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Abstract. The present paper is devoted to the study of convergence of solutions of a Fokker-Planck

equation (FPE) associated to a periodic stochastic differential equation with less regular coefficients,

under various Lyapunov conditions. In the case of non-degenerate noises, we prove two types of

convergence of solutions to the unique periodic probability solution, namely, convergence in mean

and exponential convergence. In the case of degenerate noises, we show the convergence of solutions

in mean to the set of periodic probability solutions. New results on the uniqueness of periodic

probability solutions and global probability solutions of the FPE are also obtained. As applications,

we study the long-time behaviors of the FPEs associated to stochastic damping Hamiltonian systems

and stochastic slow-fast systems, and of weak solutions of periodic stochastic differential equations

with less regular coefficients.
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1. Introduction

Consider ordinary differential equations (ODEs) of the form

ẋ = V (x, t), x ∈ U , (1.1)

where t is the time variable, ẋ stands for the time derivative of x = x(t), U ⊂ Rd is an open connected

domain and V = (V i) : U × R → Rd is a time T -periodic vector field, called the drift field, for

some T > 0. The periodic time dependence in (1.1) is frequently used in applications, for instance

in biology, ecology, physics, and engineering, to model time recurrence and seasonal variations in the

vector field. As real world problems are often subject to noise perturbations from either surrounding

environments or intrinsic uncertainties [20], more realistic models should often take the fluctuations

or noises into consideration. This motivates us to consider noise perturbations to the ODE (1.1) that

result in the following stochastic differential equation (SDE):

dx = V (x, t)dt+G(x, t)dWt, x ∈ U , (1.2)

where G : U ×R→ Rd×m is a time T -periodic noise coefficient matrix with m ≥ d, and W = (Wt)t∈R
is a standard m-dimensional Wiener process. The SDE (1.2) is naturally connected to the following

Fokker-Planck equation (FPE):

∂tu = ∂2
ij(a

iju)− ∂i(V iu), x ∈ U , (1.3)

where A := (aij) = 1
2GG

> is the diffusion matrix, ∂i = ∂xi , ∂
2
ij = ∂2

xixj and the summation convention

is used in the right hand side of (1.3). Not only does the FPE (1.3) govern the distributions of the

solutions of (1.2), but also it has been directly used to model the evolution of the distributions for

many stochastic processes [33].

Two fundamental problems concerning the long-time dynamics of the SDE (1.2) and the FPE (1.3)

are the existence and uniqueness of steady states, and the convergence of their solutions to the steady

states. These problems have been extensively studied when V (x, t) = V (x) and G(x, t) = G(x) are

autonomous in both regular or less regular cases, in which steady states are often defined to be the

stationary measures, or stationary distributions. We refer the reader to [9, 5, 6, 7, 18, 19] and references

therein for the existence and uniqueness of stationary measures, and [25, 26, 32, 29, 3, 23, 9, 5, 6, 7]

and references therein for the convergence of solutions of (1.2) and (1.3) to stationary measures. Many

different approaches have been taken and developed to study these problems. For instance, ergodic

properties of Markov processes and stochastic analytical techniques are adopted in [3, 25, 26, 32, 29],

theories of Dirichlet forms and semigroups are used in [5, 6, 9], and PDE techniques are developed in

[5, 6, 7, 9, 18, 19, 23]. We emphasize that (1.2) and (1.3) with less regular coefficients arise naturally in

applications, for instance in modeling complex fluid flows [31], and their study gives rise to challenging

mathematical problems.

When V and G are T -periodic in t and admit at least Lipschitz regularity in x, steady states

of (1.2) and (1.3) are characterized by the periodic analogs of stationary measures, called periodic

solutions, that appeared in literature under different names and definitions. The investigation of

these fundamental problems for (1.2) and (1.3) with locally Lipschitz coefficients has attracted much

attention especially in recent years. In [26], Khasminskii defined periodic solutions for the SDE
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(1.2) in the sense of periodic Markov processes and proved the existence under periodic Lyapunov

conditions. In [11], Chen-Han-Li-Yang studied the existence of classical periodic solutions of the

FPE (1.3) assuming the existence of an uncommon Lyapunov function. The existence of periodic

solutions of semi-linear SDEs has been established in [30, 21, 12, 10] and references therein. Zhao-

Zheng [35] and Feng-Zhao-Zhou [15] studied the existence of the so-called random periodic solutions

of (1.2) in the framework of random dynamical systems. As for the convergence, Feng-Zhao-Zhong

investigated in [16] the ergodic property of (1.2) that generalizes the classical ergodic theory of (1.2)

in the autonomous case.

For (1.2) and (1.3) with less regular coefficients, the authors of the present paper adopted PDE

techniques in [22] to show the existence of periodic probability solutions (see Definition 1.1) of (1.3)

under a Lyapunov condition. The uniqueness of periodic probability solutions and the convergence of

solutions of (1.3) remained open.

The main purpose of the present paper is to investigate the uniqueness of periodic probability

solutions of (1.3) as well as the convergence of the solutions of (1.2) and (1.3) when V and G are less

regular. Our study of the convergence issue also gives an alternative approach for the existence of

periodic probability solutions of (1.3) but under stronger conditions than those required in [22]. We

recall from [22] the definition of periodic probability solutions of (1.3). Denote by

L := ∂t + aij∂2
ij + V i∂i

the parabolic operator associated to the dual equation of (1.3).

Definition 1.1 (Periodic probability solution). A Borel measure µ on U × R is called a periodic

probability solution of (1.3) if there exists a family of Borel probability measures (µt)t∈R on U satisfying

µt = µt+T , ∀t ∈ R,

aij , V i ∈ L1
loc(U × R,dµtdt), ∀i, j ∈ {1, . . . , d}

and ∫
R

∫
U
Lφdµtdt = 0, ∀φ ∈ C2,1

0 (U × R),

such that dµ = dµtdt, writing µ = (µt)t∈R in short.

To proceed, dissipative conditions in terms of Lyapunov type of functions are needed. For a

nonnegative function U ∈ CT (U × R), we define for each ρ > 0, the ρ-sublevel set

Ωρ = {(x, t) ∈ U × R : U(x, t) < ρ} ,

and its t-sections

Ωtρ = {x ∈ U : U(x, t) < ρ}, ∀t ∈ R.

From now on, we begin to use some function spaces, which, except the usual ones, are collected in

Table 1 at the end of this section. We define four Lyapunov type of functions as follows.

Definition 1.2. A function U ∈ CT (U × R) is called an unbounded compact function if U ≥ 0 and

there is a sequence {Un}n∈N of open sets in U satisfying

Un ⊂ Un+1 ⊂⊂ U , ∀n ∈ N and U =

∞⋃
n=1

Un
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such that

inf
(U\Un)×R

U →∞ as n→∞. (1.4)

An unbounded compact function U ∈ C2,1
T (U × R) is called

(1) a Lyapunov-like function (with respect to L) if there exist positive constants ρm, C1 and C2

such that

LU ≤ C1U + C2 in (U × R) \ Ωρm ; (1.5)

(2) a Lyapunov function (with respect to L) if there exist positive constants ρm and γ such that

LU ≤ −γ in (U × R) \ Ωρm ; (1.6)

(3) a strong Lyapunov function (with respect to L) if

lim
n→∞

sup
(U\Un)×R

LU = −∞; (1.7)

(4) an exponentially strong Lyapunov function (with respect to L) if there exist positive constants

ρm, C1 and C2 such that

LU ≤ −C1U + C2 in (U × R) \ Ωρm . (1.8)

As the definitions of these Lyapunov type of functions are based on unbounded compact functions,

they are necessarily unbounded. The word “unbounded” often appears in front of these functions in

the literature just to highlight the unboundedness of them. In this paper, we choose to suppress the

word “unbounded” in front of these functions for the sake of simplicity. Whenever no confusion is

caused, we also suppress the phrase “with respect to L”.

To study the uniqueness of periodic probability solutions of (1.3), we make the following assumption.

(H1) For fixed p > d + 2, aij ∈ L∞(R;W 1,p
loc (U)) and V i ∈ Lploc(U × R) for each i, j = 1, . . . , d.

The diffusion matrix A = (aij) is locally uniformly positive definite, that is, for every open set

V ⊂⊂ U , there exist positive constants λV and ΛV such that

λV |ξ|2 ≤ aij(x, t)ξiξj ≤ ΛV |ξ|2, ∀(x, t) ∈ V × R and ξ ∈ Rd. (1.9)

Our result on the uniqueness states as follows.

Theorem A (Uniqueness). Assume (H1). If L admits a Lyapunov-like function, then there exists

at most one periodic probability solution of (1.3).

We remark that the existence of periodic probability solutions of (1.3) is established in [22, Theorem

A] under (H1) and a Lyapunov function. This together with Theorem A gives the following corollary.

Corollary A. Assume (H1). If L admits a Lyapunov function, then there exists a unique periodic

probability solution of (1.3).

Let Mp(U) be the space of all Borel probability measures on U . We recall the definition of global

probability solutions, whose existence and uniqueness are investigated in Subsection 2.2.

Definition 1.3. Let I ⊂ R be an open interval and s ∈ R.

(1) A Borel measure µ on U × I is called a measure solution of (1.3) (in U × I) if there exists a

family of Borel measures (µt)t∈I on U satisfying

aij , V i ∈ L1
loc(U × I,dµtdt), ∀i, j ∈ {1, . . . , d}



CONVERGENCE TO PERIODIC PROBABILITY SOLUTIONS 5

and ∫∫
U×I
Lφdµtdt = 0, ∀φ ∈ C2,1

0 (U × I), (1.10)

such that dµ = dµtdt. In this case, we write µ = (µt)t∈I .

If, in addition, I = (s,∞) and µt(U) ≤ 1 (resp. µt(U) = 1) for a.e. t ∈ I, then µ is called

a global sub-probability solution (resp. global probability solution) of (1.3).

(2) Let I = (s, t0) for some t0 ∈ (s,∞]. A measure solution µ = (µt)t∈I of (1.3) is said to satisfy

the initial condition

µs = ν ∈Mp(U) (1.11)

if for each φ ∈ C∞c (U), there is a set Jφ ⊂ I satisfying |I \ Jφ| = 0 such that

lim
Jφ3t→s

∫
U
φdµt =

∫
U
φdν. (1.12)

In this case, µ = (µt)t∈I is simply called a measure solution of the Cauchy problem (1.3)-

(1.11).

If, in addition, I = (s,∞) and µ = (µt)t∈(s,∞) is a global sub-probability solution (resp.

global probability solution) of (1.3), then µ is called a global sub-probability solution (resp.

global probability solution) of the Cauchy problem (1.3)-(1.11).

We prove three results on the convergence of global probability solutions of the Cauchy problem

(1.3)-(1.11) to periodic probability solutions. To state the first one, we make the following assumptions

on A and V .

(H2) aij , V i ∈ C(U × R) for each i, j = 1, . . . , d.

Theorem B (Convergence in Mean). Assume (H2) and that L admits a strong Lyapunov func-

tion U . Let µ = (µt)t∈(s,∞) be a global probability solution of the Cauchy problem (1.3)-(1.11) with∫
U U(·, s)dν < ∞. Then for any sequence of positive integers {nj}j∈N with limj→∞ nj = ∞, there

exists a subsequence, still denoted by {nj}j∈N, and a periodic probability solution µ̃ = (µ̃t)t∈R of (1.3)

such that

(1) for each bounded φ ∈ CT (U × R), there holds

lim
j→∞

1

njT

∫ t+njT

t

∫
U
φdµτdτ =

1

T

∫ T

0

∫
U
φdµ̃τdτ, ∀t ≥ s, (1.13)

(2) for each ψ ∈ C2
c (U), there holds

lim
j→∞

1

nj

nj−1∑
k=0

∫
U
ψdµt+kT =

∫
U
ψdµ̃t, for a.e. t > s. (1.14)

In particular, if (1.3) admits a unique periodic probability solution µ̃ = (µ̃t)t∈R, then (1.13) and (1.14)

hold for the whole sequence N.

Under the conditions of Theorem B, the diffusion matrix A is allowed to be degenerate in U , in

which case the FPE (1.3) can admit multiple periodic probability solutions. This is why the main part

in the statement of Theorem B only asserts the average attractiveness of global probability solutions

of the Cauchy problem (1.3)-(1.11) by the set of periodic probability solutions of (1.3). If we assume,

in addition, that A is locally uniformly positive definite as in (H1), then Theorem A guarantees the

validity of the “In particular” part in the statement of Theorem B. The same results can be established
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under slightly weaker conditions on the coefficients. As the proof is almost the same, we state the

results in the next corollary, which is our second result on the convergence.

Corollary B. Assume (H1) and that L admits a strong Lyapunov function U . Then for any global

probability solution µ = (µt)t∈(s,∞) of the Cauchy problem (1.3)-(1.11) with
∫
U U(·, s)dν < ∞, there

holds for any ψ ∈ Cb(U)

lim
n→∞

1

n

n−1∑
k=0

∫
U
ψdµt+kT =

∫
U
ψdµ̃t, ∀t ∈ (s, s+ T ], (1.15)

where µ̃ = (µ̃t)t∈R is the unique periodic probability solution of (1.3).

Compared to (1.14), the convergence (1.15) holds for a larger class of test functions. This is

because the assumption (H1) (more precisely, the locally uniform positive definiteness of A in (H1))

ensures the existence of the continuous density of a global probability solution µ = (µt)t∈(s,∞), which

guarantees the continuity of the function t 7→
∫
U φdµt on (s,∞) for each φ ∈ Cb(U), while under the

conditions in the statement of Theorem B, the continuity of the function t 7→
∫
U φdµt on (s,∞) is

only obtained when φ ∈ C2
c (U).

Conclusions in Theorem B and Corollary B can be regarded as weak forms of Birkhoff’s ergodic

theorem. Moreover, their proofs do not require the standard semi-flow property that plays essential

roles in the proof of the classical ergodic theorem for measure-preserving dynamical systems and

Markov processes. Indeed, under the assumption (H1) or (H2), the uniqueness of solutions of the

Cauchy problem (1.3)-(1.11) is unknown. Even if we assume the uniqueness, they are only known

to generate a semi-flow under the weak*-topology. Such weak ergodic theorems without semi-flow

property can potentially serve as theoretical foundations for the evolution of practical systems that

are often too complicated to admit the standard semi-flow property or get it tested.

Our third convergence result concerns the exponential convergence of global probability solutions of

the Cauchy problem (1.3)-(1.11) to periodic probability solutions under exponentially strong Lyapunov

functions. This requires Lipschitz conditions on A = (aij) as follows.

(H3) For each i, j = 1, . . . , d, the entry aij is locally Lipschitz in x, that is, for each open set V ⊂⊂ U ,

there is a LV > 0 such that∣∣aij(x1, t)− aij(x2, t)
∣∣ ≤ LV |x1 − x2|, ∀x1, x2 ∈ V and a.e. t ∈ R. (1.16)

Theorem C (Exponential convergence). Assume (H1) and (H3). Suppose L admits an exponentially

strong Lyapunov function U . Then, there exist positive constants C1 and C2 such that for any global

probability solution µ = (µt)t∈(s,∞) of the Cauchy problem (1.3)-(1.11) with
∫
U U(·, s)dν < ∞, there

holds

‖µt − µ̃t‖TV ≤ C1e
−C2(t−s), ∀t > s,

where µ̃ = (µ̃t)t∈R is the unique periodic probability solution of (1.3) and ‖ · ‖TV denotes the total

variation norm.

An important piece in the proof of Theorem C is the construction of the transition probability

densities p(s, x, t, y) for s < t and x, y ∈ U associated to the global probability solutions of the Cauchy

problem (1.3)-(1.11) (see Subsection 5.1). This benefits from the assumption (H3), which together

with the assumption (H1), ensures the existence, regularity and uniqueness of global probability solu-

tions of the Cauchy problem (1.3)-(1.11) (see Theorem 2.3). Consequently, the transition probability
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Table 1. Notations

I ⊂ R An interval

Cc(U) The space of compactly supported continuous functions on U
Cb(U) The space of bounded continuous functions on U
C2
c (U)/C∞c (U) Cc(U) ∩ C2(U)/Cc(U) ∩ C∞(U)

C0(U × I) The space of compactly supported continuous functions on U × I
Cc(U × I) The space of continuous functions u : U×I → R such that u(t, ·) ∈ Cc(U)

for each t ∈ I
CT (U × R) The space of T -periodic and continuous functions on U × R
C2,1(U × I) The space of continuous functions that is twice continuously differen-

tiable in x and continuously differentiable in t

C2,1
c (U × I) C2,1(U × I) ∩ Cc(U × I)

C2,1
T (U × R) C2,1(U × R) ∩ CT (U × R)

C2,1
0 (U × I) The space of functions in C2,1(U × I) with compact support in U × I

L∞(R;W 1,p
loc (U)) The space of measurable functions u : U × R → R such that u(t, ·) ∈

W 1,p
loc (U) for a.e. t ∈ R and for each subdomain Ω ⊂⊂ U , the function

t 7→ ‖u(t, ·)‖W 1,p(Ω) is essentially bounded

densities can be defined and shown to satisfy expected properties resulting in the applicability of

classical arguments leading to the exponential convergence.

It is worthwhile to point out that our approaches for the convergence are different from those

in [23] for the autonomous case that are based on the sophisticated theory of generalized Markov

semigroups associated to stationary measures developed in [9]. In fact, it is unclear whether there is

an analogous theory of generalized Markov semigroups associated to periodic probability solutions.

Any progress along this direction would be helpful for improving the convergence results in Theorem

B and Corollary B.

In this paper, we also consider three applications of Theorem B, Corollary B and Theorem C

as follows. (i) For a class of stochastic damping Hamiltonian systems, strong Lyapunov functions

are constructed to ensure the convergence of global probability solutions of the associated FPEs as

stated in Theorem B. (ii) For a class of stochastic slow-fast systems with very strong dissipative

properties along the fast directions and non-degenerate noises only along the slow directions, we show

the existence and uniqueness of periodic probability solutions as well as the convergence of global

probability solutions of the associated FPEs under Lyapunv conditions along the slow directions.

(iii) For a SDE with less regular coefficients, we show that the distributions of their globally defined

weak solutions are global probability solutions of the associated FPE, and hence, under appropriate

Lyapunov conditions, the convergence of globally defined weak solutions are established as simple

consequences of our convergence results. The details of these applications are given in Section 6.

The rest of the paper is organized as follows. In Section 2, we recall some basic facts including

in particular equivalent formalisms of global probability solutions of the Cauchy problem (1.3)-(1.11)

and the regularity theory of measure solutions of (1.3), and prove the global well-posedness of the

Cauchy problem (1.3)-(1.11). In Section 3, we study the uniqueness of periodic probability solutions of

(1.3) with non-degenerate noises and prove Theorem A. We study the convergence of global probability

solutions of the Cauchy problem (1.3)-(1.11) in Section 4 and Section 5. In particular, Theorem B and
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Theorem C are respectively proven in Section 4 and Section 5. The proof of Corollary B is sketched

out at the end of Subsection 4.2. Some applications of our convergence results, namely, Theorem B,

Corollary B and Theorem C, are presented in Section 6. In Appendix A, the proof of a technical

inequality is given.

2. Preliminaries

In Subsection 2.1, we present some equivalent formalisms of measure solutions, given in Definition

1.3, of (1.3) or the Cauchy problem (1.3)-(1.11), and recall the regularity theory. In Subsection 2.2,

we present some results on the global well-posedness of the Cauchy problem (1.3)-(1.11).

2.1. Measure solutions and regularity. Arguing as in [6, Proposition 6.1.2] and [8, Lemma 1.1],

the following equivalent formalisms hold for (1.10) or (1.10)-(1.12) in U × I, where I ⊂ R is an open

interval.

Lemma 2.1. Let (µt)t∈I be a family of Borel measures such that aij, V i ∈ L1
loc(U × I,dµtdt) for all

i, j = 1, . . . , d.

(1) The following statements are equivalent to (1.10).

(a) For each φ ∈ C2
c (U), there is a set Jφ ⊂ I satisfying |I \ Jφ| = 0 such that∫

U
φdµt =

∫
U
φdµr +

∫ t

r

∫
U
Lφdµτdτ, ∀r, t ∈ Jφ with r < t.

(b) For each φ ∈ C2,1
c (U × I), there is a set Jφ ⊂ I satisfying |I \ Jφ| = 0 such that∫

U
φ(·, t)dµt =

∫
U
φ(·, r)dµr +

∫ t

r

∫
U
Lφdµτdτ, ∀r, t ∈ Jφ with r < t.

(2) Let I = (s, t0) for some −∞ < s < t0 ≤ ∞ The following statements are equivalent to

(1.10)-(1.12).

(a) For each φ ∈ C2
c (U), there is a set Jφ ⊂ I satisfying |I \ Jφ| = 0 such that∫

U
φdµt =

∫
U
φdν + lim

Jφ3r→s

∫ t

r

∫
U
Lφdµτdτ, ∀t ∈ Jφ, (2.1)

(b) For each φ ∈ C2,1
c (U × [s, t0)), there is a set Jφ ⊂ I satisfying |I \ Jφ| = 0 such that∫

U
φ(·, t)dµt =

∫
U
φ(·, s)dν + lim

Jφ3r→s

∫ t

r

∫
U
Lφdµτdτ, ∀t ∈ Jφ.

Lemma 2.2. Let (µt)t∈I be as in Lemma 2.1. If the function t 7→
∫
U φdµt is continuous on I for

any φ ∈ C2
c (U), then Jφ can be taken to be I in each case of Lemma 2.1.

Proof. We only show the case in Corollary (2)(a); the other cases can be proven in the same manner.

For fixed φ ∈ C2
c (U), it is clear that the function (r, t) 7→

∫ t
r

∫
U Lφdµτdτ is continuous on {(r, t) ∈

I2 : r < t}. Fix t∗ ∈ I \ Jφ. There is a sequence {tn}n∈N ⊂ Jφ such that tn → t∗ as n→∞. Setting

t = tn in (2.1) and letting n→∞, we see that (2.1) holds for t = t∗.

It remains to show for each fixed t ∈ I, there holds the limit

lim
r→s

∫ t

r

∫
U
Lφdµτdτ =

∫
U
φdµt −

∫
U
φdν =: At.
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Clearly, the above limit is the case if r takes values in Jφ. If the above limit is not the case, then there

exists an ε0 > 0 and a sequence {rn}n∈N in I \ Jφ satisfying rn → s as n→∞ such that∣∣∣∣∫ t

rn

∫
U
Lφdµτdτ −At

∣∣∣∣ > ε0, ∀n� 1.

By the continuity of r 7→
∫ t
r

∫
U Lφdµτdτ and the density of Jφ in I, we find a sequence {r̃n}n∈N ⊂ Jφ

satisfying r̃n → s as n→∞ such that∣∣∣∣∫ t

r̃n

∫
U
Lφdµτdτ −At

∣∣∣∣ > ε0
2
, ∀n� 1,

which leads to a contradiction. This proves (2)(a). �

Now, we recall the regularity theory of measure solutions of (1.3) in U × I. Recall p > d+ 2. Let

H1,p
0 (U ×I) be the space of measurable functions u on U ×I such that u(·, t) ∈W 1,p

0 (U) for a.e. t ∈ I
and the function t 7→ ‖u(t, ·)‖W 1,p

0 (U) lies in Lp(I). Let H−1,p′(U×I) be the dual space of H1,p
0 (U×I),

where p′ > 1 is such that 1
p + 1

p′ = 1.

Let H1,p
loc(U × I) be the space of measurable functions u on U × I such that ηu ∈ H1,p

0 (U × I) and

∂t(ηu) ∈ H−1,p(U × I) for each η ∈ C∞0 (Rd+1). By [6, Theorem 6.2.2], there exist α > 1
p and γ > 0,

depending only on d and p, such that H1,p
loc(U × I) is continuously embedded into Cα−

1
p (I, Cγ(U)).

Here, Cα(I, Cγ(U)) denotes the space of all continuous functions u : U × I → R such that u(t, ·) ∈
Cγ(U) for all t ∈ I and for each subdomain Ω ⊂⊂ U , the function t 7→ |u(t, ·)|Cγ(Ω) lies in Cα(I).

Theorem 2.1 ([4, 6]). Assume (H1). Let µ = (µt)t∈I be a measure solution of (1.3). Then, µ

admits a positive density u ∈ H1,p
loc(U × I). Moreover, for closed intervals [s1, t1] ⊂⊂ [s2, t2] ⊂ I and

open subsets W ⊂⊂ W1 ⊂⊂ U , there exist α > 1
p , γ > 0 and N > 0, independent of µ or u, such that

‖u‖
C
α− 1

p ((s1,t1),Cγ(W))
≤ N

∫ t2

s2

µτ (W1)dτ. (2.2)

2.2. Global well-posedness. The following result on the existence of global probability solutions of

the Cauchy problem (1.3)-(1.11) is taken from [28].

Theorem 2.2 ([28]). Assume (H1) or (H2). Suppose L admits a Lyapunov-like function. Then,

the Cauchy problem (1.3)-(1.11) admits a global probability solution µ = (µt)t∈(s,∞). Moreover, under

(H1), µ admits a density in Cα((s,∞), Cγ(U)) for some α > 1
p and γ > 0.

We prove a uniqueness result.

Theorem 2.3. Assume (H1) and (H3). Suppose L admit a Lyapunov-like function. Then, the

Cauchy problem (1.3)-(1.11) admits a unique (in the class of global sub-probability solutions) global

probability solution.

Proof. Let µ1 = (µ1
t )t∈(s,∞) and µ2 = (µ2

t )t∈(s,∞) be respectively a global probability solution and a

global sub-probability solution of the Cauchy problem (1.3)-(1.11). Applying Theorem 2.1, we may

assume that for each i = 1, 2, µi admits a positive density ρi ∈ C(U × (s,∞)). We show that ρ1 = ρ2.

Setting w := ρ2
ρ1

, it is equivalent to prove w ≡ 1 on U × (s,∞).
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Define fλ(t) := eλ(1−t)− eλ for t ≥ 0, where λ > 0 is a parameter. Following the main ideas of [34,

Lemma 2.2], we deduce that for any non-negative function φ ∈ C2,1
c (U × R) there holds∫

U
fλ(w)φdµ1

t ≤ fλ(1)

∫
U
φdν +

∫ t

s

∫
U
fλ(w)Lφdµ1

τdτ, ∀t > s. (2.3)

As the proof of (2.3) is relatively independent and long, we include it in Appendix A for the sake of

readability and completeness.

Let U be the Lyapunov-like function as in (1.5). Fix ρ0 > ρm. We introduce a smooth and

non-decreasing function θ satisfying

θ(t) =

{
0, t ∈ [0, ρm],

t, t ∈ [ρ0,∞).
(2.4)

By the definition of θ, it is easy to find a C̄ > 0 such that tθ′(t) ≤ C̄θ(t) for t ≥ 0. Since θ′′ 6≡ 0 on

[ρm, ρ0] and θ′′ = 0 otherwise, we find from (1.5) and (1.9) that there exist C̃1, C̃2 > 0 such that

Lθ(U) = θ′(U)LU + θ′′(U)aij∂iU∂jU

≤ θ′(U)(C1U + C2) + ΛΩρ0
|θ′′|∞max

Ωρ0

|∇U |2

≤ C̃1θ(U) + C̃2 in U × R.

Hence, we find a new Lyapunov-like function Ũ := θ(U) whose Lyapunov condition holds on the whole

space. This allows us to proceed as in [28, Theorem 3.5].

Let ζ ∈ C∞c ([0,∞)) satisfy

ζ(0) = 1, ζ = 0 on [1,∞), ζ ′ ≤ 0 and ζ ′′ ≥ 0.

It is clear that ζ( ŨN ) ∈ C2,1
c (U × (s,∞)) for N � 1. Setting φ = ζ( ŨN ) in (2.3), we arrive at∫

U
fλ(w)ζ

(
Ũ

N

)
dµ1

t ≤ fλ(1)

∫
U
ζ

(
Ũ

N

)
dν +

∫ t

s

∫
U
fλ(w)Lζ

(
Ũ

N

)
dµ1

τdτ

= fλ(1)

∫
U
ζ

(
Ũ

N

)
dν +

∫ t

s

∫
U
fλ(w)

1

N
ζ ′

(
Ũ

N

)
LŨdµ1

τdτ

+

∫ t

s

∫
U
fλ(w)

1

N2
ζ ′′

(
Ũ

N

)
aij∂iŨ∂jŨdµ1

τdτ, ∀t > s.

(2.5)

Since fλ ≤ 0, ζ ′′ ≥ 0 and (aij) is positive definite, the last term in (2.5) is non-positive. Thus,∫
U
fλ(w)ζ

(
Ũ

N

)
dµ1

t ≤ fλ(1)

∫
U
ζ

(
Ũ

N

)
dν +

∫ t

s

∫
U
fλ(w)

1

N
ζ ′

(
Ũ

N

)
LŨdµ1

τdτ.

Since LŨ ≤ C̃1Ũ + C̃2, ζ ′ ≤ 0 and fλ ≤ 0, we find∫
U
fλ(w)ζ

(
Ũ

N

)
dµ1

t ≤ fλ(1)

∫
U
ζ

(
Ũ

N

)
dν +

1

N

∫ t

s

∫
U
fλ(w)ζ ′

(
Ũ

N

)[
C̃1Ũ + C̃2

]
dµ1

τdτ.

It follows from ζ ′(t) = 0 for t ≥ 1 and |fλ| ≤ eλ that∫
U
fλ(w)ζ

(
Ũ

N

)
dµ1

t ≤ fλ(1)

∫
U
ζ

(
Ũ

N

)
dν +

C3

N

∫ t

s

∫
{0≤Ũ≤N}

[
C̃1Ũ + C̃2

]
dµ1

τdτ, (2.6)
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where C3 = eλ|ζ ′|∞.

Applying the dominated convergence theorem, we find

lim
N→+∞

1

N

∫ t

s

∫
{0≤Ũ≤N}

[
C̃1Ũ + C̃2

]
dµ1

τdτ = 0.

Since limN→∞ ζ( tN ) = 1 for each t ∈ [0,∞), we pass to the limit N → ∞ in (2.6) to find from the

dominated convergence theorem that
∫
U fλ(w)dµ1

t ≤ fλ(1) for all t > s, namely,∫
U

[
eλ(1−w) − eλ

]
dµ1

t ≤ (1− eλ), ∀t > s.

Since µ1 is a global probability solution of the Cauchy problem (1.3)-(1.11) so that µ1
t (U) = 1 for all

t > s, we deduce ∫
U
eλ(1−w)dµ1

t ≤ 1, ∀t > s. (2.7)

For fixed t ∈ R, if there exists an a ∈ (0, 1) such that

µ1
t ({x ∈ U : 0 < w(x, t) < a}) > 0,

then ∫
{x∈U :0<w(x,t)<a}

eλ(1−a)dµ1
t ≤

∫
U
eλ(1−w)dµ1

t ≤ 1.

Letting λ→∞, the left hand side in the above inequality approaches∞, giving rise to a contradiction.

Thus w(x, t) ≥ 1 for µ1
t -a.e. x ∈ U . As µ1 has a pointwise positive density ρ1 and w on continuous in

U × (s,∞), then w(x, t) ≥ 1 for all (x, t) ∈ U × (s,∞). If w 6≡ 1, we integrate the equality wρ1 = ρ2

to find

T <

∫ T

0

∫
U
w(x, t)ρ1(x, t)dxdt =

∫ T

0

∫
U
ρ2(x, t)dxdt ≤ T,

which leads to a contradiction. �

3. Proof of Theorem A

Throughout this section, we assume (H1). Let µ1 and µ2 be two periodic probability solutions

of (1.3). By Theorem 2.1, for each i = 1, 2, µi admits a positive and T -periodic density ρi ∈
H1,p
loc(U ×R)∩Cα−

1
p (R, Cγ(U)) for some α > 1

p and γ > 0. To show µ1 = µ2, it suffices to prove that

w := ρ2
ρ1
≡ 1.

Define f(t) := e1−t − e for t ∈ [0,∞) and

η(x) =

{
cde
− 1

1−|x|2 , if |x| ≤ 1,

0, if |x| > 1,

where cd > 0 is such that
∫
Rd ηdx = 1. It is well-known that η ∈ C∞c (Rd). Let ηε(x) := 1

εd
η(xε ) for

x ∈ Rd and 0 < ε� 1. For a T -periodic measurable function g on U × R, we define

gε(x, t) :=

∫
{y∈Rd:x−y∈U}

g(x− y, t)ηε(y)dy, (x, t) ∈ U × R. (3.1)

In particular, for each i = 1, 2,

ρi,ε(x, t) =

∫
{y∈Rd:x−y∈U}

ρi(x− y, t)ηε(y)dy, (x, t) ∈ U × R. (3.2)
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Set

wε : =
ρ2,ε

ρ1,ε
, Wε := (V ρ2)ε − (V ρ1)εwε, and

Rkρi,ε : = ∂l(a
klρi)ε − ∂l(aklρi,ε), ∀i = 1, 2 and k = 1, . . . , d.

Lemma 3.1. Both Wε and Rkρi,ε (for each i = 1, 2 and k = 1, . . . , d) converge to 0 in Lploc(U ×R) as

ε→ 0.

Proof. Let K ⊂⊂ U and t > s. We see from the formula (3.1) that there is an εK > 0 such that for

each T -periodic measurable function g on U × R, there holds

gε(x, t) =

∫
Rd
g(x− y, t)ηε(y)dy, (x, t) ∈ K × R and ε ∈ (0, εK).

Then, it follows from definitions of Wε and w that for each ε ∈ (0, εK), there holds

Wε(x, t) =

∫
Rd
V (x− y, t)ρ2(x− y, t)ηε(y)dy −

∫
Rd
V (x− y, t)ρ1(x− y, t)ηε(y)dywε(x, t)

=

∫
Rd
V (x− y, t)ρ1(x− y, t)ηε(y) [w(x− y, t)− wε(x, t)] dy, ∀(x, t) ∈ K × R.

Since w ∈ CT (U × R), we see that for any 0 < δ � 1, there is an ε0 = ε0(δ) ∈ (0, εK) such that

Kε0 := {x ∈ U : dist(x,K) < ε0} ⊂⊂ U ,

sup
|y|≤ε0

sup
(x,t)∈K×R

|w(x− y, t)− w(x, t)| < δ

2
, and

sup
(x,t)∈K×R

|w(x, t)− wε(x, t)| <
δ

2
, ∀ε ∈ (0, ε0).

It follows that

sup
|y|≤ε0

sup
(x,t)∈K×R

|w(x− y, t)− wε(x, t)| < δ, ∀ε ∈ (0, ε0).

This together with Hölder’s inequality yields∫ t

s

∫
K
|Wε|pdxdτ ≤ δp

∫ t

s

∫
K

∣∣∣∣∫
Rd
V (x− y, τ)ρ1(x− y, τ)ηε(y)dy

∣∣∣∣p dxdτ

≤ δp
∫ t

s

∫
K

[(∫
Rd
|V (x− y, τ)|pρp1(x− y, τ)ηε(y)dy

)(∫
Rd

1p
′
ηε(y)dy

) p
p′
]

dxdτ

= δp
∫ t

s

∫
K

∫
Rd
|V (x− y, τ)|pρp1(x− y, τ)ηε(y)dydxdτ, ∀ε ∈ (0, ε0).

A simple change of variable gives∫ t

s

∫
K
|Wε|pdxdτ ≤ δp

∫ t

s

∫
K

∫
Kε0
|V (z, τ)|pρp1(z, τ)ηε(x− z)dzdxdτ

≤ δp
∫ t

s

∫
Kε0
|V (z, τ)|pρp1(z, τ)

(∫
Rd
ηε(x− z)dx

)
dzdτ

≤ δp
(

sup
Kε0×R

ρp1

)∫ t

s

∫
Kε0
|V |pdzdτ, ∀ε ∈ (0, ε0),

where we used Fubini’s theorem in the second inequality. Hence, limε→0 ‖Wε‖Lp(K×[s,t]) = 0.
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Now, we deal with Rkρi,ε. Note that for ε ∈ (0, εK),

Rkρi,ε(x, t) = ∂l

∫
Rd
akl(x− y, t)ρi(x− y, t)ηε(y)dy − ∂l

∫
Rd
akl(x, t)ρi(x− y, t)ηε(y)dy

=

∫
Rd

[
∂la

kl(x− y, t)− ∂lakl(x, t)
]
ρi(x− y, t)ηε(y)dy

−
∫
Rd

(
akl(x− y, t)− akl(x, t)

)
∂lρi(x− y, t)ηε(y)dy, (x, t) ∈ K × R.

Since akl ∈ L∞(R,W 1,p
loc (U)) is T -periodic for each k, l = 1, . . . , d, we find

sup
|y|≤ε

∫ t

s

∫
K

∣∣∂lakl(x− y, τ)− ∂lakl(x, τ)
∣∣p dxdτ → 0 as ε→ 0, and (3.3)

sup
|y|≤ε

sup
(x,t)∈K×R

∣∣akl(x− y, t)− akl(x, t)∣∣ ≤ ε1− dp ess sup
t∈R

‖akl(·, t)‖W 1,p(Kε×R) → 0 as ε→ 0, (3.4)

where we used the Sobolev embedding theorem.

Applying Hölder’s inequality and (3.3), we find∫ t

s

∫
K

∣∣∣∣∫
Rd

(
∂la

kl(x− y, τ)− ∂lakl(x, τ)
)
ρi(x− y, τ)ηε(y)dy

∣∣∣∣p dxdτ

≤
∫ t

s

∫
K

[(∫
Rd

∣∣∂lakl(x− y, τ)− ∂lakl(x, τ)
∣∣p ρpi (x− y, τ)ηε(y)dy

)(∫
Rd

1p
′
ηε(y)dy

) p
p′
]

dxdτ

=

∫ t

s

∫
K

∫
Rd

∣∣∂lakl(x− y, τ)− ∂lakl(x, τ)
∣∣p ρpi (x− y, τ)ηε(y)dydxdτ

≤
(

sup
Kε×R

ρpi

)
× sup
|y|≤ε

∫ t

s

∫
K

∣∣∂lakl(x− y, τ)− ∂lakl(x, τ)
∣∣p dxdτ ×

∫
Rd
ηε(y)dy

=

(
sup
Kε×R

ρpi

)
× sup
|y|≤ε

∫ t

s

∫
K

∣∣∂lakl(x− y, τ)− ∂lakl(x, τ)
∣∣p dxdτ → 0 as ε→ 0.

(3.5)

Applying Hölder’s inequality, a change of variable and (3.4), we find∫ t

s

∫
K

∣∣∣∣∫
Rd

(
akl(x− y, τ)− akl(x, τ)

)
∂lρi(x− y, τ)ηε(y)dy

∣∣∣∣p dxdτ

≤
∫ t

s

∫
K

∫
Rd

∣∣akl(x− y, τ)− akl(x, τ)
∣∣p |∂lρi(x− y, τ)|pηε(y)dydxdτ

≤ sup
|y|≤ε

sup
(x,τ)∈K×R

∣∣akl(x− y, τ)− akl(x, τ)
∣∣p × ∫ t

s

∫
K

∫
Rd
|∂lρi(x− y, t)|pηε(y)dxdτ

≤ sup
|y|≤ε

sup
(x,τ)∈K×R

∣∣akl(x− y, τ)− akl(x, τ)
∣∣p × ∫ t

s

∫
Kε
|∂lρi(z, t)|p

(∫
Rd
ηε(x− z)dx

)
dzdτ

≤ εp−d ess sup
t∈R

‖akl(·, t)‖pW 1,p(Kε×R) ×
∫ t

s

∫
Kε
|∂lρi|pdxdτ

→ 0 as ε→ 0,

(3.6)

where the Lp-integrability of ∂lρi (for each l = 1, . . . , d and i = 1, 2) on Kε × [s, t] follows from

ρi ∈ H1,p
loc(U × R) for i = 1, 2.
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It follows from (3.5) and (3.6) that limε→0 ‖Rkρi,ε‖Lp(K×[s,t]) = 0. This completes the proof. �

Next, we show an inequality for w. Set

C2,1
c,T (U × R) := C2,1

c (U × R) ∩ C2,1
T (U × R).

Lemma 3.2. There is a C > 0 such that for each non-negative function φ ∈ C2,1
c,T (U ×R), there holds∫ t+T

t

∫
U
φf ′′(w)aij∂iw∂jwdµ1

sds ≤ C
∫ t+T

t

∫
U
f(w)Lφdµ1

sds, ∀t ∈ R.

Proof. As the proof follows from similar arguments leading to (2.3), we only point out the differences.

Fix a non-negative function φ ∈ C2,1
c,T (U × R). We see that the inequality (A.7) holds with t1, t2, ψ

and fλ replaced by t, t+ T , φ and f , respectively. That is,∫ t+T

t

∫
U
∂t(f(wε)ρ1,ε)φdxdτ +

∫ t+T

t

∫
Rd
φf ′′(wε)a

kl∂kwε∂lwερ1,εdxdτ

≤
∫ t+T

t

∫
U

[f(wε)ρ1,εa
kl∂klφ+ f(wε)(V

kρ1)ε∂kφ]dxdτ

+ 3δ

∫ t+T

t

∫
U
φf ′′(wε)|∇wε|2ρ1,εdxdτ + Ω(ε, δ), ∀t ∈ R,

(3.7)

where δ > 0 is to be determined and

Ω(ε, δ) = λeλ sup
U×[t,t+T ]

|∇φ|
∫ t+T

t

∫
supp(φ(·,τ))

|Wε|e−λwεdxdτ

+
λ2

4δ
eλ sup
U×[t,t+T ]

|φ|
∫ t+T

t

∫
supp(φ(·,τ))

|Wε|2

ρ1,ε
e−λwεdxdτ

+ λeλ sup
U×[t,t+T ]

|∇φ|
∫ t+T

t

∫
supp(φ(·,τ))

[|Rρ2,ε|+ |Rρ1,ε|(1 + λwε)] e
−λwεdxdτ

+
λ2

4δ
eλ sup
U×[t,t+T ]

|φ|
∫ t+T

t

∫
supp(φ(·,τ))

|Rρ2,ε|2

ρ1,ε
e−λwεdxdτ

+
λ2

4δ
eλ sup
U×[t,t+T ]

|φ|
∫ t+T

t

∫
supp(φ(·,τ))

|Rρ1,ε|2

ρ1,ε
|wε|2e−λwεdxdτ.

It follows from Lemma 3.1 that limε→0 Ω(ε, δ) = 0 for any δ > 0.

From the T -periodicity of w, ρ1,ε and wε, and the Newton-Leibniz formula, we obtain∫ t+T

t

∫
Rd
∂t(f(wε)ρ1,ε)φdxdτ = −

∫ t+T

t

∫
Rd
f(wε)ρ1,ε∂tφdxdτ.

It follows from (3.7) that∫ t+T

t

∫
Rd
φf ′′(w)akl∂kwε∂lwερ1,εdxdτ

≤
∫ t+T

t

∫
U

[f(wε)ρ1,ε(∂tφ+ akl∂klφ) + f(wε)(V
kρ1)ε∂kφ]dxdτ

+ 3δ

∫ t+T

t

∫
U
φf ′′(w)|∇wε|2ρ1,εdxdτ + Ω(ε, δ), ∀t ∈ R,

(3.8)
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Since φ, when restricted on U × [t, t+T ], is compactly supported, and (aij) is locally uniform positive

definite, there exists λ > 0 such that(
akl∂kwε∂lwε

)
(x, τ) ≥ λ|∇wε(x, τ)|2, ∀(x, τ) ∈ supp(φ) ∩ (U × [t, t+ T ]),

which together with the positiveness of f ′′ and φ gives

λ

2

∫ t+T

t

∫
Rd
φf ′′(w)|∇wε|2ρ1,εdxdτ ≤ 1

2

∫ t+T

t

∫
Rd
φf ′′(w)akl∂kwε∂lwερ1,εdxdτ.

Setting δ = λ
6 in (3.8), we use the above inequality to find

1

2

∫ t+T

t

∫
Rd
φf ′′(w)akl∂kwε∂lwερ1,εdxdτ

≤
∫ t+T

t

∫
Rd

[ρ1,εf(wε)(∂tφ+ akl∂klφ) + f(wε)(V
kρ1)ε∂kφ]dxdτ + Ω(ε,

λ

6
), ∀t ∈ R.

The result follows from letting ε→ 0. �

Now, we prove Theorem A.

Proof of Theorem A. Let ζ ∈ C∞ ([0,+∞)) be a non-negative function satisfying

ζ(t) =

{
1, t = 0,

0, t ∈ [1,∞),
ζ ′ ≤ 0 and ζ ′′ ≥ 0.

Let θ be defined as in (2.4). Clearly, Ũ := θ(U) satisfies LŨ ≤ C̃1Ũ + C̃2 for some C̃1, C̃2 > 0. It is

easy to see that ζ( ŨN ) ∈ C2,1
c,T (U × R) for N � 1. Applying Lemma 3.2 with φ := ζ( ŨN ), we find∫ t+T

t

∫
U
ζ

(
Ũ

N

)
f ′′(w)aij∂iw∂jwdµ1

sds

≤ C
∫ t+T

t

∫
U
f(w)Lζ

(
Ũ

N

)
dµ1

sds

= C

∫ t+T

t

∫
U
f(w)

[
ζ ′′

(
Ũ

N

)
1

N2
aij∂iŨ∂jŨ + ζ ′

(
Ũ

N

)
1

N
LŨ

]
dµ1

sds, ∀t ∈ R.

Since (aij) is positive definite, f < 0 and ζ ′′ ≥ 0, the term
∫ t+T
t

∫
U f(w)ζ ′′

(
Ũ
N

)
1
N2 a

ij∂iŨ∂jŨdµ1
sds

is non-positive. As a result,∫ t+T

t

∫
U
ζ

(
Ũ

N

)
f ′′(w)aij∂iw∂jwdµ1

sds ≤
C

N

∫ t+T

t

∫
U
f(w)ζ ′

(
Ũ

N

)
LŨdµ1

sds.

Using LŨ ≤ C̃Ũ + C̃2 and |f | ≤ e, we find

0 ≤
∫ t+T

t

∫
U
ζ

(
Ũ

N

)
f ′′(w)aij∂iw∂jwdµ1

sds

≤ Ce

N
|ζ ′|∞

∫ t+T

t

∫
{(x,s):Ũ(x,s))≤N}

(
C̃1Ũ + C̃2

)
dµ1

sds, ∀t ∈ R.
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Letting N →∞ in the above inequality, we conclude from f ′′(t) = e1−t and the dominated convergence

theorem that ∫ t+T

t

∫
U
e1−waij∂iw∂jwρ1dxdt = 0, ∀t ∈ R.

Since (aij) is locally uniformly positive definite, we conclude that ∇w = 0 a.e. on U × R, which

together with the continuity of w implies that w(·, t) ≡ const for t ∈ R. As w = ρ2
ρ1

and both ρ1(·, t)
and ρ2(·, t) are continuous probability densities for each t ∈ R, there must hold w ≡ 1. This completes

the proof. �

4. Proof of Theorem B

In Subsection 4.1, we establish an estimate for global probability solutions of the Cauchy problem

(1.3)-(1.11). It is then applied to prove Theorem B in Subsection 4.2.

4.1. An estimate. We first prove the following result on the time regularity of global sub-probability

solutions of (1.3). It is indeed a variation of a classical result (see [2, Lemma 8.1.2]). However, there

is no global integrability of aij and V i in our case.

Definition 4.1. Let I be an interval and µ = (µt)t∈I be a family of Borel measures on U . A

continuous modification of µ is a family of Borel measures µ̃ = (µ̃t)t∈I on U satisfying the property:

∀φ ∈ C2,1
c (U × I), the function t 7→

∫
U
φ(·, t)dµ̃t is continuous on I,

such that µt = µ̃t for a.e. t ∈ I.

Lemma 4.1. Let I be an interval and µ = (µt)t∈I be a family of Borel measures on U . Then there

exists at most one continuous modification of µ.

Proof. Suppose both µ̃1 = (µ̃1
t )t∈I and µ̃2 = (µ̃2

t )t∈I are continuous modifications of µ = (µt)t∈I .

By Definition 4.1, µ̃1
t = µ̃2

t for a.e. t ∈ R and for each φ ∈ C2
c (U), the functions t 7→

∫
U φdµ̃1

t and

t 7→
∫
U φdµ̃2

t are continuous on I. It follows that for each φ ∈ C2
c (U), there holds∫

U
φdµ̃1

t =

∫
U
φdµ̃2

t , ∀t ∈ I.

This implies that µ̃1
t = µ̃2

t for all t ∈ I. �

Lemma 4.2. Assume (H2). Let µ = (µt)t∈(s,∞) be a global sub-probability solution of (1.3). Then

µ admits a unique continuous modification.

Proof. By Lemma 4.1, we only need to show the existence. We first show that there exists a family

of sub-probability measures (µ̃t)t∈(s,∞) on U satisfying the property:

∀φ ∈ C2
c (U), the function t 7→

∫
U
φdµ̃t is continuous on (s,∞),

such that µ̃t = µt for a.e. t ∈ (s,∞).

As µ = (µt)t∈(s,∞) is a sub-probability solution of (1.3), we see from Lemma 2.1 (1)(a) that for

any φ ∈ C2
c (U), there exists a set Jφ ⊂ (s,∞) satisfying |(s,∞) \ Jφ| = 0 such that∫

U
φdµt =

∫
U
φdµr +

∫ t

r

∫
U
Lφdµτdτ, ∀r, t ∈ Jφ with r < t. (4.1)
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For each φ ∈ C2
c (U), we define a function fφ on Jφ by setting

fφ(t) :=

∫
U
φdµt, t ∈ Jφ.

Since aij and V i are locally bounded and T -periodic for each i, j = 1, . . . , d, and φ is compactly

supported in U , the boundedness of Lφ follows. As a result, we have

|fφ(t)− fφ(r)| =
∣∣∣∣∫
U
φdµt −

∫
U
φdµr

∣∣∣∣
=

∣∣∣∣∫ t

r

∫
U
Lφdµτdτ

∣∣∣∣
≤ max
U×[r,t]

|Lφ| × (t− r), ∀r, t ∈ Jφ with r < t.

It follows that there exists a locally Lipschitz continuous function f̃φ on (s,∞) such that f̃φ(t) = fφ(t)

for t ∈ Jφ. Obviously, f̃φ ≥ 0 if φ ≥ 0 and |f̃φ(t)| ≤ |φ|∞ for φ ∈ C2
c (U) and t ∈ (s,∞).

For each t ∈ [s,∞), we define a functional as follows:

Kt : C2
c (U)→ R, φ 7→ f̃φ(t).

Obviously, Kt is linear, positive and |Ktφ| ≤ |φ|∞. As C2
c (U) is dense in Cc(U) under the topology

of uniform convergence on U , Kt has a unique linear continuous extension Kt onto Cc(U) satisfying

Ktφ = Ktφ for all φ ∈ C2
c (U). We see that Kt is positive. In fact, for any non-negative function φ ∈

Cc(U), there exists a sequence of non-negative functions {φn}n∈N ⊂ C2
c (U) that converges uniformly

to φ on U . Therefore,

Ktφ = lim
n→∞

Ktφn = lim
n→∞

f̃φn(t) ≥ 0.

Applying the Riesz representation theorem, we find a Borel measure µ̃t on U such that∫
U
φdµ̃t = Ktφ, ∀φ ∈ Cc(U).

As a consequence, we obtain a family of Borel measures (µ̃t)t∈(s,∞) on U satisfying∫
U
φdµ̃t = f̃φ(t), ∀t ∈ (s,∞) and φ ∈ C2

c (U).

In particular, the function t 7→
∫
U φdµ̃t is continuous on (s,∞) for any φ ∈ C2

c (U).

Let D be a countable basis of C2
c (U) under the topology of uniform convergence on U and set

J := ∩φ∈DJφ. Cleary, |(s,∞) \ J | = 0 and∫
U
φdµ̃t = f̃φ(t) = fφ(t) =

∫
U
φdµt, ∀φ ∈ D and t ∈ J. (4.2)

As C2
c (U) is dense in Cc(U) and D is dense in C2

c (U), (4.2) holds for all φ ∈ Cc(U) and t ∈ J . Hence,

µ̃t = µt and µ̃t(U) = µt(U) ≤ 1 for all t ∈ J . From the continuity of the function t 7→
∫
U φdµ̃t on

(s,∞) for each φ ∈ C2
c (U), we conclude that µ̃t(U) ≤ 1 for all t ∈ (s,∞).

It remains to show that for each φ ∈ C2,1
c (U × (s,∞)), the function t 7→

∫
U φ(·, t)dµt is continuous

on (s,∞). For fixed t ∈ (s,∞) and φ ∈ C2,1
c (U × (s,∞)), the local Lipschitz continuity of f̃φ(·,t) on

(s,∞) implies that∣∣∣∣∫
U
φ(·, t)dµ̃r −

∫
U
φ(·, t)dµ̃t

∣∣∣∣ =
∣∣∣f̃φ(·,t)(r)− f̃φ(·,t)(t)

∣∣∣→ 0 as r → t.
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It follows that∣∣∣∣∫
U
φ(·, r)dµ̃r −

∫
U
φ(·, t)dµ̃t

∣∣∣∣ ≤ ∫
U
|φ(·, r)− φ(·, t)|dµ̃r +

∣∣∣∣∫
U
φ(·, t)dµ̃r −

∫
U
φ(·, t)dµ̃t

∣∣∣∣
≤ max

x∈U
|φ(x, r)− φ(x, t)|+

∣∣∣∣∫
U
φ(·, t)dµ̃r −

∫
U
φ(·, t)dµ̃t

∣∣∣∣
→ 0 as r → t.

This proves the required continuity, and hence, completes the proof. �

A similar result can be proven for global sub-probability solutions of the Cauchy problem (1.3)-

(1.11).

Lemma 4.3. Assume (H2). Let µ = (µt)t∈(s,∞) be a global sub-probability solution of the Cauchy

problem (1.3)-(1.11). Then µ admits a continuous modification µ̃ = (µ̃t)t∈R satisfying:

lim
t→s+

∫
U
φ(·, t)dµ̃t =

∫
U
φ(·, t)dν.

Proof. The proof follows from arguments as in the proof of Lemma 4.1. The differences are that

we use Lemma 2.1 (2)(a) instead of Lemma 2.1 (1)(a) and define f̃φ on [s,∞) for φ ∈ C2
c (U) with

µs = ν. �

Remark 4.1. If µ is a global sub-probability solution of (1.3) or a global sub-probability solution of

the Cauchy problem (1.3)-(1.11), so is its continuous modification µ̃. Moreover, Lemma 2.2 applies

in particular to µ̃. This would allow us to get rid of Jφ in many situations in the sequel.

The expected estimate is stated in the next result.

Proposition 4.1. Assume (H2) and that L admits a strong Lyapunov function U . Let {Un}n∈N be a

sequence of open sets in U as in Definition 1.2 and µ = (µt)t∈(s,∞) be a global sub-probability solution

of the Cauchy problem (1.3)-(1.11) with
∫
U U(·, s)dν < ∞. Let µ̃ = (µ̃t)t∈(s,∞) be the continuous

modification of µ = (µt)t∈(s,∞) given in Lemma 4.3. Then,

µ̃t(U) = 1, ∀t > s,

and there exists some C > 0, independent of s, ν and µ, such that

Cn

∫ t

s

µ̃τ (U \ Un)dτ +Dnµ̃t(U \ Un) ≤
∫
U
U(·, s)dν + C(t− s), ∀t > s and n ∈ N, (4.3)

where Cn := − sup(U\Un)×R LU > 0 and Dn := inf(U\Un)×R U .

Proof. For notational simplicity, we write µ̃ = (µ̃t)t∈(s,∞) as µ = (µt)t∈(s,∞) throughout the proof.

We see from Lemma 2.1 (2)(b) and Lemma 2.2 that for each φ ∈ C2,1
c (U × [s,∞)) there holds∫

U
φ(·, t)dµt =

∫
U
φ(·, s)dµs + lim

r→s

∫ t

r

∫
U
Lφdµτdτ, ∀t > s. (4.4)

Since U is a strong Lyapunov function, there is a ρm > 0 such that LU ≤ 0 on (U ×R) \Ωρm . Fix

ρ0 > ρm and let {ζρ}ρ>ρ0 be a family of smooth and non-decreasing functions on R satisfying

ζρ(t) =


0, t ∈ [0, ρm],

t, t ∈ [ρ0, ρ],

ρ+ 1, t ∈ [ρ+ 2,∞),

ζρ(t) ≤ t, t ∈ [ρm, ρ0] and ζ ′′ρ (t) ≤ 0, t ∈ [ρ, ρ+ 2].
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In addition, we let the functions {ζρ}ρ≥ρ0 coincide on [0, ρ0].

Obviously, ζρ(U)− (ρ+ 1) ∈ C2,1
c (U × R). Setting φ = ζρ(U)− (ρ+ 1) in (4.4), we find∫

U
(ζρ(U)− (ρ+ 1))dµt =

∫
U

(ζρ(U)− (ρ+ 1))dν + lim
r→s

∫ t

r

∫
U
L(ζρ(U)− (ρ+ 1))dµτdτ

=

∫
U

(ζρ(U)− (ρ+ 1))dν + lim
r→s

∫ t

r

∫
U
L(ζρ(U))dµτdτ.

It follows from

L(ζρ(U)) = ζ ′ρ(U)LU + ζ ′′ρ (U)aij∂iU∂jU,

that ∫
U
ζρ(U)dµt =

∫
U
ζρ(U)dν + (ρ+ 1)× [µt(U)− ν(U)]

+ lim
r→s

∫ t

r

∫
U
ζ ′ρ(U)LUdµτdτ

+ lim
r→s

∫ t

r

∫
U
ζ ′′ρ (U)aij∂iU∂jUdµτdτ.

(4.5)

Due to (1.4), there exists an n0 ∈ N such that Ωρ0 ⊂⊂ Un × R for all n > n0. Since ζ ′ρ = 0 on

[0, ρm], ζ ′ρ = 1 on [ρ0, ρ] and ζ ′ρ ≥ 0 otherwise, we see from LU ≤ 0 in (U × R) \ Ωρm that

ζ ′ρ(U)LU ≤

{
sup(U\Un)×R LU, in Ωρ \ (Un × R),

0, otherwise.

Thus,

lim
r→s

∫ t

r

∫
U
ζ ′ρ(U)LUdµτdτ ≤ sup

(U\Un)×R
LU × lim

r→s

∫ t

r

µτ (Ωτρ \ Un)dτ

= −Cn
∫ t

s

µτ (Ωτρ \ Un)dτ, n > n0,

(4.6)

where Cn := − sup(U\Un)×R LU > 0 and the monotone convergence theorem is used in the above

equality.

As ζ ′′ρ 6= 0 on [ρm, ρ0], ζ ′′ ≤ 0 on [ρ, ρ + 2] and ζ ′′ = 0 otherwise, we find from the non-negative

definiteness of (aij) that

ζ ′′ρ (U)aij∂iU∂jU ≤

{
C∗maxΩρ0

aij∂iU∂jU, in Ωρ0 \ Ωρm ,

0, otherwise,

where C∗ := maxt∈[ρm,ρ0] ζ
′′
ρ (t) is independent of ρ due to the construction of {ζρ}ρ>ρ0 . Hence,∫ t

r

∫
U
ζ ′′ρ (U)aij∂iU∂jUdµτdτ ≤ C∗

(
max
Ωρ0

aij∂iU∂jU

)
× (t− r) = C(t− r), (4.7)

where C = C∗

(
maxΩρ0

aij∂iU∂jU
)

.
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Substituting (4.6) and (4.7) into (4.5) yields∫
U
ζρ(U)dµt ≤

∫
U
ζρ(U)dν + (ρ+ 1)× [µt(U)− ν(U)]

− Cn
∫ t

s

µτ (Ωτρ \ Un)dτ + C(t− s), ∀t > s.

(4.8)

As ζρ ≥ 0 and ζρ(t) = t for t ∈ [ρ0, ρ], we derive from Ωρ0 ⊂ Un × R that∫
U
ζρ(U)dµt ≥

∫
Ωtρ\Ωtρ0

Udµt ≥
∫

Ωtρ\Un
Udµt ≥ Dnµt(Ω

t
ρ \ Un), ∀n > n0, (4.9)

where Dn := inf(U\Un)×R U . As ζρ(t) ≤ t for t ≥ 0 and ρ > ρ0, we find from (4.8) and (4.9) that

Dnµt(Ω
t
ρ \ Un) ≤

∫
U
U(·, s)dν + (ρ+ 1)× [µt(U)− ν(U)]

− Cn
∫ t

s

µτ (Ωτρ \ Un)dτ + C(t− s), ∀t > s.

(4.10)

Note the ν-integrability of U(·, s) ensures the non-triviality of the above inequalities. If µt(U) <

ν(U) = 1 for some t > s, we deduce from (4.10) that

0 ≤
∫
U
U(·, s)dν + (ρ+ 1)× (µt(U)− ν(U)) + C(t− s)→ −∞ as ρ→∞,

which leads to a contradiction. Therefore, µt(U) = ν(U) = 1 for all t > s. Consequently, letting

ρ→∞ in (4.10) leads to

Cn

∫ t

s

µτ (U \ Un)dτ +Dnµt(U \ Un) ≤
∫
U
U(·, s)dν + C(t− s), ∀t > s.

This completes the proof. �

4.2. Proof of Theorem B. We recall the definition of the weak*-topology for Borel measures on

U × R.

Definition 4.2. A sequence of σ-finite Borel measures {µn, n ∈ N} on U ×R is said to converge to a

σ-finite Borel measure µ on U × R under the weak*-topology as n→∞ if

lim
n→∞

∫∫
U×R

φdµn =

∫∫
U×R

φdµ, ∀φ ∈ C0(U × R).

Set

Cc,T (U × R) := Cc(U × R) ∩ CT (U × R).

Proof of Theorem B. For clarity, we assume s = 0. Applying Lemma 4.3, we may replace µ =

(µt)t∈(0,∞) by its continuous modification, still denoted by µ = (µt)t∈(0,∞). Since U(·, 0) is ν-

integrable, Proposition 4.1 yields the existence of some C > 0 such that

Cn

∫ t

0

µτ (U \ Un)dτ +Dnµt(U \ Un) ≤
∫
U
U(·, 0)dν + Ct, t > 0, (4.11)

where Un, Cn and Dn are as in the statement of Proposition 4.1.

For each n ∈ N, we define

µnt :=
1

n

n−1∑
k=0

µt+kT for t > 0 and dµn := dµnt dt on U × (0,∞).
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Then, for any bounded φ ∈ CT (U × R), there holds∫ t+T

t

∫
U
φdµnτ dτ =

1

n

n−1∑
k=0

∫ t+T

t

∫
U
φdµτ+kTdτ

=
1

n

n−1∑
k=0

∫ t+(k+1)T

t+kT

∫
U
φdµτdτ

=
1

n

∫ t+nT

t

∫
U
φdµτdτ, ∀t > 0.

(4.12)

Let {nj}j∈N ⊂ N be fixed. The proof is finished in seven steps. In Step 1-Step 5, we construct

the limiting periodic probability solution of (1.3). The convergence results are proven in Step 6 and

Step 7.

Step 1. We show the existence of a subsequence of {nj}j∈N, still denoted by {nj}j∈N, such that

µnj converges under the weak*-topology to some Borel measure µ̃ on U × (0,∞) as j → ∞, and for

each t > 0, there holds

lim
j→∞

∫ t+T

t

∫
U
φdµnjτ dτ =

∫∫
U×[t,t+T ]

φdµ̃, ∀ bounded φ ∈ C(U × [t, t+ T ]). (4.13)

For any compact set K ⊂ U × (0,∞), there holds supj∈N µ
nj (K) < ∞. Applying [14, Corollary

A2.6.V], we conclude the existence of a subsequence of {nj}j∈N, still denoted by {nj}j∈N, such that

µnj converges under the weak*-topology to some Borel measure µ̃ on U × (0,∞) as j →∞.

To show (4.13), we may apply [13, Theorem 4.4.2] that says in particular it is equivalent to show

(i) for each f ∈ C0(U × [t, t+ T ]), there holds

lim
j→∞

∫ t+T

t

∫
U
fdµnjτ dτ =

∫∫
U×[t,t+T ]

fdµ̃;

(ii) µ̃ (U × [t, t+ T ]) = T .

We prove (i) and (ii) in the rest of Step 1.

(i) Note that for any f ∈ C0(U × [t, t + T ]), there is an ε0 ∈ (0, 1) and a family of functions

{fε}ε∈(0,ε0) ⊂ C0(U × (0,∞)) satisfying

• |fε|∞ ≤ |f |∞ for all ε ∈ (0, ε0),

• for each ε ∈ (0, ε0),

fε =

{
f on U × [t, t+ T ],

0 on U × (0, t− ε] ∪ [t+ ε+ T,∞).

Clearly,

lim
ε→0

fε(x, τ) = f(x, τ)1[t,t+T ](τ), (x, τ) ∈ U × (0,∞).

As µnj converges to µ̃ on U × (0,∞) as j →∞ under the weak*-topology, there holds

lim
j→∞

∫ ∞
0

∫
U
fεdµ

nj
τ dτ =

∫∫
U×(0,∞)

fεdµ̃, ∀ε ∈ (0, ε0). (4.14)

It follows from the construction of {fε}ε∈(0,ε0) that∣∣∣∣∣
∫ ∞

0

∫
U
fεdµ

nj
τ dτ −

∫ t+T

t

∫
U
fdµnjτ dτ

∣∣∣∣∣ ≤ 2ε|f |∞, ∀ε ∈ (0, ε0),
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which is equivalent to∫ ∞
0

∫
U
fεdµ

nj
τ dτ − 2ε|f |∞ ≤

∫ t+T

t

∫
U
fdµnjτ dτ ≤

∫ ∞
0

∫
U
fεdµ

nj
τ dτ + 2ε|f |∞, ∀ε ∈ (0, ε0).

Letting j →∞ in the above inequality, we find from (4.14) that∫∫
U×(0,∞)

fεdµ̃− 2ε|f |∞ ≤ lim inf
j→∞

∫ t+T

t

∫
U
fdµnjτ dτ

≤ lim sup
j→∞

∫ t+T

t

∫
U
fdµnjτ dτ

≤
∫∫
U×(0,∞)

fεdµ̃+ 2ε|f |∞.

(4.15)

Since

lim
ε→0

∫∫
U×(0,∞)

fεdµ̃ =

∫∫
U×[t,t+T ]

fdµ̃

thanks to the dominated convergence theorem, passing to the limit ε→ 0 in (4.15) yields (i).

(ii) It follows from the definition of {µnj}j∈N that

µnj ((U \ Um)× [t, t+ T ]) =
1

nj

nj−1∑
k=0

∫ t+T

t

µτ+kT (U \ Um)dτ

=
1

nj

nj−1∑
k=0

∫ t+(k+1)T

t+kT

µτ (U \ Um)dτ

=
1

nj

∫ t+njT

t

µτ (U \ Um)dτ, ∀m ∈ N and j ∈ N.

By (4.11),

1

nj

∫ t+njT

0

µτ (U \ Um)dτ ≤ 1

njCm

(∫
U
U(·, 0)dν + C × (t+ njT )

)
, ∀m ∈ N and j ∈ N,

where we recall that Cm = − sup(U\Um)×R LU → ∞. As a result, for any 0 < ε � 1, there exists an

m0 = m0(ε) ∈ N such that

µnj ((U \ Um)× [t, t+ T ]) ≤ ε, ∀m ≥ m0 and j ∈ N.

Equivalently,

µnj (Um × [t, t+ T ]) ≥ T − ε, ∀m ≥ m0 and j ∈ N.
This means, {µnj}, when restricted on U × [t, t + T ], is tight. Hence, we apply the Portmanteau

theorem to find that

µ̃(Um × [t, t+ T ]) ≥ lim sup
j→∞

µnj (Um × [t, t+ T ]) ≥ T − ε, ∀m ≥ m0.

Letting ε→ 0, we conclude that µ̃(U × [t, t+ T ]) ≥ T .

By (i), we deduce that

µ̃(Um × [t, t+ T ]) ≤ lim inf
j→∞

µnj (Um × [t, t+ T ]) ≤ T,

which implies µ̃(U × [t, t+ T ]) ≤ T . Hence, µ̃(U × [t, t+ T ]) = T , and (ii) follows.
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Step 2. We show that the measure µ̃ obtained in Step 1 admits t-sections. More precisely, we

show the existence of a family of Borel measures {µ̃t}t∈(0,∞) on U satisfying

µ̃t = µ̃t+T and µ̃t(U) = 1 for a.e. t > 0,

such that µ̃ = (µ̃t)t∈(0,∞).

Let η ∈ Cc(0,∞) and |supp(η)| ≤ T . Setting φ = η in (4.13) gives∫∫
U×(0,∞)

ηdµ̃ = lim
j→∞

∫ ∞
0

∫
U
ηdµ

nj
t dt =

∫ ∞
0

ηdt. (4.16)

Arguing as in the proof of [22, Lemma 4.2], we derive from (4.16) the existence of a family of Borel

measures {µ̃t}t∈(0,∞) satisfying µ̃t(U) = 1 for a.e. t > 0 such that µ̃ = (µ̃t)t∈(0,∞).

It remains to show µ̃t = µ̃t+T for a.e. t > 0. It follows from (4.12) that for any φ ∈ Cc,T (U × R)

and t1, t2 ∈ (0,∞) with t1 < t2, there holds∫ t1+T

t1

∫
U
φdµnjτ dτ =

1

nj

∫ t1+njT

t1

∫
U
φdµτdτ

=
1

nj

(∫ t2

t1

∫
U
φdµτdτ −

∫ t2+njT

t1+njT

∫
U
φdµτdτ +

∫ t2+njT

t2

∫
U
φdµτdτ

)

=
1

nj

(∫ t2

t1

∫
U
φdµnjτ dτ −

∫ t2+njT

t1+njT

∫
U
φdµτdτ

)
+

∫ t2+T

t2

∫
U
φdµnjτ dτ.

Letting j →∞ in the above equality, we find from (4.13) that∫∫
U×[t1,t1+T ]

φdµ̃ =

∫∫
U×[t2,t2+T ]

φdµ̃, ∀t1, t2 > 0 with t1 < t2.

We then argue as in the proof of [22, Lemma 4.1] to find µ̃t = µ̃t+T for a.e. t > 0.

Step 3. We show that µ̃ = (µ̃t)t∈(0,∞) is a global probability solution of (1.3).

We claim that for each t > 0, there holds∫ t+T

t

∫
U
Lφdµ̃τdτ = 0, ∀φ ∈ C2,1

0 (U × (t, t+ T )) (4.17)

Fix t ∈ R. For any φ ∈ C2,1
0 (U × (t, t+ T )) and k ∈ N ∪ {0}, we define

φk(x, τ) :=

{
φ(x, τ − kT ), (x, τ) ∈ U × (t+ kT, t+ (k + 1)T ),

0, otherwise.

Obviously, φk ∈ C2,1
0 (U × (0,∞)) for each k ∈ N ∪ {0}. As µ = (µt)t∈(0,∞) is a global probability

solution of (1.3), there holds∫ t+(k+1)T

t+kT

∫
U
Lφkdµτdτ =

∫ ∞
0

∫
U
Lφkdµτdτ = 0.

This together with the T -periodicity of (aij) and (V i) gives∫ t+T

t

∫
U
Lφdµτ+kTdτ =

∫ t+(k+1)T

t+kT

∫
U
Lφkdµτdτ = 0,
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which yields ∫ t+T

t

∫
U
Lφdµnτ dτ =

1

n

n−1∑
k=0

∫ t+T

t

∫
U
Lφdµτ+kTdτ = 0, ∀n ∈ N. (4.18)

As clearly Lφ ∈ C0(U × (t, t+ T )), we deduce from (4.18) and (4.13) that∫ t+T

t

∫
U
Lφdµ̃τdτ = lim

j→∞

∫ t+T

t

∫
U
Lφdµnjτ dτ = 0.

This proves (4.17).

From (4.17) and Lemma 2.1 (1)(a), we find that for each t > 0 and φ ∈ C2
c (U), there exists a subset

J tφ ⊂ (t, t+ T ) satisfying |(t, t+ T ) \ J tφ| = 0 such that∫
U
φdµ̃t2 −

∫
U
φdµ̃t1 =

∫ t2

t1

∫
U
Lφdµ̃τdτ, ∀t1, t2 ∈ J tφ with t1 < t2.

As t is arbitrary in (0,∞), we see the existence of a set Jφ ⊂ (0,∞) with |(0,∞) \ Jφ| = 0 such that∫
U
φdµ̃t2 −

∫
U
φdµ̃t1 =

∫ t2

t1

∫
U
Lφdµ̃τdτ, ∀t1, t2 ∈ Jφ with t1 < t2.

That is, µ̃ is a measure solution of (1.3) in U × (0,∞). As µ̃t(U) = 1 for a.e. t > 0 by Step 2,

µ̃ = (µ̃t)t∈(0,∞) is a global probability solution of (1.3).

Step 4. We show that µ̃ = (µ̃t)t∈(0,∞) admits a continuous modification, still denoted by µ̃ =

(µ̃t)t∈(0,∞), such that µ̃t = µ̃t+T and µ̃t(U) = 1 for all t > 0.

By Lemma 4.2, there is a modification of µ̃ = (µ̃t)t∈(0,∞), still denoted by µ̃ = (µ̃t)t∈(0,∞), satisfying

the property:

∀φ ∈ C2
c (U), the function t 7→

∫
U
φdµ̃t is continuous on (0,∞).

This together with the fact that µ̃t = µ̃t+T for a.e. t > 0 (from Step 2) yields that∫
U
φdµ̃t =

∫
U
φdµ̃t+T , ∀φ ∈ C2

c (U) and t > 0.

Hence, µ̃t = µ̃t+T for all t > 0.

It remains to show µ̃t(U) = 1 for all t > 0. Note that up to now we only know µ̃t(U) ≤ 1 for all

t > 0 and µ̃t(U) = 1 for a.e. t > 0. Fix t0 > 0. Since U is a strong Lyapunov function, we can

follow the arguments as in the proof of [28, Proposition 2.8] (see the proof of [22, Theorem A] for

more details) to find a non-negative function Ũ ∈ C2,1
T (U × R) satisfying the following properties:

(1)
∫
U Ũ(·, t0)dµ̃t0 <∞,

(2) limn→∞ infx∈U\Un Ũ(x, t) =∞ for all t ∈ R,

(3) there is a ρ̃m > 0 such that LŨ ≤ 0 on (U×R)\Ω̃ρm , where Ω̃ρm := {(x, t) ∈ U×R : Ũ(x, t) <

ρ̃m}.
We see from Lemma 2.1 (1)(b) and Lemma 2.2 that for each φ ∈ C2,1

c (U × (0,∞)), there holds∫
U
φdµ̃t2 −

∫
U
φdµ̃t1 =

∫ t2

t1

∫
U
Lφdµ̃τdτ, ∀0 < t1 < t2. (4.19)



CONVERGENCE TO PERIODIC PROBABILITY SOLUTIONS 25

Note ζρ(Ũ) − (ρ + 1) ∈ C2,1
c (U × R) thanks to property (2), where {ζρ} is defined as in the proof

of Proposition 4.1. Setting φ = ζρ(Ũ)− (ρ+ 1) in (4.19), we find∫
U

(ζρ(Ũ)− (ρ+ 1))dµ̃t =

∫
U

(ζρ(Ũ)− (ρ+ 1))dµ̃t0

+

∫ t

t0

∫
U

[
ζ ′ρ(Ũ)LŨ + ζ ′′ρ (Ũ)aij∂iŨ∂jŨ

]
dµ̃τdτ, ∀t > t0.

Arguing as in the proof of Proposition 4.1 yields the existence of some C > 0 such that

0 ≤
∫
U
Ũ(·, t0)dµ̃t0 + (ρ+ 1)× [µ̃t(U)− µ̃t0(U)] + C(t− t0), ∀t > t0.

Since Ũ(·, t0) is µ̃t0-integrable, if µ̃t(U) < µ̃t0(U) for some t > t0, a contradiction is readily derived

by letting ρ → ∞ in the above inequality. As a result, µ̃t(U) ≥ µ̃t0(U) for all t > t0. Since t0 > 0 is

arbitrary and µ̃t(U) = 1 for a.e. t > 0, we conclude that µ̃t(U) = 1 for all t > 0.

Step 5. We extend µ̃ = (µ̃t)t∈(0,∞), the continuous modification obtained in Step 4, to obtain a

periodic probability solution µ̂ = (µ̂t)t∈R of (1.3).

To do so, we define

µ̂t =

{
µ̃t, t > 0,

µ̃t+kT , t ∈ (−kT,−(k − 1)T ] and k ∈ N.

Obviously, µ̂t(U) = 1 and µ̂t = µ̂t+T for all t ∈ R. Thus, µ̂ := (µ̂t)t∈R is a periodic probability solution

of (1.3) if we can show µ̂ is a measure solution of (1.3) in U × R.

As µ̃ is a measure solution of (1.3) in U × (0,∞), the definition of µ̂ implies that for any φ ∈ C2
c (U)

and k ∈ N, there holds∫
U
φdµ̂t1 −

∫
U
φdµ̂t2 =

∫ t2

t1

∫
U
Lφdµ̂τdτ, ∀t1, t2 ∈ (−kT,−(k − 1)T ] with t1 < t2. (4.20)

As k ∈ N is arbitrary and µ̂ = µ̃ on U × (0,∞), we see that (4.20) holds for all t1, t2 ∈ R with t1 < t2.

That is, µ̂ is a measure solution of (1.3) in U × R.

Step 6. We show that for any bounded φ ∈ CT (U × R), there holds

lim
j→∞

1

njT

∫ t+njT

t

∫
U
φdµτdτ =

1

T

∫ T

0

∫
U
φdµ̂τdτ, ∀t ≥ 0. (4.21)

It follows from (4.12), (4.13) and the definition of µ̂ = (µ̂t)t∈R that for each bounded φ ∈ CT (U×R),

lim
j→∞

1

njT

∫ t+njT

t

∫
U
φdµτdτ = lim

j→∞

1

njT

(∫ t+ε

t

∫
U
φdµτdτ −

∫ t+ε+njT

t+njT

∫
U
φdµτdτ

)

+ lim
j→∞

1

njT

∫ t+ε+njT

t+ε

∫
U
φdµτdτ

= lim
j→∞

1

njT

∫ t+ε+njT

t+ε

∫
U
φdµτdτ

= lim
j→∞

1

T

∫ t+ε+T

t+ε

∫
U
φdµnjτ dτ

=
1

T

∫ t+ε+T

t+ε

∫
U
φdµ̂τdτ, ∀t ≥ 0 and ε > 0.
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The T -periodicity of φ and µ̂ = (µ̂t)t∈R then ensures that

1

T

∫ t+ε+T

t+ε

∫
U
φdµ̂τdτ =

1

T

∫ T

0

∫
U
φdµ̂τdτ, ∀t ≥ 0 and ε > 0.

Hence, (4.21) follows.

Step 7. We show that for any ψ ∈ C2
c (U), there holds

lim
j→∞

1

nj

nj−1∑
k=0

∫
U
ψdµt+kT =

∫
U
ψdµ̂t, ∀t > 0. (4.22)

Fix ψ ∈ C2
c (U). Clearly, Lψ is bounded on U × R. Since µ = (µt)t∈(0,∞) is a global probability

solution of (1.3), Lemma 2.1 (1)(a) and Lemma 2.2 imply that∣∣∣∣∫
U
ψdµt1 −

∫
U
ψdµt2

∣∣∣∣ ≤ ∫ t2

t1

∫
U
|Lψ|dµτdτ

≤ max
supp(ψ)×R

|Lψ| × (t2 − t1), ∀t1, t2 > 0 with t1 < t2.
(4.23)

Fix t0 ∈ (0, T ) and let η ∈ C∞c (R) be non-negative and satisfy supp(η) ⊂ [−1, 1] and
∫
R ηdt = 1.

Define ηε(t) := 1
ε η( tε ) for t ∈ R and 0 < ε� 1. Clearly,

∫
R ηεdt = 1 for 0 < ε� 1. It follows that∣∣∣∣∣

∫ t+T

t

(∫
U
ψdµτ

)
ηε(τ − (t+ t0))dτ −

∫
U
ψdµt+t0

∣∣∣∣∣
≤
∫ t+T

t

∣∣∣∣∫
U
ψdµτ −

∫
U
ψdµt+t0

∣∣∣∣ ηε(τ − (t+ t0))dτ

≤ ε× max
supp(ψ)×R

|Lψ|, ∀t > 0 and 0 < ε� 1,

where we used (4.23). Equivalently,∫ t+T

t

(∫
U
ψdµτ

)
ηε(τ − (t+ t0))dτ − Cε

≤
∫
U
ψdµt+t0

≤
∫ t+T

t

(∫
U
ψdµτ

)
ηε(τ − (t+ t0))dτ + Cε, ∀t > 0 and 0 < ε� 1,

(4.24)

where C = maxsupp(ψ)×R |Lψ|.
Fix t1 > 0. For each fixed nj , setting t = t1 + kT for k = 0, . . . , nj − 1 in (4.24) and then

summarizing the resulting inequalities, we arrive at

nj−1∑
k=0

∫ t1+(k+1)T

t1+kT

(∫
U
ψdµτ

)
ηε (τ − (t0 + t1 + kT )) dτ − njCε

≤
nj−1∑
k=0

∫
U
ψdµt0+t1+kT

≤
nj−1∑
k=0

∫ t1+(k+1)T

t1+kT

(∫
U
ψdµτ

)
ηε(τ − (t0 + t1 + kT ))dτ + njCε, 0 < ε� 1.

(4.25)
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For each ε > 0, we define a function η̃ε on R by setting

η̃ε(t) = ηε(t− (t0 + t1 + kT )), t ∈ [t1 + kT, t1 + (k + 1)T ) and k ∈ Z.

Obviously, η̃ε is T -periodic and η̃ε ∈ C∞c (R) for each 0 < ε � 1. Setting φ(x, t) := ψ(x)η̃ε(t) for

(x, t) ∈ U × R in (4.21) gives

lim
j→∞

1

njT

∫ t1+njT

t1

(∫
U
ψdµτ

)
η̃ε(τ)dτ =

1

T

∫ t1+T

t1

(∫
U
ψdµ̂τ

)
η̃ε(τ)dτ. (4.26)

As

lim
j→∞

1

njT

∫ t1+njT

t1

(∫
U
ψdµτ

)
η̃ε(τ)dτ

= lim
j→∞

1

njT

nj−1∑
k=0

∫ t1+(k+1)T

t1+kT

(∫
U
ψdµτ

)
η̃ε(τ)dτ

= lim
j→∞

1

njT

nj−1∑
k=0

∫ t1+(k+1)T

t1+kT

(∫
U
ψdµτ

)
ηε(τ − (t0 + t1 + kT ))dτ,

we obtain

lim
j→∞

1

njT

nj−1∑
k=0

∫ t1+(k+1)T

t1+kT

(∫
U
ψdµτ

)
ηε(τ − (t0 + t1 + kT ))dτ =

1

T

∫ t1+T

t1

(∫
U
ψdµ̂τ

)
η̃ε(τ)dτ.

Thus, dividing (4.25) by njT and then letting j →∞, we derive from the above limit that

1

T

∫ t1+T

t1

(∫
U
ψdµ̂τ

)
η̃ε(τ)dτ − 1

T
Cε ≤ lim inf

j→∞

1

njT

nj−1∑
k=0

∫
U
ψdµt0+t1+kT

≤ lim sup
j→∞

1

njT

nj−1∑
k=0

∫
U
ψdµt0+t1+kT

≤ 1

T

∫ t1+T

t1

(∫
U
ψdµ̂τ

)
η̃ε(τ)dτ +

1

T
Cε, 0 < ε� 1.

(4.27)

Since the continuity of the function t 7→
∫
U ψdµ̂t on R implies that

lim
ε→0

1

T

∫ t1+T

t1

(∫
U
ψdµ̂τ

)
η̃ε(τ)dτ =

1

T

∫
U
ψdµ̂t0+t1 ,

we pass to the limit ε→ 0 in (4.27) to find

lim
j→∞

1

njT

nj−1∑
k=0

∫
U
ψdµt0+t1+kT =

1

T

∫
U
ψdµ̂t0+t1 , ∀t0 ∈ (0, T ) and t1 > 0.

This proves (4.22).

If the periodic probability solution of (1.3) is unique, then it is clear that (4.21) and (4.22) hold

for the whole sequence {µn}n∈N. This completes the proof. �

We sketch the proof of Corollary B.
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Proof of Corollary B. The poof is almost the same as that of Theorem B. The main difference lies

in Step 7. More precisely, in this situation, we apply Theorem A to find that µ̃ = (µ̃)t∈R is the

unique periodic probability solution of (1.3) and admits a continuous density. Therefore, the function

t 7→
∫
U ψdµ̃t is continuous on R for any ψ ∈ Cb(U). Hence, the result follows from arguments as in

Step 7. �

5. Proof of Theorem C

In Subsection 5.1, we construct and study the transition probability densities associated to the

global probability solutions of the Cauchy problem (1.3)-(1.11). The proof of Theorem C is given in

Subsection 5.2.

Throughout this section, we assume (H1) and (H3), and that L admits an exponentially strong

Lyapunov function U . Hence, Theorem 2.3 and Theorem A hold. Moreover, we denote Mb(U) as the

collection of all bounded measurable functions on U and write

〈µ, φ〉 :=

∫
U
φdµ, µ ∈Mp(U) and φ ∈Mb(U),

where we recall that Mp(U) is the set of all Borel probability measures on U .

5.1. Transition probability densities. For fixed s ∈ R and x ∈ U , let µs,x be the unique global

probability solution of the Cauchy problem (1.3)-(1.11) with ν = δx given in Theorem 2.3. Following

Theorem 2.1, µs,x admits a Hölder continuous density (y, t) 7→ p(s, x, t, y) on U × (s,∞). We prove

some properties of p(s, x, t, y) in the rest of this subsection.

Lemma 5.1. The following hold.

(1) For s, t ∈ R with s < t and y ∈ U , the function x 7→ p(s, x, t, y) is continuous on U .

(2) For s ∈ R, the function (x, t, y) 7→ p(s, x, t, y) is measurable on U × (s,∞)× U .

Proof. (1) Let {xn}n∈N ⊂ U converge to some x∗ ∈ U as n→∞. We show

lim
n→∞

p(s, xn, t, y) = p(s, x∗, t, y), ∀(y, t) ∈ U × (s,∞). (5.1)

For convenience, we define

un(y, t) := p(s, xn, t, y), (y, t) ∈ U × (s,∞),

dµn = dµnt dt := un(y, t)dydt.

Note that µn is nothing but µs,xn .

By Theorem 2.1, we see that for any V ⊂⊂ U and t1, t2 ∈ (s,∞) with t1 < t2, there exists a C > 0,

independent of n, such that

|un|
C
α− 1

p ([t1,t2],Cγ(V))
≤ C, ∀n ∈ N.

Thus, the sequence {un}n∈N is pre-compact under the topology of locally uniform convergence on

U×(s,∞) thanks to the Arzelà-Ascoli theorem and the standard diagonal argument. In particular, any

subsequence of {un}n∈N has a further subsequence that is locally uniformly convergent on U × (s,∞).

Let us fix a subsequence {unj} that converges locally uniformly to some non-negative continuous

function u on U × (s,∞). We show that the Borel measure µ defined by dµ = dµtdt := u(y, t)dydt

coincides with µs,x∗ . That is, for any φ ∈ C2
c (U), there holds∫

U
φdµt = φ(x∗) + lim

r→s

∫ t

r

∫
U
Lφdµτdτ, ∀t > s. (5.2)
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As µnj is the global probability solution of the Cauchy problem (1.3)-(1.11) with ν = δxnj , we

apply Lemma 2.1 (1)(a) and Lemma 2.2 to find for any φ ∈ C2
c (U) and t > r > s,∫

U
φdµ

nj
t =

∫
U
φdµnjr +

∫ t

r

∫
U
Lφdµnjτ dτ,

which is rewritten as∫
U
φdµ

nj
t − φ(xnj )−

∫ t

r

∫
U
Lφdµnjτ dτ =

∫
U
φdµnjr − φ(xnj ).

Following the proof of [28, Theorem 2.3], we see that for fixed t0 > s and φ ∈ C2
c (U) there exist

C1 > 0 and α > 0, independent of n, such that∣∣∣∣∫
U
φdµnt − φ(xn)

∣∣∣∣ ≤ C1|t− s|α, ∀t ∈ (s, t0) and n ∈ N.

Hence, for any t > s, there holds∣∣∣∣∫
U
φdµ

nj
t − φ(xnj )−

∫ t

r

∫
U
Lφdµnjτ dτ

∣∣∣∣ ≤ ∣∣∣∣∫
U
φdµnjr − φ(xnj )

∣∣∣∣
≤ C1|r − s|α, ∀s < r < min{t, t0} and j ∈ N.

Letting j →∞, we find∣∣∣∣∫
U
φdµt − φ(x∗)−

∫ t

r

∫
U
Lφdµτdτ

∣∣∣∣ ≤ C|r − s|α, ∀s < r < min{t, t0}.

Letting r → s in the above inequality yields (5.2).

Since the above result holds for any locally uniformly convergent subsequence of {un}n∈N, the

sequence un converges locally uniformly to p(s, x∗, ·, ·) as n→∞. In particular, (5.14) follows.

(2) In addition to (1), we know that for each s ∈ R and x ∈ U , the function (y, t) 7→ p(s, x, t, y) is

continuous on U × (s,∞). Hence, the function (x, t, y) 7→ p(s, x, t, y) is a Carathéodory function on

U × (s,∞)× U and its measurability follows from [1, Lemma 4.51]. �

Lemma 5.2. Let µ = (µt)t∈(s,∞) be the unique global probability solution of the Cauchy problem

(1.3)-(1.11). Then, there holds

dµ = dµtdt =

∫
U
p(s, x, t, y)dν(x)dydt.

In particular, for any φ ∈Mb(U), there holds

〈µt, φ〉 = 〈ν, 〈µs,•t , φ〉〉 =

∫
U
〈µs,xt , φ〉dν(x).

Proof. Define

dµ̃ = dµ̃tdt :=

∫
U
p(s, x, t, y)dν(x)dydt on U × (s,∞).

By the definition of µs,x, there hold for any φ ∈ C2
c (U)

lim
t→s

∫
U
φdµs,xt = φ(x), and (5.3)∫

U
φdµs,xt =

∫
U
φdµs,xr +

∫ t

r

∫
U
Lφdµs,xτ dτ, ∀s < r < t. (5.4)
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It follows from Lemma 5.1 that each term in (5.4) is measurable with respect to x. Integrating (5.4)

with respect to ν and applying Fubini’s theorem, we find∫
U
φdµ̃t =

∫
U
φdµ̃r +

∫ t

r

∫
U
Lφdµ̃τdτ, ∀s < r < t. (5.5)

That is, µ̃ is a global probability solution of (1.3) in U × (s,∞).

For φ ∈ C2
c (U), we deduce from

∣∣∫
U φdµs,xt

∣∣ ≤ |φ|∞, (5.3) and the dominated convergence theorem

that ∫
U
φdµ̃t =

∫
U

∫
U
φdµs,xt dν(x)→

∫
U
φdν as t→ s.

Hence, µ̃ is a global probability solution of the Cauchy problem (1.3)-(1.11). The uniqueness result

in Theorem 2.3 ensures that µ̃ = µ.

The “In particular” part follows readily. �

Corollary 5.1. There holds

p(s, x, t2, y) =

∫
U
p(s, x, t1, z)p(t1, z, t2, y)dz

for all x, y ∈ U and t2 > t1 > s.

Proof. Fix s ∈ R and x ∈ U . Lemma 5.2 ensures that the measure

dµ = dµtdt :=

(∫
U
p(t1, z, t, y)dµs,xt1 (z)

)
dydt

=

(∫
U
p(t1, z, t, y)p(s, x, t1, z)dz

)
dydt on U × (t1,∞)

is the unique global probability solution of the Cauchy problem (1.3)-(1.11) (with s = t1 and ν = µs,xt1 ).

So is the measure µs,x restricted on U × (t1,∞). Theorem 2.3 then yields

µs,x = µ on U × (t1,∞).

Hence, they have the same densities, that is,

p(s, x, t, y) =

∫
U
p(s, x, t1, z)p(t1, z, t, y)dz, ∀t > t1 and y ∈ U .

The corollary follows. �

5.2. Proof of Theorem C. We prove two lemmas before proving Theorem C. Recall that U is an

exponentially strong Lyapunov function.

The first lemma gives evolutionary estimates of a global probability solution of the Cauchy problem

(1.3)-(1.11) against U .

Lemma 5.3. There are positive constants C1 and C2 such that for any global probability solution

µ = (µt)t∈(s,∞) of the Cauchy problem (1.3)-(1.11) with
∫
U U(·, s)dν <∞, there holds∫

U
U(·, t)dµt ≤ e−C1(t−s)

∫
U
U(·, s)dν + C2, ∀t > s.

Proof. For notational simplicity, the integrals of the forms
∫
U g(·, t)dµt and

∫
U g(·, s)dν are respectively

written as
∫
U gdµt and

∫
U gdν in the rest of the proof.
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By Theorem 2.1, µ admits a density u ∈ C(U × (s,∞)), namely, dµ = dµtdt = u(x, t)dxdt. By

Lemma 2.1 (1)(b) and Lemma 2.2, there holds for each φ ∈ C2,1
c (U × (s,∞))∫

U
φdµt =

∫
U
φdµr +

∫ t

r

∫
U
Lφdµτdτ, ∀t > r > s,

that is
d

dt

∫
U
φdµt =

∫
U
Lφdµt, ∀t > s. (5.6)

As U is an exponentially strong Lyapunov function, there are positive constants C1, C2 and ρm
such that

LU ≤ −C1U + C2 < 0 in (U × R) \ Ωρm .

Fix ρ0 > ρm and set N0 = [ρ0] + 1, where [ρ0] is the integer part of ρ0. Let {ζN}N≥N0
be a sequence

of smooth and non-decreasing functions on R satisfying

ζN (t) =


0, t ∈ [0, ρm],

t, t ∈ [ρ0, N ],

N + 1, t ∈ [N + 2,∞),

ζN (t) ≤ t, t ∈ [ρm, ρ0] and ζ ′′N (t) ≤ 0, t ∈ [N,N + 2].

In addition, let the functions {ζN}N≥N0
coincide on [0, ρ0].

We claim that there exists C̃1 > 0 such that∫
U
ζN (U)dµt ≤ e−C1(t−s)

∫
U
ζN (U)dν +

C̃1

C1

+ C1(N + 1)

∫ t

s

µτ (U \ ΩτN )e−C1(t−τ)dτ, ∀t > s and N ≥ N0.

(5.7)

Note that ζN (U) − (N + 1) ∈ C2,1
c (U × R). Applying Lemma 2.1 (2)(b) and Lemma 2.2 with

φ = ζN (U)− (N + 1), we find

lim
r→s

∫
U

[ζN (U)− (N + 1)]dµr =

∫
U

[ζN (U)− (N + 1)]dν.

It follows from µr(U) = ν(U) = 1 for all r > s that

lim
r→s

∫
U
ζN (U)dµr =

∫
U
ζN (U)dν. (5.8)

Setting φ = ζN (U)− (N + 1) in (5.6) gives

d

dt

∫
U

[ζN (U)− (N + 1)] dµt =

∫
U
L (ζN (U)− (N + 1)) dµt.

Since µt(U) = 1 for all t > 0 and

L(ζN (U)− (N + 1)) = ζ ′N (U)LU + ζ ′′N (U)aij∂iU∂jU,

we find

d

dt

∫
U
ζN (U)dµt =

∫
U
ζ ′N (U)LUdµt +

∫
U
ζ ′′N (U)aij∂iU∂jUdµt, ∀t > s. (5.9)

Since ζ ′N = 0 on [0, ρm], ζ ′N (t) = 1 on [ρ0, N ] and ζ ′N ≥ 0 otherwise, we deduce that

ζ ′N (U)LU ≤

{
−C1U + C2, on ΩN \ Ωρ0 ,

0, otherwise,
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which implies that ∫
U
ζ ′N (U)LUdµt ≤

∫
ΩtN\Ωtρ0

(−C1U + C2)dµt. (5.10)

Since ζ ′′N 6= 0 on [ρm, ρ0], ζ ′′ ≤ 0 on [N,N + 2] and ζ ′′N = 0 otherwise, we see from the non-negative

definiteness of (aij) that

ζ ′′Na
ij∂iU∂jU ≤

{
C∗maxΩρ0

aij∂iU∂jU, on Ωρ0 \ Ωρm ,

0, otherwise,

where C∗ := maxt∈[ρm,ρ0] ζ
′′
N (t), which is independent of N due to the coincidence of {ζN}N≥N0

on

[0, ρ0]. Thus, ∫
U
ζ ′′N (U)aij∂iU∂jUdµt ≤

∫
Ωtρ0
\Ωtρm

ζ ′′N (U)aij∂iU∂jUdµt

≤ C∗max
Ωρ0

aij∂iU∂jU.
(5.11)

Substituting (5.10) and (5.11) into (5.9) gives

d

dt

∫
U
ζN (U)dµt + C1

∫
ΩtN\Ωtρ0

Udµt ≤ C2 + C∗max
Ωρ0

aij∂iU∂jU, (5.12)

As ζN ≤ ρ0 on [0, ρ0], ζN (t) = t on [ρ0, N ] and ζN ≤ N + 1 on [N,∞), we see that∫
U
ζN (U)dµt =

(∫
Ωtρ0

+

∫
ΩtN\Ωtρ0

+

∫
U\ΩtN

)
ζN (U)dµt

≤ ρ0 +

∫
ΩtN\Ωtρ0

Udµt + (N + 1)µt(U \ ΩtN ).

(5.13)

Setting C̃1 := C1ρ0 + C2 + C∗maxΩρ0
aij∂iU∂jU , we find from (5.12) and (5.13) that

d

dt

∫
U
ζN (U)dµt + C1

∫
U
ζN (U)dµt ≤ C̃1 + C1(N + 1)µt(U \ ΩtN ), ∀t > s.

Applying Gronwall’s inequality yields∫
U
ζN (U)dµt ≤ e−C1(t−r)

∫
U
ζN (U)dµr +

C̃1

C1

+ C1(N + 1)

∫ t

r

µτ (U \ ΩτN )e−C1(t−τ)dτ, ∀t > r > s.

Letting r → s in the above inequality, we conclude (5.7) from (5.8) and the monotone convergence

theorem.

Note that if there holds

(N + 1)

∫ t

s

µτ (U \ ΩτN )e−C1(t−τ)dτ → 0 as N →∞, (5.14)

then we can pass to the limit N →∞ in (5.7) to find from ζN (t) ≤ t for N ≥ N0 and t ≥ 0 that∫
U\Ωtρ0

Udµt ≤ e−C1(t−s)
∫
U
U(·, s)dν +

C̃1

C1
, ∀t > s,

which readily leads to the lemma.
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To finish the proof, we show (5.14). Fix t > s. We define

f(x, τ) :=

{
[1 + U(x, τ)]u(x, τ), ∀(x, τ) ∈

⋃
τ∈[s,t] ((U \ Ωρ0)× {τ}) ,

0, otherwise,

and for N � 1

fN (x, τ) :=

{
(N + 1)u(x, τ)e−C1(t−τ), ∀(x, τ) ∈

⋃
τ∈[s,t] ((U \ ΩρN )× {τ}) ,

0, otherwise.

Obviously, fN ≤ f for N � 1 and fN → 0 as N →∞. As∫ t

s

∫
U\Ωτρ0

f(x, τ)dxdτ =

∫ t

s

∫
U\Ωτρ0

Udµτdτ, and

∫ t

s

∫
U\Ωτρ0

fN (x, τ)dxdτ = (N + 1)

∫ t

s

µτ (U \ ΩτN )e−C1(t−τ)dτ,

the limit (5.14) follows from the dominated convergence theorem if there holds∫ t

s

∫
U\Ωτρ0

Udµτdτ <∞. (5.15)

It remains to show (5.15). Set C̃2 := C2+C∗maxΩρ0
aij∂iU∂jU . For any fixed r ∈ (s, t), integrating

(5.12) over [r, t] gives∫
U
ζN (U)dµt + C1

∫ t

r

∫
ΩτN\Ωτρ0

Udµτdτ ≤
∫
U
ζN (U)dµr + C̃2(t− r).

Letting r → s in the above inequality, we deduce from (5.8) that∫
U
ζN (U)dµt + C1

∫ t

s

∫
ΩτN\Ωτρ0

Udµτdτ ≤
∫
U
ζN (U)dν + C̃2(t− s).

Since ζN (t) ≤ t for all t > 0 and N ≥ N0, and U(·, s) is ν-integrable, passing to the limit N →∞ in

the above inequality yields∫ t

s

∫
U\Ωτρ0

Udµτdτ ≤
∫
U
Udν + C̃2(t− s) <∞.

Hence, (5.15) holds. This completes the proof. �

The second lemma is a version of the minorization condition of the measures {µs,x}, where µs,x =

(µs,xt )t∈(0,∞) is defined at the beginning of Subsection 5.1.

Lemma 5.4. Let s, t ∈ R with s < t. For each R > 0, there is a constant α > 0, such that

‖µs,x1

t − µs,x2

t ‖TV ≤ 2(1− α) (5.16)

for all x1, x2 ∈ U satisfying U(x1, s) + U(x2, s) ≤ R, where ‖ · ‖TV denotes the total variation norm.

Proof. Fix s, t ∈ R with s < t and R > 0. Note that

{(x1, x2) ∈ U × U : U(x1, s) + U(x2, s) ≤ R} ⊂ Ω
s

R × Ω
s

R,

where we recall that Ωτρ := {x ∈ U : U(x, τ) < ρ} for τ ∈ R and Ω
τ

R denotes the closure of ΩτR.
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We first claim that there exist positive constants ρ1 and M such that

inf
y∈Ωtρ1

p(s, x, t, y) ≥M, ∀x ∈ Ω
s

R. (5.17)

For x ∈ Ω
s

R, we denote µ = (µt)t∈(s,∞) := µs,x and u(y, t) := p(s, x, t, y) for y ∈ U for notational

simplicity. Applying Lemma 5.3, we find∫
U
U(y, τ)u(y, τ)dy =

∫
U
U(·, τ)dµτ ≤ e−C1(τ−s)U(x, s) + C2, ∀τ > s. (5.18)

Set ∆ := t−s
4 . Integrating (5.18) with respect to τ over [s+ ∆, s+ 2∆] gives∫ s+2∆

s+∆

∫
U
U(y, τ)u(t, τ)dydτ ≤ U(x, s)

C1

(
e−C1∆ − e−2C1∆

)
+ C2∆.

Setting

C3 :=
1

C1

(
e−C1∆ − e−2C1∆

)
max
x∈Ω

s
R

U(x, s) + C2∆,

we arrive at ∫ s+2∆

s+∆

∫
U\Ωτρ

U(y, τ)u(t, τ)dydτ ≤ C3, ∀ρ ≥ min
U×R

U. (5.19)

As U satisfies (1.4), there holds

lim
ρ→∞

inf
(U×R)\Ωρ

U =∞.

This together with (5.19) yields the existence of some ρ1 > minU×R U such that∫ s+2∆

s+∆

∫
U\Ωτρ1

u(y, τ)dydτ ≤ ∆

2
,

which implies that

∆

2
≤ ∆−

∫ s+2∆

s+∆

∫
U\Ωτρ1

u(y, τ)dydτ =

∫ s+2∆

s+∆

∫
Ωτρ1

u(y, τ)dydτ ≤ |Q1
ρ1 | sup

Q1
ρ1

u,

where Q1
ρ1 := ∪τ∈[s+∆,s+2∆]

(
Ωτρ1 × {τ}

)
. Applying Harnack’s inequality (e.g., [27, Theorem 10.1]) to

u, there exists a C > 0, independent of u, such that

∆

2|Q1
ρ1 |
≤ sup

Q1
ρ1

u ≤ C inf
Q2
ρ1

u ≤ C inf
y∈Ωtρ1

u(y, t), (5.20)

where Q2
ρ1 := ∪τ∈[s+3∆,t]

(
Ωτρ1 × {τ}

)
. Setting M := ∆

2C|Q1
ρ1
| , we find (5.17) follows from (5.20).

Now, we prove the lemma. For x1, x2 ∈ Ω
s

R, we denote µi = (µit)t∈(0,∞) := µs,xi and ui(y, t) :=

p(s, xi, t, y) for y ∈ U and i = 1, 2. We find from (5.17) that for i, j = 1, 2 with i 6= j there holds∫
Ωtρ1

(ui(y, t)− uj(y, t))+dy ≤
∫

Ωtρ1

(ui(y, t)−M)1{ui≥uj}(y, t)dy

≤ µit(Ωtρ1)−M
∫

Ωtρ1

1{ui≥uj}(y, t)dy.
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As a result, there holds for i, j = 1, 2 with i 6= j,∫
U

(ui(y, t)− uj(y, t))+dy =

∫
U\Ωtρ1

(ui(y, t)− uj(y, t))+dy +

∫
Ωtρ1

(ui(y, t)− uj(y, t))+dy

≤ µit(U \ Ωtρ1) + µit(Ω
t
ρ1)−M

∫
Ωtρ1

1{ui≥uj}(y, t)dy,

= 1−M
∫

Ωtρ1

1{ui≥uj}(y, t)dy.

As |u1 − u2| = (u1 − u2)+ + (u2 − u1)+, we arrive at∫
U
|u1(y, t)− u2(y, t)|dy ≤ 2−M |Ωtρ1 |.

It follows that

‖µ1
t − µ2

t‖TV = sup
A∈B(Rd)

|µ1
t (A)− µ2

t (A)|

≤ sup
A∈B(Rd)

∫
A

|u1(x, t)− u2(x, t)|dx

≤ 2

(
1− 1

2
M |Ωtρ1 |

)
.

As 0 < M |Ωtρ1 | ≤
∫

Ωtρ1
u1(y, t)dx ≤ 1, we find α := 1

2M |Ω
t
ρ1 | ∈ (0, 1). This completes the proof. �

We are ready to prove Theorem C.

Proof of Theorem C. We assume, without loss of generality, that s = 0. For each x ∈ U , we denote

µx = (µxt )t∈(0,∞) := µ0,x, where we recall µ0,x is the unique global probability solution of the Cauchy

problem (1.3)-(1.11) with s = 0 and ν = δx. Then dµx := dµxt dt = p(0, x, t, y)dydt. The proof is

divided into four steps.

Step 1. We show that there exists a unique measure µ∗ ∈ Mp(U) and positive constants C and

% ∈ (0, 1) such that

‖µxnT − µ∗‖TV ≤ C%n(1 + U(x, 0)), ∀x ∈ U and n ∈ N. (5.21)

Let P : Mb(U)→Mb(U) be defined by

Pφ(x) := 〈µxT , φ〉 =

∫
U
p(0, x, T, y)φ(y)dy, ∀x ∈ U and φ ∈Mb(U).

By Lemma 5.1, P is well-defined. In particular, P1 = 1, where 1 ≡ 1. Let P∗ :Mp(U)→Mp(U) be

the adjoint operator of P defined by

〈P∗µ, φ〉 = 〈µ,Pφ〉, ∀µ ∈Mp(U) and φ ∈Mb(U).

Since aij and V i are T -periodic for i, j = 1, . . . , d, we find from Theorem 2.3 that

p(nT, x, (n+ 1)T, y) = p(0, x, T, y), ∀n ∈ N and x, y ∈ U ,

which implies that

Pφ(x) =

∫
U
p(nT, x, (n+ 1)T, y)φ(y)dy, x ∈ U .
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It follows from Corollary 5.1 that

Pnφ(x) = 〈µxnT , φ〉, x ∈ U . (5.22)

Define a wighted supremum norm:

‖φ‖∗ := ess sup
x∈U

∣∣∣∣ φ(x)

1 + U(x, 0)

∣∣∣∣ , ∀φ ∈Mb(U).

Thanks to Lemma 5.3 and Lemma 5.4, we apply Harris’s Theorem (see e.g. [17, Theorem 3.6]) to

find that P admits a unique invariant measure µ∗ of P, namely, P∗µ∗ = µ∗, and there exist constants

C > 0 and % ∈ (0, 1) such that

‖〈µ•nT , φ〉 − 〈µ∗, φ〉‖∗ = ‖Pnφ− 〈µ∗, φ〉‖∗ ≤ C%
n ‖φ− 〈µ∗, φ〉‖∗ ≤ 2C%n‖φ‖∞

holds for all φ ∈Mb(U), where we used (5.22) in the equality. Consequently,

‖µxnT − µ∗‖TV = sup
|φ|≤1

|〈µxnT , φ〉 − 〈µ∗, φ〉|

= sup
|φ|≤1

|〈µxnT , φ〉 − 〈µ∗, φ〉|
1 + U(x, 0)

[1 + U(x, 0)]

≤ sup
|φ|≤1

‖〈µ•nT , φ〉 − 〈µ∗, φ〉‖∗ [1 + U(x, 0)]

≤ 2C%n [1 + U(x, 0)] .

This proves (5.21).

Step 2. We show that (1.3) admits a unique periodic probability solution µ̃ = (µ̃t)t∈R. Moreover,

there holds µ̃nT = µ∗ for all n ∈ N.

Denote dµ̃ := dµ̃tdt as the unique global probability solution of the Cauchy problem (1.3)-(1.11)

with s = 0 and ν = µ∗. It follows from Lemma 5.2 that

〈µ̃t, φ〉 = 〈µ∗, 〈µ•t , φ〉〉 , ∀t > 0 and φ ∈Mb(U),

which together with (5.22) and the fact that µ∗ is invariant under P implies that

〈µ̃nT , φ〉 = 〈µ∗, 〈µ•nT , φ〉〉 = 〈µ∗,Pnφ〉 = 〈P∗nµ∗, φ〉 = 〈µ∗, φ〉 , ∀n ∈ N and φ ∈Mb(U).

That is, µ̃nT = µ∗ for all n ∈ N. Therefore, µ̃t+T = µ̃t for all t > 0. We then extend µ̃ to U × (−∞, 0)

by defining

µ̃t := µ̃t+nT , t ∈ (−nT, (n− 1)T ] and n ∈ N.
It is not hard to check that µ̃ := (µ̃t)t∈R is a periodic probability solution of (1.3).

The uniqueness follows from Theorem A.

Step 3. We prove that there exist positive constants C̃1 and C̃2 such that

‖µxt − µ̃t‖TV ≤ C̃1e
−C̃2t [1 + U(x, 0)] , ∀x ∈ U and t > 0. (5.23)

For t > 0, there are unique nt ∈ N0 and 0 ≤ rt < T such that t = ntT + rt. For φ ∈ Mb(U), we

denote

φrt(x) := 〈µxrt , φ〉, x ∈ U .
Clearly, ‖φrt‖ ≤ ‖φ‖∞ if φ is bounded. As p(0, x, r, y) = p(nT, x, r + nT, y) for all n ∈ N, x, y ∈ U
and r > 0, we find

φrt(x) :=

∫
U
p(ntT, x, t, y)φ(y)dy, x ∈ U .
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It follows from Lemma 5.2 and Corollary 5.1 that for each φ ∈Mb(U) there hold

〈µ̃t, φ〉 = 〈µ̃rt , φ〉 =
〈
µ∗, 〈µ•rt , φ〉

〉
= 〈µ∗, φrt〉

and

〈µxt , φ〉 =

∫
U
p(0, x, nT, z)

[∫
U
p(nT, z, t, y)φ(y)dy

]
dz = Pnφrt(x) = 〈µxnT , φrt〉, ∀x ∈ U .

Consequently, we derive from (5.21) that

‖µxt − µ̃t‖TV = sup
|φ|≤1

|〈µxt , φ〉 − 〈µ̃t, φ〉|

= sup
|φ|≤1

|〈µxnT , φrt〉 − 〈µ∗, φrt〉|

≤ C%n [1 + U(x, 0)]

≤ C̃1e
−C̃2t [1 + U(x, 0)] ,

where C̃1 = C%−1 and C̃2 = 1
T ln %.

Step 4. We show that

‖µt − µ̃t‖TV ≤ C̃1e
−C̃2t

∫
U

[1 + U(·, 0)] dν, ∀t > 0.

We apply Lemma 5.2 to find

〈µt, φ〉 = 〈ν, 〈µ•t , φ〉〉 =

∫
U
〈µxt , φ〉dν(x), ∀φ ∈Mb(U).

It follows from (5.23) that

‖µt − µ̃t‖TV = sup
|φ|≤1

|〈µt, φ〉 − 〈µ̃t, φ〉|

= sup
|φ|≤1

∣∣∣∣∫
U

[〈µxt , φ〉 − 〈µ̃t, φ〉] dν(x)

∣∣∣∣
≤
∫
U

sup
|φ|≤1

|〈µxt , φ〉 − 〈µ̃t, φ〉|dν(x)

≤ C̃1e
−C̃2t

∫
U

[1 + U(·, 0)] dν.

This completes the proof. �

6. Applications

In this section, we discuss some applications of Theorem B, Corollary B and Theorem C. Appli-

cations to stochastic damping Hamiltonian systems and stochastic slow-fast systems are discussed

respectively in Subsection 6.1 and Subsection 6.2. In Subsection 6.3, we investigate the convergence

of weak solutions of a SDE with less regular coefficients.
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6.1. Stochastic damping Hamiltonian systems. Consider the following stochastic damping Hamil-

tonian system:{
ẋ = y,

dy = − [b(x, y)y +∇V (x, t)] dt+ F (x, y, t)dt+ σ(x, y, t)dWt,
(x, y) ∈ Rd × Rd, (6.1)

where the damping b = (bij) : Rd × Rd 7→ Rd×d is continuous, the potential V : Rd × R 7→ (0,∞)

is twice continuously differentiable in x and continuously differentiable in t, the external force F :

Rd × Rd × R 7→ Rd is continuous, the noise coefficient matrix σ : Rd × Rd × R 7→ Rd×m belongs to

C(R,W 1,p
loc (Rd×Rd)), where p > d+ 2 and m ≥ d are fixed, and (Wt)t∈R is a standard m-dimensional

Wiener process. We assume V , F and σ are all T -periodic in t for some T > 0.

The FPE associated to (6.1) reads

∂tu = ∂2
yiyj (a

iju)− ∂xi(yiu) + ∂yi
(
(bijyj + ∂xiV )u

)
− ∂yi(F iu), (x, y, t) ∈ Rd × Rd × R, (6.2)

where (aij) := σσ>

2 is the diffusion matrix. Denote

LH := ∂t + aij∂2
yiyj + yi∂xi − (bijyj + ∂xiV )∂yi + F i∂yi .

We make the following additional assumptions on the coefficients.

(A1) There is b0 > 0 such that bijyiyj ≥ b0|y|2 for all y ∈ Rd.
(A2) The functions F and σ, and ∂tV are uniformly bounded on Rd×Rd×R and Rd×R, respectively.

(A3) There exists a lower bounded function Φ ∈ C2(Rd) such that

sup
(x,y)∈Rd×Rd

d∑
i,j=1

∣∣∣∣−bji(x, y)
xj
|x|

+ ∂xiΦ(x)

∣∣∣∣ <∞.
(A4) ∇xV · x|x| →∞ as |x| → ∞.

Note that (A1) says that the system (6.1) is damped. When b(x, y) is bounded, the function Φ in

(A3) can be taken to be 0.

Following the arguments as in the proof of [22, Theorem 5.1], we can construct a strong Lyapunov

function with respect to LH . Hence, Theorem B is applied to give the following result.

Theorem 6.1. Assume (A1)-(A4). Let µ = (µt)t∈(s,∞) be a global probability solution of the Cauchy

problem associated to (6.2) with initial condition µs = ν, where ν ∈ Mp(Rd × Rd) is compactly

supported. Then for any sequence of positive integers {nj}j∈N with limj→∞ nj = ∞, there exists a

subsequence, still denoted by {nj}j∈N, and a periodic probability solution µ̃ = (µ̃t)t∈R of (6.2) such

that

(1) for each bounded φ ∈ CT (Rd × Rd × R), there holds

lim
j→∞

1

njT

∫ t+njT

t

∫
Rd×Rd

φdµτdτ =
1

T

∫ T

0

∫
Rd×Rd

φdµ̃τdτ, ∀t ≥ s,

(2) for each ψ ∈ C2
c (Rd × Rd), there holds

lim
j→∞

1

nj

nj−1∑
k=0

∫
Rd×Rd

ψdµt+kT =

∫
Rd×Rd

ψdµ̃t, for a.e. t ∈ (s, s+ T ].

We point out that the uniqueness of periodic probability solutions of (6.2) (with non-smooth coef-

ficients) remains an interesting open question.
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6.2. Stochastic slow-fast systems. Consider the following SDE{
εẋ = f(x, y, t),

dy = g(x, y, t)dt+ σ(x, y, t)dWt,
(x, y) ∈ Rm × Rn, (6.3)

where 0 < ε � 1, f = (fk) : Rm × Rn × R 7→ Rm, g = (gi) : Rm × Rn × R 7→ Rn, σ = (σij) :

Rm × Rn × R 7→ Rn×` is the noise coefficient matrix with ` ≥ n, and W = (Wt)t∈R is a standard

`-dimensional Wiener process. We assume f , g and σ are T -periodic in t for some T > 0.

As here we are only interested in the dynamics of (6.3) for each fixed 0 < ε � 1, we set ε = 1 in

(6.3) and consider the following system for clarity.{
ẋ = f(x, y, t),

dy = g(x, y, t)dt+ σ(x, y, t)dWt,
(x, y) ∈ Rm × Rn.

The associated FPE reads

∂tu = ∂2
yiyj (a

iju)− ∂xk(fku)− ∂yj (giu), (x, y, t) ∈ Rm × Rn × R, (6.4)

where A := (aij) = 1
2σσ

>. Denote

LSF := ∂t + aij∂yiyj + fk∂xk + gi∂yi .

We make the following assumptions on the coefficients.

(B1) Let p > m + n + 2. A(x, y, t) is positive definite for each (x, y, t) ∈ Rm × Rn × R, and

aij ∈ CT (R,W 1,p
loc (Rm × Rn)) and gi ∈ CT (Rm × Rn × R) for each i, j = 1, . . . , n. Moreover,

for each a > 0, there holds

sup
{(x,y,t)∈Rm×Rn×R:|y|≤a}

|A| <∞,

(B2) There exists some positive T -periodic function U ∈ C1,1(Rm × R) satisfying

lim
|x|→∞

U(x, t) =∞, ∀t ∈ R

such that

sup
|y|≤a

sup
t∈R
LSFU → −∞ as |x| → ∞

for each a > 0, and

LSFU = 0 on {(x, y, t) ∈ Rm × Rn × R : |x| = 0} ,
LSFU < 0 on {(x, y, t) ∈ Rm × Rn × R : |x| 6= 0} .

To proceed, we need some dissipative conditions along the slow direction, namely, the y-direction.

Definition 6.1. Let V ∈ C2,1
T (Rn × R) be non-negative and satisfy

lim
|y|→∞

inf
t∈R

V (y, t) =∞.

It is called

(1) a semi-Lyapunov function (with respect to LSF ) if there exist positive constants γ and a such

that

LSFV ≤ −γ on {(x, y, t) ∈ Rm × Rn × R : |y| > a}, (6.5)
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(2) a strong semi-Lyapunov function (with respect to LSF ) if

lim
|y|→∞

sup
(x,t)∈Rm×R

LSFV (x, y, t) = −∞.

Theorem 6.2. Assume (B1) and (B2). If LSF admits a semi-Lyapunov function, then there exists

a unique periodic probability solution µ = (µt)t∈R of (6.4). Moreover, supp(µ) = {0m} × Rn × R,

where 0m denotes the origin in Rm.

Proof. We write LSF as L for notational simplicity. The proof is divided into three steps.

Step 1. We show that (6.4) admits a periodic probability solution µ = (µt)t∈R.

Let V be a semi-Lyapunov function with respect to L and γ, a > 0 be constants such that (6.5)

holds. Define

W (x, y, t) := U(x, t) + V (y, t), (x, y, t) ∈ Rm × Rn × R.
Obviously, W is non-negative and T -periodic, and satisfies

inf
t∈R

W (x, y, t)→∞ as |x|+ |y| → ∞,

and

LW = LU + LV ≤ −γ on {(x, y, t) ∈ Rm × Rn × R : |y| > a}.
Moreover, it follows from (B1) that LV is bounded on {(x, y, t) ∈ Rm × Rn × R : |y| ≤ a} and from

(B2) that

lim
|x|→∞

sup
|y|≤a

sup
t∈R
LU = −∞.

Hence, there is a constant b > 0 such that

LW = LU + LV ≤ −γ on {(x, y, t) ∈ Rm × Rn × R : |y| ≤ a, |x| > b}.

As a result, we find

LW ≤ −γ on {(x, y, t) ∈ Rm × Rn × R : |y| > a or |x| > b}.

That is, W is a Lyapunov function. Hence, we apply [22, Theorem B] to find a periodic probability

solution µ = (µt)t∈R of (6.4).

By virtue of Lemma 4.2, we may, assume without loss of generality, that for any φ ∈ C2,1
c (Rm ×

Rn × R), the function t 7→
∫∫

Rm×Rn φ(·, t)dµt is continuous on R.

Step 2. We show that µ is supported on {0m} × Rn × R. By Lemma 2.1 (1)(b) and Lemma 2.2,

there holds for any T -periodic φ ∈ C2,1
c (Rm × Rn × R)∫ t+T

t

∫∫
Rm×Rn

Lφdµτdτ =

∫∫
Rm×Rn

φ(x, y, t+ T )dµt+T −
∫∫

Rm×Rn
φ(x, y, t)dµt

= 0, ∀t ∈ R.
(6.6)

For each α > 1, define

Wα(x, y, t) := αU(x, t) + V (y, t), (x, y, t) ∈ Rm × Rn × R.

Obviously, Wα(x, y, t)→∞ as |x|+ |y| → ∞, for each α > 1.

Let {ζρ}ρ>0 be a family of smooth and non-decreasing functions on R satisfying

ζρ(t) =

{
t, t ∈ [0, ρ],

ρ+ 1, t ∈ [ρ+ 2,∞),
and ζ ′′ρ ≤ 0 on [ρ, ρ+ 2].
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Clearly, for each ρ > 0, the function ζρ(Wα)− (ρ+1) is T -periodic and belongs to C2,1
c (Rm×Rn×R).

Setting φ := ζρ(Wα)− (ρ+ 1) in (6.6), we find from

Lζρ(Wα) = ζ ′ρ(Wα)LWα + ζ ′′ρ (Wα)aij∂yiWα∂yjWα

= ζ ′ρ(Wα)(αLU + LV ) + ζ ′′ρ (Wα)aij∂yiV ∂yjV

that

0 =

∫ t+T

t

∫∫
Rm×Rn

Lζρ(Wα)dµτdτ

= α

∫ t+T

t

∫∫
Rm×Rn

ζ ′ρ(Wα)LUdµτdτ +

∫ t+T

t

∫∫
Rm×Rn

ζ ′ρ(Wα)LV dµτdτ

+

∫ t+T

t

∫∫
Rm×Rn

ζ ′′ρ (Wα)aij∂yiV ∂yjV dµτdτ.

(6.7)

As ζ ′ρ ≥ 0 on [0,∞), we see from (6.5) that

ζ ′ρ(Wα)LV ≤

{
maxΩ×R |LU |ζ ′ρ(Wα), (x, y, t) ∈ Ω× R,
−γζ ′ρ(Wα), (x, y, t) ∈ Ωc × R,

(6.8)

where Ω := {(x, y) : |y| ≤ a}, Ωc := {(x, y) : |y| > a} and a > 0 is such that (6.5) holds. Since ζ ′′ρ ≤ 0

on [ρ, ρ+ 2] and ζ ′′ρ = 0 otherwise, we derive from the non-negative definiteness of A = (aij) that

ζ ′′ρ (Wα)aij∂yiV ∂yjV ≤ 0 on Rm × Rn × R. (6.9)

Substituting (6.8) and (6.9) into (6.7) gives

− α
∫ t+T

t

∫∫
Rm×Rn

ζ ′ρ(Wα)LUdµτdτ + γ

∫ t+T

t

∫∫
Ωc
ζ ′ρ(Wα)dµτdτ

≤ max
Ω×R
|LV |

∫ t+T

t

∫∫
Ω

ζ ′ρ(Wα)dµτdτ.

In particular,

−α
∫ t+T

t

∫∫
Rm×Rn

ζ ′ρ(Wα)LUdµτdτ ≤ max
Ω×R
|LV |

∫ t+T

t

∫∫
Ωτ

ζ ′ρ(Wα)dµτdτ

≤ max
Ω×R
|LV | × T.

(6.10)

Note that limρ→∞ ζρ(t) = t, which yields limρ→∞ ζ ′ρ(Wα) = 1. Letting ρ→∞ in (6.10), we find

− α
∫ t+T

t

∫∫
Rm×Rn

LUdµτdτ ≤ max
Ω×R
|LV | × T. (6.11)

To see supp(µ) ⊂ {0m}×Rn×R, we suppose on the contrary that there exists an closed set B ⊂ Rm

satisfying 0m /∈ B such that ∫ t+T

t

µτ ({(x, y) : x ∈ B})dτ > 0, ∀t ∈ R.

Note that supB×R LU < 0 by (B2). Hence,

−α
(

sup
B×R
LU
)∫ t+T

t

µτ ({(x, y) : x ∈ B})dτ ≤ max
Ω×R
|LV | × T,

which leads to a contradiction when letting α→∞.
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Step 3. We claim that supp(µ) = {0m}×Rn×R and µ = (µt)t∈R is the unique periodic probability

solution of (6.4).

Define

µ∗t (B) := µt({0m} ×B), ∀B ∈ B(Rn) and t ∈ R, and µ∗ := (µ∗t )t∈R,

where B(Rn) is the Borel σ-algebra of Rn. We further define

L0 := ∂t + αij∂2
yiyj + βi∂yi ,

where αij(y, t) = aij(0m, y, t) and βi(y, t) := gi(0m, y, t) for (y, t) ∈ Rn × R and i, j = 1, . . . , n.

As µ = (µt)t∈R is a periodic probability solution of (6.4) and is supported on {0m} × Rn × R, we

see that µ∗t (Rn) = 1 and µ∗t = µ∗t+T for t ∈ R, and∫
R

∫
Rn
L0φdµ∗τdτ = 0, ∀φ ∈ C2,1

0 (Rn × R).

That is, µ∗ = (µ∗t )t∈R is a periodic probability solution of the following FPE

∂tu = ∂2
yiyj (α

iju)− ∂yi(βiu), (y, t) ∈ Rn × R. (6.12)

By Theorem 2.1, µ∗ admits a positive density on Rn×R. Hence, supp(µ∗) = Rn×R, or equivalently,

supp(µ) = {0m}×Rn×R. Note that V is an Lyapunov function with respect to L0. Hence, we apply

Theorem A to conclude that (6.4) as well as (6.12) admits a unique periodic probability solution. �

When the semi-Lyapunov function in Theorem 6.2 is indeed a strong semi-Lyapunov function, we

are able to apply Theorem B to deduce a convergence result.

Theorem 6.3. Assume (B1), (B2) and that LSF admits a strong semi-Lyapunov function. Then,

for any global probability solution µ = (µt)t∈(s,∞) of the Cauchy problem associated to (6.4) with initial

condition µs = ν, where ν ∈Mp(Rm × Rn) is compactly supported, there holds

lim
K→∞

1

K

K∑
k=1

∫∫
Rm×Rn

φdµt+kT =

∫∫
Rm×Rn

φdµ̃t, ∀φ ∈ C2
c (Rm × Rn) and t ∈ (s, s+ T ],

where µ̃ = (µ̃t)t∈R is the unique periodic probability solution of (6.4)

Proof. Let V ∈ C2,1
T (Rn×R) be the strong semi-Lyapunov function with respect to LSF . Arguing as

in the proof of Theorem 6.2, we show that the function

W (x, y, t) := U(x, t) + V (y, t), ∀(x, y, t) ∈ Rm × Rn × R

is a strong Lyapunov function with respect to LSF . The conclusion follows from Theorem B and

Theorem 6.2. �

6.3. Convergence of weak solutions of a SDE. Fix s ∈ R. Consider the following initial value

problem associated to the SDE (1.2):{
dx = V (x, t)dt+G(x, t)dWt, x ∈ U ,
xs ∼ ν,

(6.13)

where ν is a given Borel probability measure on U . We assume V and G are continuous on U ×R and

T -periodic in t for some T > 0.
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Recall that a (globally defined) weak solution of (6.13) is a triple of a filtered probability space

(Ω,F , {Ft}t≥s,P), an adapted Wiener process (Wt)t≥s and an adapted stochastic process (Xt)t≥s
such that

Xs ∼ ν, Xt = Xs +

∫ t

s

V (Xτ , τ)dτ +

∫ t

s

G(Xτ , τ)dWτ , ∀t > s.

In the sequel, we simply call (Xt)t≥s a weak solution of (6.13) without mentioning the underlying

probability space and Wiener process.

Let (aij) = 1
2GG

> and set

L := ∂t + aij∂2
ij + V i∂i.

Lemma 6.1. Let (Xt)t≥s be a weak solution of (6.13) and µt be the distribution of Xt for t ≥ s.

Then, (µt)t∈(s,∞) is a global probability solution of the Cauchy problem (1.3)-(1.11).

Proof. It is well-known [24] that under the current assumptions on the coefficients, (Xt)t≥s induces a

solution of the associated martingale problem. Hence, for each φ ∈ C2
c (U), there holds

Eφ(Xt)− Eφ(Xs)−
∫ t

s

E [Lφ(Xτ )] dτ = 0, ∀t > s,

that is, ∫
U
φdµt −

∫
U
φdν −

∫ t

s

∫
U
Lφdµτdτ = 0, ∀t > s.

The conclusion then follows from Lemma 2.1 (b)(1). �

In the presence of Lemma 6.1, we can apply Theorem B and Theorem C to derive the following

convergence results of weak solutions.

Theorem 6.4. Suppose L admits a strong Lyapunov function U . Let (Xt)t≥s be a weak solution of

(6.13) with
∫
U U(·, s)dν <∞. Then for any sequence of positive integers {nj}j∈N with limj→∞ nj =∞,

there exists a subsequence, still denoted by {nj}j∈N, and a periodic probability solution µ̃ = (µ̃t)t∈R of

(1.3) such that

(1) for each bounded φ ∈ CT (U × R), there holds

lim
j→∞

1

njT

∫ t+njT

t

Eφ(Xτ )dτ =
1

T

∫ T

0

∫
U
φdµ̃τdτ, ∀t ≥ s, (6.14)

(2) for each ψ ∈ C2
c (U), there holds

lim
j→∞

1

nj

nj−1∑
k=0

Eψ(Xt+kT ) =

∫
U
ψdµ̃t, for a.e. t > s. (6.15)

In particular, if (1.3) admits a unique periodic probability solution µ̃ = (µ̃t)t∈R, then (6.14) and (6.15)

hold for the whole sequence N.

Theorem 6.5. Assume GG> is locally Lipschitz continuous in x and pointwise positive definite.

Suppose L admits an exponentially strong Lyapunov function U . Then, there exist positive constants

C1 and C2 such that any weak solution (Xt)t≥s of (6.13) with
∫
U U(·, s)dν <∞ satisfies∣∣∣∣Eφ(Xt)−

∫
U
φdµ̃t

∣∣∣∣ ≤ C1e
−C2(t−s), ∀t > s

for any bounded measurable function φ on U , where µ̃ = (µ̃t)t∈R is the unique probability solution of

(1.3).
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Appendix A. Proof of an inequality

In this appendix, we prove the inequality (2.3). Let ρ1, ρ2 ∈ C(U × (s,∞)) be respectively a global

probability solution and a global sub-probability solution of the Cauchy problem (1.3)-(1.11). Define

w := ρ2
ρ1

and fλ(t) := eλ(1−t) − eλ for t ≥ 0, where λ > 0 is a parameter. Then for any non-negative

function φ ∈ C2,1
c (U × R), there holds∫

U
fλ(w)φdµ1

t ≤ fλ(1)

∫
U
φdν +

∫ t

s

∫
U
f(w)Lφdµ1

τdτ, ∀t > s. (A.1)

Note that the above inequality is just (2.3).

The rest of this appendix is devoted to the proof of (A.1).

Proof of (A.1). Define

η(x) =

{
cde
− 1

1−|x|2 , if |x| ≤ 1,

0, if |x| > 1,

where cd > 0 is such that
∫
Rd ηdx = 1. It is well-known that η ∈ C∞c (Rd). Let ηε(x) := 1

εd
η(xε ) for

x ∈ Rd and 0 < ε� 1.

For a measurable function g : U × (s,∞)→ R, we define

gε(x, t) :=

∫
{y∈Rd:x−y∈U}

g(x− y, t)ηε(y)dy, (x, t) ∈ U × (s,∞).

In particular, for each i = 1, 2,

ρi,ε(x, t) =

∫
{y∈Rd:x−y∈U}

ρi(x− y, t)ηε(y)dy

=

∫
U
ρi(y, t)ηε(x− y)dy, (x, t) ∈ U × (s,∞).

It is not hard to check that

lim
ε→0

ρi,ε = ρi locally uniformly in U × (s,∞), (A.2)

and that for each 0 < ε� 1,

lim
t→s

ρi,ε(x, t) = νε(x), x ∈ U , (A.3)

where

νε(x) :=

∫
U
ηε(x− y)dν(y), x ∈ U .

Note that for each 0 < ε� 1 and i = 1, 2, there holds ρi,ε(·, t) ≤ |ηε|∞ on U for each t ∈ (s,∞), which

together with (A.3) and the dominated convergence theorem implies that

lim
t→s+

ρi,ε(·, t) = νε in L1(U). (A.4)

It is straightforward to check that for each i = 1, 2, ρi,ε satisfies

∂tρi,ε = ∂kl(a
klρi,ε)− ∂k((V kρi)ε −Rkρi,ε),

where Rkρi,ε := ∂l(a
klρi)ε − ∂l(aklρi,ε). Set wε :=

ρ2,ε
ρ1,ε

. Multiplying by φ ∈ C2,1
c (U × R) the equation

satisfied by ρ2,ε and integrating by parts, we arrive at∫ t2

t1

∫
U
∂t(wερ1,ε)φdxdτ =

∫ t2

t1

∫
U

[
wερ1,εa

kl∂klφ+
(
(V kρ2)ε −Rkρ2,ε

)
∂kφ

]
dxdτ, ∀t2 > t1 > s.
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Setting φ = f ′λ(wε)ψ in the above equality, where ψ ∈ C2,1
c (U × R) is non-negative, we find∫ t2

t1

∫
U
∂t(wερ1,ε)f

′
λ(wε)ψdxdτ

=

∫ t2

t1

∫
U

[
wερ1,εa

kl∂kl(f
′
λ(wε)ψ) +

(
(V kρ2)ε −Rkρ2,ε

)
∂k(f ′λ(wε)ψ)

]
dxdτ, ∀t2 > t1 > s.

(A.5)

Note that there holds the equality

∂t(wερ1,ε)f
′
λ(wε) = ∂t(fλ(wε)ρ1,ε)− (fλ(wε)− f ′λ(wε)wε) ∂tρ1,ε.

Inserting the above equality into the left-hand side of (A.5) and then utilizing the equation satisfied

by ρ1,ε, the following equality follows from straightforward calculations.∫ t2

t1

∫
U
∂t(fλ(wε)ρ1,ε)ψdxdτ +

∫ t2

t1

∫
U
ψf ′′λ (wε)a

kl∂kwε∂lwερ1,εdxdτ

=

∫ t2

t1

∫
U

[
fλ(wε)ρ1,εa

kl∂klφ+ fλ(wε)(V
kρ1)ε∂kψ

]
dxdτ

+

∫ t2

t1

∫
U

(Wε · ∇ψ)f ′λ(wε)dxdτ

+

∫ t2

t1

∫
U

(Wε · ∇wε)f ′′λ (wε)ψdxdτ

−
∫ t2

t1

∫
U
f ′λ(wε)R

k
ρ2,ε∂kψdxdτ

+

∫ t2

t1

∫
U

(fλ(wε)− wεf ′λ(wε))R
k
ρ1,ε∂kψdxdτ

+

∫ t2

t1

∫
U
f ′′λ (wε)(R

k
ρ2,ε − wεR

k
ρ1,ε)∂kwεψdxdτ

=

∫ t2

t1

∫
U

[
fλ(wε)ρ1,εa

kl∂klφ+ fλ(wε)(V
kρ1)ε∂kψ

]
dxdτ +

5∑
j=1

Ij ,

(A.6)

where Wε := (V ρ2)ε − (V ρ1)εwε.

We estimate the terms Ij , j = 1, . . . , 5. Note that f ′λ(x) = −λeλ(1−x) and f ′′λ (x) = λ2eλ(1−x).

Obviously,

|I1| ≤ λeλ sup
U×[s,t2]

|∇ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Wε|e−λwεdxdτ.

By Young’s inequality, there holds

|I2| ≤ δ
∫ t2

t1

∫
U
ψf ′′λ (wε)|∇wε|2ρ1,εdxdτ +

1

4δ
sup
U×[s,t2]

|ψ|
∫ t2

t1

∫
supp(ψ(·,τ))

|Wε|2

ρ1,ε
f ′′λ (wε)dxdτ

≤ δ
∫ t2

t1

∫
U
ψf ′′λ (wε)|∇wε|2ρ1,εdxdτ +

λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Wε|2

ρ1,ε
e−λwεdxdτ, δ > 0.
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For I3 and I4, we have

|I3| ≤ λeλ sup
U×[s,t2]

|∇ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ2,ε|e−λwεdxdτ,

|I4| ≤ λeλ sup
U×[s,t2]

|∇ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ1,ε|(1 + λwε)e
−λwεdxdτ,

where Rρi,ε = (Rkρi,ε), i = 1, 2. For I5, we find from Young’s inequality and f ′′λ (x) = λ2eλ(1−x) that

|I5| ≤ 2δ

∫ t2

t1

∫
U
ψf ′′λ (wε)|∇wε|2ρ1,εdxdτ

+
λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ2,ε|2

ρ1,ε
e−λwεdxdτ

+
λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ1,ε|2

ρ1,ε
|wε|2e−λwεdxdτ, δ > 0,

It follows from (A.6) that

∫ t2

t1

∫
U
∂t(fλ(wε)ρ1,ε)ψdxdτ +

∫ t2

t1

∫
Rd
ψf ′′λ (wε)a

kl∂kwε∂lwερ1,εdxdτ

≤
∫ t2

t1

∫
U

[fλ(wε)ρ1,εa
kl∂klψ + fλ(wε)(V

kρ1)ε∂kψ]dxdτ

+ 3δ

∫ t2

t1

∫
U
ψf ′′λ (wε)|∇wε|2ρ1,εdxdτ + Ω(ε, δ), ∀t2 > t1 > s,

(A.7)

where

Ω(ε, δ) = λeλ sup
U×[s,t2]

|∇ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Wε|e−λwεdxdτ

+
λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Wε|2

ρ1,ε
e−λwεdxdτ

+ λeλ sup
U×[s,t2]

|∇ψ|
∫ t2

s

∫
supp(ψ(·,τ))

[|Rρ2,ε|+ |Rρ1,ε|(1 + λwε)] e
−λwεdxdτ

+
λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ2,ε|2

ρ1,ε
e−λwεdxdτ

+
λ2

4δ
eλ sup
U×[s,t2]

|ψ|
∫ t2

s

∫
supp(ψ(·,τ))

|Rρ1,ε|2

ρ1,ε
|wε|2e−λwεdxdτ.

Arguing as in the proof of [34, Lemma 3.1 and Lemma 3.2], we find

lim
ε→0

Ω(ε, δ) = 0, ∀δ > 0.
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It follows from the Newton-Leibniz formula that∫ t2

t1

∫
U
∂t(fλ(wε)ρ1,ε)ψdxdτ =

∫
U
fλ(wε(x, t2))ρ1,ε(x, t2)ψ(x, t2)dx

−
∫
U
fλ(wε(x, t1))ρ1,ε(x, t1)ψ(x, t1)dx

−
∫ t2

t1

∫
U
fλ(wε)ρ1,ε∂tψdxdτ.

(A.8)

As ψ ∈ C2,1
c (U×R), when restricted on U× [s, t2], is compactly supported, and (aij) is locally uniform

positive definite, there is a positive number m such that

(
aij∂iwε∂jwε

)
(x, t) ≥ m|∇wε(x, t)|2, ∀(x, t) ∈ supp(ψ) ∩ (U × [s, t2]).

This together with f ′′λ ≥ 0 and ψ ≥ 0 yields that

∫ t2

t1

∫
U
ψf ′′λ (wε)a

kl∂kwε∂lwερ1,εdxdτ ≥ 3

4

∫ t2

t1

∫
U
ψf ′′λ (wε)a

kl∂kwε∂lwερ1,εdxdτ

+
m

4

∫ t2

t1

∫
U
ψf ′′λ (wε)|∇wε|2ρ1,εdxdτ.

(A.9)

Set δ = m
12 . We find from (A.7), (A.8) and (A.9) that

∫
U
fλ(wε(x, t2))ρ1,ε(x, t2)ψ(x, t2)dx

≤
∫
U
fλ(wε(x, t1))ρ1,ε(x, t1)ψ(x, t1)dx− 3

4

∫ t2

t1

∫
U
ψf ′′λ (wε)a

kl∂kwε∂lwερ1,εdxdτ

+

∫ t2

t1

∫
U

[
ρ1,εfλ(wε)(∂tψ + akl∂klψ) + fλ(wε)(V

kρ1)ε∂kψ
]

dxdτ + Ω(ε,
m

12
)

≤
∫
U
fλ(wε(x, t1))ρ1,ε(x, t1)ψ(x, t1)dx

+

∫ t2

t1

∫
U

[
ρ1,εfλ(wε)(∂tψ + akl∂klψ) + fλ(wε)(V

kρ1)ε∂kψ
]

dxdτ + Ω(ε,
m

12
).

(A.10)

Since |fλ(t)− fλ(1)| ≤ λeλ|t− 1| holds for all t ≥ 0, we apply the dominated convergence theorem

to find for each 0 < ε� 1, ∫
U
|fλ(wε(x, t1))− fλ(1)|ρ1,ε(x, t1)ψ(x, t1)dx

≤ λeλ
∫
U
|ρ2,ε(x, t1)− ρ1,ε(x, t1)|ψ(x, t1)dx

→ 0 as t1 → s+,
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By (A.4) and the dominated convergence theorem, we deduce∫
U
|ρ1,ε(x, t1)ψ(x, t1)− νε(x)ψ(x, s)|dx

≤
∫
U
|ρ1,ε(x, t1)− νε(x)|ψ(x, t1)dx+

∫
U
νε(x)|ψ(x, t1)− ψ(x, s)|dx

≤ max
U×[s,t2]

|ψ| · ‖ρ1,ε(·, t1)− νε(·)‖L1(U) +

∫
U
νε(x)|ψ(x, t1)− ψ(x, s)|dx

→ 0 as t1 → s+.

Thus, ∫
U
fλ(wε(x, t1))ρ1,ε(x, t)ψ(x, t1)dx→ fλ(1)

∫
U
νε(x)ψ(x, s)dx as t1 → s.

Note that ρ1,εfλ(wε)(∂tψ + akl∂klψ) + fλ(wε)(V
kρ1)ε∂kψ is integrable on U × [s, t2). It follows that

lim
t1→s+

∫ t2

t1

∫
U
ρ1,ε

[
fλ(wε)(∂tψ + akl∂klψ) + fλ(wε)(V

kρ1)ε∂kψ
]

dxdτ

=

∫ t2

s

∫
U

[
ρ1,εfλ(wε)(∂tψ + akl∂klψ) + fλ(wε)(V

kρ1)ε∂kψ
]

dxdτ.

Passing to the limit t1 → s+ in the inequality (A.10) yields∫
U
fλ(wε(x, t2))ρ1,ε(x, t2)ψ(x, t2)dx

≤ fλ(1)

∫
U

(ν ∗ ηε)ψdx+

∫ t2

s

∫
U

[
fλ(wε)ρ1,εfλ(wε)(∂tψ + akl∂klψ)

+fλ(wε)(V
kρ1)ε∂kψ

]
dxdτ + Ω(ε,

m

12
), ∀t2 > s.

As limε→0 Ω(ε, m12 ) = 0, we let ε → 0 in the above inequality to find from (A.2), (A.3) and the

dominated convergence theorem that (A.1), with t2 and ψ replaced by t and φ, respectively, holds.

This completes the proof. �
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