖∇uε‖2 . ‖uε‖r. The Sobolev embedding theorem then leads to

‖uε‖2d∗ . ‖uε‖2 + ‖∇uε‖2 . ‖uε‖r, (2.3)

where we used ‖uε‖2 . ‖uε‖r in the second inequality.

Note that ‖uε‖r ≤ ‖uε‖α1 ‖uε‖1−α2d∗
(by interpolation) with α :=

(
1
d −

1
p

) (
1
2 + 1

d

)−1
. The fact

‖uε‖1 = 1 results in ‖uε‖r ≤ ‖uε‖1−α2d∗
. It then follows from (2.3) that ‖uε‖2d∗ . 1, and thus,

‖uε‖r . 1. The desired conclusion follows readily from the second inequality in (2.3). �
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Lemma 2.2. Assume (A)B. For any A ∈ A, the following hold.

(1) maxuε . 1;

(2) For any γ > 0, we have minuε & ‖u−1ε ‖−1γ .

Proof. We first establish some estimates for uε. Recall that uε ∈W 1,p∗ and uε, u
−1
ε ∈ L∞ due to the

Sobolev embedding theorem.

Let q ∈ R\{0, 1}. In the following, for any two constants α(ε, q) and β(ε, q) indexed by ε and q, we

write α(ε, q) . β(ε, q) to imply the existence of C (independent of ε and q) such that α(ε, q) ≤ Cβ(ε, q)

for all (ε, q). Setting f = uq−1ε ∈W 1,2 in (2.1) gives rise to

−ε
2

2

∫
(Aεiu

q−1
ε ) [Aεiuε + (divAεi)uε] +

∫
(ε2Aε0u

q−1
ε +Buq−1ε )uε = 0.

Since divB = 0 by (A)B , we apply the divergence theorem to find∫
(Buq−1ε )uε =

1

q

∫
Buqε = −1

q

∫
(divB)uqε = 0.

Therefore,

0 =

∫
(Aεiu

q−1
ε ) [Aεiuε + (divAεi)uε]− 2

∫
(Aε0u

q−1
ε )uε

= (q − 1)

m∑
i=1

∫
uq−2ε |Aεiuε|2 + (q − 1)

∫
(divAεi)u

q−1
ε Aεiuε − 2(q − 1)

∫
uq−1ε Aε0uε.

Since A ∈ A, we apply Hölder’s inequality to derive∫
uq−2ε |∇uε|2 .

m∑
i=1

∫
uq−2ε |Aεiuε|2 = −

∫
(divAεi)u

q−1
ε Aεiuε + 2

∫
uq−1ε Aε0uε

.

(∫
uq−2ε |∇uε|2

) 1
2

‖u
q
2
ε ‖r

(
m∑
i=1

‖divAεi‖p + ‖Aε0‖p

)

.

(∫
uq−2ε |∇uε|2

) 1
2

‖u
q
2
ε ‖r,

where r :=
(

1
2 −

1
p

)−1
∈ (2, 2d∗). As a result,

∫
|∇u

q
2
ε |2 = q2

4

∫
uq−2ε |∇uε|2 . q2‖u

q
2
ε ‖2r, which together

with the Sobolev embedding theorem leads to

‖u
q
2
ε ‖22d∗ . ‖u

q
2
ε ‖22 + ‖∇u

q
2
ε ‖22 . ‖u

q
2
ε ‖22 + q2‖u

q
2
ε ‖2r.

Noting that ‖u
q
2
ε ‖22 . ‖u

q
2
ε ‖2r, we find C∗ > 0, independent of ε and q, such that ‖u

q
2
ε ‖22d∗ ≤

C∗q
2‖u

q
2
ε ‖2r. As ‖u

q
2
ε ‖r ≤ ‖u

q
2
ε ‖α2 ‖u

q
2
ε ‖1−α2d∗

(by interpolation) with α := 1− d
p , we deduce that

‖uε‖qd∗ ≤ C
1
αq
∗ q

2
αq ‖uε‖q if q > 0, q 6= 1, (2.4)

and

‖u−1ε ‖|q|d∗ ≤ C
1
α|q|
∗ |q|

2
α|q| ‖u−1ε ‖|q| if q < 0. (2.5)

Now, we prove the results.
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(1) Setting q = 2dk∗ in (2.4) for each k ∈ N0, we see that

‖uε‖2dk+1
∗
≤ C

1

2αdk∗
∗ (2dk∗)

1

αdk∗ ‖uε‖2dk∗ , ∀k ∈ N0.

By iteration,

‖uε‖∞ = lim
k→∞

‖uε‖2dk∗ ≤ (4C∗)
1
2α

∑∞
k=0

1

dk∗ d
1
α

∑∞
k=0

k

dk∗
∗ ‖uε‖2 . ‖uε‖2 . ‖uε‖

1
2∞‖uε‖

1
2
1 .

The result then follows from the fact ‖uε‖1 = 1.

(2) For γ > 0, we set q = −γdk∗ in (2.5) for each k ∈ N0 to find that∥∥u−1ε ∥∥γdk+1
∗
≤ C

1

αγdk∗
∗

(
γdk∗

) 2

αγdk∗
∥∥u−1ε ∥∥γdk∗ , ∀k ∈ N0.

It follows that

‖u−1ε ‖∞ ≤ (C∗γ
2)

1
αγ

∑∞
k=0

1

dk∗ d
2
αγ

∑∞
k=0

k

dk∗
∗ ‖u−1ε ‖γ ,

that is, minuε & ‖u−1ε ‖−1γ . This completes the proof. �

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Given Lemmas 2.1 and 2.2, it remains to prove

‖u−1ε ‖γ . 1 for some γ > 0. (2.6)

To verify (2.6), we set vε := lnuε −
∫

lnuε and break the proof into four steps.

Step 1. We show that for each η ∈ C2(R),

m∑
i=1

∫
[η′(vε)− η′′(vε)] |Aεivε|2 =

∫
[η′′(vε)− η′(vε)] [(divAεi)A

ε
ivε − 2Aε0vε] . (2.7)

Recall that uε ∈ W 1,p∗ and uε, u
−1
ε ∈ L∞ due to the Sobolev embedding theorem. Then, for any

g ∈W 1,2, we are able to set f = g
uε
∈W 1,2 in (2.1) to derive

0 = −ε
2

2

∫
Aεi

g

uε
[Aεiuε + (divAεi)uε] +

∫ (
ε2Aε0

g

uε
+B

g

uε

)
uε

= −ε
2

2

∫ (
Aεig

uε
− g

u2ε
Aεiuε

)
[Aεiuε + (divAεi)uε] + ε2

∫ (
Aε0g

uε
− g

u2ε
Aε0uε

)
uε

+

∫ (
Bg

uε
− g

u2ε
Buε

)
uε

= −ε
2

2

∫ (
AεigA

ε
ivε − g

d∑
i=1

|Aεivε|2
)
− ε2

2

∫
(divAεi) (Aεig − gAεivε)

+ ε2
∫
Aε0g − gAε0vε +

∫
Bg − gBvε.

(2.8)

Clearly, vε ∈W 1,p∗ . For each η ∈ C2(R), we take g = η′(vε) ∈W 1,2 and then apply the divergence

theorem to find from divB = 0 (by (A)B) that
∫
Bη′(vε) = 0 and

∫
η′(vε)Bvε =

∫
Bη(vε) = 0. As a

result, the equality (2.7) follows from (2.8).
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Step 2. We show

D0 := sup
ε

(
‖vε‖22 + ‖∇vε‖22

)
<∞. (2.9)

Taking η(t) = t in (2.7) yields
∑m
i=1

∫
|Aεivε|2 = −

∫
(divAεi)A

ε
ivε−2Aε0vε. By (A1) and the Sobolev

embedding theorem, there hold maxi ‖Aεi‖∞ . 1 and ‖Aε0‖p + maxi ‖divAεi‖p . 1. We apply Hölder’s

inequality to find for r :=
(

1
2 −

1
p

)−1
∈ (2, 2d∗) that

m∑
i=1

∫
|Aεivε|2 . ‖∇vε‖2‖1‖r

(
m∑
i=1

‖divAεi‖p + ‖Aε0‖p

)
. ‖∇vε‖2.

By (A2), ‖∇vε‖2 .
∑m
i=1

∫
|Aεivε|2 . ‖∇vε‖2, and thus, ‖∇vε‖2 . 1. As

∫
vε = 0, we apply Poincaré

inequality to find ‖vε‖2 . 1, and hence, (2.9).

Before proceeding with the proof, we mention that constants C1, . . . , C6, which appear in the

following Step 3 and Step 4, are independent of ε and q ≥ 1 (to be included in Step 3). Moreover,

for any two constants α(ε, q) and β(ε, q) indexed by ε and q, we write α(ε, q) . β(ε, q) to imply the

existence of C (independent of ε and q) such that α(ε, q) ≤ Cβ(ε, q) for all (ε, q).

Step 3. We claim the existence of D1, D2 > 0, independent of ε, such that

‖vε‖2qd∗ ≤ D1qD
1
2q

2 +D
1
2q

2 q
2
αq ‖vε‖2q, ∀q ≥ 1, (2.10)

where α := 1− d
p ∈ (0, 1).

Let q ≥ 1. Setting η(t) = 1
2q+1 t

2q+1 in (2.7) gives rise to

m∑
i=1

∫
v2qε |Aεivε|2 = 2q

m∑
i=1

∫
v2q−1ε |Aεivε|2 + 2q

∫
v2q−1ε [(divAεi)A

ε
ivε − 2Aε0vε]

−
∫
v2qε [(divAεi)A

ε
ivε − 2Aε0vε] .

(2.11)

Applying Young’s inequality leads to

|vε|2q−1 ≤
2q − 1

2q
v2qε δ

2q
2q−1 +

1

2q
δ−2q, ∀δ > 0.

Setting δ = [2(2q − 1)]
1−2q
2q yields |vε|2q−1 ≤ 1

4qv
2q
ε + 1

2q [2(2q − 1)]2q−1, and hence,

2q

m∑
i=1

∫
v2q−1ε |Aεivε|2 ≤

1

2

m∑
i=1

∫
v2qε |Aεivε|2 + [2(2q − 1)]2q−1‖Aεi‖∞

∫
|∇vε|2

≤ 1

2

m∑
i=1

∫
v2qε |Aεivε|2 + C1(4q)2q−1,

where we used (2.9) in the second inequality. Inserting this into (2.11) results in

1

2

m∑
i=1

∫
v2qε |Aεivε|2 ≤ C1(4q)2q−1 + 2q

∫
v2q−1ε |(divAεi)A

ε
ivε − 2Aε0vε|

−
∫
v2qε |(divAεi)A

ε
ivε − 2Aε0vε| .

(2.12)
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For the second and third terms on the right-hand side of (2.12), we apply Hölder’s inequality and

then Young’s inequality to find

2q

∫
v2q−1ε |(divAεi)A

ε
ivε − 2Aε0vε|

≤ 2q(max
i
‖Aεi‖∞ + 1)

(
m∑
i=1

‖divAεi‖p + 2‖Aε0‖p

)
‖vq−1ε ‖r‖vqε∇vε‖2

≤ λ

8
‖vqε∇vε‖22 + C2q

2‖vq−1ε ‖2r,

(2.13)

where r is defined in Step 2, and∫
v2qε |(divAεi)A

ε
ivε − 2Aε0vε|

≤ (1 + max
i
‖Aεi‖∞)

(
m∑
i=1

‖divAεi‖p + 2‖Aε0‖p

)
‖vqε‖r‖vqε∇vε‖2

≤ λ

8
‖vqε∇vε‖22 + C3‖vqε‖2r,

(2.14)

where λ > 0 is the constant appearing in (A2). Inserting (2.13) and (2.14) back into (2.12), we derive

from (A2) that

‖vqε∇vε‖22 . (4q)2q−1 + q2‖vq−1ε ‖2r + ‖vqε‖2r.

According to Hölder’s inequality and Young’s inequality, we find

‖vq−1ε ‖2r . ‖vqε‖
2(q−1)
q

r .
q − 1

q
‖vqε‖2r +

1

q
,

and hence,

‖vqε∇vε‖22 . (4q)2q−1 + (q2 − q + 1)‖vqε‖2r + q. (2.15)

As v2q−2ε ≤ q−1
q v2qε + 1

q by Young’s inequality, we deduce

‖vq−1ε ∇vε‖22 ≤
q − 1

q
‖vqε∇vε‖22 +

D0

q
,

where D0 is given in (2.9). This together with (2.15) leads to

‖vq−1ε ∇vε‖22 . (4q)2q + q2‖vε‖2qqr.

It then follows from the equality ∇|vε|q = q|vε|q−2vε∇vε that

‖∇|vε|q‖22 . (4q)2q+2 + q4‖vε‖2qqr.

Since ‖vε‖2q2qd∗ . ‖∇|vε|
q‖22 + ‖vε‖2q2q by the Sobolev embedding theorem, we arrive at

‖vε‖2q2qd∗ ≤ C4(4q)2q+2 + C4q
4‖vε‖2qqr + C4‖vε‖2q2q. (2.16)

Noting that applications of the interpolation inequality and Young’s inequality yield

C4q
4‖vε‖2qqr ≤ C4q

4‖vε‖2qα2q ‖vε‖
2q(1−α)
2qd∗

≤ α
(
C4q

4
) 1
α ‖vε‖2q2q + (1− α)‖vε‖2q2qd∗ ,

we substitute the above inequality into (2.16) to find

‖vε‖2q2qd∗ ≤
1

α
C4(4q)2q+2 +

1

α

[
C4 + α

(
C4q

4
) 1
α

]
‖vε‖2q2q ≤ C5(4q)2q+2 + C5q

4
α ‖vε‖2q2q.
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Taking the 2q-th root of both sides results in

‖vε‖2qd∗ ≤ (C5)
1
2q (4q)

q+1
q + (C5)

1
2q q

2
αq ‖vε‖2q,

giving rise to (2.10).

Step 4. We finish the proof. Set q = dk∗ and Iεk := ‖vε‖2dk∗ for k ∈ N0. It follows from (2.10) that

Iεk+1 ≤ D1d
k
∗D

1

2dk∗
2 + d

2k

αdk∗
∗ D

1

2dk∗
2 Iεk.

By iteration,

Iεk+1 ≤ D1d
k
∗D

1

2dk∗
2 +D1d

k−1
∗ d

2k

αdk∗
∗ D

1

2dk∗
+ 1

2d
k−1
∗

2 + d
2k

αdk∗
+

2(k−1)

αd
k−1
∗

∗ D
1

2dk∗
+ 1

2d
k−1
∗

2 Iεk−1

≤ · · · ≤ D1D
1
2

∑∞
k=0

1

dk∗
2 d

2
α

∑∞
k=0

k

dk∗
∗

(
k∑
i=0

di∗ + Iε0

)
.

k∑
i=0

di∗ + 1,

where we used the fact
∑∞
k=0

(
1
dk∗

+ k
dk∗

)
< ∞ due to d∗ > 1 and Iε0 . 1 due to (2.9). As a result,

Iεk+1 . dk∗ for each k ∈ N0. Let n ≥ 2. Then, there exists a unique k = k(n) ∈ N0 such that

2dk∗ ≤ n < 2dk+1
∗ . Applying Hölder’s inequality yields ‖vε‖n . ‖vε‖2dk+1

∗
. dk∗ ≤ n

2 , and hence,

‖vε‖n ≤ C6n
2 . Setting γ := (eC6)−1 results in

γn

n!

∫
|vε|n ≤

γn

n!

(
C6n

2

)n
≤ γn

n!

(
C6

2

)n
enn! =

1

2n
, ∀n ≥ 2,

where we used nn ≤ enn! in the second inequality. In addition, we apply Hölder’s inequality to find

from (2.9) that ‖vε‖1 . D0. As a result,∫
eγ|vε| = 1 + γ

∫
|vε|+

∞∑
n=2

γn

n!

∫
|vε|n . 1 + γD0 +

1

2
≈ 1.

In particular, ∫
u−γε

∫
uγε =

∫
eγvε

∫
e−γvε . 1. (2.17)

Taking C6 so large that γ ∈ (0, 1), we deduce
∫
uγε =

∫
uε
u1−γ
ε
≥ 1

‖uε‖1−γ∞

∫
uε & 1, where we used the

fact
∫
uε = 1 and Lemma 2.2 (1) in the last inequality. It follows from (2.17) that

∫
u−γε . 1, proving

(2.6), and hence, completing the proof. �

Now, we prove Theorem 2.2.

Proof of Theorem 2.2. Let A ∈ SA. Without loss of generality, we may assume p is such that Aεi ∈
W 2,p, for i ∈ {1, . . . ,m}, Aε0 ∈W 1,p and B ∈W 1,p. By Theorem A.1, uε ∈W 1,p and (2.1) is satisfied.

Moreover, the classical regularity theory for elliptic equations ensures uε ∈W 2,p.

The proof is divided into four steps.
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Step 1. We show that for each k ∈ {1, . . . , n} and g ∈W 1,2,

ε2

2

∫
(Aεig)AεiXkuε −

∫
(Bg)Xkuε =

ε2

2
(I + II), (2.18)

where

I :=

∫
Aεig (−(divAεi)Xkuε − [Xk, A

ε
i ]uε) + ([Aεi , Xk]g)Aεiuε + 2(Xkg)Aε0uε

and

II :=

∫
−(Aεig)(XkdivAεi)uε + ([Aεi , Xk]g)(divAεi)uε + 2(Xkg)(divAε0)uε.

To do so, we fix k ∈ {1, . . . , n} and take g ∈W 2,2. Setting f = Xkg ∈W 1,2 in (2.1), we find

− ε2

2

∫
AεiXkg [Aεiuε + (divAεi)uε] + ε2

∫
(Aε0Xkg)uε +

∫
(BXkg)uε = 0. (2.19)

Straightforward calculations yield∫
AεiXkg [Aεiuε + (divAεi)uε]− 2

∫
(Aε0Xkg)uε

=

∫
(XkA

ε
ig + [Aεi , Xk]g) [Aεiuε + (divAεi)uε]− 2

∫
(Aε0Xkg)uε

=

∫
(XkA

ε
ig)Aεiuε +

∫
(XkA

ε
ig)(divAεi)uε +

∫
([Aεi , Xk]g) [Aεiuε + (divAεi)uε]− 2

∫
(Aε0Xkg)uε

=:

∫
(XkA

ε
ig)Aεiuε + I′ + II′ + III′.

(2.20)

Since divXk = 0 and [Xk, B] = 0, we derive∫
(XkA

ε
ig)Aεiuε = −

∫
(divXk)AεigA

ε
iuε −

∫
(Aεig)XkA

ε
iuε

= −
∫

(Aεig)AεiXkuε −
∫

(Aεig)[Xk, A
ε
i ]uε

and ∫
(BXkg)uε =

∫
(XkBg + [B,Xk]g)uε =

∫
(XkBg)uε

= −
∫

(Bg)uε(divXk)−
∫

(Bg)Xkuε = −
∫

(Bg)Xkuε,

which together with (2.19) and (2.20) lead to

ε2

2

∫
(Aεig)AεiXkuε −

∫
(Bg)Xkuε =

ε2

2
(I′ + II′ + III′)− ε2

2

∫
(Aεig)[Xk, A

ε
i ]uε. (2.21)

Note that

I′ = −
∫

(Aεig)(divAεi)uε(divXk)−
∫

(Aεig)Xk(uεdivAεi)

= −
∫

(Aεig)(divAεi)Xkuε −
∫

(Aεig)(XkdivAεi)uε,

and III′ = 2
∫
Xkg [(divAε0)uε +Aε0uε]. Inserting them into (2.21) results in (2.18). Obviously, each

term in (2.18) is well-defined even if g ∈ W 1,2. Since W 2,2 is dense in W 1,2, it follows from standard

approximation arguments that (2.18) holds for any g ∈W 1,2.
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In Step 2 and Step 3, for any two constants α(ε, q) and β(ε, q) indexed by (ε, q) with q to be

included in Step 2, we write α(ε, q) . β(ε, q) to imply the existence of C, which is independent of ε

and q, such that α(ε, q) ≤ Cβ(ε, q) for any (ε, q).

Step 2. We show∫
|Xkuε|2q|∇Xkuε|2 .

n∑
k=1

(
‖Xkuε‖2(q+1)

(q+1)r + ‖Xkuε‖2qqr
)
, ∀q ≥ 0, (2.22)

where r :=
(

1
2 −

1
p

)−1
∈ (2, 2d∗). We remind the reader of the use of Einstein’s summation convention

on the index k in the left-hand side of (2.22). In the following, we first prove inequalities for fixed

k ∈ {1, . . . , n} and then sum them up to achieve (2.22).

Let q ≥ 0 and k ∈ {1, . . . , n}. Set g := |Xkuε|2qXkuε ∈W 1,2 in (2.18). Note that

Y g = (2q + 1)|Xkuε|2qY Xkuε, (2.23)

for any vector field Y : M → TM . Then, we see from divB = 0 that

−
∫

(Bg)Xkuε = −(2q + 1)

∫
|Xkuε|2q(BXkuε)Xkuε = −2q + 1

2q + 2

∫
B|Xkuε|2q+2 = 0.

Hence, it follows from (2.18) that ∫
(Aεig)AεiXkuε = I + II. (2.24)

Applying (2.23), we derive from (A2) that

LHS of (2.24)

2q + 1
=

d∑
i=1

∫
|Xkuε|2q|AεiXkuε|2 &

∫
|Xkuε|2q|∇Xkuε|2 (2.25)

and
RHS of (2.24)

2q + 1
=

I

2q + 1
+

II

2q + 1
, (2.26)

with

I

2q + 1
= −

∫
|Xkuε|2q(AεiXkuε) ((divAεi)Xkuε + [Xk, A

ε
i ]uε)

+

∫
|Xkuε|2q

(
([Aεi , Xk]Xkuε)A

ε
iuε + 2(X2

kuε)A
ε
0uε
)

and

II

2q + 1
=

∫
|Xkuε|2quε

(
−(AεiXkuε)(XkdivAεi) + ([Aεi , Xk]Xkuε)divAεi + 2(X2

kuε)divAε0
)
.

Since Aεi ∈W 2,p for i ∈ {1, . . . ,m}, and Aε0, Xk ∈W 1,p, we apply the Sobolev embedding theorem

to find that Aε0, A
ε
i , divAεi , Xk ∈ C0 and [Xk, A

ε
i ], XkdivAεi , divAε0 ∈ Lp. Hence, an application of

Hölder’s inequality yields

|I|
2q + 1

.

(∫
|Xkuε|2q|∇Xkuε|2

) 1
2

‖|Xkuε|q∇uε‖r ,

and

|II|
2q + 1

. sup
ε
‖uε‖∞ ×

(∫
|Xkuε|2q|∇Xkuε|2

) 1
2

‖|Xkuε|q‖r .
(∫
|Xkuε|2q|∇Xkuε|2

) 1
2

‖Xkuε‖qqr ,
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where we used the fact ‖uε‖∞ . 1 due to Theorem 2.1 in the second inequality. This together with

(2.24)-(2.26) gives ∫
|Xkuε|2q|∇Xkuε|2 . ‖|Xkuε|q∇uε‖2r + ‖Xkuε‖2qqr.

Since {Xj}nj=1 spans the tangent bundle TM , we see from Lemma B.2 the existence of D > 0

(independent of ε) such that 1
D |∇uε| ≤

∑n
j=1 |Xjuε| ≤ D|∇uε| on M . That is, |∇uε| ≈

∑n
j=1 |Xjuε|

uniformly on M . Hence,∫
|Xkuε|2q|∇Xkuε|2 .

n∑
j=1

‖Xjuε‖2(q+1)
(q+1)r + ‖Xkuε‖2qqr.

Summarizing the above inequalities in k yields (2.22).

Step 3. We prove the existence of C∗ > 0 independent of ε such that

n∑
k=1

‖Xkuε‖2(q+1)d∗ ≤ C∗(q + 1)
1

α(q+1)

n∑
k=1

‖Xkuε‖2(q+1) + C∗(q + 1)
1

α(q+1) , ∀q ≥ 0, (2.27)

where α = 1− d
p ∈ (0, 1).

According to Hölder’s inequality and Young’s inequality, we find

‖Xkuε‖2qqr . ‖Xkuε‖2q(q+1)r .
q

q + 1
‖Xkuε‖2(q+1)

(q+1)r +
1

q + 1
.

Inserting this into (2.22) gives rise to∫
|Xkuε|2q|∇Xkuε|2 .

n∑
k=1

‖Xkuε‖2(q+1)
(q+1)r + 1. (2.28)

Noting that

(q + 1)2
∫
|Xkuε|2q|∇Xkuε|2 =

∥∥∇|Xkuε|q+1
∥∥2
2
,

and
n∑
k=1

‖Xkuε‖2(q+1)
2(q+1)d∗

.
n∑
k=1

(
‖Xkuε‖2(q+1)

2(q+1) +
∥∥∇|Xkuε|q+1

∥∥2
2

)
due to the Sobolev embedding theorem, we derive from (2.28) that

n∑
k=1

‖Xkuε‖2(q+1)
2(q+1)d∗

≤ C1(q + 1)2
n∑
k=1

(
‖Xkuε‖2(q+1)

2(q+1) + ‖Xkuε‖2(q+1)
(q+1)r

)
+ C1(q + 1)2. (2.29)

Since applications of the interpolation inequality and then Young’s inequality lead to

‖Xkuε‖2(q+1)
(q+1)r ≤ ‖Xkuε‖2α(q+1)

2(q+1) ‖Xkuε‖2(1−α)(q+1)
2(q+1)d∗

≤ αδ− 1
α ‖Xkuε‖2(q+1)

2(q+1) + (1− α)δ
1

1−α ‖Xkuε‖2(q+1)
2(q+1)d∗

,

where α := 1− p
d ∈ (0, 1), we set δ := [2(1− α)C1(q + 1)2]−(1−α) to derive from (2.29) that

n∑
k=1

‖Xkuε‖2(q+1)
2(q+1)d∗

≤ C2(q + 1)
2
α

n∑
k=1

‖Xkuε‖2(q+1)
2(q+1) + C2(q + 1)

2
α .
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Taking the 2(q + 1)-th root of both sides leads to

n∑
k=1

‖Xkuε‖2(q+1)d∗ .

(
n∑
k=1

‖Xkuε‖2(q+1)
2(q+1)d∗

) 1
2(q+1)

. (q + 1)
1

α(q+1)

n∑
k=1

‖Xkuε‖2(q+1) + (q + 1)
1

α(q+1)

and thus, (2.27) holds.

Step 4. We finish the proof. Set q + 1 = dk∗ for k ∈ N0 and denote Iεk :=
∑n
k=1 ‖Xkuε‖2dk∗ . It follows

from the result in Step 3 that

Iεk+1 ≤ C∗d
k

αdk∗
∗ Iεk + C∗d

k

αdk∗
∗ .

By iteration, we arrive at

Iεk+1 ≤ C2
∗d

k

αdk∗
+ k

αd
k−1
∗

∗ Iεk−1 + C2
∗d

k

αdk∗
+ k

αd
k−1
∗

∗ ≤ · · · ≤ Ck+1
∗ d

1
α

∑∞
i=0

k

di∗
∗ Iε0 + kCk+1

∗ d
1
α

∑∞
i=0

k

di∗
∗ .

Recall from Step 2 that
∑n
k=1 |Xkuε| ≈ |∇uε| uniformly on M . Since ‖∇uε‖2 . 1 by Lemma 2.1,

we find Iε0 ≈ ‖∇uε‖2 . 1, and thus, ‖∇uε‖2dk∗ ≈ Iεk . 1 for all k ∈ N. The interpolation inequality

then ensures ‖∇uε‖p′ . 1 for any p′ > 1. This completes the proof. �

3. Proof of main results

This section is devoted to the proof of our main results.

3.1. Converting to divergence-free vector fields. Recall that the system (1.1) is assumed to

have an invariant measure µ0 with a positive density u0 ∈ W 1,p0 for some p0 > d. We introduce the

invertible transformations to convert (1.2) into a system whose unperturbed part is divergence-free so

that results obtained in Section 2 apply.

Set

B̃ := u0B, ũ0 := 1 and dµ̃0 := dVol, (3.1)

and for each ε,

Ãε0 := u0A
ε
0 −

1

2

√
u0(Aεj

√
u0)Aεj , Ãεi :=

√
u0A

ε
i for i ∈ {1, . . . ,m}, (3.2)

ũε :=
uε
u0

and dµ̃ε := ũεdVol. (3.3)

Denote Ã :=
{
Ãεi , i ∈ {0, . . . ,m}, ε

}
. The following result is elementary.

Lemma 3.1. Let A ∈ A. Then, the following hold.

(1) B̃ ∈W 1,p0 and divB̃ = 0.

(2) Ã ∈ A.

(3) µ̃ε is a stationary measure of the SDE (1.2) with B and A replaced by B̃ and Ã, respectively.

Proof. Recall that u0 ∈ W 1,p0 and u0 > 0. It follows from the embedding W 1,p0 ↪→ C0 that 0 <

minu0 ≤ maxu0 <∞.

(1) Clearly, B ∈ W 1,∞ implies B̃ ∈ W 1,p0 . It remains to prove divB̃ = 0. The fact that µ0 is an

invariant measure of (1.1) ensures
∫
fu0 =

∫
(f ◦ ϕt)u0 for all f ∈ C0, where ϕt is the flow generated
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by (1.1) or the vector field B. If f ∈ C1, we differentiate
∫

(f ◦ ϕt)u0 with respect to t and then set

t = 0 to derive

0 =

∫
(Bf)u0 =

∫
(u0B)f =

∫
B̃f.

Applying the divergence theorem then gives
∫
fdivB̃ = 0. Hence, we see from the arbitrariness of

f ∈ C1 that divB̃ = 0.

(2) Since A ∈ A, there exists p > d such that ‖Aε0‖p + maxi ‖Aεi‖1,p . 1. Since u0 ∈ W 1,p0 ,

straightforward calculations show that for p1 := min{p0, p}, there holds ‖Ãε0‖p1 + maxi ‖Ãεi‖1,p1 . 1.

That is, Ã satisfies (A1). Obviously, Ã satisfies (A2), and hence, Ã ∈ A.

(3) For f ∈ C2, we calculate∫
(Lεf)uε =

∫ [
ε2

2
u0A

ε
iA

ε
if + ε2u0A

ε
0f + u0Bf

]
ũε

=

∫ [
ε2

2

√
u0A

ε
i(
√
u0A

ε
if)− ε2

2

√
u0(Aεi

√
u0)Aεif + ε2u0A

ε
0f + u0Bf

]
ũε =

∫
(L̃εf)ũε.

Since
∫

(Lεf)uε = 0, we conclude that µ̃ε is a stationary measure of the SDE (1.2) with B and A

replaced by B̃ and Ã, respectively. �

3.2. Proof of Theorems A-C. For the proof of Theorem A, we need the following lemma. Recall

the definition of a physical measure and its basin from Subsection 1.2.

Lemma 3.2. If µ is a physical measure of (1.1), then µ =
µ0|Bµ
µ0(Bµ)

and it is ergodic.

Proof. Fix f ∈ C0. The fact that µ is a physical measure implies

lim
t→∞

1

t

∫ t

0

f(ϕs(x))ds =

∫
fdµ, ∀x ∈ Bµ. (3.4)

It follows from Fubini’s theorem and the dominated convergence theorem that

lim
t→∞

1

t

∫ t

0

∫
Bµ

f ◦ ϕsdµ0ds = lim
t→∞

∫
Bµ

(
1

t

∫ t

0

f ◦ ϕsds
)
dµ0 = µ0(Bµ)

∫
fdµ.

Note that ∫
Bµ

f ◦ ϕsdµ0 =

∫
(1Bµf) ◦ ϕsdµ0 =

∫
1Bµfdµ0,

where we used the ϕt-invariance of Bµ in the first equality and the fact that µ0 is an invariant measure

of ϕt in the second one. Hence, we arrive at∫
1Bµfdµ0 = µ0(Bµ)

∫
fdµ, ∀f ∈ C0,

leading to µ =
µ0|Bµ
µ0(Bµ)

. In particular, µ(Bµ) = 1.

For the ergodicity of µ, we note that µ(Bµ) = 1 implies that limt→∞
1
t

∫ t
0
δϕs(x)ds = µ under the

weak*-topology for µ-a.e. x ∈M . This is equivalent to the ergodicity of µ. �

Corollary 3.1. The following statements are equivalent.

(1) µ0 is physical.

(2) µ0 is ergodic.

(3) There is a physical measure µ of (1.1) with Vol(Bµ) = 1.
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Whenever these statements hold, µ0 is the unique physical measure.

Proof. (1) =⇒ (2). It follows directly from Lemma 3.2.

(2) =⇒ (1) and (3). Since µ0 has a positive density, Birkhoff’s ergodic theorem ensures that µ0

itself is physical and satisfies Vol(Bµ0
) = 1.

(3) =⇒ (2). If there is a physical measure µ of (1.1) with Vol(Bµ) = 1, then the equivalence

between µ0 and Vol yields µ0(Bµ) = µ0(M) = 1, and hence, µ = µ0 thanks to Lemma 3.2.

Now, suppose that (1)-(3) hold. If µ is a physical measure, then Lemma 3.2 yields µ � µ0, and

hence, µ = µ0 thanks to the ergodicity of µ0. �

Proof of Theorem A. (1) Let A ∈ A and Ã, B̃ and µ̃ε be as defined in (3.1)-(3.3). Given Lemma 3.1, we

apply Theorem 2.1 to find ‖ũε‖1,2 . 1 and 1 . min ũε ≤ max ũε . 1. Since uε = u0ũε and u0 ∈W 1,p0

for some p0 > d, straightforward calculations yield ‖uε‖1,2 . 1 and 1 . minuε ≤ maxuε . 1. As a

result, {uε}ε is precompact in W 1,2 under the weak topology. The “In particular” part follows readily.

(2) The conclusions in (1) guarantees that each element of MA (must be an invariant measure of

(1.1)) is equivalent to µ0. Then, the ergodicity of µ0 (by Corollary 3.1) asserts MA = {µ0}.
(3) In this case, MA = {µ0} follows immediately from conclusions in (1).

Whenever either (2) or (3) is true, there holds MA = {µ0}. It then follows from the uniform

estimates of {uε}ε in W 1,2 (by (1)) and the Rellich–Kondrachov theorem that limε→0 uε = u0 weakly

in W 1,2 and strongly in Lp for any p ∈ [1, 2d
d−2 ). This completes the proof. �

Theorem C follows readily.

Proof of Theorem C. (1) Let A ∈ SA and Ã, B̃ and µ̃ε be as defined in (3.1)-(3.3). Then, all the

results in Lemma 3.1 hold. Moreover, since u0 ∈W 2,p0 , we can follow the proof of Lemma 3.1 to find

B̃ ∈W 1,∞ and Ã ∈ SA.

Set X̃i := u0Xi. Clearly, [X̃i, B̃] = 0, divX̃i = 0, and {X̃i}ni=1 spans the tangent bundle TM . We

then apply Theorem 2.2 to conclude that ‖ũε‖W 1,q . 1 for all q ≥ 1. Since uε = u0ũε and u0 ∈W 2,p0 ,

the conclusion follows.

(2) Theorem A(3) asserts thatMA = {µ0}. The conclusion then follows from (1) and the compact

Sobolev embedding theorem. �

Finally, we prove Theorem B.

Proof of Theorem B. The construction of the manifold M and the vector field B satisfying (1)-(3) are

done in Step 1 and Step 2. We prove (i)-(iii) in Step 3.

Step 1. Set D :=
{
x = (x1, x2) : x21 + x22 ≤ 1

}
. It is well-known [32] that there exists a smooth area-

preserving Bernoulli diffeomorphism F : D → D such that F − Id is “infinitely flat” on ∂D, that is,

both F − Id and all its derivatives of any order vanish on ∂D.

We construct a smooth suspension flow ψ̃t of F on the smooth, connected Riemannian suspension

manifold (D̃, g̃) such that ψ̃t is volume-preserving and has a Poincaré map smoothly conjugate to F .

Moreover, both D̃o and ∂D̃ are invariant under ψ̃t.

To do so, we define a Z-action on D × R generated by the map

(x, t) 7→ (F (x), t− 1) : D × R→ D × R, (3.5)

which naturally induces an equivalence relation ∼ on D × R:

(x, t) ∼ (x′, t′) iff (x′, t′) = (Fn(x), t− n) for some n ∈ Z.



20 WEIWEI QI, ZHONGWEI SHEN, AND YINGFEI YI

(D × R, g) (D̃, g̃)

(D × R, g) (D̃, g̃)

πD

πD

ψt ψ̃t

Figure 1. Construction of the suspension flow ψ̃t.

Set D̃ := D×R/ ∼. It is a smooth, connected, and compact manifold with boundary πD(∂D×R),

where πD : D × R→ D̃ is the natural projection. To furnish D̃ with a Riemannian metric g̃, we first

take the following Riemannian metric on D × [−1, 0]:

g = (dx1, dx2)
[
[DF (γ(x, t))]t

]>
[DF (γ(x, t))]t(dx1, dx2)> + dt2 =: gt + dt2,

where γ : D × [−1, 0]→ D is a smooth function satisfying

γ(x, t) =

{
F−1(x), t ∈

[
−1,− 3

4

]
,

x, t ∈
[
− 1

4 , 0
]
,

x ∈ D.

It is easy to check that g0 = dx21 + dx22 = F ∗g−1, where F ∗g−1 denotes the pullback of g−1 under

F . Therefore, through the smooth diffeomorphism (x, t) 7→ (Fn(x), t− n) on D × (n− 1, n] for each

n ∈ Z, we can extend g to be a smooth Riemannian metric on D × R, stilled denoted by g. Since

F = Id on ∂D and F − Id is infinitely smooth, we see that DF = Id on ∂D and γ(x, t) = x for any

(x, t) ∈ ∂D × [−1, 0], yielding

g = g0 + dt2 on ∂D × R. (3.6)

Note that the construction g through the extension ensures its invariance under the Z-action. Hence,

a Riemannian metric g̃ on D̃ is naturally induced.

Now, we construct the suspension flow ψ̃t. Let ψt be the flow generated by ∂
∂t on D × R. Since

F is area-preserving, there holds |det(DF )| ≡ 1, and thus, det(gt) ≡ 1. Straightforward calculations

then yield div ∂
∂t = 0, and hence, ψt is volume-preserving. Here, we used gt with a slight abuse of

notation to represent the matrix when defining the 2-form gt. Since ψt preserves the equivalence

relation ∼, it naturally induces a volume-preserving flow ψ̃t := πD ◦ ψt ◦ (πD)−1 on D̃ (see Figure 1

for an illustration). Clearly, ψ̃t is smooth, generated by the pushforward (πD)∗
∂
∂t , and satisfies

ψ̃t(D̃o) = D̃o, and ψ̃t(πD(x, s)) = πD(x, s+ t), ∀(x, s) ∈ ∂D × R. (3.7)

In particular,

ψ̃1(πD(x, 0)) = πD(ψ1(x, 0)) = πD(x, 1) = πD(F (x), 0), ∀x ∈ D.

Since πD|D×{0} : D × {0} → πD(D × {0}) is a smooth diffeomorphism, the above equality asserts

that ψ̃1|πD(D×{0}), which is a Poincaré map of ψ̃t, is smoothly conjugate to F . Hence, ψ̃t is strongly

mixing.
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D × R D̃ D̃

S2i × R Mi Mi

πD ψ̃t

πi ϕti

(hi, Id) h̃i h̃i

Figure 2. Construction of the suspension flow ϕti on M .

Step 2. We construct M and B.

Let S2 := {(x1, x2, x3) : x21 + x22 + x23 = 1} be the unit sphere and denote by

S21 := {(x1, x2, x3) ∈ S2 : x3 ≥ 0} and S22 := {(x1, x2, x3) ∈ S2 : x3 ≤ 0}

the upper hemisphere and lower hemisphere, respectively. Let h1 : S21 → D and h2 : S22 → D be

the standard stereographic projections from the south pole (0, 0,−1) and the north pole (0, 0, 1),

respectively. Through hi, the equivalence relation ∼ on D × R is naturally lifted to its counterpart

∼i on S2i × R. Set Mi := S2i × R/ ∼i and let πi : S2i × R→Mi be the natural projection. Then,

h̃i := πD ◦ (hi, Id) ◦ π−1i : Mi → D̃

defines a smooth diffeomorphism, allowing us to endow Mi with the Riemannian metric gi := (h̃i)
∗g̃

and define a flow ϕti := (h̃i)
−1 ◦ ψ̃t ◦ h̃i on Mi. Obviously, (Mi, gi) is a smooth and connected

Riemannian manifold with boundary ∂ := (h̃i)
−1∂D̃ and ϕti is a smooth and volume-preserving flow,

generated by the vector field Bi := (h̃−1i )∗(πD)∗
∂
∂t . Since ϕti is smoothly conjugate to ψ̃t, it follows

that ϕti is as well strongly mixing. We refer the reader to Figure 2 for clarity.

Note that the map (3.5), which generates the equivalence relation ∼, preserves ∂D×R since F − Id

is infinitely smooth on ∂D. We see from the form (3.6) of g on ∂D × R and the construction of

(Mi, gi), i = 1, 2 that M := M1 ∪M2 is a smooth, connected, and closed manifold and gM := gi on

Mi for i = 1, 2 is a well-defined smooth Riemannian metric on M .

Now, we construct a smooth flow ϕt on (M, g). By the definition of the flow ψt on D×R that results

in a particular form of ψ̃t on ∂D̃, namely, the second equality in (3.7), we see from the construction

of ϕti, i = 1, 2 that ϕt := ϕti on Mi for i = 1, 2 is a well-defined, smooth and volume-preserving flow

on M . Setting B := Bi on Mi for i = 1, 2, we conclude that B is smooth and divergence-free, and

generates ϕt. The properties (1)-(3) follow readily.

Step 3. (i) is an immediate consequence of (1) and (2). (ii) follows readily from (3). (iii) follows

directly from (ii) and Theorem A(3). �

3.3. Invariant measure selection by noise. Recall from Corollary 3.1 that µ0 is physical if and

only if it is ergodic. When µ0 fails to be ergodic or physical, the system (1.1) could admit multiple

invariant measures like µ0. In this subsection, we show that any of them can be selected by noise.

Definition 3.1 (Symmetric admissible class). Let u : M → R be positive. A collection of vector fields

A = {Aεi , i ∈ {0, . . . ,m}, ε} is said to be in the symmetric admissible class Asymu if for each ε, there

exists a symmetric positive definite endomorphism Asymε : M → End(TM) belonging to W 1,1 such
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that
1

2

m∑
i=1

(Aεi)
2f +Aε0f =

1

u
div(Asymε ∇f), ∀f ∈ C2(M).

Theorem 3.1. Let µ be an invariant measure of (1.1) and have a positive density u ∈W 1,p for some

p > d. Then, A ∩Asymu 6= ∅, and for any A ∈ Asymu there holds MA = {µ}.

Proof of Theorem 3.1. First, we show Asymu 6= ∅. Note that the Nash embedding theorem asserts M

is isometrically embedded into Rm for some m ∈ N. Thus, there exist m smooth vector fields Ãi,

i ∈ {1, . . . ,m}, on M so that
∑m
i=1(Ãi)

2 = ∆ (see e.g. [31]). For each ε, we define

Aε0 :=
1

4u2
(Ãiu)Ãi and Aεi :=

1√
u
Ãi, i ∈ {1, . . . ,m}.

As u is positive and belongs toW 1,p for some p > d, it is easy to see that A := {Aεi , i ∈ {0, . . . ,m}, ε} ∈
A. Straightforward calculations yield

1

2

m∑
i=1

(Aεi)
2f +Aε0f =

1

2u

m∑
i=1

(Ãi)
2f =

1

2u
∆f, ∀f ∈ C2(M),

resulting in A ∈ Asymu ∩ A.

Now, we prove MA = {µ} for any A ∈ Asymu . Fix such an A. Then, for each ε there exists a

symmetric positive definite endomorphism Asymε : M → End(TM) belonging to W 1,1 such that

1

2

m∑
i=1

(Aεi)
2f +Aε0f =

1

u
div(Asymε ∇f), ∀f ∈ C2(M).

Since µ is an invariant measure of (1.1) and u ∈ W 1,p, we see from Lemma 3.1 (1) with u0 replaced

by u that div(uB) = 0. Consequently, an application of the divergence theorem yields∫
(Lεf)u =

∫ (
ε2

u
div(Asymε ∇f) +Bf

)
u = 0, ∀f ∈ C2(M).

This together with Theorem A.1 implies µε = µ, and hence, MA = {µ}. �

Remark 3.1. If the system (1.1) has multiple invariant measures similar to µ0, then Theorem 3.1

says that they are all selectable, and therefore, none of them (and none of the invariant measures

of (1.1)) are stochastically stable with respect to A. Hence, Theorem 3.1 can be regarded as a result

towards stochastic instability.

4. The one-dimensional case

We study the one-dimensional case in this section. Given that any smooth, connected, and closed

one-dimensional manifold is smoothly diffeomorphic to a circle (see e.g. [30]), we consider M to be

the circle S1 for the sake of clarity.

4.1. Setup and results. Consider the following one-dimensional ODE over S1:

ẋ = B(x), (4.1)

where B : S1 → TS1 is a Lipchitz continuous vector field. Note that a vector field over S1 is naturally

identified with a function on S1. In the sequel, the same notation is used for a vector field over S1

and its identification as a function on S1. This shall cause no trouble. It is assumed that (4.1) is

conservative or generalized volume-preserving in the sense that it admits an invariant measure µ0 with
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a positive density function u0. Consequently, it must hold that B is either equal to zero (B ≡ 0),

positive (B > 0), or negative (B < 0). The B ≡ 0 case is of no interest, and the other two cases are

essentially the same. To maintain the clarity, we here focus on the B > 0 case. It is then easy to see

that (4.1) is uniquely ergodic and u0 = γ
B ∈W

1,∞, where γ = (
∫

1
B )−1 is the normalizing constant.

Consider (4.1) under small random perturbations:

dXε
t = B(Xε

t )dt+ ε2Aε0(Xε
t ) + ε

m∑
i=1

Aεi(X
ε
t ) ◦ dW i

t , (4.2)

where 0 < ε� 1 is the noise intensity, m ≥ 1, A = {Aεi , i ∈ {0, 1, . . . ,m}, ε} is a collection of vector

fields on S1, and {W i
t } are m independent and standard one-dimensional Brownian motions on some

probability space. The stochastic integrals are understood in the sense of Stratonovich. The collection

of vector fields A is taken from the admissible class defined as follows.

Definition 4.1 (Admissible class-1D). A collection A of vector fields on S1 is said to be in the

admissible class A1D if A = {Aεi , i ∈ {0, . . . ,m}, ε} for some m ≥ 1 and the following conditions are

satisfied:

(A1)1D there exists p > 2 such that Aε0 ∈ Lp, Aεi ∈W 1,p for i ∈ {1, . . . ,m}, and

‖Aε0‖p + max
i
‖Aεi‖1,p . 1;

(A2)1D min
∑m
i=1 |Aεi |2 & 1.

Remark 4.1. The only point that Definition 4.1 is not consistent with Definition 1.1 lies in the

requirement p > 2 instead of p > d = 1 in (A1)1D.

If A ∈ A1D, Theorem A.1 is applied to yield that for each ε, (4.2) admits a unique stationary

measure µε. Moreover, µε admits a positive density uε ∈W 1,p, where p > 2 is the same as in (A1)1D.

In addition, uε satisfies the stationary Fokker-Planck equation:

ε2

2
(aεuε)

′′ − [(B + ε2bε)uε]
′ = 0 in the weak sense, (4.3)

or equivalently,

−ε
2

2

∫
aεu
′
εf
′ +

∫ (
−ε

2

2
a′ε +B + ε2bε

)
uεf
′ = 0, ∀f ∈W 1,2,

where aε :=
∑m
i=1 |Aεi |2 and bε := Aε0 + 1

2

∑m
i=1A

ε
i(A

ε
i)
′.

Since µ0 is the unique invariant measure of (4.1), its stochastic stability with respect to A1D follows

readily. We are more interested in enhanced results, which are stated in the following two theorems.

Theorem 4.1. For any A ∈ A1D, there hold

‖uε‖1,2 . 1 and 1 . minuε ≤ maxuε . 1.

Consequently, the limit limε→0 uε = u0 holds weakly in W 1,2 and strongly in Cα for any α ∈ (0, 12 ).

Theorem 4.2. Let A = {Aεi , i ∈ {0, 1, . . . ,m}, ε} be a collection of vector fields on S1 and satisfy

• Aε0 ∈ C0, Aεi ∈ C1, i ∈ {1, . . . ,m}, and limε→0 ε
2 (‖Aε0‖∞ +

∑m
i=1 ‖Aεi‖1,∞) = 0;

• min
∑m
i=1 |Aεi |2 > 0 for each ε.
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Then, 1 . minuε ≤ maxuε . 1 and the limit limε→0 uε = u0 holds weakly in Lp for any p > 1.

If, in addition,

Aε0 ∈ C1, Aεi ∈ C2, i ∈ {1, . . . ,m}, and lim
ε→0

ε2

(
‖Aε0‖1,∞ +

m∑
i=1

‖Aεi‖2,∞

)
= 0,

then ‖u′ε‖∞ . 1 and the limit limε→0 uε = u0 holds in Cα for any α ∈ (0, 1).

Remark 4.2. Theorem 4.1 is a one-dimensional counterpart of Theorem A(1). Uniform-in-ε bounds

of Aε0 and Aεi in (A1) and (A1)1D play important roles in the respective proofs of these two theorems.

The aim of Theorem 4.2 is to extend the scope of Theorem 4.1 by relaxing the requirement for

uniform-in-ε bounds of Aε0 and Aεi . An essential factor that enables this relaxation is the positivity of

B, which is a unique characteristic in dimension one.

4.2. Proof of Theorems 4.1 and 4.2. First, we prove Theorem 4.1, which naturally follows from

the reasoning leading to Theorem A(A). Given the one-dimensional nature of the problem, we present

a significantly more concise proof.

Proof of Theorem 4.1. It suffices to establish the uniform estimates for {uε}ε. Set wε := Buε. Since

B is Lipschitz continuous and positive, it is equivalent to show

‖wε‖1,2 . 1 and 1 . minwε ≤ maxwε . 1. (4.4)

It is seen from (4.3) that wε satisfies ε2

2

(
aε
B wε

)′′ − [wε + ε2 bεBwε
]′

= 0 in the weak sense. That is,

− ε2

2

∫ (aε
B
wε

)′
f ′ +

∫ [
wε + ε2

bε
B
wε

]
f ′ = 0, ∀f ∈W 1,2. (4.5)

The proof of (4.4) is broken into three steps.

Step 1. We claim ‖wε‖1,2 . 1 and maxwε . 1.

Taking f := wε in (4.5) yields

−ε
2

2

∫ (aε
B
wε

)′
w′ε +

∫ [
wε + ε2

bε
B
wε

]
w′ε = 0.

Using the fact
∫
w′εwε = 1

2

∫
(w2

ε )
′ = 0, we find∫
aε
B
|w′ε|2 =

∫ [
−
(aε
B

)′
+ 2

bε
B

]
wεw

′
ε. (4.6)

It follows from (A1)1D, (A2)1D and the Lipschitz continuity and positivity of B that∥∥∥aε
B

∥∥∥
1,p

+

∥∥∥∥bεB
∥∥∥∥
p

. 1 and min
aε
B
& 1, (4.7)

for some p > 2. Applying Hölder’s inequality to the right-hand side of (4.6) results in

‖w′ε‖22 .
∫
aε
B
|w′ε|2 ≤

∥∥∥∥−(aεB )′ + 2
bε
B

∥∥∥∥
p

‖wε‖r‖w′ε‖2 . ‖wε‖r‖w′ε‖2,

where r :=
(

1
2 −

1
p

)−1
. Therefore,

‖w′ε‖2 . ‖wε‖r (4.8)

An application of the Sobolev embedding theorem and the interpolation inequality then leads to

‖wε‖∞ . ‖wε‖2 + ‖w′ε‖2 . ‖wε‖r . ‖wε‖
1− 1

r∞ ‖wε‖
1
r
1 ,
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that is, ‖wε‖∞ . ‖wε‖1. Since ‖wε‖1 ≤ ‖uε‖1 maxB = maxB, we find ‖wε‖∞ . 1, which together

with (4.8) yields ‖w′ε‖2 . 1.

Step 2. Set vε := lnwε − 1
2π

∫
lnwε. We prove ‖vε‖∞ . 1.

Setting f := 1
wε

in (4.5) results in

ε2

2

∫ (aε
B
wε

)′ w′ε
w2
ε

−
∫ [

wε + ε2
bε
B
wε

]
w′ε
w2
ε

= 0,

which together with
∫ w′ε
wε

=
∫

(lnwε)
′ = 0 yields∫

aε
B

|w′ε|2

w2
ε

=

∫ [
−
(aε
B

)′
+ 2

bε
B

]
w′ε
wε
.

Noting that v′ε =
w′ε
wε

, we apply Hölder’s inequality to find∫
aε
B
|v′ε|2 =

∫ [
−
(aε
B

)′
+ 2

bε
B

]
v′ε ≤

∥∥∥∥−(aεB )′ + 2
bε
B

∥∥∥∥
p

‖1‖r‖v′ε‖2.

This together with (4.7) leads to ‖v′ε‖2 . 1. A further application of the Sobolev embedding theorem

and Poincaré inequality results in ‖vε‖∞ . ‖vε‖2 + ‖v′ε‖2 . ‖v′ε‖2 . 1.

Step 3. We show minwε & 1.

Letting f := 1
w3
ε

in (4.5) yields

ε2

2

∫ (aε
B
wε

)′ 3w′ε
w4
ε

−
∫ [

wε + ε2
bε
B
wε

]
3w′ε
w4
ε

= 0.

Since
∫ w′ε
w3
ε

= − 1
2

∫
( 1
w2
ε
)′ = 0, we arrive at∫

aε
B

|w′ε|2

w4
ε

=

∫ [
−
(aε
B

)′
+ 2

bε
B

]
w′ε
w3
ε

,

and hence, the fact ( 1
wε

)′ = −w′ε
w2
ε

and Hölder’s inequality imply∫
aε
B

∣∣∣∣∣
(

1

wε

)′∣∣∣∣∣
2

=

∫ [(aε
B

)′
− 2

bε
B

]
1

wε

(
1

wε

)′
≤
∥∥∥∥(aεB )′ − 2

bε
B

∥∥∥∥
p

∥∥∥∥ 1

wε

∥∥∥∥
r

∥∥∥∥∥
(

1

wε

)′∥∥∥∥∥
2

.

It then follows from (4.7) that

∥∥∥∥( 1
wε

)′∥∥∥∥ . ∥∥∥ 1
wε

∥∥∥
r
, which together with the Sobolev embedding theorem

and interpolation inequality yields∥∥∥∥ 1

wε

∥∥∥∥
∞
.

∥∥∥∥ 1

wε

∥∥∥∥
2

+

∥∥∥∥∥
(

1

wε

)′∥∥∥∥∥
2

.

∥∥∥∥ 1

wε

∥∥∥∥
r

. (4.9)

Since ‖wε‖r
∥∥∥ 1
wε

∥∥∥
r

=
(∫
ervε

∫
e−rvε

) 1
r . 1 by Step 2, we find∥∥∥∥ 1

wε

∥∥∥∥
r

.
1

‖wε‖r
.

1

(minwε)1−
1
r ‖wε‖

1
r
1

.

∥∥∥∥ 1

wε

∥∥∥∥1− 1
r

∞
,

where we used 1

(minwε)
1− 1

r
= ‖ 1

wε
‖1−

1
r∞ and ‖wε‖1 ≥ ‖uε‖1 minB = minB in the third inequality.

Applying (4.9) then results in ‖ 1
wε
‖∞ . 1. Hence, minwε = ‖ 1

wε
‖−1∞ & 1.

Consequently, (4.4) follows from Step 1 and Step 3, completing the proof. �
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Next, we prove Theorem 4.2 by means of Berstein-type estimates.

Proof of Theorem 4.2. Thanks to Theorem A.1, uε belongs to W 1,p for any p > 2. Hence, uε ∈ C0 by

the Sobolev embedding theorem.

We claim uε ∈ C1. Indeed, (4.3) says particularly that ε2

2 (aεuε)
′− (B+ ε2bε)uε has weak derivative

0. Thus, ε
2

2 (aεuε)
′− (B+ ε2bε)uε is absolutely continuous (up to a set of zero Lebesgue measure) and

there exists Cε ∈ R such that

ε2

2
(aεuε)

′ − (B + ε2bε)uε = Cε a.e. on S1. (4.10)

Obviously, aε ∈ C1 and bε ∈ C0. Given min aε > 0 (by assumption), the continuity of B and uε ∈ C0,

we find from (4.10) that u′ε is a.e. equal to a continuous function. Thus, we may assume, without loss

of generality, that uε ∈ C1.

Integrating (4.10) over S1 yields

−
∫

(B + ε2bε)uε = Cε. (4.11)

Note that the assumptions ensure that

lim
ε→0

ε2 (‖aε‖∞ + ‖bε‖∞) = 0. (4.12)

Then, we see from (4.11), B > 0 and
∫
uε = 1 that

Cε ≈ −1 (4.13)

Suppose uε attains its maximum and minimum on S1 at xε and yε, respectively. Then, u′ε(xε) =

0 = u′ε(yε). Substituting them into (4.10) yields that the equality ε2

2 a
′
εuε − (B + ε2bε)uε = Cε holds

at xε and yε, which together with (4.12) and (4.13) gives

uε(xε) =
Cε

ε2

2 a
′
ε(xε)− (B + ε2bε)(xε)

. 1 and uε(yε) =
Cε

ε2

2 a
′
ε(xε)− (B + ε2bε)(xε)

& 1.

It remains to show the convergence result for {uε}ε. Recall that µ0 is the unique invariant measure

of (4.1). Thanks to the compactness of S1 and Prokhorov’s theorem, the limit limε→0 µε = µ0 holds

under the weak*-topology. This together with ‖uε‖∞ . 1 yields limε→0 uε = u0 weakly in Lp for any

p > 1.

Now, we prove the results under additional assumptions. Note that uε ∈ C1 in this case. Since

‖uε‖∞ . 1, the classical theory for elliptic equations guarantees that uε ∈ W 2,p for any p > 2.

Obviously, aε ∈ C2, bε ∈ C1 and min aε > 0. Since B is Lipschitz continuous and uε ∈ C1, we see

from (4.3) that u′′ε ∈ C0.

Suppose (u′ε)
2 attains its maximum at xε ∈ S1. Then, (u′εu

′′
ε )(xε) = 0. Multiplying (4.3) by u′ε and

evaluating at xε, we deduce

0 =
ε2

2
(aεuε)

′′u′ε − [(B + ε2bε)uε]
′u′ε

=
ε2

2

(
aεu
′′
ε u
′
ε + 2a′ε(u

′
ε)

2 + a′′ε uεu
′
ε

)
− (B + ε2bε)(u

′
ε)

2 − (B + ε2bε)
′uεu

′
ε

=
[
ε2a′ε − (B + ε2bε)

]
(u′ε)

2 +

(
ε2

2
a′′ε − (B + ε2bε)

′
)
uεu
′
ε at xε.

(4.14)
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Since the assumptions ensure limε→0 ε
2(‖a′ε‖∞ + ‖a′′ε ‖∞ + ‖bε‖∞ + ‖b′ε‖∞) = 0, we conclude from

B > 0, (4.14) that ‖u′ε‖∞ = |u′ε(xε)| . ‖uε‖∞ . 1. It then follows from the Arzelà-Ascoli theorem

that the limit limε→0 uε = u0 holds in Cα for any α ∈ (0, 1). �

Acknowledgement

Z.S. would like to express gratitude to Professor Jianyu Chen at Soochow University for insightful

discussions regarding Theorem B.

Appendix A. Stationary measure

In this appendix, we include the definition of stationary measures for SDEs with less regular

coefficients, and present classical results on their existence, uniqueness and regularity.

Let d ≥ 1 be an integer. Recall that M is a d-dimensional smooth, connected, and closed Riemann-

ian manifold. Consider the following SDE on M :

dXt = A0(Xt)dt+

m∑
i=1

Ai(Xt) ◦ dW i
t , (A.1)

where m ≥ d, Ai, i ∈ {0, . . . ,m} are vector fields on M , W i
t , i ∈ {1, . . . ,m} are independent and

standard one-dimensional Brownian motions on some probability space, and the stochastic integrals

are understood in the sense of Stratonovich.

We assume that A0 ∈ Lp and Ai ∈ W 1,p, i ∈ {1, . . . ,m} for some p > max{d, 2}, and there exists

λ > 0 such that
m∑
i=1

|Aif |2 ≥ λ|∇f |2 Vol-a.e., ∀f ∈W 1,1.

Denote by L the generator of (A.1), that is, L := 1
2

∑m
i=1A

2
i +A0. Its formal L2-adjoint operator,

namely, the Fokker-Planck operator, is denoted by L∗.

Definition A.1 (Stationary measure). A probability measure µε on M is called a stationary measure

of (A.1) if L∗µ = 0 in the sense that
∫
Lfdµ = 0 for all f ∈ C2.

Theorem A.1 ([54, 18]). The SDE (A.1) admits a unique stationary measure µ, which has a positive

density u ∈W 1,p. Moreover, there holds

−1

2

∫
Aif [Aiu+ (divAi)u] +

∫
(A0f)u = 0, ∀f ∈W 1,2.

Appendix B. Some formulas

We collect some of the frequently used formulas for calculus on manifolds.

Lemma B.1. Let f, h : M → R belong to W 1,2 and X : M → TM be a vector field in W 1,2. Then,

the following hold:

(1) X(fh) = (Xf)h+ fXh;

(2) div(fX) = Xf + fdivX;

(3)
∫
Xf = −

∫
fdivX;

(4) if X ∈W 1,p for some p > d
2 , then

∫
hXf = −

∫
fh(divX)−

∫
fXh.

Proof. (1)-(2) are obvious. Note that
∫
Xf = −

∫
div(fX)−

∫
fdivX. Since M has no boundary, we

apply the divergence theorem to find
∫

div(fX) = 0. Hence, (3) holds. Similarly, (4) also holds. �
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The next elementary result concerns vector fields spanning the tangent bundle TM .

Lemma B.2. Let Xi : M → TM , i ∈ {1, . . . , n} for some n ≥ d, be continuous vectors fields on M .

Assume {Xi}ni=1 spans the tangent bundle TM . Then, there is C > 1 such that for any f ∈ W 1,1,

there holds
1

C
|∇f | ≤

n∑
i=1

|Xif | ≤ C|∇f | Vol-a.e. on M.

Proof. We only prove the lemma when f ∈ C1; the general case follows from standard approximation

arguments. Let (U, (x1, . . . , xd)) be any smooth local chart of M . It is known that ∇f = gij ∂f∂xj
∂
∂xi

in

U , where (gij) is the inverse of the Riemannian metric g := (gij). Hence, there exist positive constants

C1 and C2, independent of f , such that

|∇f |2 ≤ C1

d∑
i=1

∣∣∣∣gij ∂f∂xj
∣∣∣∣2 ≤ C2

d∑
i=1

∣∣∣∣ ∂f∂xj
∣∣∣∣2 in U. (B.1)

Since {Xi}ni=1 spans the tangent bundle TM , we find a continuous function (hij) : U → Rd×n with

full rank such that ∂
∂xi

= hijXj in U for all i ∈ {1, . . . , d}, and thus, there is C3 > 0 such that∣∣∣∣ ∂f∂xi
∣∣∣∣2 = |hijXjf |2 ≤ C3

n∑
j=1

|Xjf |2 in U, ∀i ∈ {1, . . . , d}.

This together with (B.1) leads to |∇f |2 ≤ dC2C3

∑n
j=1 |Xjf |2 in U .

Conversely, as Xi = Xij
∂
∂xj

for continuous functions Xij : U → R, i ∈ {1, . . . , n} and j ∈ {1, . . . , d},
we see that

∑n
i=1 |Xif |2 ≤ C4|∇f |2 in U for some C4 > 0. As a result, there is C5 > 1 such that

1

C5
|∇f | ≤

n∑
i=1

|Xif | ≤ C5|∇f | in U.

Since (U, (x1, . . . , xd)) is any local chart, the desired result follows immediately. �
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[4] J. F. Alves, V. Araújo, and C. H. Vásquez. Stochastic stability of non-uniformly hyperbolic diffeomorphisms. Stoch.

Dyn., 7(3):299–333, 2007.

[5] J. F. Alves, C. L. Dias, S. Luzzatto, and V. Pinheiro. SRB measures for partially hyperbolic systems whose central

direction is weakly expanding. J. Eur. Math. Soc. (JEMS), 19(10):2911–2946, 2017.

[6] J. F. Alves and H. Vilarinho. Strong stochastic stability for non-uniformly expanding maps. Ergodic Theory Dynam.

Systems, 33(3):647–692, 2013.

[7] M. Andersson and C. H. Vásquez. On mostly expanding diffeomorphisms. Ergodic Theory Dynam. Systems,

38(8):2838–2859, 2018.
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families of smooth unimodal maps. Invent. Math., 201(3):773–844, 2015.



STOCHASTIC STABILITY OF PHYSICAL MEASURES IN CONSERVATIVE SYSTEMS 29

[11] V. Baladi and M. Viana. Strong stochastic stability and rate of mixing for unimodal maps. Ann. Sci. École Norm.
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