CONVERGENCE TO PERIODIC PROBABILITY SOLUTIONS IN
FOKKER-PLANCK EQUATIONS

MIN JI, WEIWEI QI*, ZHONGWEI SHEN, AND YINGFEI YI

ABSTRACT. The present paper is devoted to the study of convergence of solutions of a Fokker-Planck
equation (FPE) associated to a periodic stochastic differential equation with less regular coefficients,
under various Lyapunov conditions. In the case of non-degenerate noises, we prove two types of
convergence of solutions to the unique periodic probability solution, namely, convergence in mean
and exponential convergence. In the case of degenerate noises, we show the convergence of solutions
in mean to the set of periodic probability solutions. New results on the uniqueness of periodic
probability solutions and global probability solutions of the FPE are also obtained. As applications,
we study the long-time behaviors of the FPEs associated to stochastic damping Hamiltonian systems
and stochastic slow-fast systems, and of weak solutions of periodic stochastic differential equations
with less regular coefficients.
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1. Introduction
Consider ordinary differential equations (ODEs) of the form
t=V(z,t), zel, (1.1)

where ¢ is the time variable, i stands for the time derivative of z = x(t), i C R? is an open connected
domain and V = (V) : U x R — R? is a time T-periodic vector field, called the drift field, for
some T > 0. The periodic time dependence in (1.1) is frequently used in applications, for instance
in biology, ecology, physics, and engineering, to model time recurrence and seasonal variations in the
vector field. As real world problems are often subject to noise perturbations from either surrounding
environments or intrinsic uncertainties [20], more realistic models should often take the fluctuations
or noises into consideration. This motivates us to consider noise perturbations to the ODE (1.1) that
result in the following stochastic differential equation (SDE):

dz = V(z,t)dt + G(z,t)dW;, z €U, (1.2)

where G : U x R — R¥X™ is a time T-periodic noise coefficient matriz with m > d, and W = (W;)ser
is a standard m-dimensional Wiener process. The SDE (1.2) is naturally connected to the following
Fokker-Planck equation (FPE):

Oru = Bizj(aiju) —0;(Viu), zel, (1.3)
where A := (a) = ;GG is the diffusion matriz, 9; = 9, 0}; = 95, and the summation convention
is used in the right hand side of (1.3). Not only does the FPE (1.3) govern the distributions of the
solutions of (1.2), but also it has been directly used to model the evolution of the distributions for
many stochastic processes [33].

Two fundamental problems concerning the long-time dynamics of the SDE (1.2) and the FPE (1.3)
are the existence and uniqueness of steady states, and the convergence of their solutions to the steady
states. These problems have been extensively studied when V(z,t) = V(z) and G(z,t) = G(x) are
autonomous in both regular or less regular cases, in which steady states are often defined to be the
stationary measures, or stationary distributions. We refer the reader to [9, 5, 6, 7, 18, 19] and references
therein for the existence and uniqueness of stationary measures, and [25, 26, 32, 29, 3, 23, 9, 5, 6, 7]
and references therein for the convergence of solutions of (1.2) and (1.3) to stationary measures. Many
different approaches have been taken and developed to study these problems. For instance, ergodic
properties of Markov processes and stochastic analytical techniques are adopted in [3, 25, 26, 32, 29],
theories of Dirichlet forms and semigroups are used in [5, 6, 9], and PDE techniques are developed in
[5,6,7,9, 18, 19, 23]. We emphasize that (1.2) and (1.3) with less regular coefficients arise naturally in
applications, for instance in modeling complex fluid flows [31], and their study gives rise to challenging
mathematical problems.

When V and G are T-periodic in ¢ and admit at least Lipschitz regularity in z, steady states
of (1.2) and (1.3) are characterized by the periodic analogs of stationary measures, called periodic
solutions, that appeared in literature under different names and definitions. The investigation of
these fundamental problems for (1.2) and (1.3) with locally Lipschitz coefficients has attracted much

attention especially in recent years. In [20], Khasminskii defined periodic solutions for the SDE
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(1.2) in the sense of periodic Markov processes and proved the existence under periodic Lyapunov
conditions. In [I1], Chen-Han-Li-Yang studied the existence of classical periodic solutions of the
FPE (1.3) assuming the existence of an uncommon Lyapunov function. The existence of periodic
solutions of semi-linear SDEs has been established in [30, 21, 12, 10] and references therein. Zhao-
Zheng [35] and Feng-Zhao-Zhou [15] studied the existence of the so-called random periodic solutions
of (1.2) in the framework of random dynamical systems. As for the convergence, Feng-Zhao-Zhong
investigated in [16] the ergodic property of (1.2) that generalizes the classical ergodic theory of (1.2)
in the autonomous case.

For (1.2) and (1.3) with less regular coefficients, the authors of the present paper adopted PDE
techniques in [22] to show the existence of periodic probability solutions (see Definition 1.1) of (1.3)
under a Lyapunov condition. The uniqueness of periodic probability solutions and the convergence of
solutions of (1.3) remained open.

The main purpose of the present paper is to investigate the uniqueness of periodic probability
solutions of (1.3) as well as the convergence of the solutions of (1.2) and (1.3) when V and G are less
regular. Our study of the convergence issue also gives an alternative approach for the existence of
periodic probability solutions of (1.3) but under stronger conditions than those required in [22]. We
recall from [22] the definition of periodic probability solutions of (1.3). Denote by

L:=0;+ aijafj + Vo,
the parabolic operator associated to the dual equation of (1.3).

Definition 1.1 (Periodic probability solution). A Borel measure p on U x R is called a periodic
probability solution of (1.3) if there exists a family of Borel probability measures (1 ):ecr on U satisfying

pt = pe+r, YVt ER,
a? Vie Ll (U x R, du,dt), Vi, je{l,...,d}

and
/ / Lodudt =0, Yo € O (U x R),
R JU
such that du = du.dt, writing p = (u¢)¢er in short.

To proceed, dissipative conditions in terms of Lyapunov type of functions are needed. For a
nonnegative function U € Cp(U x R), we define for each p > 0, the p-sublevel set

Q, ={(z,t) eU xR:U(z,t) < p},
and its t-sections
t __ .
Q,={zelU:U(zx,t) <p}, VteR.

From now on, we begin to use some function spaces, which, except the usual ones, are collected in
Table 1 at the end of this section. We define four Lyapunov type of functions as follows.

Definition 1.2. A function U € Cr(U x R) is called an unbounded compact function if U > 0 and
there is a sequence {U, }nen of open sets in U satisfying

Uy CUns CCU, YneN and U= ] U,

n=1
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such that

inf U—oo as n— oo. (1.4)
(UN\UR) xR

An unbounded compact function U € C%’l(l/l x R) is called

(1) a Lyapunov-like function (with respect to L) if there exist positive constants p,,, C1 and Cy

such that
LU<CU+Cy in UxR)\Q, ; (1.5)
(2) a Lyapunov function (with respect to L) if there exist positive constants p,, and + such that
LU < —y in UxR)\Q,; (1.6)

(3) a strong Lyapunov function (with respect to L) if

lim sup LU = —o0; (1.7)
OO (U\UR ) XR
(4) an exponentially strong Lyapunov function (with respect to £) if there exist positive constants
pm, C1 and Cs such that

LU < -CU+Cy in (L{ X R) \ﬁpm' (18)

As the definitions of these Lyapunov type of functions are based on unbounded compact functions,
they are necessarily unbounded. The word “unbounded” often appears in front of these functions in
the literature just to highlight the unboundedness of them. In this paper, we choose to suppress the
word “unbounded” in front of these functions for the sake of simplicity. Whenever no confusion is
caused, we also suppress the phrase “with respect to £”.

To study the uniqueness of periodic probability solutions of (1.3), we make the following assumption.
(H1) For fixed p > d + 2, a¥ € L®°(R;WP(U)) and V? € L (U x R) for each i,j = 1,...,d.
The diffusion matrix A = (a%) is locally uniformly positive definite, that is, for every open set

YV CC U, there exist positive constants Ay and Ay, such that
€2 < a(xz, )€€ < Avl€’, V(z,t) €V x R and ¢ € RY, (1.9)
Our result on the uniqueness states as follows.

Theorem A (Uniqueness). Assume (H1). If L admits a Lyapunov-like function, then there exists
at most one periodic probability solution of (1.3).

We remark that the existence of periodic probability solutions of (1.3) is established in [22, Theorem
A] under (H1) and a Lyapunov function. This together with Theorem A gives the following corollary.

Corollary A. Assume (H1). If L admits a Lyapunov function, then there exists a unique periodic
probability solution of (1.3).

Let M, (i) be the space of all Borel probability measures on /. We recall the definition of global
probability solutions, whose existence and uniqueness are investigated in Subsection 2.2.
Definition 1.3. Let Z C R be an open interval and s € R.

(1) A Borel measure p on U x T is called a measure solution of (1.3) (in U x Z) if there exists a
family of Borel measures (ut)tcz on U satisfying

¥, Vie LL (U xT,dudt), Vi,je{l,...,d}
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and
/ Lopdpdt =0, Yo € O (U x T), (1.10)
UXT

such that du = dudt. In this case, we write p = (ut)ez-
If, in addition, Z = (s,00) and p:(U) < 1 (resp. p:(U) =1) for a.e. t € Z, then p is called
a global sub-probability solution (resp. global probability solution) of (1.3).
(2) Let Z = (s,tp) for some ty € (s,00]. A measure solution p = (u)iez of (1.3) is said to satisfy
the initial condition

s =v € Mpy(U) (1.11)

if for each ¢ € C2°(U), there is a set J, C T satisfying |Z \ J4| = 0 such that
J¢lélg;8/14¢dut = /ugbdy. (1.12)
In this case, u = (ut)iez is simply called a measure solution of the Cauchy problem (1.3)-

(1.11).

If, in addition, T = (s,00) and g = (f1¢)¢e(s,00) i @ global sub-probability solution (resp.
global probability solution) of (1.3), then u is called a global sub-probability solution (resp.
global probability solution) of the Cauchy problem (1.3)-(1.11).

We prove three results on the convergence of global probability solutions of the Cauchy problem
(1.3)-(1.11) to periodic probability solutions. To state the first one, we make the following assumptions
on A and V.

(H2) a¥, Vi e C(U x R) for each i,j = 1,...,d.

Theorem B (Convergence in Mean). Assume (H2) and that £ admits a strong Lyapunov func-
tion U. Let = (iit)te(s,00) be a global probability solution of the Cauchy problem (1.3)-(1.11) with
fu s)dv < oco. Then for any sequence of positive integers {n;};en with im; ,oon; = oo, there
ea:zsts a subsequence, still denoted by {n;}jen, and a periodic probability solution i = (fit)icr of (1.3)
such that

(1) for each bounded ¢ € Cp(U x R), there holds

t+nJ
lim —/ /QﬁdquT— —/ /gbdquT vt > s, (1.13)
j—o0 77,_7

(2) for each ¢ € C2(U), there holds

lim — /wdﬂt_irk»T = / vdjg, for a.e. t > s. (1.14)
Jmee My k=0

In particular, if (1.3) admits a unique periodic probability solution fi = (fit)er, then (1.13) and (1.14)

hold for the whole sequence N.

Under the conditions of Theorem B, the diffusion matrix A is allowed to be degenerate in U, in
which case the FPE (1.3) can admit multiple periodic probability solutions. This is why the main part
in the statement of Theorem B only asserts the average attractiveness of global probability solutions
of the Cauchy problem (1.3)-(1.11) by the set of periodic probability solutions of (1.3). If we assume,
in addition, that A is locally uniformly positive definite as in (H1), then Theorem A guarantees the
validity of the “In particular” part in the statement of Theorem B. The same results can be established



6 MIN JI, WEIWEI QI*, ZHONGWEI SHEN, AND YINGFEI YI

under slightly weaker conditions on the coefficients. As the proof is almost the same, we state the
results in the next corollary, which is our second result on the convergence.

Corollary B. Assume (H1) and that L admits a strong Lyapunov function U. Then for any global
probability solution p = (f1¢)te(s,00) 0f the Cauchy problem (1.3)-(1.11) with fu U(-,s)dv < oo, there
holds for any v € Cy(U)

n—1
.1 ~
'r}l—gonkg_o/udeHkT —/uzbdut, vt € (s,s+ T, (1.15)

where i = (fig)icr is the unique periodic probability solution of (1.3).

Compared to (1.14), the convergence (1.15) holds for a larger class of test functions. This is
because the assumption (H1) (more precisely, the locally uniform positive definiteness of A in (H1))
ensures the existence of the continuous density of a global probability solution p = (p¢)¢e(s,00), Which
guarantees the continuity of the function ¢ +— fu ¢dp on (s,00) for each ¢ € Cp(U), while under the
conditions in the statement of Theorem B, the continuity of the function t — fu @dpy on (s,00) is
only obtained when ¢ € C2(U).

Conclusions in Theorem B and Corollary B can be regarded as weak forms of Birkhoff’s ergodic
theorem. Moreover, their proofs do not require the standard semi-flow property that plays essential
roles in the proof of the classical ergodic theorem for measure-preserving dynamical systems and
Markov processes. Indeed, under the assumption (H1) or (H2), the uniqueness of solutions of the
Cauchy problem (1.3)-(1.11) is unknown. Even if we assume the uniqueness, they are only known
to generate a semi-flow under the weak*-topology. Such weak ergodic theorems without semi-flow
property can potentially serve as theoretical foundations for the evolution of practical systems that
are often too complicated to admit the standard semi-flow property or get it tested.

Our third convergence result concerns the exponential convergence of global probability solutions of
the Cauchy problem (1.3)-(1.11) to periodic probability solutions under exponentially strong Lyapunov
functions. This requires Lipschitz conditions on A = (a%) as follows.

(H3) Foreachi,j =1,...,d, the entry a¥ is locally Lipschitzin x, that is, for each open set V CC U,
there is a Ly > 0 such that

’aij(xl,t) — aij(xg,t)’ < Ly|zy — x2|, Vzi,79 €V and ae. t € R. (1.16)

Theorem C (Exponential convergence). Assume (H1) and (H3). Suppose L admits an exponentially
strong Lyapunov function U. Then, there exist positive constants Cy1 and Cy such that for any global
probability solution 1 = (p¢)ie(s,00) of the Cauchy problem (1.3)-(1.11) with [, U(-,s)dv < oo, there
holds

e — fuellry < Cre” 2= vt > 5

where i = (fit)ter 8 the unique periodic probability solution of (1.3) and || - ||rv denotes the total
variation norm.

An important piece in the proof of Theorem C is the construction of the transition probability
densities p(s,x,t,y) for s < t and z,y € U associated to the global probability solutions of the Cauchy
problem (1.3)-(1.11) (see Subsection 5.1). This benefits from the assumption (H3), which together
with the assumption (H1), ensures the existence, regularity and uniqueness of global probability solu-
tions of the Cauchy problem (1.3)-(1.11) (see Theorem 2.3). Consequently, the transition probability
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TABLE 1. Notations

ITCR An interval

C.U) The space of compactly supported continuous functions on U

Cy(U) The space of bounded continuous functions on U

C2(U)/CU) CoU) N CHU)/Ce(U) N C>(U)

Co(U xI) The space of compactly supported continuous functions on U x Z

C.(UXT) The space of continuous functions u : U xZ — R such that u(¢,-) € C.(U)
foreacht € 7

Cr(U x R) The space of T-periodic and continuous functions on & x R

C*Y (U x T) The space of continuous functions that is twice continuously differen-
tiable in  and continuously differentiable in ¢

C>Y U x I) C*'UXIT)NCe(U X T)

CH' (U x R) C2HU x R) N Cr(U x R)

C' U x I) The space of functions in C* (U x T) with compact support in U x T

L®(R;W'P(U))  The space of measurable functions u : & x R — R such that u(t,-) €
W P(U) for a.e. t € R and for each subdomain © CC U, the function

loc
t = [[u(t, )[ly1.0(q) is essentially bounded

densities can be defined and shown to satisfy expected properties resulting in the applicability of
classical arguments leading to the exponential convergence.

It is worthwhile to point out that our approaches for the convergence are different from those
in [23] for the autonomous case that are based on the sophisticated theory of generalized Markov
semigroups associated to stationary measures developed in [9]. In fact, it is unclear whether there is
an analogous theory of generalized Markov semigroups associated to periodic probability solutions.
Any progress along this direction would be helpful for improving the convergence results in Theorem
B and Corollary B.

In this paper, we also consider three applications of Theorem B, Corollary B and Theorem C
as follows. (i) For a class of stochastic damping Hamiltonian systems, strong Lyapunov functions
are constructed to ensure the convergence of global probability solutions of the associated FPEs as
stated in Theorem B. (ii) For a class of stochastic slow-fast systems with very strong dissipative
properties along the fast directions and non-degenerate noises only along the slow directions, we show
the existence and uniqueness of periodic probability solutions as well as the convergence of global
probability solutions of the associated FPEs under Lyapunv conditions along the slow directions.
(iii) For a SDE with less regular coefficients, we show that the distributions of their globally defined
weak solutions are global probability solutions of the associated FPE, and hence, under appropriate
Lyapunov conditions, the convergence of globally defined weak solutions are established as simple
consequences of our convergence results. The details of these applications are given in Section 6.

The rest of the paper is organized as follows. In Section 2, we recall some basic facts including
in particular equivalent formalisms of global probability solutions of the Cauchy problem (1.3)-(1.11)
and the regularity theory of measure solutions of (1.3), and prove the global well-posedness of the
Cauchy problem (1.3)-(1.11). In Section 3, we study the uniqueness of periodic probability solutions of
(1.3) with non-degenerate noises and prove Theorem A. We study the convergence of global probability
solutions of the Cauchy problem (1.3)-(1.11) in Section 4 and Section 5. In particular, Theorem B and
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Theorem C are respectively proven in Section 4 and Section 5. The proof of Corollary B is sketched
out at the end of Subsection 4.2. Some applications of our convergence results, namely, Theorem B,
Corollary B and Theorem C, are presented in Section 6. In Appendix A, the proof of a technical
inequality is given.

2. Preliminaries

In Subsection 2.1, we present some equivalent formalisms of measure solutions, given in Definition
1.3, of (1.3) or the Cauchy problem (1.3)-(1.11), and recall the regularity theory. In Subsection 2.2,
we present some results on the global well-posedness of the Cauchy problem (1.3)-(1.11).

2.1. Measure solutions and regularity. Arguing as in [0, Proposition 6.1.2] and [8, Lemma 1.1],
the following equivalent formalisms hold for (1.10) or (1.10)-(1.12) in U x Z, where Z C R is an open
interval.

Lemma 2.1. Let (1t)tez be a family of Borel measures such that a, V' € L}, (U x I,dudt) for all
i,j=1,...,d.

(1) The following statements are equivalent to (1.10).
(a) For each ¢ € C%(U), there is a set J, C T satisfying |Z \ Js| = 0 such that

t
/ oduy = / odpy +/ / Lodp-dr, Vr,te Jy withr <t.
u u r Ju

(b) For each ¢ € C*Y (U x I), there is a set J, C I satisfying |\ Jp| = 0 such that

¢
/ (-, t)dpe = / (-, 7)dper —|—/ / Lodp.dr, Vr,t e Jy withr <t.
u u r Ju

(2) Let T = (s,t9) for some —oc0 < s < tg < oo The following statements are equivalent to
(1.10)-(1.12).
(a) For each ¢ € C%(U), there is a set J, C T satisfying |Z \ Js| = 0 such that

t
/ odpy = / ¢dv + lim / / Lodp-dr, Vte Jy, (2.1)
u u Jeor—s J. Juy
(b) For each ¢ € C>1(U x [s,t0)), there is a set J, C T satisfying |\ Jy| =0 such that

t
/(b(-,t)dut:/¢(~,s)du+ lim / /E(bdquT, Yt € Jg.
u u Joor—s Jo Ju

Lemma 2.2. Let (ut)iez be as in Lemma 2.1. If the function t — fu ¢duy is continuous on I for
any ¢ € C2(U), then Jy can be taken to be T in each case of Lemma 2.1.

Proof. We only show the case in Corollary (2)(a); the other cases can be proven in the same manner.
For fixed ¢ € C?(U), it is clear that the function (r,t) f: Jyy Loddp-dr is continuous on {(r,t) €
I?:r <t} Fixt, €T\ Js. There is a sequence {t, }nen C Jy such that ¢, — t. as n — oco. Setting
t =t, in (2.1) and letting n — oo, we see that (2.1) holds for ¢ = t,.
It remains to show for each fixed ¢t € Z, there holds the limit

t
lim/ /ﬁqﬁdquT:/quut—/quu =: Ay.
s Jr Ju u u
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Clearly, the above limit is the case if r takes values in Jy. If the above limit is not the case, then there
exists an ¢y > 0 and a sequence {r, }nen in Z \ J, satisfying r, — s as n — oo such that

t
//£¢dquT—At
T JU

By the continuity of r f: Jyy Loddp-dr and the density of Jy in Z, we find a sequence {7, }nen C Jy
satisfying 7,, — s as n — oo such that

t
/ / Lodp,dr — A,
T u

n

> €, Vn>1.

> 6—07 vn > 1,
2
which leads to a contradiction. This proves (2)(a). O

Now, we recall the regularity theory of measure solutions of (1.3) in & x Z. Recall p > d + 2. Let
Hy (U x T) be the space of measurable functions u on U x T such that u(-,t) € Wy P(U) for a.e. t € T
and the function ¢ — ||u(t, ')||W01,p(u) lies in LP(Z). Let H-'?' (U x Z) be the dual space of Hy* (U x T),
where p’ > 1 is such that % + i =1.

Let H,:P(U x T) be the space of measurable functions u on U x Z such that nu € Hy?(U x T) and

loc

Or(nu) € H1P(U x I) for each n € C$°(R4*1). By [6, Theorem 6.2.2], there exist a > % and v > 0,
depending only on d and p, such that #,;*(U x T) is continuously embedded into C’O‘_%(I, crU)).

loc

Here, C%(Z,C"(U)) denotes the space of all continuous functions u : U x Z — R such that u(¢,-) €
C7(U) for all t € T and for each subdomain } CC U, the function ¢ — |u(t, )| g lies in C*(Z).

Theorem 2.1 ([4, 6]). Assume (H1). Let i = (ut)tez be a measure solution of (1.3). Then, u
admits a positive density u € Hl{;ﬁ(u x I). Moreover, for closed intervals [s1,t1] CC [$2,t2] C Z and
open subsets W CC Wy CC U, there exist o > %, v >0 and N > 0, independent of p or u, such that

<N / C Wy )dr. (2.2)

e <
51, 1)7C’Y(W))

2.2. Global well-posedness. The following result on the existence of global probability solutions of
the Cauchy problem (1.3)-(1.11) is taken from [28].

Theorem 2.2 ([28]). Assume (H1) or (H2). Suppose L admits a Lyapunov-like function. Then,
the Cauchy problem (1.3)-(1.11) admits a global probability solution p = (fi¢)¢e(s,00)- Moreover, under
(H1), p admits a density in C*((s,00),CY(U)) for some a > % and v > 0.

We prove a uniqueness result.

Theorem 2.3. Assume (H1) and (H3). Suppose L admit a Lyapunov-like function. Then, the
Cauchy problem (1.3)-(1.11) admits a unique (in the class of global sub-probability solutions) global
probability solution.

Proof. Let p* = (j1f )te(s,00) and p? = (7 )se(s,00) be respectively a global probability solution and a
global sub-probability solution of the Cauchy problem (1.3)-(1.11). Applying Theorem 2.1, we may
assume that for each i = 1,2, u’ admits a positive density p; € C(U x (s,00)). We show that p; = ps.

Setting w := %v it is equivalent to prove w =1 on U X (s,00).
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Define fy(t) := e*1=Y) —¢e* for t > 0, where A > 0 is a parameter. Following the main ideas of [34,
Lemma 2.2], we deduce that for any non-negative function ¢ € C?1(U x R) there holds

t
| pwant < 5 [oav+ [ [ prcodutan, v s (2.3)

As the proof of (2.3) is relatively independent and long, we include it in Appendix A for the sake of
readability and completeness.

Let U be the Lyapunov-like function as in (1.5). Fix pg > pp. We introduce a smooth and
non-decreasing function 6 satisfying

0, €0, pml,
o) = {t, t € [po, 00). @4

By the definition of , it is easy to find a C' > 0 such that t8’(t) < C(t) for t > 0. Since §” # 0 on
[P po] and 6” = 0 otherwise, we find from (1.5) and (1.9) that there exist C;,Cs > 0 such that

LO(U) =0'(U)LU + 0"(U)a" 0;,U0;U
< O'(U)(C1U + Cs) + Mg, 10" max VU |?
<Cio(U)+Cy in UxR.

Hence, we find a new Lyapunov-like function U := 6(U) whose Lyapunov condition holds on the whole
space. This allows us to proceed as in [28, Theorem 3.5].
Let ¢ € C2°([0,00)) satisfy

¢(0)=1, ¢=0on][l,00), ¢'<0 and ¢">0.
It is clear that C(%) € C21(U x (s,00)) for N > 1. Setting ¢ = ((%) in (2.3), we arrive at

/fx ( )dut < K1 )LC(Z) du+At/fA<w>£< (Z) dildr
= fa(1 )/c( )du—i—/ /fA < >£UdquT (2.5)
/ /fx ( ) Ug,00,0dukdr, Vit > s.

Since f\ <0, ¢ >0 and (a¥) is positive definite, the last term in (2.5) is non-positive. Thus,

| s ( )dut<fx()/c< )dw//h < )avdmr

Since LU < CLU + Cy, ¢! <0 and fx < 0, we find

/qu w)C )qua >/<< )dwN//fA ( )[clmcz}dquT

It follows from ¢’(t) = 0 for ¢t > 1 and |f\| < e* that

/fA << >dut < A0 )/MC (Z)d +—/ /{0<U<N} G0 + Co] apar, (2.6)

2=

z2l
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where C3 = e*[('] o

Applying the dominated convergence theorem, we find

1/t - -
lim — CiU + Cy| dutdr = 0.
iy [y, (60 G auder

Since limy_,o0 (%) = 1 for each t € [0,00), we pass to the limit N — oo in (2.6) to find from the
dominated convergence theorem that fu H(w)dpt < fa(1) for all ¢ > s, namely,

/ [e’\(l_w) - e’\] dpf <(1—¢), Vt>s.
u

Since u! is a global probability solution of the Cauchy problem (1.3)-(1.11) so that u;(U) = 1 for all
t > s, we deduce

/ AWl <1, V> s (2.7)
u
For fixed ¢t € R, if there exists an a € (0,1) such that

pi {z €U : 0 <w(z,t) <a}) >0,

then

/ e)‘(l_a)d,ui < / e’\(l_w)d;@ <1.
{zelU:0<w(x,t)<a} u

Letting A — oo, the left hand side in the above inequality approaches oo, giving rise to a contradiction.
Thus w(x,t) > 1 for ut-a.e. x € U. As p! has a pointwise positive density p; and w on continuous in
U x (s,00), then w(z,t) > 1 for all (z,t) € U x (s,00). If w # 1, we integrate the equality wp; = p2

to find . .
T </ /w(x,t)m(x,t)dxdt z/ /pg(m,t)dxdt <T,
o Ju o Ju

which leads to a contradiction. O

3. Proof of Theorem A

Throughout this section, we assume (H1). Let ' and p? be two periodic probability solutions
of (1.3). By Theorem 2.1, for each i = 1,2, u’ admits a positive and T-periodic density p; €
Hllo’p(bl xR)N Ca_%(R, C7(U)) for some a > % and v > 0. To show p; = po, it suffices to prove that

C
wi=2=1

P1 !
Define f(t) :==e!~! — e for t € [0,00) and

cge -lel? if |z <1,
(@) = _
0, it x| > 1,

where ¢g > 0 is such that [, ndz = 1. It is well-known that n € C°(R?). Let ne(z) := —n(%) for
z € R and 0 < € < 1. For a T-periodic measurable function g on U x R, we define

gulet) = [ o(e — y.On )y, (2,6) €U R, (3.1)
{yeR*:z—yelU}
In particular, for each i =1, 2,

prcl,t) = / pi(x —y, Ony)dy,  (x,8) €U x R. (3.2)
{yeRe:x—yeld}
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Set
We = = %7 We:=(Vpz)e = (Vp1)ewe, and
1,e
Rﬁ“ : = 9y(a"py)e — B (aMpie), Vi=1,2 and k=1,...,d.

Lemma 3.1. Both W, and R}, . (for eachi=1,2 and k =1,...,d) converge to 0 in L] (U x R) as
e — 0.

Proof. Let K CC U and t > s. We see from the formula (3.1) that there is an ex > 0 such that for
each T-periodic measurable function g on U x R, there holds

se.t) = [ oo = .0mdy. (0.0)€ K xRand e (0.cc).
Rd
Then, it follows from definitions of W, and w that for each € € (0, ex), there holds

We(z,t) = y V(z =y, t)p2(z —y, t)ne(y)dy — /Rd V(z -y, t)p1(z —y, t)ne(y)dywe(z, )

= [ Ve —um@ = 0n) o - 1.0 —wle)dy. Vot €K xR

Since w € Cp(U x R), we see that for any 0 < § < 1, there is an ¢y = €p(d) € (0,€ex) such that
Keo i={z €U : dist(z,K) < eg} CC U,

)
sup  sup |w(r —y,t) —w(x,t)| < 5, and
ly|<eo (z,t)ELXR 2

§
sup  |w(z,t) —we(z,t)] < =, Vee (0,¢).
(z,t)ECXR 2

It follows that

sup  sup Jw(z —y,t) —w(x,t)] < 3§, Vee (0,€).
ly|<eo (z,t)EXLXR

This together with Holder’s inequality yields

/:/Klwepdxdrgap/t/ /]R Ve -y — o r)ne()dy|
<o [ J. l( [ WP - vrnan) ([ 7t >dy)p'] dedr

e / /}C [ V(e =y A o)) dydedr, Ve € (0.c0)

A simple change of variable gives

/ / W, |Pdadr < 5?/ / / P (2, 7)e(x — 2)dedadr
/ / (z,7)|P P} (2, 7) </]Rd Ne(x — z)dx) dzdr
< 6P (Ksup p1>/ / [V|Pdzdr, Ve € (0,¢),

€0

dadr

where we used Fubini’s theorem in the second mequahty. Hence, lim, o [|[Wel|Lr (kx[s,1) = O
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Now, we deal with RE . Note that for e € (0, ex),

RY (x,t) =0, /Rd a*(z =y, t)pi(z — y, )ne(y)dy — 0, /Rd a(z,t)pi(z — y, t)ne(y)dy

= /Rd (01" (z — y,t) — O™ (2,)] pi(x — y, t)ne(y)dy

- /Rd (a*(z — y,t) — a*(2,t)) Aipi(x — y, )ne(y)dy, (z,t) € K x R.

Since a* € L>(R, W'P(U)) is T-periodic for each k,l =1,...,d, we find

loc

¢
sup / / |81akl(x —y,T) — 3lakl(m,r)|pda:d7 —0 as e€—0, and (3.3)
s JK

ly|<e
sup  sup |akl($ —yt) — akl(%t)’ <elh esssupHakl('vt)HWLP(lCﬁxR) —0 as =0, (34)
ly|<e (z,t)ELXR teR
where we used the Sobolev embedding theorem.
Applying Holder’s inequality and (3.3), we find

//,c / (0™ (@ =y, 7) — 0¥ (2, 7)) piw =y, ) (y)dy

< /:/K [(/Rd |dia*! (z — y, 7) — Q¥ (a, 7)|” pP(x — y,T)nE(y)dy) (/Rd 1p'n€(y>dy> v ] Lode

t
- / / / ’alakl(x —y,7) — Oa™(x, T)‘ppf(x — y, 7)ne(y)dydzdr
s JK JR4

p
dxdr

t
< (sup pf) X sup/ / |5‘lakl(x—y,7') —3lakl(1:,r)|pda:d7' ></ Ne (y)dy
s JK Rd

KexR lyl<e

t
= (sup pf) X Sup/ / |8lakl(x—y,7')—8lakl(a:,r)‘pda:d7'—>O as € — 0.
s JK

KexR lyl<e .
3.5
Applying Holder’s inequality, a change of variable and (3.4), we find
/:/]C /Rd (" (x —y, 1) — ™ (z,7)) Oipi(z — y, T)ne(y)dy pdasdr
< /t /’C /Rd |akl(x —y,T) — akl(x,T)’p 1O10s(z — y, 7) P () dydardr
= LA [a*(e - 9,7) - @@, 7" /:/K/Rd |0pi(z — y, t)[Pne (y)dzdT .

¢
< sup sup |akl(x —y,T) — akl(x,7)|p X / / |01pi(z,t)|P (/ Ne(x — z)dx) dzdr
s JKe R4

ly|<e (xz,7)EKLXR

t
< pd esssupHakl('»t)”thP(}C «R) ></ / |8y pi [Pdazdr
teER ¢ s JK.
—0 as e€—0,
where the LP-integrability of J;p; (for each | = 1,...,d and i = 1,2) on K. X [s,t] follows from
pi € HiP(U x R) for i =1,2.

loc
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It follows from (3.5) and (3.6) that lime_o | RE || 1o (cx[s,¢p) = 0. This completes the proof. O
Next, we show an inequality for w. Set

CP1(U x R) := C2Y (U x R)N C' (U x R).

C7

Lemma 3.2. There is a C' > 0 such that for each non-negative function ¢ € Cf%(l/l x R), there holds

t+T - 4T
/ /q{)f”(w)a”@iwajwduids < C/ / fw)Lopdutds, VteR.
t u t u

Proof. As the proof follows from similar arguments leading to (2.3), we only point out the differences.
Fix a non-negative function ¢ € cf;}(u x R). We see that the inequality (A.7) holds with ¢, to, ¥
and fy replaced by t, t + T, ¢ and f, respectively. That is,

t+T t+T
/ / Or(F (wo)pr.e)odadr + / 6" (w)a O Arwepr odrdr
t u t R4
t+7T
< / / [F(wd)preaOus + f(wd) (VEpy).Opd)dedr (3.7)
t u

t+T
+35/ /¢f”(we)|vque|2p1,edxd7+Q(e,a), VtER,
t u

where 6 > 0 is to be determined and

t+7T
Q(e,8) = X sup |V / / |We|e=Medadr
UX[t,t+T] supp(¢(+,7))

A2 t+T W, |2
+ ¢t sup |¢\/ / el e Medzdr
45 UX[t,t+T) t supp(e(-,7)) Pl

t+7T
e s 9ol [ f Byl + [Bpy.cl (1 + X)) e~ dadr
UX[t,t+T] supp(¢(-,7))

A2 i Ry, |?
+ et sup |¢‘/ / MeiAwédxdT
40 wx[t,e+T) supp(¢(-,7 Pi.e

)\2 t+T R, .
+ 2 sup |¢‘ | Pl & |w 6\Qe*)‘“"dxdT.
46

UX[t,t+T) supp(¢(-,7))  Plee

It follows from Lemma 3.1 that lim._,o Q(e, d) =0 for any 6 > 0.
From the T-periodicity of w, p; ¢ and w,, and the Newton-Leibniz formula, we obtain

t+T t+T
/ / Bu(f (w)pr o) pddr = — / / Fw)pr D pdedr.
t R4 t R4

It follows from (3.7) that

t+T
/ of" (w)a™ Opwedwep dxdr
¢ R vr
< / / [f(we)p1,e(0e6 + a* 0pad) + f(we)(VFp1)eOppldadr (3-8)
¢ u

t+T
+ 35/ / of" (w)|Vwe|?p1.cdadr + Q(e, 8), Vt R,
¢ u
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Since ¢, when restricted on U x [t,t + T, is compactly supported, and (a*) is locally uniform positive
definite, there exists A > 0 such that

(aklakwéalwé) (SU, T) > )\|VU)E(Q§, 7_)|27 V(CE, T) € Supp(¢) N (Z/[ X [tv i+ TDv

which together with the positiveness of f” and ¢ gives

A t+T 1 t+T
5/ / o f" (w)|Vwe|*p1 edzdr < 5/ of" (w)a* Opw Owepr cdadr.
t R4 t Rd

Setting § = % in (3.8), we use the above inequality to find

1

+T
7/ qu”(w)aklakwealweplﬁdxdT
2/, e

t+T A\
< / /d[pl,ef(we)(atqb + a"0p0) + fw)(VFp1)cOppldadr + Qfe, 6)’ vt € R.
t R
The result follows from letting € — 0. O
Now, we prove Theorem A.

Proof of Theorem A. Let ( € C* ([0,400)) be a non-negative function satisfying

cn={" TP <o amd ¢"20
= an .
0, t €1, 00), - -

Let ¢ be defined as in (2.4). Clearly, U := 0(U) satisfies LU < C,U + Cs for some ~C~'1, Cy > 0. Tt is
easy to see that C(%) € Cf%(u x R) for N > 1. Applying Lemma 3.2 with ¢ := C(%), we find

T 0 y
/ /C<N> " (w)a" d;wdywdpulds
t u
t+T U .
<c[ [ s <N) dyilds
=C o (U1 9o,U0;U + ¢ Y Lo
*/t/uf(w)C ﬁﬁaijﬂLgﬁﬁ

Since (a%) is positive definite, f < 0 and ¢” > 0, the term ftH_T Sy f(w)¢” (%) ﬁa”&-f]ajﬁduids

dulds, VteR.

is non-positive. As a result,

t+T i , g ol iaxd . U ~
/t /Mg <N> f"(w)a" dwdwdputds < N/t /uf(w)g <N> LUdplds.

Using LU < CU + Cy and |f| < e, we find

an U g
OS/ /C — | f"(w)a" d;wd;wdputds
t u \ NV

C t+T L
< WeIC’Ioo/ / ) (ClU + 02) dplds, VteR.
t J{(@.9):0(x.5)<N}
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1

Letting N — oo in the above inequality, we conclude from f”(¢) = e!~t and the dominated convergence

theorem that
t+T B
/ / el_wa”&»wajwpldxdt =0, VteR.
t u

Since (a¥) is locally uniformly positive definite, we conclude that Vw = 0 a.e. on U x R, which
together with the continuity of w implies that w(-,t) = const for t € R. As w = Z—f and both pq (-, 1)
and pa(-, t) are continuous probability densities for each ¢ € R, there must hold w = 1. This completes
the proof. d

4. Proof of Theorem B

In Subsection 4.1, we establish an estimate for global probability solutions of the Cauchy problem
(1.3)-(1.11). It is then applied to prove Theorem B in Subsection 4.2.

4.1. An estimate. We first prove the following result on the time regularity of global sub-probability
solutions of (1.3). It is indeed a variation of a classical result (see [2, Lemma 8.1.2]). However, there
is no global integrability of a*/ and V' in our case.

Definition 4.1. Let Z be an interval and g = (u¢)ier be a family of Borel measures on U. A
continuous modification of u is a family of Borel measures fi = (fiz)tcz on U satisfying the property:

Yo € C*Y(U x T), the function t — / ¢(-,t)dfi¢ is continuous on Z,
u

such that u; = fi; for a.e. t € L.

Lemma 4.1. Let T be an interval and p = (ui)iez be a family of Borel measures on U. Then there
exists at most one continuous modification of .

Proof. Suppose both fi' = (ji})iez and f? = (ji})iez are continuous modifications of u = (pu)sez-
By Definition 4.1, jij = fif for a.e. ¢t € R and for each ¢ € CZ(U), the functions t — [, ¢djij and
t— [,, ¢dfif are continuous on Z. It follows that for each ¢ € CZ(U), there holds

[ oani= [ oan, veer
u u
This implies that i} = ji? for all ¢t € T. O

Lemma 4.2. Assume (H2). Let 1 = (f1¢)te(s,00) be a global sub-probability solution of (1.3). Then
w admits a unique continuous modification.

Proof. By Lemma 4.1, we only need to show the existence. We first show that there exists a family
of sub-probability measures (fi;)¢e(s,00) 0N U satisfying the property:

Yo € C%(U), the function ¢ — / ¢dfi; is continuous on (s, 00),
u

such that fi; = p, for a.e. t € (s,00).
As p = (f1¢)te(s,00) 18 a sub-probability solution of (1.3), we see from Lemma 2.1 (1)(a) that for
any ¢ € C2(U), there exists a set J, C (s, 00) satisfying |(s,00) \ Js| = 0 such that

t
/ Ppdpy = / od +/ / Lodp.dr, Vrt € Jy with r <. (4.1)
u u r Ju
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For each ¢ € C?(U), we define a function fg on Jy by setting

t) :/(;Sdut, te s
17

Since a” and V? are locally bounded and T-periodic for each i,5 = 1,...,d, and ¢ is compactly
supported in U, the boundedness of L¢ follows. As a result, we have

Folt) — fol)] = \ / odpn — [ s

odp,dr

Umax \£¢| (t—r), Vrteld,withr <t

It follows that there exists a locally Lipschitz continuous function fy on (s,00) such that fs(t) = f,(t)
for t € J. Obviously, fs > 0if ¢ >0 and |f4(t)| < [¢|e for ¢ € C2(U) and t € (s,00).
For each t € [s,00), we define a functional as follows:

K :C2U) =R, ¢ fu().
Obviously, K; is linear, positive and |K;¢| < |f|eo. As CZ(U) is dense in C.(U) under the topology
of uniform convergence on U, K; has a unique linear continuous extension K; onto C.(U) satisfying
K¢ = K¢ for all € C3(U). We see that K is positive. In fact, for any non-negative function ¢ €
C.(U), there exists a sequence of non-negative functions {¢, }nen C C?(U) that converges uniformly
to ¢ on U. Therefore,
K¢ = lim K;¢, = lim f,, (t) > 0.
n— o0 n—o0

Applying the Riesz representation theorem, we find a Borel measure fi; on U such that
[ ot =Fo. woeca.
u

As a consequence, we obtain a family of Borel measures (fi¢)se(s,00) On U satisfying

[ od=Fo®). ¥t (5,00 and o € C2)
u

In particular, the function ¢ — [, ¢dji; is continuous on (s, 00) for any ¢ € CZ(U).
Let D be a countable basis of C2(U) under the topology of uniform convergence on U and set
J == NgepJy. Cleary, |(s,00) \ J| =0 and

/ odfiy = f¢, fo(t) = /uqbd,ut, Vo € Dand t € J. (4.2)

As C?(U) is dense in C.(U) and D is dense in C2(U), (4.2) holds for all ¢ € C.() and t € J. Hence,
fie = py and fi(U) = p(U) < 1 for all t € J. From the continuity of the function ¢ — [, ¢dji; on
(s,00) for each ¢ € C%(U), we conclude that fi,(U) <1 for all t € (s,0).

It remains to show that for each ¢ € C2!(U % (s,00)), the function t — [, ¢(-,t)dp is continuous
on (s,00). For fixed t € (s,00) and ¢ € C>1(U x (s,00)), the local Lipschitz continuity of f¢(-,t) on
(s,00) implies that

iy — /u o )i

= ’f¢(,7t)(T) — fd)(‘,t) (t)‘ —0 as r—t.
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It follows that

AMme—Amme

< /M 160 7) — B, £)|dfir +

/u o 1)dfir — /u o )din
wamm—LMme

This proves the required continuity, and hence, completes the proof. O

< max |p(x,7) — P(x,t)| +

—0 as r—t.

A similar result can be proven for global sub-probability solutions of the Cauchy problem (1.3)-
(1.11).

Lemma 4.3. Assume (H2). Let p1 = (¢)1e(s,00) be a global sub-probability solution of the Cauchy
problem (1.3)-(1.11). Then p admits a continuous modification i = (fit)ter Satisfying:

Jim [ ot = [ ot na

Proof. The proof follows from arguments as in the proof of Lemma 4.1. The differences are that
we use Lemma 2.1 (2)(a) instead of Lemma 2.1 (1)(a) and define f, on [s,00) for ¢ € C?(U) with
s = V. O

Remark 4.1. If u is a global sub-probability solution of (1.3) or a global sub-probability solution of
the Cauchy problem (1.3)-(1.11), so is its continuous modification fi. Moreover, Lemma 2.2 applies
in particular to fi. This would allow us to get rid of Jy in many situations in the sequel.

The expected estimate is stated in the next result.

Proposition 4.1. Assume (H2) and that £ admits a strong Lyapunov function U. Let {Uy,}nen be a
sequence of open sets inU as in Definition 1.2 and p1 = (j1¢)1e(s,00) be a global sub-probability solution
of the Cauchy problem (1.3)-(1.11) with [, U(-,s)dv < co. Let i = (fit)ie(s,00) e the continuous
modification of 1 = (pit)ie(s,00) given in Lemma 4.5. Then,

ﬂt(u) =1, Vt>s,
and there exists some C > 0, independent of s, v and u, such that
t
Cn/ for U\ Up)dT + Dy fie (U \ Uy,) < / U(,s)dv+C(t—s), Vi>sandneN, (4.3)
s u
where Cy, 1= —supgny,)xr LU > 0 and Dy, = inf gy, )<z U-

Proof. For notational simplicity, we write /i = (fi¢)tc(s,00) @S i = (14t )1e(s,00) throughout the proof.
We see from Lemma 2.1 (2)(b) and Lemma 2.2 that for each ¢ € C>1(U x [s,00)) there holds

/uqb(~,t)dut:/u¢(-,s)dus+li_rg/:/uﬁ¢du7d7', Vi > s. (4.4)

Since U is a strong Lyapunov function, there is a p,,, > 0 such that LU <0 on (U x R)\ Q,, . Fix
po > pm and let {(,},>,, be a family of smooth and non-decreasing functions on R satisfying
0, t €10, pml,
Gt) = t, t € [po, pl, G(t) <t, t € [pm,po] and  (J(t) <0, t € [p,p+2]
p+1, te[p+2,00),
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In addition, we let the functions {¢,},>,, coincide on [0, po.
Obviously, (,(U) — (p+ 1) € C2H(U x R). Setting ¢ = (,(U) — (p+ 1) in (4.4), we find

L@ = o+ 0 = [ @)= (o D)o+ Jim / [ £60) = (o+ Dyauir

r—S

= [ =+ 1) du+hm/ /ccp )dardr.

r—S
It follows from
L(Cp(U)) = ¢ (U)LU + ¢ (U)a" 0;U8;U,

that
/ (U dpy = / CU)dw + (p+ 1) % [ueth) — v(Uh)]
U U
+lim/ /C;)(U)EUdquT (4.5)
U

r—S r

t
—|—lim/ /C/’)’(U)aijaanjUdquT.
u

r—S r

Due to (1.4), there exists an ny € N such that Q,, CC U, x R for all n > ng. Since C,’) =0 on
[0, prm], ¢, = 1 on [po, p] and (;, > 0 otherwise, we see from LU <0 in (U x R)\ Q,,, that

C(U)LU < {S“PW\un)xR LU, in Q,\ (U, xR),
P =

, otherwise.
Thus,
t t
lim/ /Q;(U)EUd,quT < sup LU x lim [ pr(Q) \Uy,)dT
r—s r U (Z/{\l/{n)x]R r—S r
. (4.6)
= —Cn/ pr (2, \Upn)dT, 1> no,
where C,, := —supny,)xr LU > 0 and the monotone convergence theorem is used in the above
equality.

As () # 0 on [pm, pol, ¢" < 0 on [p,p+ 2] and (" = 0 otherwise, we find from the non-negative
definiteness of (a*) that

¢(U)a79;U0,U < {gj maxg a”OUOU,  in Qp,\Q

9

Pm>
otherwise,

where C\ := maxyc(p,, 0] ¢, (t) is independent of p due to the construction of {(,},>,,- Hence,

/ / ¢(U)a 9,Ud;Udp,dr < C., (max a1 9,U0; U> X (t—71)=Ct—1), (4.7)

Qo

where C' = C, (maxﬁpo a¥ 0;U0;U )
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Substituting (4.6) and (4.7) into (4.5) yields

/cp Jduy < t/cp Jdv + (p+ 1) % [ (W) — v(h)]

(4.8)
_ cn/ (L \Un)dr + Ot —5), ¥t > s,
As (, > 0 and (,(t) =t for t € [pg, p], we derive from Q,, C U, x R that
/ Co(U)dpy = / Udpy > / Udpe = Dopie(Q \Up),  ¥n > no, (4.9)
u Qr\Q QAU

where Dy, := inf ) xr U. As (,(t) <t fort >0 and p > pg, we find from (4.8) and (4.9) that

Dn(@\ ) < [ U+ (p-+ 1) x i) = vl
t (4.10)
—cn/ fr(Q\Un)dr + Ot — ), VE > s,

Note the v-integrability of U(:,s) ensures the non-triviality of the above inequalities. If p(U) <
v(U) =1 for some t > s, we deduce from (4.10) that

OS/U(~,s)d1/+(p+1)><(ut(u)—u(U))—&—C’(t—s)—)—oo N
u

which leads to a contradiction. Therefore, u:(U) = v(U) = 1 for all t > s. Consequently, letting
p — oo in (4.10) leads to

t
Cn/ e (U N\ Up)AT + Dy (U \ Uy,) < / UG, s)dv+C(t—s), Vt>s.
s u
This completes the proof. 0

4.2. Proof of Theorem B. We recall the definition of the weak*-topology for Borel measures on
U xR

Definition 4.2. A sequence of o-finite Borel measures {u™,n € N} on U X R is said to converge to a
o-finite Borel measure p on U x R under the weak*-topology as n — oo if

lim pdu" = / / pdp, Yo € Co(U x R).
UxR UXR

n—oo

Set
Cer(U xR) :=Ce(U xR)NCr(U x R).

Proof of Theorem B. For clarity, we assume s = 0. Applying Lemma 4.3, we may replace yu =
(#4t)te(0,00) Dy its continuous modification, still denoted by p = (4¢)te(0,00)- Since U(-,0) is v-
integrable, Proposition 4.1 yields the existence of some C > 0 such that

t
cn/ uT(U\L{n)dT—anut(u\Z/In)g/U(-,O)dl/—i—Ct, t>0, (4.11)
0 u

where U,,, C,, and D,, are as in the statement of Proposition 4.1.
For each n € N, we define

n—1
1
“?ZZEZ“”’“T fort >0 and du":=dppfdt on U x (0,00).

k=0
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Then, for any bounded ¢ € Cr(U x R), there holds

t+T - t+T
/ / pdundr = - Z / | éanrssrar
t u

t+(k+1)T
1 / / ¢dp,dr (4.12)

L t+kT

t+nT
= / /(bd/J,TdT vt > 0.

Let {n;}jen C N be fixed. The proof is finished in seven steps. In Step 1-Step 5, we construct
the limiting periodic probability solution of (1.3). The convergence results are proven in Step 6 and
Step 7.

Step 1. We show the existence of a subsequence of {n;},cn, still denoted by {n;};en, such that
™ converges under the weak*-topology to some Borel measure i on U x (0,00) as j — oo, and for
each t > 0, there holds

t+T
lim / odpmidr = / / ¢dji, ¥ bounded ¢ € C(U x [t,t + T)). (4.13)
U [t,t+T]

j—oo

For any compact set K C U x (0,00), there holds sup;cy " (K) < oo. Applying [14, Corollary
A2.6.V], we conclude the existence of a subsequence of {n;}cn, still denoted by {n;};en, such that
™ converges under the weak*-topology to some Borel measure i on U x (0,00) as j — oo.

To show (4.13), we may apply [13, Theorem 4.4.2] that says in particular it is equivalent to show

(i) for each f € Co(U x [t,t + TY), there holds

t+T
lim /fdManT = // fdp;
J—00 Ux[t,t+T]

(i) pUx[t,t+T))=T.
We prove (i) and (ii) in the rest of Step 1.
(i) Note that for any f € Co(U x [t,t + T]), there is an €y € (0,1) and a family of functions
{felee0,e9) € Co(U x (0,00)) satisfying
o |feloo < |floo for all € € (0, ¢€p),
e for each € € (0,¢p),
_Jf on UX[tt+T],
Je= {0 on Ux(0,t—eU[t+e+T,o00).
Clearly,
lim Je(z,7) = f(z, )L (7), (2,7) €U x (0,00).

As p™ converges to fi on L{ x (0,00) as j — oo under the weak*-topology, there holds

lim / / fedpidr = // fedi, Ve € (0,€). (4.14)
J—o Ux(0,00)

It follows from the construction of {fc}cc(o,¢,) that

[e%} t+T
[ rawpar— [ [ papar
0 u t u

< 2€|floo, Ve € (0,€),
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which is equivalent to

oo t+T o
/ / feduidr — 2€| floo < / / fdulidr < / / fedpdr + 2€|floo, Ve € (0, ¢€p).
o Ju t u o Ju

Letting j — oo in the above inequality, we find from (4.14) that

t+T
J[ - gapedsi it [ [ g
Ux(0,00) j—oo  Jy u

t+T
< limsup/ /fdu:fde (4.15)
t u

Jj—o0

< // Fodji + 26| f oo
Ux(0,00)

o ([ gdp= [ pan
€0/ Jux(0,00) UX[t,t+T]

thanks to the dominated convergence theorem, passing to the limit e — 0 in (4.15) yields (i).
(ii) It follows from the definition of {y™ };en that

Since

n;—1

v 1 J t+T
M’ﬂj((u \Z/{m) X [t,t+T]) = nf Z / MT+kT(Z/{\um)dT
J o Jt
n;j—1

1 t+(k+1)T
-y i U\ Uy )7
Ty 1 JtHkT

1 t+7le
= n—/ (U \Up)dr, Vm e Nand j € N.
i Jt

By (4.11),
1 t+n; T 1
— por (U N\ Uy )dr < (/ U(-7O)du+C><(t+an)>, Vm e Nand j €N,
nj Jo 1;Cm \Ju
where we recall that Cp, = —sup gy, )xr LU — 00. As a result, for any 0 < e < 1, there exists an

mo = mp(€) € N such that
P (U \Up) x [t,t+T)]) <€, ¥Ym>mgandjeN
Equivalently,
w(Up x [t,t+T))>T —€, ¥Ym>mgandjeN.
This means, {u"}, when restricted on U X [¢t,t + T, is tight. Hence, we apply the Portmanteau
theorem to find that

AU, % [t t+T)) > limsup p™ (U, X [t,t+T)) >T —e€, ¥Ym > my.
j—o0
Letting € — 0, we conclude that g x [t,t +T]) > T.
By (i), we deduce that

BUp, x [t,t+T]) < liminf @™ Uy, x [t t+T]) < T,

j—o0

which implies (U x [t,t +T]) < T. Hence, (U x [t,t +T]) =T, and (ii) follows.
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Step 2. We show that the measure ji obtained in Step 1 admits ¢-sections. More precisely, we
show the existence of a family of Borel measures {fis }+c(0,00) On U satisfying

,LNLt = ,LNLt+T and ﬂt(Z/l) =1 fora.e. t> 0,

such that fi = (fit)se(0,00)-
Let n € C.(0,00) and |supp(n)| < T. Setting ¢ = n in (4.13) gives

oo (oo}
// ndji = hm/ /ndu?'jdt:/ ndt. (4.16)
Ux(0,00) J—0 u 0

Arguing as in the proof of [22, Lemma 4.2], we derive from (4.16) the existence of a family of Borel
measures {/i }+e(0,00) satisfying fiz(U) = 1 for a.e. t > 0 such that fi = (fi¢)re(0,00)-

It remains to show fi; = fi;+p for a.e. t > 0. It follows from (4.12) that for any ¢ € C. (U x R)
and t1,ts € (0,00) with ¢; < t5, there holds

t+T 1 atnT
/ /quu”JdT n/ /(bdquT

J
1 t2+’ﬂ] t2+n]

= — / /gf)dquT*/ /gbdquTJr/ /¢dquT
n;j ti+n; T
1 2 to+n;T to+T

= — / /cﬁd,ufjdr—/ /¢dquT / /(éd,unfdr.
1 ti Ju ti+n;T

Letting j — oo in the above equality, we find from (4.13) that

// odp = // odp, Viti,ta > 0 with ¢ < ts.
Z/{X[tl,tlJrT] Z/{X[tg,t2+T]

We then argue as in the proof of [22, Lemma 4.1] to find f; = fiy for a.e. ¢ > 0.

Step 3. We show that i = (fi¢)¢c(0,00) is @ global probability solution of (1.3).
We claim that for each ¢ > 0, there holds

t+T
/ / LodfirdT =0, Vo e CoM U x (t,t+T)) (4.17)
¢ u
Fix t € R. For any ¢ € Co' (U x (t,t +T)) and k € NU {0}, we define
oz, 7 — kT), (r,7)eU X (t+ KT, t+ (k+1)T),
P2, 7) = .
0, otherwise.

Obviously, ¢ € C2' (U x (0,00)) for each k € NU{0}. As pu = (#4t)te(0,00) 18 a global probability
solution of (1.3), there holds

t+(k+1)T oo
/ /£¢deTdT z/ /ﬁfbkd,quT =0.
t+kT u o Ju

This together with the T-periodicity of (a¥) and (V*) gives

t+T t+ k‘+1
/ / Lodpirsrdr = / / Lordpdr =0,
t+kT
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which yields

t+T nfl t+T
/ / Lodpdr = Z / / Lo, sprdr =0, VneN. (4.18)
oVt u

As clearly Lo € Co(U X (t,t 4+ T)), we deduce from (4.18) and (4.13) that

t+T t+T
/ //.ZgbdquT— hm/ /E(bdu”JdT—O
This proves (4.17).

From (4.17) and Lemma 2.1 (1)(a), we find that for each t > 0 and ¢ € C?(U), there exists a subset
Jb C (t,t+ T) satistying |(t,t +T) \ Jj| = 0 such that

ta
/ ¢dﬂt2 —/ ¢dﬂt1 :/ / Lodp-dr, Vi, ts € J; with t1 < ta.
u u t1 u

As t is arbitrary in (0, 00), we see the existence of a set Jy C (0, 00) with [(0,00) \ J4| = 0 such that

2}
/ odjis, — / odfiy, = / / Lodfirdr, Vi, ts € Jy with ty < to.
u 1Zi t1 1Zi

That is, fi is a measure solution of (1.3) in U x (0,00). As fi(U) = 1 for a.e. ¢ > 0 by Step 2,
o = (fit)te(0,00) is a global probability solution of (1.3).

Step 4. We show that fi = (fi¢)tc(0,00) admits a continuous modification, still denoted by i =
(fit)te(0,00)5 Such that fiy = figr and fi,(U) = 1 for all ¢ > 0.

By Lemma 4.2, there is a modification of i = (fi¢)¢c(0,00), Still denoted by i = (fit)e(0,00), Satisfying
the property:

V¢ € C3(U), the function ¢ — / ¢dfi; is continuous on (0, 00).
u

This together with the fact that f; = iz for a.e. ¢ > 0 (from Step 2) yields that

/qﬁdﬁt:/qﬁdﬂHT, Vo € C*U) and t>0.
u u

Hence, fiy = fizr for all ¢t > 0.

It remains to show fi;(U) = 1 for all ¢ > 0. Note that up to now we only know fi:(U4) < 1 for all
t > 0and 4, (U) =1 for a.e. ¢ > 0. Fix tg > 0. Since U is a strong Lyapunov function, we can
follow the arguments as in the proof of [28, Proposition 2.8] (see the proof of [22, Theorem A] for
more details) to find a non-negative function U € C’%’l(u x R) satisfying the following properties:

fu - to)d i, < 0o,
( ) limy, o0 infpern i, U(a:,t) = oo for all t € R,
(3) there is a gy, > 0 such that LU < 0on (U xR)\Q
pm}-
We see from Lemma 2.1 (1)(b) and Lemma 2.2 that for each ¢ € C>1(U x (0,00)), there holds

where Q,, = {(2,t) €UXR : U(x,t) <

Pm >

ta
/ odjiy, — / odjiy, = / / Lodjirdr, Y0 <t < to. (4.19)
u u t1 u
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Note (,(U) — (p+ 1) € C>'(U x R) thanks to property (2), where {¢,} is defined as in the proof
of Proposition 4.1. Setting ¢ = (,(U) — (p+ 1) in (4.19), we find

/@M@—@+DMM=/@A@—@+DM%
u

/ / U)LU + ¢ (U)a iiaanjﬁ} dji,dr, Yt > tg.
to
Arguing as in the proof of Proposition 4.1 yields the existence of some C' > 0 such that
0< [ to)din, + (p-+ 1) x [(td) = i, @) + €t~ ta), ¥2> to
u

Since U (-, to) is fis,-integrable, if fi;(U) < fiz, (U) for some t > to, a contradiction is readily derived
by letting p — oo in the above inequality. As a result, fi;(U) > fis, (U) for all t > ty. Since tg > 0 is
arbitrary and (i) = 1 for a.e. t > 0, we conclude that f;(U) =1 for all ¢ > 0.

Step 5. We extend fi = (fit):e(0,00), the continuous modification obtained in Step 4, to obtain a
periodic probability solution f = (fit)rer of (1.3).

A~ lata t> 07
e ﬁt+kT, t e (—kT, —(IC — 1)T] and k € N.

To do so, we define

Obviously, fis(U) = 1 and iy = g4 for all ¢ € R. Thus, [i := (fi¢)ter is a periodic probability solution
of (1.3) if we can show i is a measure solution of (1.3) in I x R.

As ji is a measure solution of (1.3) in U x (0, 00), the definition of j implies that for any ¢ € C2(U)
and k € N, there holds

to
/(;Sdﬂtl —/ odji, :/ /La:dﬂTdT, Yty ty € (—KT, —(k — 1)T) with ¢, < t,.  (4.20)
u u t1 1Zi

As k € N is arbitrary and i = f1 on U x (0,00), we see that (4.20) holds for all ¢1,t5 € R with t; < ts.
That is, ji is a measure solution of (1.3) in U x R.

Step 6. We show that for any bounded ¢ € Cr (U x R), there holds

1 t+n]
lim —/ /gbdquT = / /qﬁdquT vt > 0. (4.21)
J—o0 an

It follows from (4.12), (4.13) and the definition of fi = (fi;):er that for each bounded ¢ € Cr (U XR),
t+n; T 1 t+e t+e+n; T
lim —/ / ¢dp,dr = lim ——— / / odpdr — / / odp dr
oo nyT oo ;T t+n; T u
t+e+n,
+ lim — / / ¢dpdr
j—o0 nj
t+e+n]
= lim — / / odu dr

t+e+T
[ o

1 [tretT
:T /(bdquT Vvt > 0 and € > 0.
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The T-periodicity of ¢ and fi = (fit)¢cr then ensures that

t+e+T
? / odjidT = —/ / odji,dr, VYVt >0 and e > 0.

Hence, (4.21) follows.
Step 7. We show that for any v € C2?(U), there holds

n;—1
1 J
lim — / Ydpeypr = / Ydfiy, VE>0. (4.22)
Imee Ny T Ju u

Fix ¢ € 02( ). Clearly, L1 is bounded on U x R. Since 1 = (f1¢)te(0,00) 15 @ global probability
solution of (1.3), Lemma 2.1 (1)(a) and Lemma 2.2 imply that

/tz/ [Coldprdr (4.23)

< max ‘,CiM (tQ — tl), th,tg > 0 with ¢ < ts.
supp() xR

‘ / Ydpg, — wdut2

Fix to € (0,T) and let n € C°(R) be non-negative and satisfy supp(n) C [-1,1] and [ ndt = 1.
Define n(t) := 1n(L) for t € R and 0 < e < 1. Clearly, [, n.dt =1 for 0 < e < 1. It follows that

t+T
(/ ¢dur> Ne(T — (t +to))d7 — / Ydpttt,

t+T
< / /u s — /u Wdpiesey | 7T — (8 + to))dr

<ex max |[LyY|, VE>0and0<e<1,
supp(¢) xR

where we used (4.23). Equivalently,

/tHT (/M ¢dﬂr> (T — (t + to))dr — Ce

< /u Ydpieye, (4.24)

t+T
g/ (/ wdﬂ7> Ne(T—(t+1t))dr+Ce, VEi>0and 0<e<1,
¢ u

where C' = maXgupp(y)xr |LY].
Fix t; > 0. For each fixed nj, setting ¢t = ¢, + kT for k = 0,...,n; — 1 in (4.24) and then
summarizing the resulting inequalities, we arrive at

nj t1+(k+1)T
Z / </ wdu7> Ne (T — (to +t1 + kT))dr —n,;Ce
% t

1+ET

n;—1

Z / I (4.25)

nj t1+(k+1)T
< / (/ ¢dMT) Ne(T — (to +t1 + kT))d7 +n;Ce, 0<e< 1.
ieo Jti kT
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For each € > 0, we define a function 7. on R by setting
Ne(t) =ne(t — (bo+t1 +kT)), tet1+kT,t1+(k+1)T) and k € Z.

Obviously, 7. is T-periodic and 7. € C(R) for each 0 < € < 1. Setting ¢(x,t) := ¥(z)n(t) for
(z,t) €e U x Rin (4.21) gives

1 t14+n;T 1 t14+T R }

jli>I£IO n]T/ (/ wd,u'r> 776( )d - T /tl (/Z,{ ¢d,u‘r) ne(T)dT~ (426)
1 t1+an

Jliglo ﬁ/t (/ wdﬂ‘r> ﬁe(T)dT
J 1

nj—

1 t1+(k+1)T
= lim — / (/ z/JduT> Ne(T)dr
Jj—o0 TLJT Z t1+kT u ( )

k=0

As

nj—1

1 t]-‘r(k-‘rl)T
= lim — A ) me(r — (to + £y + KT))dr,

1+ET

1 ni—1 (k)T ti+T
i = > [ ([ vt = ot v irypar = [7 ([ i )i
J—00 an =0 t1+kT

Thus, dividing (4.25) by n;T and then letting j — oo, we derive from the above limit that

t14+T
E— < I
(/ wduT) e (7)dr Ce hjm inf T g / VAt +t, +kT

< hmsup— Z / WAttty +kT (4.27)

j—oo ;T

1 t1+4+T
< = wdﬂT) Ne(T)dr + —Ce, 0<ex
T 11 (s/Z/l T

Since the continuity of the function ¢ — fu 1dji; on R implies that

t1+T
lim / ( / 1/Jdu7) dr = . [

we pass to the limit € — 0 in (4.27) to find

hm e / wdufo+f1+kT = / wd:u’to-‘rfl? Vto € (O T) and tl > 0.

This proves (4.22).

If the periodic probability solution of (1.3) is unique, then it is clear that (4.21) and (4.22) hold
for the whole sequence {u"}nen. This completes the proof. O

We sketch the proof of Corollary B.
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Proof of Corollary B. The poof is almost the same as that of Theorem B. The main difference lies
in Step 7. More precisely, in this situation, we apply Theorem A to find that i = (ft)icr is the
unique periodic probability solution of (1.3) and admits a continuous density. Therefore, the function
t— fu tdjfiz is continuous on R for any ¢ € Cy(U). Hence, the result follows from arguments as in
Step 7. O

5. Proof of Theorem C

In Subsection 5.1, we construct and study the transition probability densities associated to the
global probability solutions of the Cauchy problem (1.3)-(1.11). The proof of Theorem C is given in
Subsection 5.2.

Throughout this section, we assume (H1) and (H3), and that £ admits an exponentially strong
Lyapunov function U. Hence, Theorem 2.3 and Theorem A hold. Moreover, we denote M;(U) as the
collection of all bounded measurable functions on ¢ and write

(1 6) = /u odu, e MyU) and ¢ € My(U),
where we recall that M, () is the set of all Borel probability measures on U.

5.1. Transition probability densities. For fixed s € R and =z € U, let ;4®" be the unique global
probability solution of the Cauchy problem (1.3)-(1.11) with v = §, given in Theorem 2.3. Following
Theorem 2.1, p*% admits a Holder continuous density (y,t) — p(s,z,t,y) on U X (s,00). We prove
some properties of p(s,z,t,y) in the rest of this subsection.

Lemma 5.1. The following hold.

(1) For s,t € R with s <t and y € U, the function x — p(s,z,t,y) is continuous on U.
(2) For s € R, the function (z,t,y) — p(s,xz,t,y) is measurable on U X (s,00) X U.

Proof. (1) Let {xp tnen C U converge to some . € U as n — co. We show
nlinéop(s,xn,t,y) =p(s,zs, t,y), V(y,t) €U X (s,00). (5.1)
For convenience, we define
un(y,t) == p(s,zn, t,y), (y,t) €U X (s,00),
dp™ = dpidt :== up (y, t)dydt.
Note that p™ is nothing but g%
By Theorem 2.1, we see that for any V CC U and t1,t5 € (s,00) with ¢; < tq, there exists a C' > 0,

independent of n, such that

|un|ca,; <C, VneNlN

? ([t1,t2],C7(V))
Thus, the sequence {uy,}nen is pre-compact under the topology of locally uniform convergence on
U X (s, 00) thanks to the Arzela-Ascoli theorem and the standard diagonal argument. In particular, any
subsequence of {u, }nen has a further subsequence that is locally uniformly convergent on U X (s, 00).

Let us fix a subsequence {u,,} that converges locally uniformly to some non-negative continuous
function u on U x (s,00). We show that the Borel measure p defined by du = dpdt := u(y, t)dydt
coincides with p®%+. That is, for any ¢ € C?(U), there holds

t
/u¢dut = ¢(zs) + }1_%/7 /uﬁqéd,quﬂ Yt > s. (5.2)
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As p™ is the global probability solution of the Cauchy problem (1.3)-(1.11) with v = 5%1,, we
apply Lemma 2.1 (1)(a) and Lemma 2.2 to find for any ¢ € C?(U) and ¢t > r > s,

t
[ ot = [odus s [ [ coaupar
u u r JU
which is rewritten as

| eant? = ot - [ t | codar = [ o~ ofa,).

Following the proof of [28, Theorem 2.3], we see that for fixed to > s and ¢ € C2(U) there exist
Cy > 0 and « > 0, independent of n, such that

/M bdut — o)

Hence, for any t > s, there holds
t
/ pdpy” — d(an,) — / / Lopdpidr
u r JU

Letting j — oo, we find

‘ /u oy — ()~ [ t /M Lodpdr

Letting 7 — s in the above inequality yields (5.2).

< Chilt—s|%, Vte(s,tp) and n €N,

< Cilr —s|%, Vs <r <min{t to} and j € N.

< Clr—s|* Vs<r<min{tto}.

Since the above result holds for any locally uniformly convergent subsequence of {u,}nen, the
sequence u,, converges locally uniformly to p(s,z«,-,-) as n — co. In particular, (5.14) follows.

(2) In addition to (1), we know that for each s € R and = € U, the function (y,t) — p(s, z,t,y) is
continuous on U x (s,00). Hence, the function (x,t,y) — p(s,z,t,y) is a Carathéodory function on
U x (s,00) x U and its measurability follows from [1, Lemma 4.51]. O

Lemma 5.2. Let 1 = (i1t)1e(s,00) be the unique global probability solution of the Cauchy problem
(1.3)-(1.11). Then, there holds

dp = dpdt = / (s, z,t,y)dv(x)dydt.
u
In particular, for any ¢ € My(U), there holds
(s) = () = [ (i o)av(a).

Proof. Define
dp = djdt == / p(s,z,t,y)dv(z)dydt on U x (s,00).
u

By the definition of 1%, there hold for any ¢ € C2(U)

lim/ugbduf’x = ¢(x), and (5.3)

t—s

t
/gﬁduf’z:/ngdui’“"Jr/ /E(bdui’zdﬂ Vs <r <t. (5.4)
u u rJu
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It follows from Lemma 5.1 that each term in (5.4) is measurable with respect to z. Integrating (5.4)
with respect to v and applying Fubini’s theorem, we find

t
/(bdﬂt:/tbdﬂr—&—/ /,Cc/)d/]TdT, Vs <1 <t. (5.5)
u u r Ju

That is, fi is a global probability solution of (1.3) in U X (s, 00).
For ¢ € C2(U), we deduce from | [, ¢d,uf’wl < |Ploo, (5.3) and the dominated convergence theorem

that
/gbd,&t://qﬁduf"rdy(x)—)/qﬁdu as t—s.
u uJu u

Hence, [ is a global probability solution of the Cauchy problem (1.3)-(1.11). The uniqueness result
in Theorem 2.3 ensures that g = p.
The “In particular” part follows readily. 0

Corollary 5.1. There holds

p(saxvt27y):/p(svm7t17Z)p(tlaz7t27y)dz
u
forallx,y €U and ty > t; > s.

Proof. Fix s € R and x € . Lemma 5.2 ensures that the measure
dp = dydt = (/ p(t1, 2 t, y)duff(Z)) dydt
u

= </ p(tl,z,t,y)p(s,x,tl,z)dz) dydt on U x (t1,00)
u

is the unique global probability solution of the Cauchy problem (1.3)-(1.11) (with s = ¢; and v = p;)").
So is the measure p*% restricted on U X (t1,00). Theorem 2.3 then yields

u>®=pu on U X (t1,00).

Hence, they have the same densities, that is,
pssait) = [ pls,zit, 2ol stz Ve >t and y € U.
u
The corollary follows. O

5.2. Proof of Theorem C. We prove two lemmas before proving Theorem C. Recall that U is an
exponentially strong Lyapunov function.

The first lemma gives evolutionary estimates of a global probability solution of the Cauchy problem
(1.3)-(1.11) against U.

Lemma 5.3. There are positive constants C1 and Co such that for any global probability solution
= (k) te(s,00) Of the Cauchy problem (1.3)-(1.11) with f,, U(-,s)dv < oo, there holds

/U(~,t)dut < efcl(tfs)/ U(,s)dv+ Cq, ¥t > s.
u u

Proof. For notational simplicity, the integrals of the forms [,, g(-,t)du; and [, g(-, s)dv are respectively
written as [,, gdpy and [;, gdv in the rest of the proof.
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By Theorem 2.1, p admits a density u € C(U X (s,00)), namely, du = dp,dt = u(z,t)dzdt. By
Lemma 2.1 (1)(b) and Lemma 2.2, there holds for each ¢ € C>(U x (s,00))

t
/d)dut:/gbd,urJr/ /E(;SdquT, Vt>r>s,
u u r JU

d
—/ od iy :/£<f)dut, Yt > s. (5.6)

As U is an exponentially strong Lyapunov function, there are positive constants Cy, Cy and p,,
such that

that is

LU -CiU+Cy<0 in (UxR)\Q,,.
Fix po > pm and set Ny = [po] + 1, where [po] is the integer part of pg. Let {{n}n>n, be a sequence
of smooth and non-decreasing functions on R satisfying
0, t €10, pm],
(n(t) = {t, t € [po, N, (n(t) <t t € [pm,po] and (§(t) <0, t €[N, N +2].
N+1, te[N+200),

In addition, let the functions {{n}n>n, coincide on [0, po].
We claim that there exists C; > 0 such that

/<N U)duy < e~ Crlt- S>/cN du+—

+ C1(N + 1)/ U\ Qe 1A, Yt > s and N > Ny,

S

(5.7)

Note that (x(U) — (N + 1) € C*>Y(U x R). Applying Lemma 2.1 (2)(b) and Lemma 2.2 with
¢ =(n(U)— (N +1), we find

im [ [6(0) = (O + Dld: = [ (O () = (¥ -+ 1.

rT—S u
It follows from p.,.(U) = v(U) = 1 for all r > s that
im [ v @) = [ v (538)
rT—S

Setting ¢ = (N(U) — (N + 1) in (5.6) gives

9 en (@) = (V4 1)] de = / £(Cn(U) — (N + 1)) dpsy.
u u

Since py(U) =1 for all ¢ > 0 and
LN (U) = (N +1)) = Cy(U)LU + ¢ (U)a? 9:U0;U,
we find
/ Cnv(O)dps = / v (O LUy +/ R (U)a"0,;U0;Udpy, ¥t > s. (5.9)
Since ¢j = 0 on [0, pr], i (£) on [pg, N] and (j > 0 otherwise, we deduce that
—CiU+Cy, on Qn\Q,,

0, otherwise,

(VU)LY < {
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which implies that
/ (O LUy < / (=C1U + C2)dpy. (5.10)
u QL A\
Since ¢R; # 0 on [pm, po], ¢” < 0 on [N, N +2] and ¢}, = 0 otherwise, we see from the non-negative
definiteness of (a*) that
C. maxg a9,U0;U, on Qp, \ Q.
0, otherwise,

(Falio,Ua;U < {

where C, := max,c[,,, po] (n(t), which is independent of N due to the coincidence of {(y}n>n, on
[0,,00}. ThUS,

/ N (U)a",U0;Udpy < / X(U)a" 0;,U0;Udpy
u Qr \at,

3 (5.11)
< Cymaxa"0;U0;U.
QPO
Substituting (5.10) and (5.11) into (5.9) gives

4 / ¢y (U)dpg + Cy / Uduy < Cy + Cymaxa”’0,U0;U, (5.12)

dt u Ot \Qt on

As (n < pp on [0, pol, N () =t on [po, N] and {xy < N + 1 on [N, c0), we see that
/ @an= ([ 4 f [ oo

Qt QL Ju\ay (5.13)

< po+ / Udue + (N + D0\ 2.
i\
Setting C := Cipo + Cs + C, maxg a9;U0;U, we find from (5.12) and (5.13) that

%/ CN(U)th+C1/ Cn(U)dps < Cp 4 CLN + D (U N\ ), V> s.
u u

Applying Gronwall’s inequality yields

é
/ Cn(U)dpy < e=Crle=r) / Cn(U)dpy + 2
u u Ch

t
+ C1(N + 1)/ U\ Q5)e” 1 dr V> > s,

-
Letting » — s in the above inequality, we conclude (5.7) from (5.8) and the monotone convergence
theorem.

Note that if there holds

t
(N + 1)/ U\ Qy)e 1 dr 50 as N — oo, (5.14)

then we can pass to the limit N — oo in (5.7) to find from (n () <t for N > Ny and ¢ > 0 that

, C
/ Udpy < e—cl(t—s)/ U(-,s)dv + 71’ Vt > s,
u\Qt u Gy

which readily leads to the lemma.
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To finish the proof, we show (5.14). Fix t > s. We define
f(l' 7_) — {[1 + U(.]Z,T)]U(f,T), V(]J,T) S UTE[s,t] ((Z/{ \ on) X {T}) R

0, otherwise,
and for N > 1
(N + Du(e, 1)e= D V(1) € Urepey (UN\ Q) x {7}),

0, otherwise.

fn(z,7) = {

Obviously, fy < f for N> 1 and fy — 0as N — co. As

t t
/ / f(z,7)dzdr :/ / Udp,dr, and
s ZA\Q;O s ZA\Q;O

t t
[ [ endatr =) [ @ 95)e @0
s JUNQL, s

the limit (5.14) follows from the dominated convergence theorem if there holds

¢
/ / Udp,dr < 0. (5.15)
s L{\Q;O

It remains to show (5.15). Set Cy := Co+C, maxg a”9;Ud;U. For any fixed r € (s,t), integrating
(5.12) over [r,t] gives

t
/ CN(U)dLLt+Cl-/ / Ud/L,—dTS/ CN(U)d/LT-i-CQ(t—T‘).
u r Jar\ar, u
Letting 7 — s in the above inequality, we deduce from (5.8) that

t
/MCN(U)d,lLt—FCl/S /;\/\Q;O Ud,LLTdTS/uCN(U)dV—FéQ(t—S).

Since (n(t) < tfor all t > 0 and N > Ny, and U(-, s) is v-integrable, passing to the limit N — oo in
the above inequality yields

t
/ / Udp,dr < / Udv + Cy(t — s) < oo.
s U\Q;O u
Hence, (5.15) holds. This completes the proof. O

The second lemma is a version of the minorization condition of the measures {u**}, where % =
(117 ) te(0,00) 1s defined at the beginning of Subsection 5.1.

Lemma 5.4. Let s,t € R with s < t. For each R > 0, there is a constant o > 0, such that
™ = 1y < 2(1 — @) (5.16)
for all x1,x0 € U satisfying U(z1,s) + U(xe,s) < R, where || - |7y denotes the total variation norm.
Proof. Fix s,t € R with s <t and R > 0. Note that
{(x1,22) €U XU : U(xy,s) + U, s) < R} € Qp x Qb

where we recall that QF :={z €U : U(z,7) < p} for 7 € R and QO denotes the closure of QF,.
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We first claim that there exist positive constants p; and M such that

1nf p(s z,ty) > M, VoeQp (5.17)
yeQ

S,T

For x € ﬁ;, we denote p = (fit)ie(s,o0) = 1
simplicity. Applying Lemma 5.3, we find

and u(y,t) := p(s,z,t,y) for y € U for notational

/ Uy, Tu(y, 7)dy = / UG, m)dpr < e 109Uz, 5) + Cy, V7 > 5. (5.18)
u u
Set A 1= = (5.18) with respect to 7 over [s + A, s + 2A] gives
s+2A
U(x
/ / (y, 7 7)dydr < % ((fc1A — efQClA) + CoA.
1
Setting
1
Cy i= = (e7C12 — 7208 max Uz, s) + CyA,
Cy TEQR
we arrive at
s+2A
/ / Uy, 7)u(t,7)dydr < C3, Vp > minU. (5.19)
u\Q~ UXR

As U satisfies (1.4), there holds

lim inf U= oo.
p—0o0 (UXR)\Q,

This together with (5.19) yields the existence of some p; > minyxg U such that

s+2A A
/ / U(y77')dyd7' < o
uey, 2
which implies that

A s+2A s+2A
5 <A / / u(y, 7)dydr = / / u(y,7)dydr < |Q} [supu,
ey, 5 QL

where Q/1>1 = Urels+A,5424] (Q;l X {7’}) Applying Harnack’s inequality (e.g., [27, Theorem 10.1]) to
u, there exists a C' > 0, independent of u, such that

<bu u<Cinfu<C 1nfu , 1), 5.20
S SPuSCptusC it . (5.20)

where Q/2>1 = Ure[s+3A,4] (Q;1 X {T}) Setting M := 2C\Q1 » we find (5.17) follows from (5.20).

Now, we prove the lemma. For x1,zs € ﬁSR, we denote u' = (/,Lt)te(o,oo) = p®% and w;(y,t) :=
p(s,x;, t,y) for y € U and i = 1,2. We find from (5.17) that for 4, j = 1,2 with ¢ # j there holds

/ (ui(y7 t) - uj(y7 t))+dy < / (ui(y7 t) - M)]l{uiZuj}(ya t)dy
2,

t
QPI

< 1y (92,) —M/Qt 1w, >u,3 (Y, t)dy.
P1
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As a result, there holds for i, j = 1,2 with i # j,

/ (ui(y,t) —u;(y, 1) Tdy = / (ui(y,t) — us(y, )T dy + / (ui(y,t) — u;(y,t))*dy
u U\t

Q

t
P1
< U ,) i) =M [ Lz 000
Pl
2,

As Jup —ug| = (ug —u2)* + (ug —up)™, we arrive at

/\m(y,t)—u2<y,t>|dys2—Mmzl|.
u

It follows that

i — 12 llrv = sup |ug(A) — pZ(A)]
AcB(RY)

< suwp / s (2, £) — sz, £)|da
AeB(RY) J A

1
g2(1—M|Qt )
2 pP1
As 0 < MQ | < fon uy(y,t)dz < 1, we find a := $M|Q} | € (0,1). This completes the proof. [

We are ready to prove Theorem C.

Proof of Theorem C. We assume, without loss of generality, that s = 0. For each x € U, we denote
B = (U )te(0,00) = 19 where we recall ;%% is the unique global probability solution of the Cauchy
problem (1.3)-(1.11) with s = 0 and v = §,. Then dp® := dpfdt = p(0,x,t,y)dydt. The proof is
divided into four steps.

Step 1. We show that there exists a unique measure p, € M, (U) and positive constants C' and
0 € (0,1) such that

g — psllry < Co™(1+U(x,0)), VYo el andn e N. (5.21)
Let P : My(U) — My(U) be defined by

Po(x) = (1 6) = /u p(0,2,T,y)d(y)dy, Ve €U and ¢ € My(l).

By Lemma 5.1, P is well-defined. In particular, P1 = 1, where 1 = 1. Let P* : M,(U) — M, (U) be
the adjoint operator of P defined by

(P, 0) = (1, Po), Vi€ Mp(U) and ¢ € My(U).
Since @™ and V? are T-periodic for i,5 = 1,...,d, we find from Theorem 2.3 that
p(nT,z,(n+ 1)T,y) =p(0,z,T,y), VYne€Nandz, yel,
which implies that
Po(x) = /up(nT,x, (n+ DT, y)p(y)dy, = €U.
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It follows from Corollary 5.1 that

P p(x) = (pnr: ¢), T €U, (5.22)
Define a wighted supremum norm:
¢(x)
x = esssup |————|, Vo e My(U).
18] S D 0 (2.0) ¢ € My(U)
Thanks to Lemma 5.3 and Lemma 5.4, we apply Harris’s Theorem (see e.g. [17, Theorem 3.6]) to

find that P admits a unique invariant measure p, of P, namely, P*u, = p., and there exist constants
C > 0 and g € (0,1) such that

[{pmrs @) = (b, D = 1P ¢ = (i, DI, < Co™ [|§ = (pass A < 2C0" (8]l
holds for all ¢ € My(U), where we used (5.22) in the equality. Consequently,

lnr = pllpy = sup [(r, @) = (s 0)
[¢|<1

_ [t @) — (1, )|

< sup i @) = (b ) [1 + U, 0)]

<2C0" [14U(x,0)].

1+U(z,0)]

This proves (5.21).

Step 2. We show that (1.3) admits a unique periodic probability solution i = (fit)icr. Moreover,
there holds fi,7 = p. for all n € N.

Denote dji := djizdt as the unique global probability solution of the Cauchy problem (1.3)-(1.11)
with s = 0 and v = .. It follows from Lemma 5.2 that

(A, @) = (pas (pg, @), V>0 and ¢ € My(U),
which together with (5.22) and the fact that u, is invariant under P implies that

(Bt @) = (s (pmps D)) = (poes P" @) = (P phe, @) = (s, ),  Vn € N and ¢ € My(U).

That is, fi,7 = p« for all n € N. Therefore, fi;17r = fi; for all ¢ > 0. We then extend i to U x (—o0,0)
by defining
ft := figynr, tE€(—nT,(n—1)T) and n € N.
It is not hard to check that fi := (fit)+er is a periodic probability solution of (1.3).
The uniqueness follows from Theorem A.
Step 3. We prove that there exist positive constants C; and Cs such that
IiE = fiellry < Cre=C2t[1 4 U(2,0)], Vo €U and t > 0. (5.23)

For ¢t > 0, there are unique n; € Ny and 0 < r; < T such that ¢t = nT + ;. For ¢ € My(U), we
denote

¢Tt(x) = <Mfﬁ¢>a T e u
Clearly, ||¢r, || < |¢|loo if ¢ is bounded. As p(0,z,7,y) = p(nT,z,r +nT,y) for alln € N, z,y € U
and r > 0, we find

b (&) = /u p(neT,x,t,4)6(y)dy, @ € U.
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It follows from Lemma 5.2 and Corollary 5.1 that for each ¢ € My(U) there hold
(e, @) = (fir, &) = (pins (17, 8)) = (p1 b1,)
and
Wt o) = [ 0.0t | [ Tt oty ax = o (0) = 0. Ve
Consequently, we derive from (5.21) that
1t = fellpy = sup [{uf, @) = (i, 9)|

[¢l<1

= sup |<M£T’¢Tt> - <iu’*7¢7‘1,>|
[¢]<1

<Co"[1+U(x,0)]
< Che @t 1+ U(x,0)],

where C; = Co~ ! and Co = % In o.
Step 4. We show that
e = fiellpy < éle—ézt/M 04U dy, V>0,
We apply Lemma 5.2 to find
s) = (. 0) = [ (i havt), Vo € My (0.
It follows from (5.23) that

e = fiellpy = sup [(pe, @) = (fie, B)
[¢|<1

= su £, 0) — (i, ¢)] dv(z
wﬁém‘@ (e 8)] ()
<A$2W&@—%@WMM

< éle—éﬂ/ [1+U(-,0)]dv.
u

This completes the proof. O

6. Applications

In this section, we discuss some applications of Theorem B, Corollary B and Theorem C. Appli-
cations to stochastic damping Hamiltonian systems and stochastic slow-fast systems are discussed
respectively in Subsection 6.1 and Subsection 6.2. In Subsection 6.3, we investigate the convergence
of weak solutions of a SDE with less regular coefficients.
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6.1. Stochastic damping Hamiltonian systems. Consider the following stochastic damping Hamil-
tonian system:

{x - (z,y) eRExRE,  (6.1)
dy = — [b(z,y)y + VV (z,t)]dt + F(z,y,t)dt + o(z,y, t)dW,

where the damping b = (b¥7) : R? x R? + R%*? is continuous, the potential V : R x R + (0, 00)
is twice continuously differentiable in z and continuously differentiable in ¢, the external force F :
R? x R? x R + R? is continuous, the noise coefficient matrix ¢ : R? x R? x R — R4*™ belongs to
C(R, W,5P(RY x RY)), where p > d+2 and m > d are fixed, and (W;)ser is a standard m-dimensional

Wiener process. We assume V', F' and ¢ are all T-periodic in ¢ for some 7" > 0.
The FPE associated to (6.1) reads

O = ai_yj (a"9u) — Oy, (ysu) + Oy, ((07y; + 00, VIu) — 0y, (F'u), (z,y,t) ERE xR xR, (6.2)

where (a%) := % is the diffusion matrix. Denote

Ly =0+ aijajwj + yiam - (bijyj + 05, V)0y, + any
We make the following additional assumptions on the coefficients.
(A1) There is by > 0 such that b¥y;y; > bo|y|? for all y € RY.
(A2) The functions F and o, and 9;V are uniformly bounded on R? xR? xR and R? xR, respectively.
(A3) There exists a lower bounded function ® € C2?(R¢) such that
d

sup —bi (2, y) L

(z,y)€RIxRE S

+ 0, P(x)| < 0.

|z \
(A1) V.V - &

Note that (A1) says that the system (6.1) is damped. When b(z, y) is bounded, the function ® in
(A3) can be taken to be 0.

Following the arguments as in the proof of [22, Theorem 5.1], we can construct a strong Lyapunov
function with respect to L. Hence, Theorem B is applied to give the following result.

— 00 as |z| = oo.

Theorem 6.1. Assume (A1)-(A4). Let = (fit)te(s,00) be a global probability solution of the Cauchy
problem associated to (6.2) with initial condition ps = v, where v € My(R? x R%) is compactly
supported. Then for any sequence of positive integers {n;}jen with lim;_,on; = oo, there exists a
subsequence, still denoted by {n;};en, and a periodic probability solution fi = (fit)tcr of (6.2) such
that

(1) for each bounded ¢ € C7(R% x R? x R), there holds

t+nJ
lim —/ / odpdr = —/ / odp,dr, VYVt > s,
j—ro0 ’rLJ Rd xRd R4 xR

(2) for each v € C?(RY x RY), there holds
’I’Lj*l

lim — Z / Yd g4 pr :/ Ydpg, for ae. t € (s,s+T).
R4 xR R4 xR4

—00 15
J J k=0

We point out that the uniqueness of periodic probability solutions of (6.2) (with non-smooth coef-
ficients) remains an interesting open question.



CONVERGENCE TO PERIODIC PROBABILITY SOLUTIONS 39

6.2. Stochastic slow-fast systems. Consider the following SDE

{ea’: = f(z.y,1),

(z,y) €e R™ x R", (6.3)
dy = g(I, Y, t)dt + CT(SC’ Y, t)tha

where 0 < e < 1, f = (fF) :R" xR" xR = R™ g = (¢") : R x R" xR = R", 0 = (c¥) :
R™ x R™ x R +— R™*! is the noise coefficient matriz with £ > n, and W = (Wi)ier is a standard
{-dimensional Wiener process. We assume f, g and o are T-periodic in ¢ for some T > 0.

As here we are only interested in the dynamics of (6.3) for each fixed 0 < ¢ < 1, we set ¢ = 1 in
(6.3) and consider the following system for clarity.

. "
T f(x;:% )7 ({177:[/) cR™ x R™.
dy = g(l‘,y,t)dt—FU(l',y,t)th,

The associated FPE reads
Oy = ajiyj (au) — 0y, (fFu) — 0y, (g'u), (z,y,t) € R™ x R x R, (6.4)
where A := (a”) = 300 7. Denote
Lsp =0+ a0y, + [*0s, +g'0y,.
We make the following assumptions on the coefficients.
(B1) Let p > m+n + 2. A(x,y,t) is positive definite for each (z,y,t) € R™ x R™ x R, and
ai € Cp(R,WEP(R™ x R™)) and ¢¢ € Cr(R™ x R™ x R) for each i,j = 1,...,n. Moreover,

loc

for each a > 0, there holds

sup |A] < oo,
{(z,y,t)ER™ xR" xR:|y|<a}

(B2) There exists some positive T-periodic function U € CHH(R™ x R) satisfying
lim U(z,t) =00, VteR

|z|—o00
such that

sup sup LspU — —c0 as |z| = oo
ly|<a teR

for each a > 0, and
LspU =0 on {(z,y,t) e R™ xR" xR:|z| =0},
LspU <0 on {(x,y,t) e R xR" xR :|z| #0}.
To proceed, we need some dissipative conditions along the slow direction, namely, the y-direction.
Definition 6.1. Let V € C%l(R" x R) be non-negative and satisfy

li inf V(y,t) = cc.

It is called

(1) a semi-Lyapunov function (with respect to Lgr) if there exist positive constants v and a such
that

ﬁSFV <—v on {(.’ﬂ,y,t) ER™ xR™ xR ‘y| > (l}, (65)
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(2) a strong semi-Lyapunov function (with respect to Lgp) if

lim sup  LgspV(x,y,t) = —oo.
ly| =00 (z,£)eRm xR

Theorem 6.2. Assume (B1) and (B2). If Lsr admits a semi-Lyapunov function, then there exists
a unique periodic probability solution p = (pt)ier of (6.4). Moreover, supp(u) = {0} x R™ x R,
where 0, denotes the origin in R™.

Proof. We write Lgr as L for notational simplicity. The proof is divided into three steps.

Step 1. We show that (6.4) admits a periodic probability solution p = (u)ter.
Let V' be a semi-Lyapunov function with respect to £ and v,a > 0 be constants such that (6.5)
holds. Define
Wiz, y,t) :=U(z,t) + V(y,t), (z,y,1) eR™ xR" xR.
Obviously, W is non-negative and T-periodic, and satisfies
ganW(x,y,t) — oo as |z + |yl = oo,
€
and
LW =LU+LV<-y on {(z,y,t) eR"xR" xR:|y|>a}.
Moreover, it follows from (B1) that £V is bounded on {(z,y,t) € R™ x R" xR : |y| < a} and from

(B2) that

lim sup sup LU = —o0.
|| =00 ly|<a teR

Hence, there is a constant b > 0 such that
LW =LU+LV<—y on {(z,y,t) eR"xR"xR:|y| <a, |z|>0b}.
As a result, we find
LW < —y on  {(z,y,t) e R" x R*" xR : |y| > a or |z| > b}.

That is, W is a Lyapunov function. Hence, we apply [22, Theorem B] to find a periodic probability
solution p = (p¢)ter of (6.4).

By virtue of Lemma 4.2, we may, assume without loss of generality, that for any ¢ € C>'(R™ x
R” x R), the function ¢ — [[pm g @(-,t)dp is continuous on R.

Step 2. We show that p is supported on {0,,} x R™ x R. By Lemma 2.1 (1)(b) and Lemma 2.2,
there holds for any T-periodic ¢ € C>1(R™ x R™ x R)

t+T
/ / / Codprdr = / / oyt + T)dpugar — / / o, 1, 1)
t Rfﬂ, XR"'L Rfﬂ, XR"'L an XR’” (6.6)

=0, VteR.
For each a > 1, define
Walz,y,1) i= alU(2,8) + V(g 1), (2,9,1) € R™ x R" x R,

Obviously, W (x,y,t) — oo as |z| + |y| — oo, for each a > 1.
Let {¢,},>0 be a family of smooth and non-decreasing functions on R satisfying

t, t€10,p],
t) = and (7 <0on [p,p+2].
Go(t) {p+17 te ot 2,00, ¢, [p,p+2]
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Clearly, for each p > 0, the function ¢,(W,) — (p+1) is T-periodic and belongs to C2!(R™ x R" x R).
Setting ¢ := (,(Wa) — (p+1) in (6.6), we find from

LG (W) = G (Wa) EWa + G (We)a 0, Wody, W
= G(Wa) (LU + LV) + ¢ (Wa)a" 0,V 0,V

t+T
0 :/ // LE,(Weo)dp-dr
Rm XR"E
t+T 4T
= a/ // Wo)LUdp-dr —I—/ // Wo) LV dp,dr (6.7)
Rn Rme"

4T

/ / / ¢ (Wa)ai? 0, Vo, Vdp,dr.

As ¢, > 0 on [0,00), we see from (6.5) that

that

maxoxr [LU|C(Wa), (z,y,1) € @ xR,
_’YC,/)(WQ), (,r7y’t) c QO° x R,
where Q := {(z,y) : [y| < a}, Q°:= {(x,y) : ly| > a} and a > 0 is such that (6.5) holds. Since ¢; <0

on [p, p+ 2] and (/) = 0 otherwise, we derive from the non-negative definiteness of A = (a*/) that

¢/ (Wa)a”9,,Vd, V<0 on R™xR"xR. (6.9)

Substituting (6.8) and (6.9) into (6.7) gives

t+T t+T
— a/ // W) LUdpdr —l—v/ // C o) dp-dr
m XR"

Cp(Wa)LV < { (6.8)

In particular,

t+T t+T
—a/ // Wo)LUdp dr < max|£V|/ // Cp(Wa)dp-dr
— (6.10)

< max |LV]| x T.
QxR

Note that lim, . C,(t) = ¢, which yields lim, . (,(Wa) = 1. Letting p — oo in (6.10), we find

t+T
— a/ // LUdp,dr <max|LV] x T. (6.11)
¢ mxRn QxR

To see supp(p) C {0,,} xR™ xR, we suppose on the contrary that there exists an closed set B C R™
satisfying 0,,, ¢ B such that

t+T
/ pr({(z,y) :x € B})dr >0, VteR.
¢

Note that supg g LU < 0 by (B2). Hence,

t+T
-« (Sup EU) / wr({(z,y) : © € B})dr < max|LV]| x T,
BxR t QxR

which leads to a contradiction when letting o — oc.
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Step 3. We claim that supp(p) = {0,,} x R* xR and 1 = (u¢)ser is the unique periodic probability
solution of (6.4).
Define

wi(B) = ({0} x B), VBeBR") andte€R, and u*:= (u])ier,
where B(R"™) is the Borel o-algebra of R™. We further define
Lo =0+ aijaziyj + 30y,

where o' (y,t) = a"(0,,,y,t) and B (y,t) := ¢* (O, y,t) for (y,t) ER" x Rand i,j=1,...,n.
As pu = (pt)ter is a periodic probability solution of (6.4) and is supported on {0,,} X R™ x R, we
see that pj (R") =1 and py = pj  for t € R, and

/ Lopdpidr =0, Vo e Co'(R™ x R).
R JR™
That is, u* = (u})ier is a periodic probability solution of the following FPE
Opu = 3§iyj(oziju) — 0y, (Bu), (y,t) €ER™ x R. (6.12)

By Theorem 2.1, u* admits a positive density on R xR. Hence, supp(p*) = R™ xR, or equivalently,
supp(p) = {0, } X R™ x R. Note that V' is an Lyapunov function with respect to £o. Hence, we apply
Theorem A to conclude that (6.4) as well as (6.12) admits a unique periodic probability solution. [

When the semi-Lyapunov function in Theorem 6.2 is indeed a strong semi-Lyapunov function, we
are able to apply Theorem B to deduce a convergence result.

Theorem 6.3. Assume (B1), (B2) and that Lsp admits a strong semi-Lyapunov function. Then,
for any global probability solution p = (fit)ie(s,00) Of the Cauchy problem associated to (6.4) with initial
condition ps = v, where v € Mp(R™ x R™) is compactly supported, there holds

K
1

lim — E // ddp kT = // odjiy, VYo € CEHR™ xR™) and t € (s,s+ TJ,

K—oo K 1 R™ xR”™ R™ xR”™

where i = (fit)ier is the unique periodic probability solution of (6.4)

Proof. Let V € C’%’l(R" x R) be the strong semi-Lyapunov function with respect to Lgp. Arguing as
in the proof of Theorem 6.2, we show that the function

W(z,y,t) :=Ulz,t) + V(y,1), VY(z,y,t) e R" xR" xR

is a strong Lyapunov function with respect to Lsr. The conclusion follows from Theorem B and
Theorem 6.2. O

6.3. Convergence of weak solutions of a SDE. Fix s € R. Consider the following initial value
problem associated to the SDE (1.2):

{dx =V(z,t)dt + G(z, t)dW,, z €U, (6.13)

Tg ~ U,

where v is a given Borel probability measure on U. We assume V and G are continuous on & x R and
T-periodic in t for some T > 0.
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Recall that a (globally defined) weak solution of (6.13) is a triple of a filtered probability space
(Q, F,{Ft}t>s,P), an adapted Wiener process (W;);>s and an adapted stochastic process (Xi)¢>s
such that

t t
X,~v, Xy =X, Jr/ V(XT,T)dTJr/ G(X;,7)dW,, Vt>s.

In the sequel, we simply call (X;);>s a weak solution of (6.13) without mentioning the underlying
probability space and Wiener process.
Let (a”) = 3GG" and set
L:= 8,5 + aijafj + V’Laz
Lemma 6.1. Let (X;)i>s be a weak solution of (6.13) and p; be the distribution of X; for t > s.
Then, (pit)te(s,00) 95 @ global probability solution of the Cauchy problem (1.3)-(1.11).

Proof. It is well-known [24] that under the current assumptions on the coefficients, (X;);>s induces a
solution of the associated martingale problem. Hence, for each ¢ € C2(U), there holds

E(X;) — E¢(X,) - / ELH(X))dr =0, Vi>s,

t
/(;Sdut—/(bdu—/ /E(bdquT:O, YVt > s.
u u s Ju

The conclusion then follows from Lemma 2.1 (b)(1). O

that is,

In the presence of Lemma 6.1, we can apply Theorem B and Theorem C to derive the following
convergence results of weak solutions.

Theorem 6.4. Suppose L admits a strong Lyapunov function U. Let (Xy)i>s be a weak solution of
(6.13) with [, U(-,s)dv < co. Then for any sequence of positive integers {n;} jen with lim;_, o n; = oo,
there exists a subsequence, still denoted by {n;};en, and a periodic probability solution fi = (fi;)ier of
(1.3) such that

(1) for each bounded ¢ € Cp(U x R), there holds

t+n; T 1 T
Jlggo an/t Eop(X,)dr = T/o /uqbdquT, Yt > s, (6.14)
(2) for each ¥ € C2(U), there holds
1 nj—1
lim — Z EY(Xitrr) = / wdfie, for a.e.t>s. (6.15)
J—o0 Ny o u

In particular, if (1.3) admits a unique periodic probability solution fi = (fit)ier, then (6.14) and (6.15)
hold for the whole sequence N.

Theorem 6.5. Assume GG is locally Lipschitz continuous in x and pointwise positive definite.
Suppose L admits an exponentially strong Lyapunov function U. Then, there exist positive constants
C1 and Cy such that any weak solution (X;)¢>s of (6.13) with [, U(-,s)dv < oo satisfies

‘Eaﬁ(xt) - /M odji

for any bounded measurable function ¢ on U, where i = (fi)icr is the unique probability solution of

(1.3).

< C’le*@(t*s), Vt > s
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APPENDIX A. Proof of an inequality

In this appendix, we prove the inequality (2.3). Let p1, p2 € C(U X (s,00)) be respectively a global
probability solution and a global sub-probability solution of the Cauchy problem (1.3)-(1.11). Define
w = % and fy(t) := (178 — ¢ for t > 0, where A > 0 is a parameter. Then for any non-negative
function ¢ € C21(U x R), there holds

t
[ nweant < 5 [ ot [ rcodptan, vis s (A1)

Note that the above inequality is just (2.3).
The rest of this appendix is devoted to the proof of (A.1).

Proof of (A.1). Define

0, it |z > 1,

where ¢q > 0 is such that [, ndz = 1. It is well-known that 5 € C°(R?). Let ne(z) := Zn(%) for
reERTand 0 < e 1.
For a measurable function g : U X (s,00) = R, we define

o
cge -l it |z <1,
n(z) =

gulait) = [ o(e — . One)dy,  (2.0) € U x (s,00).
{yeRd:z—yeld}
In particular, for each i =1, 2,

mA%ﬂ:/ pil — 1, t)ne(y)dy
{yeR*:z—yeU}

= /upi(y,t)ne(x —y)dy,  (,t) €U x (s,00).
It is not hard to check that
lig(l) pi.e = pi locally uniformly in U X (s, 00), (A.2)
and that for each 0 < e < 1,
%1_r>r}s pie(x,t) =v(z), zel, (A.3)
where
Ve(w) = /une(w —y)dv(y), zel.

Note that for each 0 < € < 1 and ¢ = 1, 2, there holds p; ¢(-,t) < |7¢]oo on U for each ¢ € (s, 00), which
together with (A.3) and the dominated convergence theorem implies that

lim p; (-, t) =ve in LY(U). (A.4)
t—st
It is straightforward to check that for each i = 1,2, p; . satisfies
Opie = O pie) — Ou((VFpi)e — RE ),

where R’;M = O(a"pi)e — O1(a¥p; ). Set we = 5?"’. Multiplying by ¢ € C%Y(U x R) the equation

satisfied by ps2 . and integrating by parts, we arrive at

to 2
/ / Op(wepr,e)pdadr = / / [wepl,eakla;@m + ((Vkpg)6 — RIZZ’E) am] dedr, Vits >t > s.
1 Z/l t] l/{

t
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Setting ¢ = f§(w.)? in the above equality, where ¢ € C>! (U x R) is non-negative, we find

/ /at wep1,e) fi(we)pdadr

/ | T 040000 + (V) = BE, ) 03 0] dadr, 2 > 11 > .
(A.5)

Note that there holds the equality

8t(wep1,e)f;\(we) = at(f)\(we)pl,e) - (f/\(we) - fg\(we)we) atpl,e~

Inserting the above equality into the left-hand side of (A.5) and then utilizing the equation satisfied
by pi1.e, the following equality follows from straightforward calculations.

/ /6t Falwe)pr €)7,/}dxd7'+/ /wf We) a® 8kw€85w5p1 dxdr

- / / ()1 + fr(wd) (VEr)d] dedr
t1 u

2}
+/tl /M(WE'Vw)fﬁ\(we)dxdT
ta
+/t1 /U(WE'V“’E) Y (we)pdadr
’ (A.6)
_/ /f (we) Ry, Opypdadr
t1 JU
2}
+/t1 /u(fx(we) wéfk(we))Rpl Optbdadr
ta
+~/tl /uf/l\/(we)(Rlpcz,e_we o1, 6)3kw61/)dmd7

:/ / P(we)p1,ea™ 0o + fr(we) (VFp1)eOpid] dxd7+z

Jj=1

where W, := (Vpa)e — (Vp1)ewe.
We estimate the terms I;, j = 1,...,5. Note that f{(z) = —AerM=) and f{(z) = A2er1-7),
Obviously,

to
;] < Xe* sup |V1/J\/ / |We|e Medadr.
s supp(¥(-,7))

UX[S,tQ]

By Young’s inequality, there holds

2
|I5] < 5/ /1/)f>\ we)|Vwe|?p1, 6dxd7’—|—f sup |1/)|/ / [ve® V(we)dadr
46 UX[s,ta] supp(w( ,7)) P1,e
/\ |W |2 —)\w
<4 wa we)|Vwe|? py edadr + = sup |w| cdedr, 0 >0.
45 U X [s,ta] supp(¢(-,7)) Plye
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For I3 and I, we have

to
|I5] < Xe* sup |Vz/1|/ / Ry cle™ " ddr,
supp (¥ (7))

Z/IX étg

to
1] < Ae* sup Ile/ / Ry (1 + dw)e e dadr,
UX[s,t2] supp(¢(+,7))

where R,, . = (RE ), i=1,2. For I5, we find from Young’s inequality and f} (x)

|I5] < 25/ /1/Jf>\ we)|Vwe|*p1,edadr
tq

)\ 2
+ e sup le/ / Bl v gz
45 Ux[s,t2] supp (¢ 77')) P1.e

= \2eM1=7) that

A2 2 g
+ 2 sup [y / / Bin.el jy j2e=3edadr, 6> 0,
45 Ux[s,t] supp((-,7)) Pl

It follows from (A.6) that

to to
[ [ atnwamavasr+ [ [ wriw)a oo, dodr
t Ju t1 JR4

to
< / / () prea™ s + fr(wo) (V¥ pr) D) dadr
t1

+35/ /wa we)|Vwe|*p1 cdzdr + Q(e,8), iy >t > s,

where
to
Q(e,8) = Xe* sup |V¢|/ / [Wele™ e dzdr
UX[s,t2] supp(¢(+,7))
)\ to W 2
+ et sup |t / / W® e Medadr
45 U [s,ta] supp(¢(-,7)) Plie
to
o (ol [ f 1Byl + 1Ry o1+ A )] e dadr
U [s,t2] supp(¢(-,7))
A2 2 €
76)\ sup "l/)‘/ / |RP2 | 7/\w5d$d7'
46 UX[s,t2] supp(¥(-,7)) P1.e
A2 e
+ e sup |y / / [Bpr.e[” * lwe|?e~ Medadr.
45 Ux[s,ta] supp(¢(-,7)) Pl
Arguing as in the proof of [34, Lemma 3.1 and Lemma 3.2], we find

lim Q(e,0) =0, V§>0.

e—0
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It follows from the Newton-Leibniz formula that

/ 2 / Or(f(we)pr,)bdrdr = / Fr(we (w0, 12)prc (0, 12) 8, )z
t1 u u
- /u Fa(wel, 00)prc(, ), t)da (A8)

- /: /M Fa(we)py cOrpdadr.

As € C*Y(U x R), when restricted on U x [s, t5], is compactly supported, and (a*/) is locally uniform
positive definite, there is a positive number m such that

(aijaiweajwe) (xat) > m|vwe(xat)|2v V(l’,t) € Supp(w) N (u X [S’tQ])'

This together with f{ > 0 and ¢ > 0 yields that

/ / B (w,)aM O, By, py (dadr > / / B F (we)aM O Dywepy cdardr

(A.9)
/z/Jf We |Vw6\ p1,edadr.
Set 6 = {5. We find from (A.7), (A.8) and (A.9) that
| w2, ta) o, t)ds
u
/ In(we(z,t1))p1,e(x, t1)(x, t)de — */ / P f3 (we)a* OpwOywepy (dxdr
/ | Iore PO+ a¥0u0) + ) (Ve di] dedr + e 1) (A10)
< / Fa(we(w,t))pre(w, 1) (o, 1) da
to
/ / p1.efa(we) (O + aklakﬂb) + fA(we)(V P1)e (“)kw] dzdr + Q(e, 12)

Since |fx(t) — fa(1)| < Ae|t — 1] holds for all ¢+ > 0, we apply the dominated convergence theorem
to find for each 0 < € < 1,

/u Fa(wel,t1) — PrD)lpre(e tr)d(a, t1)de

<2 / P2,y t1) = pre( b, 1) de
u

—0 as t; —sT,
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(A.4) and the dominated convergence theorem, we deduce
/M e, 1) (@ 1) — ve(@)(a, 5)|da
< /u e, 1) — @) [ 1) + /u V(@) (@, t1) — $(, 8)|de

< max |¢|'”pLE(Htl)_VE(')”Ll(Z/I)+/L{Ve($)|1/’($vtl)_w(xvs)‘dx

U X [s,ta]

=0 as t; —sT.

Thus,

/f)\(we(xatl))pl,e(x’t)w(xatl)dx_> f)\(l)/ VE(.’L‘)’(/J(‘T,S)da:‘ as t; —s.
u u

Note that py . fx(we)(0pt) + a¥'Opb) + fr(we)(VEp1)Ox1p is integrable on U x [s,t2). Tt follows that

to
lim /u pre [ (we) (O + A 0h) + Fi(we) (VEpr)edett] dadr
t1

t1 —st

= / 2 /u (o1, r(we) (8 + a* o) + f,\(we)(Vkpl)Eakqp] dzdr.

Passing to the limit £ — sT in the inequality (A.10) yields

/u Fr (e, 12))prc (b))

< fA(l)/u(V*ne)lﬂdx-i-/z/u [fa(we)pr,e fa(we) (O + a* D))

1 (we) (VFpr) 0] dadr + Qe %), Yty > s.

As lim 0 Q(e, &) = 0, we let ¢ — 0 in the above inequality to find from (A.2), (A.3) and the

’ 12

dominated convergence theorem that (A.1), with ¢35 and ¢ replaced by t and ¢, respectively, holds.
This completes the proof. O
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