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Abstract. The present paper is devoted to the study of the long term dynamics of diffusion pro-

cesses modelling a single species that experiences both demographic and environmental stochasticity.

In our setting, the long term dynamics of the diffusion process in the absence of demographic stochas-

ticity is determined by the sign of Λ0, the external Lyapunov exponent, as follows: Λ0 < 0 implies

(asymptotic) extinction and Λ0 > 0 implies convergence to a unique positive stationary distribution

µ0. If the system is of size 1
ε2

for small ε > 0 (the intensity of demographic stochasticity), demo-

graphic effects will make the extinction time finite almost surely. This suggests that to understand

the dynamics one should analyze the quasi-stationary distribution (QSD) µε of the system. The

existence and uniqueness of the QSD is well-known under mild assumptions.

We look at what happens when the population size is sent to infinity, i.e., when ε→ 0. We show

that the external Lyapunov exponent still plays a key role: 1) If Λ0 < 0, then µε → δ0, the mean

extinction time is of order | ln ε| and the extinction rate associated with the QSD µε has a lower

bound of order 1
| ln ε| ; 2) If Λ0 > 0, then µε → µ0, the mean extinction time is polynomial in 1

ε2

and the extinction rate is polynomial in ε2. Furthermore, when Λ0 > 0 we are able to show that

the system exhibits multiscale dynamics: at first the process quickly approaches the QSD µε and

then, after spending a polynomially long time there, it relaxes to the extinction state. We give sharp

asymptotics in ε for the time spent close to µε.

In contrast to models that only take into account demographic stochasticity, our results demon-

strate the significant effect of environmental stochasticity – it turns an exponentially long mean

extinction time to a sub-exponential one.
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1. Introduction

One of the most important questions from population dynamics is figuring out when a species

persists or goes extinct. For deterministic models, persistence is usually quantified via the existence

of an attractor that is bounded away from zero (the extinction state). In this setting extinction

can only happen asymptotically as time goes to infinity. However, any realistic ecological model

has to take into account various intrinsic and extrinsic random environmental fluctuations. Usually

there are either ecological models that take into account environmental stochasticity that arises due

to fluctuations of the environment, or models from population genetics that focus on demographic

stochasticity, which arises because of the randomness due to reproduction in a finite population. There

are few analytic models which account for the effects of both types of stochasticity.

If the system is of size 1
ε2 for some small ε > 0 (intensity of the demographic noise), the presence

of demographic effects will make the extinction time finite almost surely. As a result, in order to

gain some information about the behavior of the process before extinction, it is natural and useful

to look at quasi-stationary distributions (QSDs) [13, 46], i.e., stationary distributions of the process

conditioned on not going extinct. A key problem is to study scaling limits of systems that have QSDs

and see what happens with the family of QSDs as the intensity of the demographic noise is sent to

zero.

The main goal of this paper is to analyze the dynamics of systems that have both types of stochas-

ticity and can be modelled by stochastic differential equations (SDEs). We focus on the QSD and the

extinction time as well as related quantities such as the extinction rate and the exponential conver-

gence rate to the QSD, and investigate their asymptotic properties as the intensity of the demographic

noise vanishes – a particular emphasis is put on the connections to properties of the limit system.

Models with both types of stochasticity are more realistic as natural systems usually experience both

types of randomness. The sharp criteria we find for the persistence and extinction of species are

therefore more relevant to the modelling of natural ecosystems – see [26, 19].

Systems perturbed by either the environmental or demographic stochasticity have been attracting

a lot of attention. If one looks at models that only have environmental stochasticity, there already

exist many sharp results in the literature. In the one-dimensional setting, a full classification is

possible by the well-known scale function and speed measure description of diffusions [4]. In the

multi-dimensional setting things are more complicated. Some general theory for the existence and

uniqueness of stationary distributions can be found in [38], while the most up to date results for

Kolmogorov systems are in [28, 1, 29].



POPULATION DYNAMICS UNDER DEMOGRAPHIC AND ENVIRONMENTAL STOCHASTICITY 3

For models with only demographic stochasticity, asymptotic properties of QSDs and related quan-

tities as the intensity of the stochasticity vanishes are often the focus of studies. They have been

investigated for randomly perturbed dynamical systems and rescaled Markov jump processes. The

first work seemingly dates back to [31], where the author studied the stochastic Ricker model. This

work was generalized in [42, 52] to randomly perturbed interval maps that apply to density-dependent

branching processes. Further generalizations were considered in [35, 21], where general randomly per-

turbed maps are studied and applied to many population models. These works illuminate two funda-

mental properties when the unperturbed deterministic system has a global attractor which is bounded

away from extinction: 1) QSDs tend to concentrate on the deterministic attractor as the noise inten-

sity vanishes. 2) The extinction rate associated with a QSD is exponentially small with respect to

the system size (i.e., the reciprocal of the noise intensity squared), and therefore, the extinction time

grows exponentially with the system size if the initial distribution is given by the QSD. Concentration

properties of QSDs as in 1) are in line with that of stationary distributions for randomly perturbed

dynamical systems (see e.g. [39, 40, 41, 22, 32, 33]). For the latter in the case that the unperturbed

system has simple dynamics, significantly more refined results are available in the literature (see e.g.

[54, 14, 47, 2]).

Rescaled absorbed birth-and-death processes whose mean-field ODEs have a global asymptotically

stable equilibrium have been investigated in [7, 8, 9]. In one dimension, the exponential asymptotic of

QSDs and associated extinction rates are established in [7]. When the equilibrium is non-degenerate,

these results are improved in [8] by determining the sub-exponential terms, implying in particular that

QSDs converge to the Dirac measure at the equilibrium in a Gaussian manner. In higher dimensions,

the aforementioned two fundamental properties are obtained in [9]. It is worthwhile to point out that

the problem in higher dimensions is much more challenging due to the irreversibility and the lack of

simple recursive formulas for QSDs. In [8, 9], the authors also characterize the two-scale dynamics

of the solution processes by deriving sophisticated estimates quantifying the distance between the

distribution of the solution and the convex combination of the extinction state (more precisely, the

Dirac measure at the extinction state) and the QSD.

In [53, 36, 51] the authors consider one-dimensional absorbed singular diffusion processes of gen-

eralized logistic type with small demographic noises – these models can be derived as diffusion ap-

proximations of one-dimensional rescaled absorbed Markov jump processes arising from population

dynamics and chemical reactions. When the unperturbed or mean-field ODE has a unique positive

equilibrium (which must be globally asymptotically stable), results comparable to those contained in

[8] are established. In particular, the noise-vanishing asymptotic of QSDs and associated extinction

rates are determined up to the sub-exponential terms, and the two-scale dynamics of the solution

process is characterized. The noise-vanishing asymptotic of QSDs and associated extinction rates

extends to the case where the unperturbed ODE has multiple positive stable equilibria. We point out

that while QSDs for many types of processes have been extensively studied (see [50, 6, 18, 13] and

reference therein), the fundamental theory of QSDs (i.e., the existence, uniqueness and convergence)

for absorbed singular diffusion processes was unavailable until the work [6]. Since then, there have

been significant new developments (see e.g. [44, 46, 13, 48, 10, 27, 30]).

There exist relevant works on overdamped Langevin equations restricted in a bounded domain and

killed on its boundary [45, 5, 15, 16, 17]. In [45], the author derived the exponential asymptotic of

the extinction rate (more appropriately, the exit rate for a diffusion process exiting from a bounded

domain) and the asymptotic of the principal eigenfunction of the generator in the deepest well of
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the potential, leading to the sub-exponential asymptotic of the QSD in that well. These results are

greatly improved in [5] under generic assumptions on the potential function. In a series of works

[15, 16, 17] examining exit events and the Eyring-Kramers formula, the sub-exponential asymptotic of

the exit rate plays a significant role in computing the asymptotic of transition rates and determining

the asymptotic exit distribution.

This paper is a first step towards generalizing the theory of randomly perturbed dynamical systems

without absorbing states and randomly perturbed dynamical systems with absorbing states and only

demographic noises to a theory of randomly perturbed dynamical systems with absorbing states and

multiple types of noise. Inspired by the aforementioned theories of noise-vanishing asymptotics of

stationary distributions, QSDs, and related quantities, and motivated by the fact that real systems

are subject to both intrinsic and extrinsic stochastic perturbations, we intend to establish an analogous

theory for dynamical systems under both environmental and demographic noise perturbations, and

study the effects of both types of noises.

In the present paper, we consider one-dimensional SDEs with both environmental and demographic

stochasticity:

dXε
t = b(Xε

t )dt+ σ(Xε
t )dBt + ε

√
a(Xε

t )dWt in [0,∞),

where the coefficients b, σ and a satisfy natural assumptions. Let T ε0 = inf {t ≥ 0 : Xε
t = 0} be

the extinction time of Xε
t . It is finite almost surely. Denote by Lε the self-adjoint extension in

L2(uGε ) := L2((0,∞), uGε dx) of the generator of Xε
t , where uGε is the non-integrable Gibbs density of

Xε
t as it grows like 1

x as x→ 0+. The spectrum of Lε is purely discrete. Depending on the dynamics

of the limiting SDE, which only has an environmental stochasticity term:

dX0
t = b(X0

t )dt+ σ(X0
t )dBt in [0,∞),

we are able to prove the following results (with rigorous statements given in Section 2):

(I). Suppose Λ0 := b′(0) − |σ
′(0)|2
2 > 0 so that X0

t has a unique stationary distribution µ0 that does

not put mass on the extinction state 0.

• The unique QSD µε of Xε
t converges to µ0 as the intensity of the demographic noise goes to

zero, that is, ε → 0. The associated extinction rate λε,1 is given by the principal eigenvalue

of −Lε, and is polynomially small in ε with leading order λε,1 ∼ ε
4b′(0)
|σ′(0)|2

−2
.

• The normalized extinction time
T ε0

Eε•[T ε0 ]
converges weakly to an exponential random variable of

mean 1 as ε → 0. Moreover, the mean extinction time Eε•[T ε0 ] depends polynomially on the

system size 1
ε2 with leading order

Eε•[T ε0 ] ∼ 1

λε,1
∼ ε2−

4b′(0)
|σ′(0)|2 =

(
1

ε2

) 2b′(0)
|σ′(0)|2

−1

.

The polynomial asymptotics of the extinction rate λε,1 and the mean extinction time Eε•[T ε0 ]

are significant changes from that of models having only demographic noise, see [21, 36, 51],

where the dependence on the noise intensity is exponential. This shows that environmental

stochasticity has a significant impact on the time-scales of the dynamics. The fact that

the dependence changes from exponential to polynomial in the presence of environmental

stochasticity has been recently showcased empirically and numerically in simple ecological

models [26, 19].
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• The eigenfunction φε,1 of −Lε associated with λε,1 converges, after appropriate normalization,

to 1 as ε→ 0. The second eigenvalue λε,2 of −Lε satisfies

0 < lim inf
ε→0

λε,2 ≤ lim sup
ε→0

λε,2 <∞,

yielding in particular the uniform spectral gap infε(λε,2 − λε,1) > 0.

• The distribution of Xε
t satisfies the multiscale estimate:∥∥Pε•[Xε

t ∈ •]−
[
αεe
−λε,1tµε +

(
1− αεe−λε,1t

)
δ0
]∥∥
TV
≤ Ce−λε,2t, (1.1)

where αε is the integral of the appropriately normalized φε,1 with respect to the initial

distribution, and the constant C depends on the initial distribution but is independent of

ε. This estimate together with information about λε,1, λε,2 and φε,1 allows us to quan-

tify the multiscale dynamics of Xε
t as follows. If t is such that 1

λε,2
� t � 1

λε,1
, then

‖Pε•[Xε
t ∈ •] − µε]‖TV � 1, that is, the distribution of Xε

t is close the QSD µε. If t is

such that t� 1
λε,1

, then ‖Pε•[Xε
t ∈ •]− δ0]‖TV � 1, that is, the distribution of Xε

t gets close

to δ0, the Dirac mass at the extinction state.

The estimate (1.1) is powerful – it has the convergence result of the normalized extinction

time
T ε0

Eε•[T ε0 ]
and the asymptotic reciprocal relationship Eε•[T ε0 ] ∼ 1

λε,1
as immediate conse-

quences.

(II). Suppose Λ0 < 0 so that X0
t goes extinct as t→∞.

• As ε→ 0, we have µε → δ0. The extinction rate λε,1 vanishes as ε→ 0 and has a lower bound

of order 1
| ln ε| .

• The mean extinction time is of order | ln ε|, that is, Eε•[T ε0 ] ∼ | ln ε|.
The quantity Λ0 is often referred to as the stochastic growth rate (it is also called the invasion rate

or the external Lyapunov exponent) – it determines the stability of the extinction state 0 for X0
t . As

Λ0 increases and crosses 0, the stable extinction state loses its stability and bifurcates into an unstable

extinction state and the globally asymptotically stable persistent state µ0. As it is seen from (I) and

(II) such a bifurcation has a strong effect on the asymptotics of the extinction rate λε,1 and the mean

extinction time Eε•[T ε0 ].

To this end, we briefly comment on the ideas, methods and techniques used to establish the above

results, as well as the difficulties overcome in the course of the proof. We pay particular attention to

the comparison with the model that only has demographic stochasticity, that is,

dX̃ε
t = b(X̃ε

t )dt+ ε

√
a(X̃ε

t )dWt in [0,∞).

For clarity, we assume b is just the standard logistic growth rate function with x∗ being the only positive

zero. Denote by L̃ε the self-adjoint extension of the generator of X̃ε
t . Under natural assumptions on

a, the spectrum of L̃ε is purely discrete. Denote by λ̃ε,1 and λ̃ε,2 the first two eigenvalues of −L̃ε.
• It is known (see e.g. [45, 5, 36]) that the asymptotic of λ̃ε,1 and λ̃ε,2 are respectively de-

termined by the potential function Ṽ := −
∫ •
0
b
ads and the vector field b at x∗. More pre-

cisely, limε→0
ε2

2 ln λ̃ε,1 = Ṽ (x∗), and limε→0 λ̃ε,2 = −b′(x∗). The behavior of λε,1 and λε,2 is

completely different: we can show in the case Λ0 > 0 that the leading asymptotic of λε,1 is

determined by b′ and σ′ at the extinction state 0. This shows that environmental stochasticity

significantly alters the ‘hidden mechanisms’ which affect the mean extinction time.
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• Denote by L0 the self-adjoint extension of the generator of X0
t . One expects that the asymp-

totics of λε,1 and λε,2 are governed by the spectral properties of −L0. However, this is not

clear at all because of the singular limit “limε→0 Lε = L0”. The coefficient of the second-order

term of Lε has a first-order degeneracy at 0, while that of L0 has a second-order degeneracy at

0. One of the unpleasant consequences of this singularity is that the structure of the spectrum

of L0 differs significantly from that of Lε. The reader is referred to Remark 3.1 for details.

• Proving that infε λε,2 > 0 is hard in part due to the singularity of the limit “limε→0 Lε = L0”.

The way we prove this builds on the simple fact that the eigenfunctions associated with λε,1
and λε,2 are orthogonal. Assuming the failure of infε λε,2 > 0, we manage to show the loss

of the orthogonality of eigenfunctions. A crucial ingredient leading to this contradiction is to

acquire certain compactness of appropriately normalized eigenfunctions associated with λε,1
and λε,2.

• Given the fact that eigenfunctions of −Lε span L2(uGε ), the multiscale estimate (1.1) follows

essentially from the eigenfunction expansion of the Markov semigroup P εt associated with Xε
t

before hitting 0, saying particularly that all the terms in the estimate arise naturally except

the property that the constant C on the right hand side is independent of ε. The key to

obtaining this is to derive good pointwise estimates of P εtQ
ε
2f for f ∈ Cb((0,∞)) by lifting

the integrability, as we know ‖P εtQε2‖L2(uGε )→L2(uGε ) ≤ e−λε,2t from P εt being generated by Lε,
where Qε2 is the spectral projection of Lε corresponding to eigenvalues σ(Lε) \ {−λε,1}. This,

however, is not an easy job due to the degeneracy of Lε at 0 and the singularity of uGε at

0. We overcome the difficulties by examining the Schrödinger operator and the associated

semigroup that are respectively unitarily equivalent to Lε and P εt . It is the blowup feature

of the potential of the Schrödinger operator that helps to lift the integrability and reach the

goal.

• The asymptotic of the extinction rate λε,1 in the case Λ0 > 0 is tackled from two perspec-

tives. The first approach uses only the classical variational formula. A careful analysis of

the eigen-equation (written in the quadratic form) near the extinction state 0 allows us to

derive the sharp lower bound. The analysis extends to the case Λ0 < 0. A non-sharp upper

bound is obtained by constructing test functions. The other approach, which leads to the

sharp asymptotic, builds on two independently established results: the asymptotic reciprocal

relationship Eε•[T ε0 ] ∼ 1
λε,1

and the sharp asymptotic of Eε•[T ε0 ]. The former is an immediate

consequence of the multiscale estimate (1.1) as mentioned in (I). The latter is achieved by a

probabilistic approach that extends to the case Λ0 < 0.

The preprint [56] has recently come to our attention. The authors have been able to prove results

analogous to ours for a specific stochastic SIS epidemic model in randomly switched environments.

The SIS model is described by a multitype birth-and-death process XK in a randomly switched

environment – the infection and recovery rates depend on the state of a finite Markov process, which

model the environment, whose transition rates in turn depend on the number of infected individuals.

The total population size K is fixed and the authors show that as K → ∞ the process converges

to a piecewise deterministic Markov process that lives on a compact state space. The behavior of

the limiting process is determined by the top Lyapunov exponent, Λ, of the linearized system. The

authors are able to show that as K →∞ the time to extinction is, when Λ < 0, at the most of order

lnK and, when Λ > 0, at least of polynomial order in K. We note that our results are for SDEs and

are significantly sharper.
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The paper is organized as follows. In Section 2 we offer the rigorous mathematical setup of the

problem and exhibit our main results. Section 3 offers some preliminary results that are needed for the

main results. The analysis of the tightness and concentration of the measures µε as well as the proof

of Theorem A are provided in Section 4. Section 5 deals with the proof of Theorem B which is about

the asymptotic bounds on the first two eigenvalues λε,1 and λε,2 of the generator. The multiscale

dynamics of Xε
t and proof of Theorem C appear in Section 6. Section 7 is about the asymptotic of

the mean extinction time Eε•[T ε0 ] and the proof of Theorem D.

2. Mathematical setup and main results

We consider the following family of SDEs:

dXε
t = b(Xε

t )dt+ σ(Xε
t )dBt + ε

√
a(Xε

t )dWt in [0,∞), (2.1)

where 0 < ε � 1 is a small parameter, b, σ : [0,∞) → R, a : [0,∞) → [0,∞) and Bt,Wt are

two independent standard one-dimensional Brownian motions on some probability space. Here, σdBt
models environmental stochasticity and ε

√
adWt represents demographic stochasticity. Hence, ε stands

for the intensity of the demographic stochasticity. We point out that ε2 is inversely proportional to

the population size, and hence, tends to 0 as the population size goes to infinity.

Throughout this paper, we make the following assumptions on the coefficients b, σ and a.

(H) The functions b : [0,∞) → R, σ : [0,∞) → R and a : [0,∞) → [0,∞) are assumed to satisfy

the following conditions:

(1) b ∈ C1([0,∞)), b(0) = 0, b′(0) > 0, and lim supx→∞ b(x) < 0;

(2) σ ∈ C2([0,∞)), σ(0) = 0 and σ′(0) 6= 0;

(3) a ∈ C2([0,∞)), a(0) = 0, a′(0) > 0, and a > 0 on (0,∞);

(4) there holds

lim sup
x→∞

a(x)

σ2(x)
<∞, lim

x→∞

b(x)

|σ(x)|
= lim
x→∞

xb(x)

σ2(x)
= −∞,

lim sup
x→∞

σ2(x)

|b(x)|
max

{
a′(x)

a(x)
,
|σ′(x)|
|σ(x)|

}
= 0, and lim sup

x→∞

σ2(x)

b2(x)
max

{
a′′(x), (σ2(x))′′, |b′(x)|

}
= 0.

(H)(1) says that b is a logistic-type growth rate function – these types of growth rates play an

important roles in many biological and ecological applications. In particular, b(x) looks like b′(0)x

around 0 and the per-capita growth rate at zero is positive, b′(0) > 0, something which ensures

persistence if there is no demographic or environmental stochasticity. (H)(2) is satisfied if σ(x) =

xf(x) for some f ∈ C2([0,∞)) and often appears in modeling environmental stochasticity. We note

that in most applications one has σ(x) = σx for some σ > 0. (H)(3) assumes that a is degenerate at

0 and behaves like a′(0)x near 0. It is worthwhile to point out that the singularity of a at 0 causes

the non-integrability of the Gibbs density near 0, and thus, leads to substantial difficulties in the

analysis of (2.1). The condition lim supx→∞ b(x) < 0 in (H)(1) and the growth conditions on a, b

and σ in (H)(4) guarantee (2.1) forms a dissipative system. Other conditions in (H)(4) restricting

the derivatives of a, b and σ2 near ∞ are mild technical assumptions. The assumption (H) applies in

particular to the logistic diffusion:

dXt = Xt(µ− κXt)dt+ σXtdBt + ε
√
γXtdWt in [0,∞)
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and the stochastic theta logistic model (with θ > 0):

dXt = Xt(µ− κXθ
t )dt+ σXtdBt + ε

√
γXtdWt in [0,∞).

Denote by Xε
t the diffusion process on [0,∞) generated by solutions of (2.1). For singular diffusion

processes like (2.1), the strong uniqueness is ensured by the well-known Yamada-Watanabe theory

[58, 57]. Moreover, Xε
t gets absorbed by the absorbing state 0 in finite time almost surely (see e.g.

[6, 34]), leading eventually to extinction dynamics. However, Xε
t can display long interesting dynamics

before hitting 0. To capture such dynamics, we use quasi-stationary distributions of Xε
t – these are

initial distributions of Xε
t on (0,∞) such that the distribution of Xε

t conditioned on not reaching 0

up to time t is independent of t ≥ 0.

Let T ε0 be the first time that Xε
t hits 0 (often called the extinction time), that is,

T ε0 = inf {t ≥ 0 : Xε
t = 0} .

Then, Pεµ[T ε0 < ∞] = 1 as mentioned above (see also [34, Chapter VI, Section 3]), where Pεµ the law

of Xε
t with initial distribution µ. The associated expectation is denoted by Eεµ. If µ = δx, we simply

write Pεx = Pεδx and Eεx = Eεδx .

Definition 2.1 (Quasi-stationary distribution). A Borel probability measure µε on (0,∞) is called a

quasi-stationary distribution (QSD) of Xε
t if

Pεµε [Xε
t ∈ B|T ε0 > t] = µε(B), ∀t ≥ 0, B ∈ B((0,∞)),

where B((0,∞)) is the Borel σ-algebra of (0,∞).

The general theory of QSDs (see e.g. [46, 13]) dsyd that if µε is a QSD of Xε
t , then there is a unique

number λε,1 > 0 such that T ε0 is exponentially distributed with rate λε,1 provided Xε
0 ∼ µε, that is,

Pεµε [T
ε
0 > t] = e−λε,1t, ∀t ≥ 0. (2.2)

For this reason, λε,1 is often referred to as the extinction rate.

Following [6], we check that under (H), Xε
t admits a unique QSD µε with a positive C2 density

uε (see Lemma 3.4 for details). Moreover, the associated extinction rate λε,1 is given by the principal

(or the first) eigenvalue of −Lε, where Lε is an appropriate extension of the generator of Xε
t and acts

on functions in C2((0,∞)) as:

Lεφ =
1

2
(ε2a+ σ2)φ′′ + bφ′, ∀φ ∈ C2((0,∞)). (2.3)

The rigorous definition of Lε is given in Subsection 3.1. In addition, the spectral gap between the first

and second eigenvalues, λε,1 and λε,2, of the operator −Lε characterizes the exponential convergence

rate of Pεµ [Xε
t ∈ •|t < T ε0 ] to the QSD µε as t → ∞ whenever the initial distribution µ is compactly

supported in (0,∞).

The main goal of this paper is to analyze the combined effects of environmental and demographic

noises on population persistence and extinction. In order to achieve this, it is of paramount importance

to investigate the asymptotic properties of µε, λε,1 and λε,2 as ε→ 0. We are able to provide detailed

information about the diffusion process Xε
t governed by the QSD µε, and to characterize the extinction

time T ε0 (especially, the mean extinction time E•[T ε0 ]) as well as the global multiscale dynamics of Xε
t .

Investigating the asymptotic properties of Xε
t and related quantities (i.e., µε, λε,1, λε,2 and T ε0 ) as

ε→ 0 leads naturally to the limiting equation of (2.1), namely,

dX0
t = b(X0

t )dt+ σ(X0
t )dBt in [0,∞). (2.4)
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Intuitively, the first step towards a good understanding of these asymptotic properties is to acquire

relevant information about the diffusion process X0
t on [0,∞) generated by solutions of (2.4). It is

worthwhile to point out that X0
t behaves fundamentally different from Xε

t over large time scales. For

instance, if X0
0 = x ∈ (0,∞), then X0

t does not reach the absorbing state 0 in finite time almost

surely, that is, X0
t > 0 Px-a.e. for all t > 0 (see Proposition 3.1). Moreover, the spectral structure of

the generator of (2.4) differs very much from that of the generator of (2.1), i.e., Lε. More precisely,

the latter is purely discrete (see Lemma 3.1), while the former is not (see Remark 3.1).

The dynamics of X0
t is very well understood. Following for example [37, 20, 28], we define the

stochastic growth rate (also called invasion rate or external Lyapunov exponent)

Λ0 := b′(0)− |σ
′(0)|2

2
. (2.5)

In population dynamics, the condition Λ0 > 0 implies that a species tends to increase when it is at

a low density, and therefore, persists in the long run (see [37, 20, 28]). The following sharp threshold

result is part of Proposition 3.1:

• if Λ0 < 0, then δ0 is the only stationary distribution of X0
t ;

• if Λ0 > 0, then X0
t admits a unique positive stationary distribution µ0 with a positive density

u0 ∈ C2((0,∞)) given by the normalized Gibbs density, namely, u0 =
uG0

‖uG0 ‖L1((0,∞))
, where

uG0 :=
1

σ2
e2
∫ •
1

b
σ2
ds in (0,∞). (2.6)

More detailed information is given in Subsection 3.4. Our main focus is on the case Λ0 > 0 – in this

setting the persistence of a species whose dynamics is modelled by (2.4) becomes a transient property

when the model (2.1) is used. This is how things usually behave in nature where a population

persists for a long time after which it eventually goes extinct. Our purpose is to give quantitative and

qualitative characterizations of this phenomenon. We are also able to establish interesting results in

the case Λ0 < 0, demonstrating significant changes as Λ0 crosses 0, where a bifurcation occurs.

Our first result addresses the limiting behaviors of µε as ε→ 0. The space C2((0,∞)) is equipped

with the topology of locally uniform convergence up to the second derivative.

Theorem A. Assume (H).

(1) If Λ0 < 0, then limε→0

∫∞
0
φdµε = 0 for any φ ∈ Cb([0,∞)) with φ(0) = 0.

(2) If Λ0 > 0, then limε→0 µε = µ0 weakly, and limε→0 uε = u0 in C2((0,∞)).

Given the aforementioned sharp threshold result of X0
t and the fact that Xε

t is a small random

perturbation of X0
t (or, (2.1) is a small random perturbation of (2.4)), the conclusions from Theorem A

are expected and look pretty straightforward. This, however, is completely deceptive from a technical

perspective, especially in the case Λ0 > 0. Indeed, when Λ0 > 0, it is not hard to show that any

limiting measure of {µε}ε must be µ0 (up to multiplication by a constant), and hence, the weak

convergence limε→0 µε = µ0 follows if {µε}ε is tight. The tightness of {µε}ε comes from studying their

concentration near 0 and ∞. The concentration near ∞ follows mainly from the dissipativity and is

obtained by means of the usual technique on the basis of Lyapunov-type functions (see Proposition

4.1). Establishing the concentration near 0 is however troublesome due to the following technical

problems: (i) both the vector field b and the noise terms σ and ε
√
a vanish at 0; such degeneracies are

known to cause difficulties in the analysis and are often avoided in the literature when treating noise-

vanishing problems; (ii) techniques based on Lyapunov-type functions do not apply because of the
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demographic noise term which causes the finite time extinction of Xε
t ; otherwise, a unique non-trivial

stationary distribution would exist, instead of the QSD. These issues are circumvented by a two-step

approach: an ε-dependent upper bound of uε is first established (see Lemma 3.5); it is followed by an

argument of maximum principle type (see the proof of Proposition 4.2). As a result, we establish in

Proposition 4.2 the following concentration estimate of the densities {uε}ε:

sup
ε
uε(x) ≤ C

xk
, ∀x ∈ (0, x∗)

for some k ∈ (0, 1), x∗ > 0 and C > 0. Such an upper bound is more or less inspired by the expectation

limε→0 uε = u0 and the behavior of u0 near 0, i.e., u0(x) ∼ C0x
2b′(0)
|σ′(0)|2

−2
as x → 0 for some C0 > 0.

Note that under the assumption Λ0 > 0 one has 2− 2b′(0)
|σ′(0)|2 < 1.

Our second result establishes asymptotic bounds for λε,1 and λε,2, the first two eigenvalues of −Lε.
Throughout this paper, for positive numbers Aε and Bε indexed by ε, we write

Aε ≈ε Bε, Aε .ε Bε and Aε &ε Bε

if limε→0
Aε
Bε

= 1, lim supε→0
Aε
Bε
≤ 1 and lim infε→0

Aε
Bε
≥ 1, respectively.

Theorem B. Assume (H). Then, limε→0 λε,1 = 0. Moreover, the following hold.

(1) If Λ0 < 0, then there is C > 0 such that λε,1 &ε C
| ln ε| .

(2) If Λ0 > 0, then

• for each 0 < γ � 1, there holds

ε
(1+γ)

4b′(0)
|σ′(0)|2

−2
.ε λε,1 .ε ε

(1−γ) 2b′(0)
|σ′(0)|2

−1
;

• 0 < lim infε→0 λε,2 ≤ lim supε→0 λε,2 <∞.

Remark 2.1. We offer some comments regarding Theorem B.

(1) We first exhibit the significant effects the environmental noise σ(Xε
t )dBt has by comparing

(2.1) with

dX̃ε
t = b(X̃ε

t )dt+ ε

√
a(X̃ε

t )dWt in [0,∞). (2.7)

Just like Xε
t , the diffusion process X̃ε

t reaches the extinction state 0 in finite time almost

surely and admits a unique QSD with extinction rate λ̃ε,1 with −λ̃ε,1 being the first eigen-

value of the (appropriately extended) generator of (2.7). It is shown in [36, Theorem A] that

limε→0
ε2

2 ln λ̃ε,1 = −d for some d > 0 that can be computed in terms of a and b. In particular,

λ̃ε,1 is exponentially small in ε. Hence, the asymptotic of λε,1 is fundamentally different from

that of λ̃ε,1, manifesting the significance of the environmental noise. More importantly, turn-

ing an exponentially small extinction rate into a sub-exponentially small one, greatly improves

the observability of the extinction of a species, making (2.1) a much better model than (2.7).

The effects of the environmental noise extend to the extinction time, especially, the mean

extinction time, thanks to the relationship between the extinction time Eε•[T ε0 ] and the extinc-

tion rate λε,1. See (2.2) and Corollary A.

(2) When Λ0 < 0, we believe that the lower bound of order 1
| ln ε| for λε,1 is sharp in the sense that

there is C̃ > 0 such that λε,1 .ε C̃
| ln ε| . We offer some further explanation in Remark 2.2 after

Corollary B.
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(3) When Λ0 > 0, the upper bound of λε,1 is improved to λε,1 .ε ε
(1−γ) 4b′(0)

|σ′(0)|2
−2

for each 0 < γ � 1

in Corollary B. This says that the leading order of λε,1 is ε
4b′(0)
|σ′(0)|2

−2
. The reason why we

still include this as a main result is that its proof, relying only on the classical variational

formula, is elementary, while the proof of Corollary B uses heavy machinery (see comments

after Corollary B for details).

(4) When Λ0 > 0, the asymptotic bounds of λε,1 and λε,2 imply that infε(λε,2 − λε,1) > 0. As

mentioned earlier (or see Lemma 3.4), λε,2 − λε,1 is the exponential convergence rate of

Pεµ [Xε
t ∈ •|t < T ε0 ] to µε as t→∞ whenever the initial distribution µ is compactly supported

in (0,∞). These facts tell us that the distribution of Xε
t quickly approaches µε, then stays

close to µε until the time scale 1
λε,1

, after which it finally relaxes to the extinction state. The

multiscale dynamics is precisely characterized in Theorem C.

In our third result, we characterize the multiscale dynamics of the distribution of Xε
t in the case

Λ0 > 0 as described in Remark 2.1 (4). Denote by φε,1 the positive eigenfunction of −Lε associated

with λε,1 subject to the normalization ‖φε,1‖L2(uGε ) = 1 (see Lemma 3.1). Let P((0,∞)) be the

set of Borel probability measures on (0,∞). For µ ∈ P((0,∞)) and for any measurable function

f : (0,∞)→ R we write 〈µ, f〉 :=
∫∞
0
fdµ.

Theorem C. Assume (H) and Λ0 > 0. For any K ⊂⊂ (0,∞), there is C = C(K) > 0 such that

sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥Pεµ[Xε
t ∈ •]−

[
e−λε,1t〈µ, αε,1〉µε +

(
1− e−λε,1t〈µ, αε,1〉

)
δ0
]∥∥
TV
≤ Ce−λε,2t

holds for all t ≥ 0 and 0 < ε� 1, where αε,1 := ‖φε,1‖L1(uGε )φε,1 satisfies

lim
ε→0

αε,1 = 1 locally uniformly in (0,∞).

Built on the eigenfunction expansion of the Markov semigroup associated with Xε
t before hitting

0, Theorem C establishes a sharp estimate quantifying the total variation distance between the dis-

tribution of Xε
t and the convex combination of the QSD µε and the extinction state δ0. The locally

uniform limit limε→0 αε,1 = 1 and the fact that the constant C is independent of ε are what make this

estimate powerful. Together with the asymptotic bounds of λε,1 and λε,2 in Theorem B (2), Theorem

C has the following important dynamical implications:

• if t
(1)
ε < t

(2)
ε are such that limε→0 t

(1)
ε =∞ and limε→0 λε,1t

(2)
ε = 0, then

lim
ε→0

sup
t∈
[
t
(1)
ε ,t

(2)
ε

] sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥Pεµ[Xε
t ∈ •]− µε

∥∥
TV

= 0;

• if t
(3)
ε is such that limε→0 λε,1t

(3)
ε =∞, then

lim
ε→0

sup
t∈
[
t
(3)
ε ,∞

) sup
µ∈P((0,∞))
supp(µ)⊂K

∥∥Pεµ[Xε
t ∈ •]− δ0

∥∥
TV

= 0.

Theorems B (2) and C have as immediate consequences the expected but far-reaching asymptotic

reciprocal relationship between the extinction time T ε0 and the extinction rate λε,1, and the asymptotic

distribution of the normalized extinction time
T ε0

Eε•[T ε0 ]
.
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Corollary A. Assume (H) and Λ0 > 0. For each µ ∈ P((0,∞)) having compact support in (0,∞),

there exists C = C(µ) > 0 such that∣∣Pεµ[T ε0 > t]− e−λε,1t〈µ, αε,1〉
∣∣ ≤ Ce−λε,2t, ∀t > 0 and 0 < ε� 1,

or equivalently, ∣∣Pεµ[λε,1T
ε
0 > t]− e−t〈µ, αε,1〉

∣∣ ≤ Ce−λε,2λε,1
t
, ∀t > 0 and 0 < ε� 1.

In particular,

• limε→0 Pεµ[λε,1T
ε
0 > t] = e−t locally uniformly in t ∈ (0,∞);

• Eεµ[T ε0 ] ≈ε 1
λε,1

;

• limε→0 Pεµ
[

T ε0
Eεµ[T ε0 ]

> t
]

= e−t locally uniformly in t ∈ (0,∞).

Proof. Let µ be as in the statement. Since Pεµ[Xε
t ∈ (0,∞)] = Pεµ[T ε0 > t], µε((0,∞)) = 1 and

δ0((0,∞)) = 0, we apply Theorem C and the definition of the total variation distance to find some

C = C(µ) > 0 such that
∣∣Pεµ[T ε0 > t]− e−λε,1t〈µ, αε,1〉

∣∣ ≤ Ce−λε,2t for all t > 0. Replacing t by t
λε,1

leads to ∣∣Pεµ[λε,1T
ε
0 > t]− e−t〈µ, αε,1〉

∣∣ ≤ Ce−λε,2λε,1
t
, ∀t > 0.

In particular, limε→0 Pεµ[λε,1T
ε
0 > t] = e−t locally uniformly in t ∈ (0,∞).

Integrating the above inequality with respect to t over (0,∞) yields
∣∣λε,1Eεµ[T ε0 ]− 〈µ, αε,1〉

∣∣ ≤ C λε,1
λε,2

.

It follows from Theorem B (2) and limε→0〈µ, αε,1〉 = 1 (by Theorem C) that limε→0 λε,1Eεµ[T ε0 ] = 1.

The remaining result follows immediately. �

Corollary A says in particular that the normalized extinction time
T ε0

Eεµ[T ε0 ]
weakly converges to an

exponential random variable of mean 1 as ε→ 0. The asymptotic reciprocal relationship Eεµ[T ε0 ] ≈ε 1
λε,1

is a fundamental principle connecting the asymptotics of Eεµ[T ε0 ] and λε,1 – this allows using information

about one of these quantities to analyze the other one. In particular, (non-sharp) asymptotic bounds

of the mean extinction time Eε•[T ε0 ] in the case Λ0 > 0 can be obtained from the asymptotic bounds

of λε,1 in Theorem B (2). However, we wanted to improve this and get sharp bounds.

Our last result is devoted to the investigation of the sharp asymptotic bounds of the mean extinction

time Eε•[T ε0 ].

Theorem D. Assume (H). The following hold for each µ ∈ P((0,∞)) having compact support in

(0,∞).

(1) If Λ0 < 0, then there exist C1, C2 > 0 such that

C1| ln ε| .ε Eεµ[T ε0 ] .ε C2| ln ε|.

(2) If Λ0 > 0, then for each 0 < γ � 1,

ε
2−(1−γ) 4b′(0)

|σ′(0)|2 .ε Eεµ[T ε0 ] .ε ε
2−(1+γ) 4b′(0)

|σ′(0)|2 .

Theorem D is established by adopting a probabilistic approach focusing on analyzing the behaviours

of Xε
t near 0. It is independent of Theorems A-C.

As an immediate consequence of Corollary A and Theorem D (2), we get the following sharp

asymptotic of λε,1 when Λ0 > 0, improving the one given in Theorem B (2).
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Corollary B. Assume (H) and Λ0 > 0. Then, for each 0 < γ � 1,

ε
(1+γ)

4b′(0)
|σ′(0)|2

−2
.ε λε,1 .ε ε

(1−γ) 4b′(0)
|σ′(0)|2

−2
.

Remark 2.2. When Λ0 < 0, we are unable to establish the relationship Eεµ[T ε0 ] ≈ε 1
λε,1

for µ ∈
P((0,∞)) having compact support in (0,∞), and hence, can not apply Theorem D (1) to conclude
C1

| ln ε| .ε λε,1 .ε
C2

| ln ε| . Nonetheless, we believe that the lower bound for λε,1 obtained in Theorem B

(1) is sharp.

3. Preliminary

This is a service section. We collect basic materials for later purposes.

3.1. Generator, spectral theory and dynamics. In this subsection, we present some general

results about the spectral theory of the generator of Xε
t and the dynamics of the corresponding

semigroup.

We start with the rigorous formalism of the generator of Xε
t . Set

αε := ε2a+ σ2 on [0,∞), Vε := −
∫ •
1

b

αε
ds on (0,∞).

Thanks to (H), we have

lim
ε→0

αε = σ2 in C2([0,∞)), lim
ε→0

Vε = −
∫ •
1

b

σ2
ds in C2((0,∞)). (3.1)

Consider the symmetric quadratic form Eε : C∞0 ((0,∞))× C∞0 ((0,∞))→ R defined by

Eε(φ, ψ) =
1

2

∫ ∞
0

αεφ
′ψ′uGε dx, ∀φ, ψ ∈ C∞0 ((0,∞)),

where

uGε :=
1

αε
e−2Vε =

1

αε
e2
∫ •
1

b
αε
ds in (0,∞)

is the non-integrable Gibbs density. The non-integrability of uGε comes from the singularity of order
1
x near 0. Recall uG0 from (2.6) and note that clearly one has

lim
ε→0

uGε = uG0 in C2((0,∞)). (3.2)

This fact is frequently used in the sequel. Under (H), it is not hard to check that the form Eε
is Markovian and closable (see e.g. [23]). Its smallest closed extension, still denoted by Eε, is a

Dirichlet form with domain D(Eε) being the closure of C∞0 ((0,∞)) under the norm ‖φ‖2D(Eε) :=

‖φ‖2L2(uGε ) + Eε(φ, φ), where L2(uGε ) := L2((0,∞), uGε dx). Denote by (Lε, D(Lε)) the non-positive

self-adjoint operator associated with (Eε, D(Eε)), that is,

Eε(φ, ψ) = 〈−Lεφ, ψ〉L2(uGε ), ∀φ ∈ D(Lε), ψ ∈ D(Eε),

where

D(Lε) :=
{
u ∈ D(Eε) : ∃f ∈ L2(uGε ) s.t. Eε(u, φ) = 〈f, φ〉L2(uGε ),∀φ ∈ D(Eε)

}
.

It is informative to mention that

Lεφ =
1

2
(ε2a+ σ2)φ′′ + bφ′, ∀φ ∈ C∞0 ((0,∞)).

The operator Lε is a self-adjoint extension in L2(uGε ) of the generator of (2.1).
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In the next result, we collect basic properties about the spectrum of −Lε and the semigroup

generated by Lε.

Lemma 3.1 ([6, 36]). Assume (H). For each 0 < ε� 1, the following hold.

(1) −Lε has purely discrete spectrum contained in (0,∞) and listed as follows: λε,1 < λε,2 <

λε,3 < · · · → ∞.

(2) Each λε,i is associated with a unique eigenfunction φε,i ∈ D(Lε)∩L1(uGε )∩C2((0,∞)) subject

to the normalization ‖φε,i‖L2(uGε ) = 1. Moreover, φε,1 > 0.

(3) The set {φε,i, i ∈ N} forms an orthonormal basis of L2(uGε ).

(4) Lε generates a positive analytic semigroup (P εt )t≥0 of contractions on L2(uGε ) having the sto-

chastic representation (or Feynman–Kac formula):

P εt f = Eε•[f(Xε
t )1t<T ε0 ], ∀f ∈ L2(uGε ) ∩ Cb((0,∞)) and t ≥ 0.

(5) For each k ∈ N, f ∈ L2(uGε ) and t > 0,

P εt f =

k−1∑
i=1

e−λε,it〈f, φε,i〉L2(uGε )φε,i + P εtQ
ε
kf, (3.3)

where Qεk is the spectral projection of Lε corresponding to {−λε,j}j≥k. Moreover,

‖P εtQεk‖L2(uGε )→L2(uGε ) ≤ e−λε,kt, t ≥ 0.

(6) For each f ∈ Cb((0,∞)), the stochastic representation in (4) and (3.3) hold pointwisely.

The following result addressing the uniform-in-ε boundedness of the i-th eigenvalue of −Lε is useful.

Lemma 3.2. Assume (H). For each i ∈ N, there holds lim supε→0 λε,i <∞.

Proof. Let {φ`}`∈N ⊂ C∞((0,∞)) satisfy supp(φ`) ⊂ (`, ` + 1) and ‖φ`‖L2(uGε ) = 1. We find from

(3.1) that the limit γ` := limε→0 Eε(φ`, φ`) > 0 exists for each ` ∈ N.

Fix i ∈ N and set Si := span{φ1, . . . , φi}. Since −Lε is self-adjoint in L2(uGε ), the Min-Max

principle says in particular

λε,i ≤ max
φ∈Si

〈−Lεφ, φ〉L2(uGε )

‖φ‖2
L2(uGε )

= max
φ∈Si

Eε(φ, φ)

‖φ‖2
L2(uGε )

.

Note that each element φ ∈ Si can be written as φ :=
∑i
`=1 c`φ` for some c` ∈ R, ` = 1, . . . , i. As the

supports of {φ`}` are disjoint, we calculate ‖φ‖2L2(uGε ) =
∑i
`=1 c

2
` and Eε(φ, φ) =

∑i
`=1 c

2
`Eε(φ`, φ`). It

follows that

λε,i ≤ max
c`∈R,`=1,...,i

∑i
`=1 c

2
`Eε(φ`, φ`)∑n
`=1 c

2
`

≤ max
`=1,...,i

Eε(φ`, φ`),

leading to lim supε→0 λε,i ≤ max`=1,...,i γ`. �

3.2. Schrödinger operators. In this subsection, we follow the canonical procedure (see e.g. [6]) to

derive the Schrödinger operator that is unitarily equivalent to Lε and establish some properties of its

potential. These results will play a significant technical role in the sequel.

Note that Xε
t has the same distribution as the solution process of

dX̃ε
t = b(X̃ε

t )dt+

√
αε(X̃ε

t )dW̃t in [0,∞), (3.4)
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where W̃t is a standard one-dimensional Brownian motion. Consider the change of variable

y = ξε(x) :=

∫ x

0

1
√
αε
ds =

∫ x

0

1√
ε2a+ σ2

ds, x ∈ (0,∞).

Clearly, ξε is increasing and satisfies ξε(0+) = 0. Set yε,∞ := ξε(∞). Then, ξε : (0,∞) → (0, yε,∞)

is invertible. Its inverse is denoted by ξ−1ε : (0, yε,∞) → (0,∞). This is the canonical transform

converting the SDE (3.4) into the one with the simplest noise coefficient. More precisely, applying

Itô’s formula, we find that Y εt := ξε(X̃
ε
t ) solves

dY εt = qε(Y
ε
t )dt+ dW̃t, (3.5)

where qε :=
(

b√
αε
− α′ε

4
√
αε

)
◦ ξ−1ε .

Set vGε := (uGε
√
αε) ◦ ξ−1ε and L2(vGε ) := L2((0, yε,∞), vGε dy). The generator of (3.5) is given by

LYε :=
1

2

d2

dy2
+ qε(y)

d

dy
in L2(vGε ).

It is straightforward to check that LYε is unitarily equivalent to Lε. More precisely, there holds

UεLε = LYε Uε, where Uε : L2(uGε )→ L2(vGε ), f 7→ f ◦ ξ−1ε is unitary.

Now, consider the Schrödinger operator

LSε :=
1

2

d2

dy2
− 1

2

(
q2ε (y) + q′ε(y)

)
in L2((0, yε,∞)). (3.6)

It is not hard to check that ŨεLYε = LSε Ũε, where Ũε : L2(vGε )→ L2((0, yε,∞)), f 7→ f
√
vGε is unitary.

We include the following commutative diagram for readers’ convenience:

L2(uGε ) L2(vGε ) L2((0, yε,∞))

L2(uGε ) L2(vGε ) L2((0, yε,∞))

Uε

Lε

Ũε

LYε LSε
Uε Ũε

We point out that rigorous definitions of LYε and LSε can be done using quadratic forms as done in

Subsection 3.1 for Lε. By the unitary transforms, the domains of LYε and LSε are respectively given

by UεD(Lε) and ŨεUεD(Lε), and the domains of quadratic forms associated with LYε and LSε are

respectively given by UεD(Eε) and ŨεUεD(Eε).
The potential of the Schrödinger operator LSε is denoted by

Wε :=
1

2

(
q2ε + q′ε

)
on (0, yε,∞).

Some elementary properties of Wε are collected in the following result.

Lemma 3.3. Assume (H). The following hold.

(1) 2Wε ◦ ξε =
3|α′ε|

2

16αε
− α′′ε

4 + b′ − bα′ε
αε

+ b2

αε
.

(2) There exist y1 ∈ (0,∞) and C > 0 such that infεWε(y) ≥ C
y2 for all y ∈ (0, y1].

(3) There exists x∗ ∈ (0,∞) such that

Wε(y) ≥ b2(ξ−1ε (y))

4σ2(ξ−1ε (y))
, ∀y ∈ [ξε(x∗), yε,∞) and 0 < ε� 1.

(4) The family {Wε}ε is uniformly lower bounded, that is, infε minWε > −∞.
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Proof. (1) Straightforward calculations yield

q2ε ◦ ξε =
b2

αε
− bα′ε

2αε
+
|α′ε|2

16αε
, q′ε ◦ ξε = b′ − bα′ε

2αε
− α′′ε

4
+
|α′ε|2

8αε
.

The expression for Wε follows immediately.

(2) Thanks to (H)(1)-(3) and Taylor’s expansion at x = 0,

αε(x) = ε2a(x) + σ2(x) = ε2a′(0)x+

(
ε2

2
a′′(0) + |σ′(0)|2

)
x2 + o(x2),

α′ε(x) = ε2a′(x) + 2σ(x)σ′(x) = ε2a′(0) +
(
ε2a′′(0) + 2|σ′(0)|2

)
x+ o(x),

α′′ε (x) = ε2a′′(x) + 2(|σ′(x)|2 + σ(x)σ′′(x)) = ε2a′′(0) + 2|σ′(0)|2 + o(1), and

b(x) = b′(0)x+ o(1).

For fixed δ ∈ (0, 12 ) (to be specified), we find 0 < κ� 1 such that

1− δ ≤ αε(x)

ε2a′(0)x
≤ 1 + δ, 1− δ ≤ α′ε(x)

ε2a′(0)
≤ 1 + δ,

|α′′ε (x)| ≤ 3|σ′(0)|2, b′(x) > 0 and 0 < b(x) < 2b′(0)x, ∀x ∈ (0, κε2).

Hence, with y = ξε(x),

2Wε(y) ≥ 3|α′ε(x)|2

16αε(x)
− α′′ε (x)

4
− b(x)α′ε(x)

αε(x)

≥ 3(1− δ)2

16(1 + δ)

ε2a′(0)

x
− 3

4
|σ′(0)|2 − 2b′(0)(1 + δ)

(1− δ)
, ∀x ∈ (0, κε2).

Since
3

4
|σ′(0)|2 +

2b′(0)(1 + δ)

(1− δ)
<
a′(0)

18κ
<

1

18

ε2a′(0)

x
, ∀x ∈ (0, κε2),

where the first inequality is due to the smallness of κ, we arrive at

2Wε(y) ≥ 3(1− δ)2

16(1 + δ)

ε2a′(0)

x
− 1

18

ε2a′(0)

x
=

1

9

ε2a′(0)

x
, ∀x ∈ (0, κε2),

where we fixed δ so that (1−δ)2
(1+δ) = 8

9 in the equality.

Note that

y = ξε(x) ≥
∫ x

0

ds√
(1 + δ)ε2a′(0)s

=
2
√
x√

(1 + δ)ε2a′(0)
, ∀x ∈ (0, κε2),

leading to

2Wε(y) ≥ 1

9

4ε2a′(0)

(1 + δ)ε2a′(0)y2
=

4

9(1 + δ)

1

y2
, ∀y ∈ (0, y1),

where y1 := 2
√
κ√

(1+δ)a′(0)
≤ ξε(κε2). This proves (2).

(3) Obviously, 2Wε ◦ ξε ≥ b2

αε
− bα′ε

αε
− α′′ε

4 + b′. By (H)(4), there is x∗ > 0 such that

b2

αε
≥ 3b2

4σ2
,

α′ε
αε
≤ |b|

8σ2
and

α′′ε
4
− b′ ≤ b2

8σ2
in (x∗,∞).

Then, 2Wε ≥ b2◦ξ−1
ε

2σ2◦ξ−1
ε

in (ξ−1ε (x∗),∞), verifying (3).
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(4) Let x∗ be as in (3). The assumption (H) implies sup[0,x∗] max
{
|α′′ε |, |b′|,

|bα′ε|
αε

}
< ∞. The

conclusion then follows from (1) and (3). �

Lemma 3.3 says that the potential Wε is lower bounded and satisfies Wε(y) → ∞ as y → 0+ and

y−ε,∞. Classical spectral theory of Schrödinger operators then ensures that the spectrum of −LSε is

purely discrete, and so is that of −Lε by the unitary equivalence. This is the idea in [6] of obtaining

the spectral structure of −Lε.

3.3. Quasi-stationary distributions. The existence and uniqueness of QSDs of Xε
t and their prop-

erties are investigated in [6] (see also [55, 44, 46, 43, 13, 48, 10, 27, 30]). We summarize relevant results

in the following lemma. Denote by L∗ε the Fokker-Planck operator associated with Xε
t , namely,

L∗εφ =
1

2
(αεφ)′′ − (bφ)′, ∀φ ∈ C2((0,∞)),

where we recall αε := ε2a+σ2. Recall from Lemma 3.1 that λε,1 and λε,2 are the first two eigenvalues

of −Lε. The associated normalized eigenfunctions are denoted by φε,1 and φε,2 with φε,1 > 0.

Lemma 3.4 ([6]). Assume (H). For each 0 < ε� 1, Xε
t admits a unique QSD µε with the extinction

rate λε,1. Moreover, µε admits a positive density uε ∈ C2((0,∞)) satisfying L∗εuε = −λε,1uε and given

by uε =
φε,1u

G
ε

‖φε,1‖L1(uGε )
. In addition, if µ ∈ P((0,∞)) has compact support in (0,∞), then

lim
t→∞

e(λε,2−λε,1)t
(
Pεµ [Xε

t ∈ B|t < T ε0 ]− µε(B)
)

=

∫ ∞
0

φε,2dµ∫ ∞
0

φε,1dµ

(
〈1B , φε,2〉L2(uGε )

‖φε,1‖L1(uGε )

−
〈1B , φε,1〉L2(uGε )〈1, φε,2〉L2(uGε )

‖φε,1‖2L1(uGε )

)
, ∀B ∈ B((0,∞)).

We point out that dµε = uεdx being a QSD of Xε
t is a direct consequence of Lemma 3.1. Verifying

the uniqueness is however much more challenging. In [6], the authors achieve this by exploring the

so-called “coming down from infinity” saying that ∞ is an entrance boundary for Xε
t , and obtain a

necessary and sufficient condition. As a result, they show for any initial distribution µ ∈ P((0,∞))

the conditioned dynamics Pεµ[Xε
t ∈ •|t < T ε0 ] converges to µε under the topology of weak convergence

as t → ∞. This can be improved to exponential convergence with rate λε,2 − λε,1 if µ is compactly

supported in (0,∞) as stated in Lemma 3.4.

The next result is a stepping stone to obtaining finer results of the QSD µε or its density uε near 0.

Lemma 3.5. Assume (H). For each 0 < ε� 1, there holds lim supx→0 uε(x) <∞.

Proof. It is actually a special case of [53, Corollary 3.1]. Indeed, the authors consider in [53] the

following SDE:

dX̃t = b̃(X̃t)dt+ ε

√
ã(X̃t)dWt, (3.7)

where b̃ : [0,∞) → R satisfies b̃ ∈ C([0,∞)) ∩ C1((0,∞)), b̃(0) = 0, b̃(x) > 0 for all 0 < x � 1, and

b̃(x) < 0 for all x � 1, and ã : [0,∞) → [0,∞) satisfies ã ∈ C2([0,∞)), ã(0) = 0, ã > 0 on (0,∞)

and
∫ 1

0
1√
ã
ds < ∞. See [53, (A1) and (A3)]; these are assumptions on ã and b̃ needed to prove [53,

Corollary 3.1]. Assuming the existence of a QSD µ̃ε with density ũε (whose regularity is guaranteed by

the elliptic regularity) and extinction rate λ̃ε, the authors show that lim supx→0 ũε(x) <∞. The proof

given in [53] is analytic and utilizes the eigen-equation satisfied by ũε, namely, ε2

2 (ãũε)
′′ − (b̃ũε)

′ =
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−λ̃εũε. In particular, the proof is insensitive to the form of the noise term in the SDE (3.7). It is

crucial to mention that the above result is pointwise in ε.

In our case, Lemma 3.4 says that uε obeys L∗εuε = −λε,1uε, that is, 1
2 (αεuε)

′′ − (buε)
′ = −λε,1uε.

It is easy to see from (H)(1)-(3) that b and αε
2 (= 1

2 (ε2a + σ)) satisfy conditions for b̃ and ε2

2 ã. As a

result, we conclude lim supx→0 uε(x) <∞. �

3.4. SDE with only environmental noise. In this subsection, we consider the SDE (2.4), whose

solutions generate the diffusion process X0
t . Recall from (2.6) that uG0 = 1

σ2 e
2
∫ •
1

b
σ2
ds in (0,∞), which

is a non-normalized and not necessarily integrable Gibbs density associated with (2.4) or X0
t .

The following lemma addresses the integrability/non-integrability of uG0 . Recall that the external

Lyapunov exponent Λ0 is defined in (2.5).

Lemma 3.6. Assume (H). Then, uG0 ∈ L1((1,∞)), and uG0 ∈ L1((0, 1)) if Λ0 > 0 and uG0 /∈ L1((0, 1))

if Λ0 < 0.

Proof. We first prove uG0 ∈ L1((1,∞)). Note that uG0 = ef , where f = 2
∫ •
1

b
σ2 ds − lnσ2. Clearly,

f ′ = 2b
σ2 − (σ2)′

σ2 . Since lim supx→∞
σ2

|b|
|(σ2)′|
σ2 = 0 (by (H)(4)) and b(x) < 0 for x� 1, there is x1 � 1

such that f ′ ≤ b
σ2 in [x1,∞). Thus, uG0 (x) ≤ exp

{
f(x1) +

∫ x
x1

b
σ2 ds

}
for all x ≥ x1. Thanks to

limx→∞
xb(x)
σ2(x) = −∞ (by (H)(4)), we find M � 1 and x2 > x1 such that xb(x)

σ2(x) ≤ −M for x ≥ x2. It

follows that

uG0 (x) ≤ exp

{
f(x1) +

∫ x2

x1

b

σ2
ds−M

∫ x

x2

1

s
ds

}
= exp

{
f(x1) +

∫ x2

x1

b

σ2
ds

}(
x

x2

)−M
, ∀x ≥ x2.

The integrability of uG0 in (1,∞) follows.

Thanks to (H) (1)-(2), the Taylor expansions of b and σ near 0 give uG0 (x) ≈ xγ in the vicinity

of 0, where γ = 2b′(0)
|σ′(0)|2 − 2. It follows the integrability (resp. non-integrability) of uG0 in (0, 1) when

Λ0 > 0 (resp. Λ0 < 0). �

The next result concerning the global dynamics of X0
t is classical (see e.g. [37, 20, 28]).

Proposition 3.1. Assume (H). Then, for any µ ∈ P((0,∞)) and t ≥ 0, there holds X0
t > 0 Pµ-a.e.

Furthermore, the following hold.

(1) If Λ0 < 0, then δ0 is the unique stationary distribution of X0
t . Moreover, for any µ ∈

P((0,∞)), limt→∞X0
t = 0 Pµ-a.e.

(2) If Λ0 > 0, then X0
t admits a unique stationary distribution µ0 with a positive density u0 ∈

C2((0,∞)) given by the normalized Gibbs density, that is, u0 =
uG0

‖uG0 ‖L1((0,∞))
. Moreover, there

is some γ > 0 such that for any µ ∈ P((0,∞)), there exists C = C(µ) > 0 such that∥∥P0
µ

[
X0
t ∈ •

]
− µ0

∥∥
TV
≤ Ce−γt, ∀t ≥ 0.

Denote by L∗0 the Fokker-Planck operator associated with X0
t , that is,

L∗0φ :=
1

2
(σ2φ)′′ − (bφ)′, ∀φ ∈ C2((0,∞)).

We need the following uniqueness result about solutions of the stationary Fokker-Planck equation

L∗0u = 0.
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Lemma 3.7. Assume (H)(1)-(2) and Λ0 > 0. If u ∈ C2((0,∞)) ∩ L1((0, 1)) solves L∗0u = 0, then

u = CuG0 for some C ∈ R.

Proof. Solving L∗0u = 0, we find C1, C2 ∈ R such that

u(x) =
C1

σ2

∫ x

1

e2
∫ x
y

b
σ2
dsdy +

C2

σ2
e2
∫ x
1

b
σ2
ds =: C1I(x) + C2u

G
0 (x), ∀x ∈ (0,∞).

By Lemma 3.6, uG0 ∈ L1((0, 1)). We show that I is not integrable near 0. Then, the assumption

u ∈ L1((0, 1)) implies that C1 = 0, leading to the conclusion.

Let 0 < δ � 1 and set κ := 2(1+δ)b′(0)
(1−δ)|σ′(0)|2 . Note that κ > 1 due to Λ0 > 0. By (H)(1)-(2), there

exists x∗ ∈ (0, 1) such that b(x) ≤ (1 + δ)b′(0)x and 1− δ ≤ σ2(x)
|σ′(0)|2x2 ≤ 1 + δ for all x ∈ (0, x∗). Then,

we derive from ∫ x

y

b

σ2
ds ≥

∫ x

y

(1 + δ)b′(0)

(1− δ)|σ′(0)|2s
ds =

κ

2
ln

(
x

y

)
, ∀0 < x < y < x∗

that ∫ x∗

x

e2
∫ x
y

b
σ2
dsdy ≥

∫ x∗

x

(
x

y

)κ
dy =

xκ

κ− 1

(
1

xκ−1
− 1

xκ−1∗

)
, ∀x ∈ (0, x∗).

From which, it follows that

−I(x) ≥ 1

σ2(x)

∫ x∗

x

e2
∫ x
y

b
σ2
dsdy ≥ 1

(1 + δ)|σ′(0)|2x2
xκ

κ− 1

(
1

xκ−1
− 1

xκ−1∗

)
=

1

(1 + δ)(κ− 1)|σ′(0)|2

(
1

x
− xκ−2

xκ−1∗

)
, ∀x ∈ (0, x∗).

Since I < 0 in (0, x∗), the non-integrability of I near 0 follows. This completes the proof. �

Denote by L0 the generator associated with X0
t , that is,

L0φ :=
σ2

2
φ′′ + bφ′, ∀φ ∈ C2((0,∞)).

The generator L0 extends to a self-adjoint operator in L2(uG0 ) := L2((0,∞);uG0 dx). The rigorous

formalism can be done using quadratic forms as it is done for Lε in Subsection 3.1. We end up this

subsection with some discussion regarding the spectral properties of L0. While not needed in the

sequel, this will provide evidence that the spectrum of Lε (in particular, λε,1 and λε,2) behaves in a

non-trivial way as ε→ 0.

Remark 3.1. Note that the coefficient of the second order term of Lε vanishes like ε2a′(0)
2 x as x→ 0,

while that of L0 vanishes like (σ′(0))2

2 x2 as x→ 0. This singular limit of Lε as ε→ 0 accounts for the

non-trivial behaviour of the spectrum of Lε as ε→ 0. Below are some consequences.

(1) Unlike Lε, the spectrum of L0 is not purely discrete. To see this, we modify calculations

in Subsection 3.2 to convert L0 to an unitarily equivalent Schrödinger operator. Since 1
σ is

non-integrable near 0, we consider the change of variable

y = ξ0(x) :=

∫ x

1

1

σ
ds, x ∈ (0,∞).

Clearly, ξ0 is increasing and satisfies ξ0(0+) = −∞. Set y0,∞ := ξ0(∞). Then, ξ0 : (0,∞)→
(−∞, y0,∞) is invertible. Its inverse is denoted by ξ−10 . Then, Y 0

t := ξ0(X0
t ) solves

dY 0
t = q0(Y 0

t )dt+ dWt, (3.8)
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where q0 :=
(
b
σ −

σ′

2

)
◦ξ−10 . Set vG0 := (uG0 σ)◦ξ−10 and L2(vG0 ) := L2((−∞, y0,∞), vG0 dy). Note

that U0 : L2(uG0 ) → L2(vG0 ), f 7→ f ◦ ξ−10 and Ũ0 : L2(vG0 ) → L2((−∞, y0,∞)), f 7→ f
√
vG0

are unitary transforms. The operator LS0 := Ũ0U0L0U
−1
0 Ũ−10 turns out to be a Schrödinger

operator on (−∞, y0,∞) and is given by

LS0 :=
1

2

d2

dy2
− 1

2

(
q20(y) + q′0(y)

)
in L2((−∞, y0,∞)).

It is easy to check that the potential W0 := 1
2

(
q20 + q′0

)
of −LS0 satisfies W0(−∞) ∈ R and

W0(y0,∞−) =∞. Hence, the spectrum of LS0 is not purely discrete; neither is the spectrum of

L0.

(2) When Λ0 < 0, inf σ(L0) > 0. Clearly, inf σ(L0) ≥ 0 as L0 is self-adjoint and non-negative. To

see 0 /∈ σ(L0), we note that two linearly independent solution of L0u = 0 are given by u1 ≡ 1

and u2 =
∫ •
1
e−
∫ y
1

2b
σ2
dsdy. It is elementary to verify that limx→0+ u2(x) exists and is negative.

Since uG0 /∈ L1((0, 1)) in this case by Lemma 3.6, we conclude u1, u2 /∈ L2((0, 1), uG0 dx).

Moreover, it is not hard to see that u1 ∈ L2((1,∞), uG0 dx) and u2 /∈ L2((1,∞), uG0 dx). Hence,

C1u1 + C2u2 /∈ L2(uG0 ) for any (C1, C2) 6= (0, 0), implying 0 /∈ σ(L0).

Theorem B gives limε→0 λε,1 = 0, saying that the limit of the principal eigenvalue λε,1 of

Lε is not an eigenvalue, but a generalized eigenvalue of L0.

(3) When Λ0 > 0, 0 = inf σ(L0) is a simple eigenvalue with constant eigenfunctions. However,

obtaining information about the bottom of the rest of the spectrum, i.e., inf σ(L0) \ {0}, is

difficult. Given the complicated structure of σ(L0), it is even hard to determine whether

inf σ(L0) \ {0} is an eigenvalue. This is what prevents us from establishing a more precise

asymptotic of λε,2 beyond what we were able to show in Theorem B (2).

4. Tightness and concentration of QSDs

In this section, we study the tightness and concentration of µε as ε → 0, and prove Theorem A

in particular. We study concentration properties of µε near ∞ and 0 in Subsections 4.1 and 4.2,

respectively, leading to the tightness of {µε}ε. Theorem A is proven in Subsection 4.3.

4.1. Concentration near infinity. We prove the following result addressing the concentration of

µε near ∞. The proof mainly uses techniques on the basis of Lyapunov-type functions.

Proposition 4.1. Assume (H). Then, limx→∞ supε µε((x,∞)) = 0.

Proof. Set V := −
∫ •
1

b
σ2 ds in (0,∞). Then,

LεV =
ε2

2

(
ab(σ2)′

σ4
− ab′

σ2

)
+

1

2

(
b(σ2)′

σ2
− b′

)
− b2

σ2
.

Thanks to (H)(4), we find some N0 ∈ N such that LεV ≤ − b2

2σ2 in (N0,∞). As V (∞) =∞ by (H),

there is n0 � 1 such that {n0 ≤ V } ⊂ (N0,∞), and hence,

LεV ≤ −
b2

2σ2
in {n0 ≤ V }. (4.1)
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Let {ζn}n>n0
be a sequence of smooth and non-decreasing functions on (0,∞) satisfying

ζn(x) =


0, x ∈ (0, n0),

x, x ∈ (n0 + 1, n),

n+ 1, x ∈ (n+ 2,∞),

and ζ ′′n ≤ 0 on [n, n+ 2].

In addition, we let {ζn}n coincide on [0, n0 + 1].

Due to V (∞) =∞ and (H)(1)-(2), the function ζn(V )− (n+1) is twice continuously differentiable

and compactly supported. As L∗εuε = −λε,1uε (in the weak sense), we derive

0 =

∫ ∞
0

Lε [ζn(V )− (n+ 1)]uεdx+ λε,1

∫ ∞
0

[ζn(V )− (n+ 1)]uεdx

≤
∫ ∞
0

[
ζ ′n(V )LεV +

1

2
αεζ
′′
n(V )|V ′|2

]
uεdx

=

∫
{n0≤V≤n+2}

[
ζ ′n(V )LεV +

1

2
αεζ
′′
n(V )|V ′|2

]
uεdx

where we used λε,1 > 0 and ζn − (n+ 1) ≤ 0 in the inequality, and ζn = 0 on (0, n0) and ζ ′n = ζ ′′n = 0

on (n+ 2,∞) in the last equality.

We deduce from ζ ′n = 1 on [n0 + 1, n], ζ ′n ≥ 0 and (4.1) that∫
{n0≤V≤n+2}

ζ ′n(V )LεV uεdx ≤
∫
{n0+1≤V≤n}

LεV uεdx

≤ −1

2

(
inf

(n0+1,∞)

b2

σ2

)
µε({n0 + 1 ≤ V ≤ n}).

As ζ ′′n = 0 on [n0 + 1, n] and ζ ′′n ≤ 0 on [n, n+ 2], we find∫
{n0≤V≤n+2}

1

2
αεζ
′′
n(V )|V ′|2uεdx ≤

Cε,n
2

∫
{n0≤V≤n0+1}

uεdx ≤
Cε,n

2
,

where Cε,n = max{n0≤V≤n0+1} αε|ζ ′′n(V )||V ′|2. Hence, we find

µε({n0 + 1 ≤ V }) = lim
n→∞

µε({n0 + 1 ≤ V ≤ n}) ≤ Cε,n
(

inf
(n0+1,∞)

b2

σ2

)−1
.

Recall that ζ ′′n is independent of n on [n0, n0 + 1]. As (H) ensures limx→∞
b2(x)
σ2(x) = ∞ and the local

boundedness of supε αε, the conclusion follows. �

4.2. Concentration near the extinction state. We prove the following result quantifying µε or

uε near 0 in the case Λ0 > 0.

Proposition 4.2. Assume (H) and Λ0 > 0. Then, there are k ∈ (0, 1), x∗ > 0 and C > 0 such that

sup
ε
uε(x) ≤ C

xk
, ∀x ∈ (0, x∗).

In particular, limx→0 supε µε((0, x)) = 0.

We establish some results before proving Proposition 4.2. The following result addressing the limit

of λε,1 as ε→ 0 is the general part of Theorem B.

Theorem 4.1. Assume (H). Then, limε→0 λε,1 = 0.
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Proof. We extend µε to be a Borel probability measure on [0,∞) by setting µε({0}) = 0. Propo-

sition 4.1 ensures that {µε}ε is tight as Borel probability measures on [0,∞). We assume, up to a

sequence, that µε weakly converges to some Borel probability measure µ∗ on [0,∞) as ε → 0. Since

lim supε→0 λε,1 <∞ by Lemma 3.2, we assume without loss of generality that limε→0 λε,1 = λ∗ ≥ 0.

Let f : [0,∞)→ R be bounded and uniformly continuous. We claim that

Eµ∗ [f(X0
t )] = e−λ∗t

∫ ∞
0

fdµ∗, ∀t ≥ 0. (4.2)

Setting f ≡ 1 yields 1 = e−λ∗t for all t ≥ 0, resulting λ∗ = 0. The theorem then follows.

It remains to prove (4.2). Fix any t > 0. Note that for any δ > 0,∣∣Ex[f(Xε
t )]− Ex[f(X0

t )]
∣∣ ≤ ∫

|Xεt−X0
t |>δ
|f(Xε

t )− f(X0
t )|dPx +

∫
|Xεt−X0

t |≤δ
|f(Xε

t )− f(X0
t )|dPx

≤ 2‖f‖∞Px
{

max
0≤s≤t

|Xε
s −X0

s | > δ

}
+

∫
|Xεt−X0

t |≤δ
|f(Xε

t )− f(X0
t )|dPx.

As (2.1) is a small random perturbation of (2.4), we apply [22, Theorem 2.1.2] with standard modifi-

cations to find

lim
ε→0

Px
{

max
0≤s≤t

|Xε
s −X0

s | > δ

}
= 0 locally uniformly in x ∈ [0,∞).

The uniform continuity of f implies

lim
δ→0

lim sup
ε→0

∫
|Xεt−X0

t |≤δ
|f(Xε

t )− f(X0
t )|dPx = 0 locally uniformly in x ∈ [0,∞).

Hence, we arrive at limε→0 Eεx[f(Xε
t )] = Ex[f(X0

t )] locally uniformly in x ∈ [0,∞). It follows that

lim sup
ε→0

∫ ∞
0

∣∣Eε•[f(Xε
t )]− E•[f(X0

t )]
∣∣ dµε ≤ 2‖f‖∞ sup

ε
µε((A,∞)), ∀A > 0.

Thanks to Proposition 4.1, we pass to the limit A→∞ to find

lim sup
ε→0

∫ ∞
0

∣∣Eε•[f(Xε
t )]− E•[f(X0

t )]
∣∣ dµε = 0.

The regularity of b and σ ensures that E•[f(X0
t )] ∈ Cb([0,∞)). Hence, the weak limit limε→0 µε =

µ∗ implies that limε→0

∫∞
0

E•[f(X0
t )]dµε =

∫∞
0

E•[f(X0
t )]dµ∗. As a result,∣∣Eεµε [f(Xε

t )]− Eµ∗ [f(X0
t )]
∣∣ ≤ ∫ ∞

0

∣∣Eε•[f(Xε
t )]− E•[f(X0

t )]
∣∣ dµε

+

∣∣∣∣∫ ∞
0

E•[f(X0
t )]dµε −

∫ ∞
0

E•[f(X0
t )]dµ∗

∣∣∣∣→ 0 as ε→ 0.

Considering the facts Eεµε [f(Xε
t )] = e−λε,1t

∫∞
0
fdµε, limε→0

∫∞
0
fdµε =

∫∞
0
fdµ∗ and limj→∞ λεj =

λ∗, we deduce

Eµ∗ [f(X0
t )] = lim

ε→0
Eεµε [f(Xε

t )] = lim
ε→0

e−λε,1t
∫ ∞
0

fdµε = e−λ∗t
∫ ∞
0

fdµ∗,

leading to (4.2). This completes the proof. �

The next technical lemma is needed.
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Lemma 4.1. Assume (H) and Λ0 > 0. Then, there are k∗ ∈ (0, 1) such that for any k ∈ (k∗, 1),

there exist x∗ > 0, ε∗ = ε∗(k) > 0 and C = C(k) > 0 such that

L∗εx−k ≤ −Cx−k in (0, x∗), ∀ε ∈ (0, ε∗).

Proof. Let k ∈ (0, 1). Straightforward calculations yield

L∗εx−k =

[
ε2

2
a′′ +

(σ2)′′

2
− k (σ2)′

x
+
k(k + 1)σ2

2x2
− b′ + k

b

x

]
x−k +

[
k(k + 1)ε2a

2x
− kε2a′

]
x−k−1.

(4.3)

We see from (H)(1)-(3) that for 0 < x� 1

(σ2)′′

2
− k (σ2)′

x
+
k(k + 1)σ2

2x2
=
k2 − 3k + 2

2
|σ′(0)|2 + o(1),

− b′ + k
b

x
= −(1− k)b′(0) + o(1),

k(k + 1)a

2x
− ka′ =

k(k − 1)

2
(a′(0) + o(1)) < 0.

It follows from (4.3) that

L∗εx−k ≤
[
ε2

2
a′′ +

k2 − 3k + 2

2
|σ′(0)|2 − (1− k)b′(0) + o(1)

]
x−k, ∀0 < x� 1.

Since limε→0
ε2

2 sup(0,1) a = 0, the conclusion of the lemma follows if we show the existence of some

k∗ ∈ (0, 1) such that

k2 − 3k + 2

2
|σ′(0)|2 − (1− k)b′(0) < 0, ∀k ∈ (k∗, 1). (4.4)

Since Λ0 > 0, there exists δ∗ > 0 such that b′(0) >
(
1
2 + δ∗

)
|σ′(0)|, and thus,

k2 − 3k + 2

2
|σ′(0)|2 − (1− k)b′(0) ≤ 1

2
(k − 1)(k − 1 + 2δ∗)|σ′(0)|2.

Setting k∗ := 1− 2δ∗ leads to (4.4). �

Now, we prove Proposition 4.2.

Proof of Proposition 4.2. By Theorem 4.1 and Lemma 4.1, there are k ∈ (0, 1) and x∗ > 0 such that

(L∗ε + λε,1)x−k < 0 in (0, x∗). (4.5)

Set vε := xkuε. The fact uε > 0 and Lemma 3.5 imply that

lim
x→0

vε(x) = 0. (4.6)

Using (L∗ε + λε,1)uε = 0 (by Lemma 3.4), we calculate

1

2
αεv
′′
ε +

(
α′ε − b−

k

x
αε

)
v′ε +

(L∗ε + λε,1)x−k

x−k
vε = 0. (4.7)

Note that (L∗ε + λε,1)uε = 0 is the same as 1
2 (αεu

′
ε)
′+
[(

α′ε
2 − b

)
uε

]′
+ λε,1uε = 0. Considering the

first limit in (3.1) and Theorem 4.1, we apply Harnack’s inequality to find C1 > 0 (independent of ε)

such that

sup
( x∗4 ,

x∗
2 )

uε ≤ C1 inf
( x∗4 ,

x∗
2 )
uε ≤

4C1

x∗

∫ x∗
2

x∗
4

uεdx ≤
4C1

x∗
.

Hence, sup( x∗4 ,
x∗
2 ) vε = sup( x∗4 ,

x∗
2 ) x

kuε ≤ 4C1

x∗

(
x∗
2

)k
.
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Due to (4.5), the coefficient of vε in (4.7) is negative on (0, x∗). Given (4.6), we apply the maximum

principle to vε on (0, x∗2 ) to conclude that max(0, x∗2 ) vε = vε
(
x∗
2

)
≤ 4C1

x∗

(
x∗
2

)k
. The conclusion follows

from the relation uε = vε
xk

. �

4.3. Proof of Theorem A. (1) If Λ0 < 0, we extend µε to be a Borel probability measure on [0,∞) by

setting µε({0}) = 0. Arguments as in the proof of Theorem 4.1 show that up to a sequence µε weakly

converges to some Borel probability measure µ∗ on [0,∞) as ε→ 0. Moreover, Eµ∗ [φ(X0
t )] =

∫∞
0
φdµ∗

for all t ≥ 0 and φ ∈ Cb([0,∞)).

Since Proposition 3.1 says limt→∞X0
t = 0 Px-a.e. for any x > 0, we deduce from the dominated

convergence theorem that
∫∞
0
φdµ∗ = limt→∞ Eµ∗ [φ(X0

t )] = φ(0) for all φ ∈ Cb([0,∞)), leading

to µ∗ = δ0. As a result, limε→0 µε = δ0 weakly, and in particular, limε→0

∫∞
0
φdµε = 0 for all

φ ∈ Cb([0,∞)) with φ(0) = 0.

(2) If Λ0 > 0, Propositions 4.1 and 4.2 ensure the tightness of {µε}ε. We assume up to a sequence

that µε weakly converges to some Borel probability measure µ∗ on (0,∞) as ε → 0. By Lemma 3.4,

the density uε of µε satisfies 1
2 (αεuε)

′′ − (buε)
′ + λε,1uε = 0. This together with the first limit in (3.1)

and Theorem 4.1 implies that µ∗ must satisfy L∗0u = 0 in the weak sense, that is,
∫∞
0
L0φdµ∗ = 0 for

all φ ∈ C2
0 ((0,∞)).

We claim µ∗ admits a non-negative density u∗ ∈ C2((0,∞)) and limj→∞ uεj = u∗ in C2((0,∞)).

Then, L∗0u∗ = 0, and hence, u∗ = u0 and µ∗ = µ0 by Lemma 3.7. That is, µ0 is the unique limiting

measure of {µε} and limε→0 uε = u0 locally in C2((0,∞)), giving the desired result.

It remains to prove the claim. Let I1 and I2 be open intervals in (0,∞) and satisfy I1 ⊂⊂
I2 ⊂⊂ (0,∞). Given (3.1) and Theorem 4.1, we apply Harnack’s inequality to uε on I2 to find

C1 = C1(I1, I2) > 0 (independent of ε) such that

sup
I1

uε ≤ C1 inf
I1
uε ≤

C1

|I1|

∫
I1
uεdx ≤

C1

|I1|
.

Setting φε := uε
uGε

, we find from (3.2) that supI1 φε ≤
2 supI1 uε

infI1 u
G
0
≤ 2C1

|I1| infI1 u
G
0

. That is, {φε}ε is locally

uniformly bounded. In comparison with the expression for uε given in Lemma 3.4, we readily see that

φε is a positive eigenfunction of −Lε associated with λε,1, and hence, satisfies 1
2αεφ

′′
ε + bφ′ε = −λε,1φε.

Given the first limit in (3.1) and Theorem 4.1, we apply the classical interior Schauder estimates to

{φε}ε to arrive at supε supI (|φ′ε|+ |φ′′ε |+ |φ′′′ε |) < ∞ for any I ⊂⊂ (0,∞). An application of the

Arzelà-Ascoli theorem then yields the precompactness of {φ′ε}ε and {φ′′ε }ε in C(I). Since I ⊂⊂ (0,∞)

is arbitrary, we may assume without loss of generality according to the diagonal argument that φεj
locally converges to some non-negative φ∗ in C2((0,∞)) as j → ∞. Thanks to (3.2) and the weak

limit limj→∞ µεj = µ∗, we find dµ∗ = u∗dx with u∗ := φ∗u
G
0 and uε converges to u∗ in C2((0,∞)) as

ε→ 0. This proves the claim, and thus, completes the proof.

5. Asymptotic bounds of the first two eigenvalues

This section is devoted to the proof of Theorem B. The asymptotic bounds of the first and second

eigenvalues are respectively treated in Subsections 5.1 and 5.2.

We start with a technical result that is frequently used in the sequel. It says that appropriately

normalized eigenfunctions of −Lε have uniform-in-ε small tails (against a weight) near ∞, and is only

used for eigenfunctions associated with the first two eigenvalues.
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Lemma 5.1. Assume (H) and fix i ∈ N. For each 0 < ε � 1, let φ̃ε,i be an eigenfunction of −Lε
associated with the eigenvalue λε,i. If supε

∫∞
x0
|φ̃ε,i|2uGε dx ≤ 1 for some x0 > 0, then

lim
z→∞

sup
ε

∫ ∞
z

|φ̃ε,i|2uGε dx = 0.

Proof. Set ψε,i := ŨεUεφ̃ε,i, where Ũε and Uε are unitary transforms defined in Subsection 3.2. Then,∫ ξε(x2)

ξε(x1)

|ψε,i|2dy =

∫ x2

x1

|φ̃ε,i|2uGε dx ≤ 1, ∀x0 ≤ x1 < x2 ≤ ∞, (5.1)

where the inequality is a result of the assumption. Moreover, −LSε ψε,i = λε,iψε,i, that is,

− 1

2
ψ′′ε,i +Wεψε,i = λε,iψε,i in (0, yε,∞). (5.2)

Fix some integer n0 > x0 + 1. Let {ηn}n>n0
be a sequence of functions in C∞0 ((0,∞)), take values

in [0, 1] and satisfy

ηn(x) =

{
0, x ∈ (0, n0 − 1) ∪ (2n,∞),

1, x ∈ (n0, n),
and |η′n(x)| ≤

{
2, x ∈ [n0 − 1, n0],
2
n , x ∈ [n, 2n].

In addition, we require {ηn}n>n0
to coincide on (0, n0]. Clearly, as n → ∞, ηn converges (uniformly

in (0,M) for any M > 0) to some function η ∈ C∞((0,∞)) taking values in [0, 1] and satisfying

η = ηn0+1 on (0, n0] and η = 1 on (n0,∞).

Set η̃n,ε := ηn ◦ ξ−1ε . Obviously, η̃n,ε ∈ C2
0 ((0, yε,∞)) with supp(η̃n,ε) ⊂ (ξε(n0 − 1), yε,∞). Mul-

tiplying (5.2) by η̃2n,εψε,i and integrating over (0, yε,∞), we find from integration by parts and (5.1)

that

1

2

∫ yε,∞

0

η̃2n,ε|ψ′ε,i|2dy +

∫ yε,∞

0

η̃n,εη̃
′
n,εψε,iψ

′
ε,idy +

∫ yε,∞

0

η̃2n,εWε|ψε,i|2dy

= λε,i

∫ yε,∞

0

η̃2n,ε|ψε,i|2dy ≤ λε,i
∫ yε,∞

ξε(n0−1)
|ψε,i|2dy ≤ λε,i.

An application of Hölder’s inequality yields∣∣∣∣∫ yε,∞

0

η̃n,εη̃
′
n,εψ

′
ε,iψε,idy

∣∣∣∣ ≤ (1

2

∫ yε,∞

0

|η̃n,εψ′ε,i|2dy
) 1

2
(

2

∫ yε,∞

0

|η̃′n,εψε,i|2dy
) 1

2

≤ 1

4

∫ yε,∞

0

η̃2n,ε|ψ′ε,i|2dy +

∫ yε,∞

0

|η̃′n,ε|2|ψε,i|2dy.

Absorbing 1
4

∫ yε,∞
0

η̃2n,ε|ψ′ε,i|2dy and dropping the remaining 1
4

∫ yε,∞
0

η̃2n,ε|ψ′ε,i|2dy yield∫ yε,∞

0

η̃2n,εWε|ψε,i|2dy ≤ λε,i +

∫ yε,∞

0

|η̃′n,ε|2|ψε,i|2dy. (5.3)

Since η̃′n,ε = (η′n
√
αε) ◦ ξ−1ε and {ηn}n>n0

coincide on [n0 − 1, n0], we see from the first limit in

(3.1) that there is M1 > 0 such that

sup
[ξε(n0−1),ξε(n0)]

|η̃′n,ε| = sup
[n0−1,n0]

|η′n|
√
αε <

√
M1, ∀n > n0.
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Thanks to (H)(4), we can make n0 larger if necessary to ensure the existence of some M2 > 0 such

that αε ≤M2σ
2 and |σ|x ≤

|b|
8
√
2M2|σ|

in (n0,∞). As |η′n| ≤ 2
n on [n, 2n], we derive that for n > n0 and

y = ξε(x) ∈ [ξε(n), ξε(2n)],

|η̃′n,ε(y)| = |η′n(x)|
√
αε(x) ≤ 2

n

√
αε(x) ≤ 4

√
αε(x)

x
≤ 4
√
M2
|σ(x)|
x
≤ |b(x)|

2
√

2|σ(x)|
.

Therefore, ∫ yε,∞

0

|η̃′n,ε|2|ψε,i|2dy =

∫ ξε(n0)

ξε(n0−1)
|η̃′n,ε|2|ψε,i|2dy +

∫ ξε(2n)

ξε(n)

|η̃′n,ε|2|ψε,i|2dy

≤M1

∫ ξε(n0)

ξε(n0−1)
|ψε,i|2dy +

1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy

≤M1 +
1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy,

where we used (5.1) in the last inequality. It follows from (5.3) that∫ yε,∞

0

η̃2n,εWε|ψε,i|2dy ≤ λε,i +M1 +
1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy

≤ 2M1 +
1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy,

where we assumed without loss of generality that lim supε→0 λε,i < M1 in the last inequality (ensured

by Lemma 3.2). Since ηn ↑ η as n→∞, letting n→∞ in the above inequality leads to∫ yε,∞

0

η̃2εWε|ψε,i|2dy ≤ 2M1 +
1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy,

where η̃ε := η ◦ ξ−1ε satisfies η̃ε = 1 on [ξε(n0), yε,∞). By Lemma 3.3 (3), we can make n0 larger if

necessary so that Wε ≥ b2◦ξ−1
ε

4σ2◦ξ−1
ε

in (ξε(n0), yε,∞). As a result,

1

4

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy ≤ 2M1 +
1

8

∫ ∞
ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy.

Hence, we see from (5.1) that

1

8

∫ ∞
n0

b2

σ2
|φ̃ε,i|2uGε dx =

1

8

∫ yε,∞

ξε(n0)

b2 ◦ ξ−1ε
σ2 ◦ ξ−1ε

|ψε,i|2dy ≤ 2M1,

giving
∫∞
z
|φ̃ε,i|2uGε dx ≤ 16M1

inf(z,∞)
b2

σ2

for any z > n0. The conclusion follows immediately from the fact

limz→∞
b2(z)
σ2(z) =∞ ensured by (H)(4). This completes the proof. �

5.1. Asymptotic bounds of the first eigenvalue. Note that the limit limε→0 λε,1 = 0 has been

established in Theorem 4.1. In the rest of this subsection, we prove finer asymptotic bounds of the

first eigenvalue λε,1 of −Lε stated in Theorem B.

The asymptotic bounds of λε,1 under the condition Λ0 > 0 stated in Theorem B (2) is restated in

the following result.

Theorem 5.1. Assume (H) and Λ0 > 0. For each 0 < γ � 1, there holds

ε
(1+γ)

4b′(0)
|σ′(0)|2

−2
.ε λε,1 .ε ε

(1−γ) 2b′(0)
|σ′(0)|2

−1
.
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Proof. The upper bound and lower bound are treated separately.

Upper bound. As the first eigenvalue of the self-adjoint operator −Lε, λε,1 admits the variational

formula:

λε,1 = inf
φ∈D(Eε)

∫ ∞
0

αε|φ′|2uGε dx∫ ∞
0

|φ|2uGε dx
≤

∫ ∞
0

|φ′ε|2e−2Vεdx∫ ∞
0

|φε|2
1

αε
e−2Vεdx

, (5.4)

where φε ∈ C∞0 ((0,∞)) is non-decreasing and satisfies

φε(x) =

{
0, 0 < x < ε,

1, x > 2ε,
and 0 < φ′ε ≤

2

ε
on (ε, 2ε) .

By (H)(1), b > 0 in (0, x∗) for some x∗ > 0. Split −Vε =
∫ x∗
1

b
αε
ds+

∫ •
x∗

b
αε
ds =: Aε +Bε. Clearly,

Bε is increasing in (0, x∗). Hence,∫ ∞
0

|φ′ε|2e−2Vεdx =

∫ 2ε

ε

|φ′ε|2e−2Vεdx ≤
4

ε2
e2Aε

∫ 2ε

ε

e2Bε(x)dx ≤ 4

ε
e2Aε+2Bε(2ε), (5.5)

and ∫ ∞
0

|φε|2
1

αε
e−2Vεdx ≥ e2Aε

∫ ∞
2ε

1

αε
e2Bεdx = e2Aε+2Bε(2ε)

∫ ∞
2ε

1

αε(x)
e2Bε(x)−2Bε(2ε)dx. (5.6)

As Λ0 > 0, there is γ0 > 0 such that κ = κ(γ) := 2b′(0)(1−γ)
|σ′(0)|2 > 1 for all γ ∈ (0, γ0). By (H)(1)-(3),

we can make x∗ = x∗(γ) smaller if necessary so that

b(x)

αε(x)
≥ (1− γ)b′(0)

ε2a′(0) + |σ′(0)|2x
and αε(x) ≤ (1 + γ)(ε2a′(0)x+ |σ′(0)|2x2), ∀x ∈ (0, x∗),

As a consequence, we find

2Bε(x)− 2Bε(2ε) ≥ 2

∫ x

2ε

(1− γ)b′(0)

ε2a′(0) + |σ′(0)|2s
ds = κ ln

ε2a′(0) + |σ′(0)|2x
ε2a′(0) + 2ε|σ′(0)|2

, ∀x ∈ (2ε, x∗),

leading to ∫ ∞
2ε

1

αε(x)
e2Bε(x)−2Bε(2ε)dx ≥ 1

1 + γ

∫ x∗

x∗
2

(
ε2a′(0) + |σ′(0)|2x

)κ−1
(ε2a′(0) + 2ε|σ′(0)|2)

κ
1

x
dx =:

Cε,γ
εκ

,

where Cε,γ satisfies infε Cε,γ > 0. Hence, we see from (5.4), (5.5) and (5.6) that λε,1 .ε Cγεκ−1 for

some Cγ > 0. Since this is true for all γ ∈ (0, γ0), the constant Cγ can be replaced by 1, establishing

the upper bound.

Lower bound. Recall from Lemma 3.1 that φε,1 is the positive eigenfunction of −Lε associated with

λε,1 and satisfies ‖φε,1‖L2(uGε ) = 1. In particular,

λε,1 = Eε(φε,1, φε,1) =

∫ ∞
0

|φ′ε,1|2e−2Vεdx. (5.7)

Let 0 < δ � 1. By Lemma 5.1, there is x∗ = x∗(δ)� 1 such that
∫∞
x∗
|φε,1|2uGε dx ≤ δ. Then,

1 = ‖φε,1‖2L2(uGε ) ≤ δ +

∫ x∗

0

|φε,1|2
1

αε
e−2Vεdx (5.8)

By Lemma 3.5, there are Cε > 0 and xε > 0 such that uε ≤ Cε in (0, xε). This together with

uε =
φε,1

‖φε,1‖L1(uGε )

1
αε
e−2Vε (by Lemma 3.4) yields φε,1 ≤ Cε‖φε,1‖L1(uGε )αεe

2Vε in (0, xε). Since αε =
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ε2a+ σ2 and Vε(0+) =
∫ 1

0
b
αε
ds <∞, (H)(2)-(3) ensures the existence of C ′ε > 0 such that φε,1(x) ≤

CεC
′
ε‖φε,1‖L1(uGε )x for x ∈ (0, xε). In particular, φε,1(0+) = 0, and hence, φε,1 =

∫ •
0
φ′ε,1dx. This

together with (5.8) and Hölder’s inequality yields

1− δ ≤
∫ x∗

0

∣∣∣∣∫ x

0

φ′ε,1(y)e−Vε(y)eVε(y)dy

∣∣∣∣2 1

αε(x)
e−2Vε(x)dx

≤
∫ x∗

0

(∫ x

0

|φ′ε,1(y)|2e−2Vε(y)dy
)(∫ x

0

e2Vε(y)dy

)
1

αε(x)
e−2Vε(x)dx

≤
(∫ ∞

0

|φ′ε,1(y)|2e−2Vε(y)dy
)
Iε,

where Iε =
∫ x∗
0

∫ x
0

1
αε(x)

e2[Vε(y)−Vε(x)]dydx. It then follows from (5.7) that

λε,1 ≥
1− δ
Iε

. (5.9)

To finish the proof, it suffices to derive an appropriate upper bound for Iε. From (H)(1)-(3) we

find x∗ = x∗(δ) > 0 such that

b(x) ≤ (1 + δ)b′(0)x and ε2a(x) + σ2(x) ≥ (1− δ)x[ε2a′(0) + |σ′(0)|2x], ∀x ∈ (0, x∗).

Clearly, x∗ � x∗. We write

Iε =

(∫ x∗

0

+

∫ x∗

x∗

)∫ x

0

1

αε(x)
e2[Vε(y)−Vε(x)]dydx =: Iε + IIε. (5.10)

We first treat Iε. Note that for 0 < y < x ≤ x∗,

Vε(y)− Vε(x) ≤ b′(0)(1 + δ)

(1− δ)

∫ x

y

1

ε2a′(0) + |σ′(0)|2s
ds =

κ

2
ln
ε2a′(0) + |σ′(0)|2x
ε2a′(0) + |σ′(0)|2y

, (5.11)

where κ := 2(1+δ)b′(0)
(1−δ)|σ′(0)|2 > 1 due to the assumption Λ0 > 0. It follows that

Iε ≤
∫ x∗

0

∫ x

0

1

(1− δ)x[ε2a′(0) + |σ′(0)|2x]

[
ε2a′(0) + |σ′(0)|2x
ε2a′(0) + |σ′(0)|2y

]κ
dydx

=
1

1− δ

∫ x∗

0

[ε2a′(0) + |σ′(0)|2x]κ−1

x

∫ x

0

[ε2a′(0) + |σ′(0)|2y]−κdydx.

(5.12)

Clearly,
∫ x
0

[ε2a′(0) + |σ′(0)|2y]−κdy ≤ [ε2a′(0)]−κx. Calculating the integral and dropping the

negative term (due to κ > 1), we find∫ x

0

[ε2a′(0) + |σ′(0)|2y]−κdy ≤ |σ
′(0)|−2

κ− 1
[ε2a′(0)]1−κ. (5.13)

Thus, for any γ ∈ (0, 1),∫ x

0

[ε2a′(0) + |σ′(0)|2y]−κdy ≤
(
[ε2a′(0)]−κx

)γ ( |σ′(0)|−2

κ− 1
[ε2a′(0)]1−κ

)1−γ

= C1ε
2−2κ−2γxγ ,

where C1 := [a′(0)]1−κ−γ |σ′(0)|2(γ−1)(κ− 1)γ−1. It then follows from (5.12) that

Iε ≤
C1

1− δ
ε2−2κ−2γ

∫ x∗

0

xγ−1[ε2a′(0) + |σ′(0)|2x]κ−1dx

≤ C1

1− δ
ε2−2κ−2γ [ε2a′(0) + |σ′(0)|2x∗]κ−1

xγ∗
γ
≤ C2ε

2−2κ−2γ ,

(5.14)
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where C2 := 2C1

(1−δ)γ |σ
′(0)|2(κ−1)xκ−1+γ∗ .

Now, we treat IIε. By (5.11), for x ∈ [x∗, x
∗),

Vε(y)− Vε(x) =

∫ x∗

y

b

ε2a+ σ2
ds+

∫ x

x∗

b

ε2a+ σ2
ds

≤ κ

2
ln
ε2a′(0) + |σ′(0)|2x∗
ε2a′(0) + |σ′(0)|2y

+

∫ x∗

x∗

|b|
σ2
ds, ∀y ∈ (0, x∗),

and Vε(y)− Vε(x) ≤
∫ x∗
x∗

|b|
σ2 ds for y ∈ [x∗, x). Hence, there are C3, C4 > 0 such that

IIε =

∫ x∗

x∗

(∫ x∗

0

+

∫ x

x∗

)
1

αε(x)
e2[Vε(y)−Vε(x)]dydx ≤ C3

∫ x∗

0

[ε2a′(0) + |σ′(0)|2y]−κdy + C4. (5.15)

Applying (5.13) to the integral
∫ x∗
0

[ε2a′(0) + |σ′(0)|2y]−κdy, we find for some C5 > 0,

IIε ≤ C3
|σ′(0)|−2

κ− 1
[ε2a′(0)]1−κ + C4 ≤ C5ε

2−2κ

This together with (5.10) and (5.14) leads to Iε ≤ (C2 +C5)ε2−2κ−2γ . Thanks to (5.9), the conclusion

follows readily from κ = 2b′(0)(1+δ)
|σ′(0)|2(1−δ) and the arbitrariness of 0 < δ � 1 and γ ∈ (0, 1). �

Theorem B (1) regarding the asymptotic lower bound of λε,1 under the condition Λ0 < 0 is restated

as the next result.

Theorem 5.2. Assume (H) and Λ0 < 0. There exists C > 0 such that λε,1 &ε C
| ln ε| .

Proof. We proceed as in the proof of the lower bound in Theorem 5.1. As Λ0 < 0, we let 0 < δ � 1

be such that κ := 2(1+δ)b′(0)
(1−δ)|σ′(0)|2 < 1. Following arguments leading to (5.9), we find

λε,1 ≥
1− δ
Iε

(5.16)

for some x∗ = x∗(δ)� 1, where Iε =
∫ x∗
0

∫ x
0

1
αε(x)

e2[Vε(y)−Vε(x)]dydx. Due to (H)(1)-(3), there exists

x∗ = x∗(δ) > 0 such that

b(x) ≤ (1 + δ)b′(0)x and ε2a(x) + σ2(x) ≥ (1− δ)x[ε2a′(0) + |σ′(0)|2x], ∀x ∈ (0, x∗).

We split

Iε =

(∫ x∗

0

+

∫ x∗

x∗

)∫ x

0

1

αε(x)
e2[Vε(y)−Vε(x)]dydx =: Iε + IIε. (5.17)

We first treat Iε. Since for any 0 < y < x ≤ x∗

Vε(y)− Vε(x) ≤ b′(0)(1 + δ)

(1− δ)

∫ x

y

1

ε2a′(0) + |σ′(0)|2s
ds =

κ

2
ln
ε2a′(0) + |σ′(0)|2x
ε2a′(0) + |σ′(0)|2y

,
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we deduce

Iε ≤
∫ x∗

0

∫ x

0

1

(1− δ)x[ε2a′(0) + |σ′(0)|2x]

[
ε2a′(0) + |σ′(0)|2x
ε2a′(0) + |σ′(0)|2y

]κ
dydx

=
1

(1− δ)(1− κ)|σ′(0)|2

∫ x∗

0

1

x

[
1−

(
ε2a′(0)

ε2a′(0) + |σ′(0)|2x

)1−κ]
dx

=
1

(1− δ)(1− κ)|σ′(0)|2

∫ |σ′(0)|2x∗
ε2a′(0)

0

1

x

(
1− 1

(1 + x)1−κ

)
dx

=
1

(1− δ)(1− κ)|σ′(0)|2

∫ 1

1

1+
|σ′(0)|2x∗
ε2a′(0)

1− t1−κ

t(1− t)
dt,

(5.18)

where the first equality follows from straightforward calculation, the second one is a result of an obvious

change of variable, and the third one is due to the change of variable t = 1
1+x . Since 1−t1−κ

1−t < 1 for

t ∈ (0, 1), we deduce∫ 1

1

1+
|σ′(0)|2x∗
ε2a′(0)

1− t1−κ

t(1− t)
dt ≤

∫ 1

1

1+
|σ′(0)|2x∗
ε2a′(0)

1

t
dt = ln

(
1 +
|σ′(0)|2x∗
ε2a′(0)

)
≤ 3| ln ε|,

which together with (5.18) leads to

Iε ≤
3

(1− δ)(1− κ)|σ′(0)|2
| ln ε| =: C1| ln ε|. (5.19)

Now, we treat IIε. Direct computation yields∫ x∗

0

[ε2a′(0) + |σ′(0)|2y]−κdy ≤ 2

(1− κ)|σ′(0)|2
[|σ′(0)|2x∗]1−κ.

This together with similar arguments leading to (5.15) yields IIε ≤ C2 for some C2 > 0. As a result of

(5.17) and (5.19), Iε ≤ C1| ln ε|+ C2 ≤ 2C1| ln ε|. From which and (5.16), the conclusion follows. �

5.2. Asymptotic bounds of the second eigenvalue. The purpose of this subsection is to prove

the asymptotic bounds of λε,2 stated in Theorem B (2). Clearly, it follows from Lemma 3.2 and the

following result.

Theorem 5.3. Assume (H) and Λ0 > 0. Then, infε λε,2 > 0.

We establish some lemmas before proving Theorem 5.3. Recall from Lemma 3.1 that λε,2 > λε,1 > 0

are simple eigenvalues of −Lε and have eigenfunctions in D(Lε) ∩ L1(uGε ) ∩ C2((0,∞)). For i = 1, 2,

let φ̃ε,i be an eigenfunction of −Lε associated with λε,i and satisfy the normalization

‖φ̃ε,i‖L1((0,2);uGε ) + ‖φ̃ε,i‖2L2((1,∞);uGε ) = 1. (5.20)

Such a normalization is chosen to acquire certain compactness of {φ̃ε,i}ε that plays a key role in the

proof of Theorem 5.3. Moreover, we let φ̃ε,1 > 0. Direct calculations show that uε,i := φ̃ε,iu
G
ε satisfies

L∗εuε,i = −λε,iuε,i. (5.21)

The first lemma establishes an upper bound for |uε,2| near 0.

Lemma 5.2. Assume (H). For each γ > 0 and 0 < ε � 1, there exist C = C(ε, γ) > 0 and

x∗ = x∗(ε) > 0 such that |uε,2(x)| ≤ Cx− 1
2−γ for x ∈ (0, x∗).
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Proof. Set ψε,2 := ŨεUεφ̃ε,2, where Ũε and Uε are unitary transforms defined in Subsection 3.2. Then,

ψε,2 satisfies −LSε ψε,2 = λε,2ψε,2 in (0, yε,∞), that is,

− 1

2
ψ′′ε,2 +Wεψε,2 = λε,2ψε,2 in (0, yε,∞), (5.22)

where we recall that yε,∞ =
∫∞
0

1√
ε2a+|σ|2

ds. By (H)(2)-(3), yε,∞ increases to ∞ as ε→ 0.

Fix η∗ ∈ (0, 1) (whose exactly value is to be determined) and 0 < δ∗ � 1. Let {ηδ}0<δ<δ∗ be a

family of functions in C∞0 ((0, 1)), take values in [0, η∗] and satisfy

ηδ(x) =

{
0, y ∈ (0, δ),

η∗, y ∈ (2δ, 12 ),
0 ≤ η′δ ≤

2η∗
δ

on [δ, 2δ] and |η′δ| ≤ 4η∗ on

[
1

2
, 1

)
. (5.23)

Multiplying (5.22) by η2δψε,2 and integrating by parts yield

1

2

∫ 1

0

η2δ |ψ′ε,2|2dy +

∫ 1

0

ηδψε,2η
′
δψ
′
ε,2dy +

∫ 1

0

Wεη
2
δ |ψε,2|2dy = λε,2

∫ 1

0

η2δ |ψε,2|2dy. (5.24)

An application of Hölder’s inequality and (5.23) yields∣∣∣∣∫ 1

0

ηδψε,2η
′
δψ
′
ε,2dy

∣∣∣∣ ≤ 1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +

∫ 1

0

|η′δ|2|ψε,2|2dy

≤ 1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +
4η2∗
δ2

∫ 2δ

δ

|ψε,2|2dy + 16η2∗

∫ 1

1
2

|ψε,2|2dy.

Thanks to Lemma 3.3 (2) and (4), we can find C > 0 and M > 1, and make δ∗ smaller if necessary

(all independent of ε) such that Wε(y) ≥ C
y2 ≥

C
4δ2 for y ∈ (δ, 2δ) and δ ∈ (0, δ∗) and Wε + M ≥ 1.

Setting η∗ := min
{ √

C
4
√
2
, 1
4
√
2

}
, we derive∣∣∣∣∫ 1

0

ηδψε,2η
′
δψ
′
ε,2dy

∣∣∣∣ ≤ 1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +
C

8δ2

∫ 2δ

δ

|ψε,2|2dy +
1

2

∫ 1

1
2

|ψε,2|2dy

≤ 1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +
1

2

∫ 1

0

(Wε +M)η2δ |ψε,2|2dy.

It then follows from (5.24) that

1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +
1

2

∫ 1

0

(Wε +M)η2δ |ψε,2|2dy ≤
(
λε,2 +

M

2

)∫ 1

0

η2δ |ψε,2|2dy,

and thus,
1

4

∫ 1

0

η2δ |ψ′ε,2|2dy +
1

2

∫ 1

0

η2δ |ψε,2|2dy ≤
(
λε,2 +

M

2

)
η2∗

∫ 1

0

|ψε,2|2dy.

Note that it suffices to prove the result for each 0 < γ � 1. Let γ be such a number. As

lim supε→0 λε,2 < ∞ (by Lemma 3.2) and ‖ψε,2‖L2((0,yε,∞)) = ‖φ̃ε,2‖L2(uGε ) < ∞, the Sobolev embed-

ding theorem gives ‖ηδψε,2‖
C

1
2
−γ([0,1])

≤ C1‖φ̃ε,2‖L2(uGε ) for some C1 = C1(γ) > 0 (independent of δ).

In particular,

|ηδ(y)ψε,2(y)| ≤ C1‖φ̃ε,2‖L2(uGε )y
1
2−γ , ∀y ∈

(
0,

1

2

)
.

As ηδ converges to η∗ on (0, 12 ), we let δ → 0+ in the above inequality to find

|ψε,2(y)| ≤ C1

η∗
‖φ̃ε,2‖L2(uGε )y

1
2−γ =: C2y

1
2−γ , ∀y ∈

(
0,

1

2

)
,
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where C2 = C2(ε, γ) := C1

η∗
‖φ̃ε,2‖L2(uGε ). Setting xε∗ := ξ−1ε ( 1

2 ), we see from uε,2 = φ̃ε,2u
G
ε and

φ̃ε,2 = U−1ε Ũ−1ε ψε,2 that

|uε,2| = |ψε,2 ◦ ξε|α
− 3

4
ε e−Vε ≤ C2ξ

1
2−γ
ε (ε2a)−

3
4 e−Vε in (0, xε∗). (5.25)

Since limε→0 ξε(x) = ∞ for any x > 0, there must hold limε→0 x
ε
∗ = 0. Hence, a(x) ≥ 1

2a
′(0)x for

x ∈ (0, xε∗). Then,

ξε(x) ≤
√

2

ε
√
a′(0)

∫ x

0

1√
s
ds =

2
√

2

ε

√
x

a′(0)
, ∀x ∈ (0, xε∗).

As V ′ε = − b
αε
≤ 0 near 0, Vε is non-increasing in (0, xε∗). It follows from (5.25) that

|uε,2(x)| ≤ C2

(
2
√

2

ε

√
x

a′(0)

) 1
2−γ [

1

2
ε2a′(0)x

]− 3
4

e−Vε(x
ε
∗) =:

C

x
1
2+

γ
2

, ∀x ∈ (0, xε∗).

This completes the proof. �

The following result is in preparation for the contradiction arguments for φ̃ε,i to be used in the

proof of Theorem 5.3.

Lemma 5.3. Assume (H) and Λ0 > 0.

(1) limz→0 supε
∫ z
0
φ̃ε,1u

G
ε dx = 0.

(2) If limε→0 λε,2 = 0, then limz→0 supε
∫ z
0
|φ̃ε,2|uGε dx = 0.

Proof. As limε→0 λε,1 = 0 by Theorem 4.1, the proof is done if we show that for i = 1, 2, the condition

limε→0 λε,i = 0 implies limz→0 supε
∫ z
0
|φ̃ε,i|uGε dx = 0. As uε,i = φ̃ε,iu

G
ε , it is the same as showing

lim
z→0

sup
ε

∫ z

0

|uε,i|dx = 0. (5.26)

We proceed as in the proof of Proposition 4.2. Given limε→0 λε,i = 0, we apply Lemma 4.1 to

find for fixed k ∈ ( 1
2 , 1) the existence of x1 ∈ (0, 1) such that (L∗ε + λε,i)x

−k < 0 in (0, x1). Setting

vε,i :=
uε,i
x−k

, we compute using (5.21)

1

2
αεv
′′
ε,i +

(
α′ε − b−

k

x
αε

)
v′ε,i +

(L∗ε + λε,i)x
−k

x−k
vε,i = 0 in (0,∞). (5.27)

Note that limx→0 |vε,i(x)| = 0. Indeed, Lemma 5.2 implies that there are Cε > 0 and xε > 0 such

that |uε,i(x)| ≤ Cεx−
1
2 (k+

1
2 ) for x ∈ (0, xε). Hence, limx→0 |vε,i(x)| ≤ Cε limx→0 x

k− 1
2 (k+

1
2 ) = 0.

Let x2 ∈ (0, x1). Note that the equation (5.21) can be written as

1

2

(
αεu

′
ε,i

)′
+

[(
1

2
α′ε − b

)
uε,i

]′
+ λε,iuε,i = 0. (5.28)

Due to the first limit in (3.1) and limε→0 λε,i = 0 (by assumption), we apply the classical interior De

Giorgi-Nash-Moser estimates (see e.g. [11, 24]) in (x2

2 ,
3x2

2 ) to find C > 0 (independent of ε) such that

sup
(
3x2
4 ,

5x2
4 )

|uε,i| ≤
C

x2

∫ 3x2
2

x2
2

|uε,i|dx =
C

x2

∫ 3x2
2

x2
2

|φ̃ε,i|uGε dx ≤
C

x2
,

where we used the normalization (5.20) in the last inequality. Hence, |vε,i(x2)| ≤ Cxk−12 .
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Since vε,i satisfies (5.27), limx→0 vε,i(x) = 0 and (L∗ε + λε,i)x
−k < 0, we apply the maximum

principle to vε,i in (0, x2) and conclude that supx∈(0,x2) |vε,i(x)| = |vε,i(x2)| ≤ Cxk−12 , leading to

|uε,i(x)| ≤ Cxk−12 x−k for x ∈ (0, x2). Thus,∫ x2
2

0

|φ̃ε,i|uGε dx =

∫ x2
2

0

|uε,i|dx ≤ Cxk−12

∫ x2
2

0

x−kdx =
C

1− k
x1−k2 .

Since the above estimate holds for any x2 ∈ (0, x1) and is uniform in 0 < ε � 1, we arrive at (5.26),

and hence, proves the lemma. �

The monotonicity of φ̃ε,1 is addressed in the next result.

Lemma 5.4. Assume (H). There holds φ̃′ε,1 > 0.

Proof. Note that φ̃ε,1 satisfies Lεφ̃ε,1 = −λε,1φ̃ε,1, or
(
e−2Vε φ̃′ε,1

)′
= − 2

αε
λε,1e

−2Vε φ̃ε,1. Since φ̃ε,1 > 0,

e−2Vε φ̃′ε,1 is strictly decreasing.

Suppose on the contrary that φ̃′ε,1(x0) ≤ 0 for some x0 ∈ (0,∞). Then, there is x1 > x0 such that

e−2Vε(x)φ̃′ε,1(x) < e−2Vε(x1)φ̃′ε,1(x1) < 0, ∀x > x1,

leading to φ̃′ε,1(x) < e2(Vε(x)−Vε(x1))φ̃′ε,1(x1) for x > x1. Since Vε(x) − Vε(x1) = −
∫ x
x1

b
αε
ds → ∞

as x → ∞, we find φ̃′ε,1(x) → −∞ as x → ∞, and hence, lim supx→∞ φ̃ε,1(x) = −∞, contradicting

φ̃ε,1 > 0. Hence, φ̃′ε,1 > 0. �

The last lemma is elementary.

Lemma 5.5. Assume (H). Then, supε
∫∞
1
uGε dx <∞.

Proof. By (H)(1)(4), there exist x1 > 0 and ε∗ > 0 such that b < 0 and ε2a+ σ2 ≤ 2σ2 in (x1,∞) for

all 0 < ε < ε∗. Therefore,

uGε (x) = exp

{
2

∫ x

1

b

ε2a+ σ2
ds− ln(ε2a(x) + σ2(x))

}
≤ exp

{
2

∫ x1

1

b

ε2a+ σ2
ds

}
× exp

{∫ x

x1

b

2σ2
ds− lnσ2(x)

}
, ∀x > x1.

Obviously, the conclusion follows if we show
∫∞
x1

exp
{∫ x

x1

b
2σ2 ds− lnσ2(x)

}
dx <∞, which can be

verified by arguments as in the proof of Lemma 3.6. �

We are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Suppose on the contrary that infε λε,2 = 0. Up to a subsequence, we may

assume, without loss of generality, that limε→0 λε,2 = 0. We derive a contradiction within four steps.

Step 1. We show for i = 1, 2 the existence of ui ∈ C2((0,∞)) ∩ L1((0,∞)) satisfying L∗0ui = 0 such

that limε→0 uε,i = ui in C2((0,∞)).

Recall that uε,i = φ̃ε,iu
G
ε and φ̃ε,i satisfies (5.20). We apply Hölder’s inequality to find

sup
ε

∫ ∞
0

|uε,i|dx ≤ 1 + sup
ε

∫ ∞
2

|φ̃ε,i|uGε dx ≤ 1 + sup
ε

(∫ ∞
2

uGε dx

) 1
2

<∞, (5.29)

where we used the normalization (5.20) in the first and third inequalities, and Lemma 5.5 to derive

the final uniform boundedness. Considering the positive and negative parts of {uε,i}ε separately, we
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apply Helly’s selection principle (see e.g. [12, Theorem 4.3.3 and 4.4.1]) to find a signed Borel measure

µi on (0,∞) such that, up to a subsequence, limε→0

∫∞
0
φuε,idx =

∫∞
0
φdµi for any φ ∈ Cc((0,∞)).

Letting ε → 0 in (5.21), we find L∗0µi = 0 in the weak sense from the first limit in (3.1) and

limε→0 λε,i = 0 (by Theorem 4.1 if i = 1 and assumption if i = 2). Moreover, we apply the classical

interior De Giorgi-Nash-Moser estimates (see e.g. [11, 24]) to find that for any open intervals I
and I ′ with I ⊂⊂ I ′ ⊂⊂ (0,∞), there exists C = C(I, I ′) > 0 (independent of ε) such that

supI |uε,i| ≤ C‖uε,i‖L1(I′). Then, we can follow the arguments as in the proof of Theorem A (2) to

conclude that µi admits a density ui ∈ C2((0,∞)) and limε→0 uε,i = ui in C2((0,∞)). The estimate

(5.29) and Fatou’s lemma guarantee ui ∈ L1((0,∞)).

Step 2. We show the existence of C1 > 0 and C2 6= 0 such that limε→0 φ̃ε,i = Ci in C2((0,∞)) for

i = 1, 2.

By Step 1 and φ̃ε,1 > 0, we apply Lemma 3.7 to find C1 ≥ 0 and C2 ∈ R such that ui = Ciu
G
0 for

i = 1, 2. Recall φ̃ε,i =
uε,i
uGε

. Thanks to limε→0 uε,i = ui in C2((0,∞)) (by Step 1) and (3.2), the limit

limε→0 φ̃ε,i = Ci holds in C2((0,∞)).

By Lemmas 5.1 and 5.3, the normalization (5.20) ensures the existence of some κ � 1 such that∫ 2
1
κ
|φ̃ε,i|uGε dx +

∫ κ
1
|φ̃ε,i|2uGε dx ≥ 1

2 . Letting ε → 0 yields |Ci|
∫ 2

1
κ
uG0 dx + C2

i

∫ κ
1
uG0 dx ≥ 1

2 . Hence,

Ci 6= 0. In particular, C1 > 0.

Step 3. We show that limε→0

∫∞
0
φ̃ε,1φ̃ε,2u

G
ε dx = C1C2

∫∞
0
uG0 dx 6= 0.

Obviously, for any κ > 1, there holds∣∣∣∣∫ ∞
0

φ̃ε,1φ̃ε,2u
G
ε dx− C1C2

∫ ∞
0

uG0 dx

∣∣∣∣
≤

∣∣∣∣∣
∫ κ

1
κ

φ̃ε,1φ̃ε,2u
G
ε dx− C1C2

∫ κ

1
κ

uG0 dx

∣∣∣∣∣+

(∫ 1
κ

0

+

∫ ∞
κ

)
φ̃ε,1|φ̃ε,2|uGε dx

+ C1|C2|

(∫ 1
κ

0

+

∫ ∞
κ

)
uG0 dx =: Iε(κ) + IIε(κ) + III(κ).

(5.30)

We claim that

lim
ε→0

Iε(κ) = 0, ∀κ > 1, lim
κ→∞

sup
ε

IIε(κ) = 0 and lim
κ→∞

III(κ) = 0. (5.31)

Given (5.31), the conclusion follows from taking the limit ε→ 0 and then κ→∞ in (5.30).

We prove (5.31). Clearly,
∫∞
0
uG0 dx < ∞ (by Lemma 3.6) yields limκ→∞ III(κ) = 0. Thanks to

Step 2 and (3.2), we see limε→0 Iε(κ) = 0 for any κ > 1.

For IIε(κ), Hölder’s inequality and Lemma 5.1 yield limκ→∞ supε
∫∞
κ
φ̃ε,1|φ̃ε,2|uGε dx = 0. Note that

Lemma 5.4 and Step 2 imply

sup
ε

sup
(0,x)

φ̃ε,1 ≤ sup
ε
φ̃ε,1(x) <∞, ∀x > 0, (5.32)

which together with Lemma 5.3 (2) leads to limκ→∞ supε
∫ 1
κ

0
φ̃ε,1|φ̃ε,2|uGε dx = 0. It follows that

limκ→∞ supε IIε(κ) = 0. The claim (5.31), and hence, the conclusion is proven.

Step 4. Recall that −Lε is self-adjoint in L2(uGε ). Since φ̃1,ε and φ̃2,ε are eigenfunctions associated

with λε,1 and λε,2, respectively, they are orthogonal in L2(uGε ), namely,
∫∞
0
φ̃ε,1φ̃ε,2u

G
ε dx = 0, which

is in contradictory to Step 3.

In conclusion, infε λε,2 > 0 and the theorem is proven. �
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6. Multiscale dynamics

In this section, we study the multiscale dynamics of the distribution of Xε
t and prove Theorem C.

Recall from Lemma 3.1 the semigroup (P εt )t≥0 and for each k ∈ N the spectral projection Qεk of Lε
corresponding to the eigenvalues {−λε,j}j≥k. The following lemma plays a crucial role in the proof of

Theorem C.

Lemma 6.1. Assume (H) and Λ0 > 0. For each k ∈ N, there is Ck > 0 such that for 0 < ε� 1,

|P εtQεkf | ≤ Ckα
1
4
ε e

Vεe−λε,kt‖f‖L∞ in (0,∞), ∀t > 2 and f ∈ Cb((0,∞)).

Proof. Set P̃ εt := ŨεUεP
ε
t U
−1
ε Ũ−1ε , where Uε and Ũε are unitary transforms specified in Subsection

3.2. Then, (P̃ εt )t≥0 is an analytic semigroup of contractions on L2((0, yε,∞)) generated by LSε . The

spectrum of LSε , being the same as that of Lε, consists of simple eigenvalues {−λε,i}i∈N (see Lemma

3.1). We finish the proof within four steps.

Step 1. We show for each p ∈ (2,∞], there is D1(p) > 0 such that supε ‖P̃ ε1‖L2→Lp ≤ D1(p).

According to Lemma 3.3 (4), there is M > 0 such that Wε+M ≥ 1. Since σ(LSε −M) ⊂ (−∞,−M)

and ‖(λ− (LSε −M))−1‖L2→L2 = 1
dist(λ,σ(LSε −M))

for all λ ∈ ρ(LSε −M), we find

‖(λ− (LSε −M))−1‖L2→L2 ≤ 1

|λ|
, ∀λ ∈ C with <λ > 0. (6.1)

As LSε −M generates the analytic semigroup (e−MtP̃ εt )t≥0 of contractions on L2((0, yε,∞)), and the

right-hand side of (6.1) is independent of ε, we apply [49, Theorem 2.5.2] to find C1 > 0 (independent

of ε) such that

‖(LSε −M)e−MtP̃ εt ‖L2→L2 ≤ C1

t
, ∀t > 0. (6.2)

Let D(LSε ) be the domain of LSε . Since

〈−(LSε −M)u, u〉L2 =
1

2

∫ yε,∞

0

|u′|dy +

∫ yε,∞

0

(Wε +M)|u|2dy, ∀u ∈ D(LSε ),

we derive from Wε +M ≥ 1 and (6.2) that for f̃ ∈ L2((0, yε,∞)) and t > 0,

1

2

∫ yε,∞

0

|∂yP̃ εt f̃ |2dy +

∫ yε,∞

0

|P̃ εt f̃ |2dy

≤ 1

2

∫ yε,∞

0

|∂yP̃ εt f̃ |2dy +

∫ yε,∞

0

(Wε +M)|P̃ εt f̃ |2dy

= 〈−(LSε −M)P̃ εt f̃ , P̃
ε
t f̃〉L2

≤ C1e
Mt

t
‖f̃‖L2‖P̃ εt f̃‖L2 ≤ C2

1e
2Mt

2t2
‖f̃‖2L2 +

1

2

∫ yε,∞

0

|P̃ εt f̃ |2dy,

leading to ∫ yε,∞

0

|∂yP̃ εt f̃ |2dy +

∫ yε,∞

0

|P̃ εt f̃ |2dy ≤
C2

1e
2Mt

t2
‖f̃‖2L2 .

Since Lemma 3.3 (2)-(3) ensures Wε + M blows up at 0 and yε,∞, we see that P̃ εt f̃ belongs to

W 1,2
0 ((0, yε,∞)) (the closure of C∞0 ((0, yε,∞)) under the W 1,2((0, yε,∞))-norm). Hence, the Sobolev

embedding theorem ensures that for each p > 2 there is C2(p) > 0 such that

‖P̃ εt f̃‖Lp ≤ C2(p)
(
‖∂yP̃ εt f̃‖L2 + ‖P̃ εt f̃‖L2

)
≤
√

2C1C2(p)

t
eMt‖f̃‖L2 .
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Setting t = 1 yields the result with D1(p) :=
√

2C1C2(p)eM .

Step 2. We prove that for each p ∈ (1, 2), there holds supε ‖P̃ ε1‖Lp→L2 ≤ D1(p′), where p′ is the dual

exponent of p, namely, 1
p + 1

p′ = 1.

The result in Step 1 says ‖P̃ ε1‖L2→Lp′ ≤ D1(p′), which together with the symmetry of P̃ ε1 yields

‖P̃ ε1 f̃‖L2 ≤ D1(p′)‖f̃‖Lp , ∀f̃ ∈ L2((0, yε,∞)) ∩ Lp((0, yε,∞)).

Thus, P̃ ε1 uniquely extends to be a bounded linear operator from Lp((0, yε,∞)) to L2((0, yε,∞)), and

satisfies ‖P̃ ε1‖Lp→L2 ≤ D1(p′).

Step 3. We show the existence of p∗ ∈ (1, 2) and D2 > 0 such that supε ‖ŨεUεf‖Lp∗ ≤ D2‖f‖∞ for

all f ∈ Cb((0,∞)).

Let f ∈ Cb((0,∞)) and set f̃ε := ŨεUεf . Straightforward calculations yield that for each p ∈ (1, 2),∫ yε,∞

0

|f̃ε|pdy =

∫ yε,∞

0

(
(uGε )

p
2α

p
4
ε |f |p

)
◦ ξ−1ε dy ≤ ‖f‖p∞

∫ ∞
0

e−pVε

α
p
4+

1
2

ε

dx.

Note that if there exists p∗ ∈ (1, 2) such that

sup
ε

∫ ∞
0

e−p∗Vε

α
p∗
4 + 1

2
ε

dx <∞, (6.3)

then the result holds with D2 = supε

(∫∞
0

e−p∗Vε

α
p∗
4

+ 1
2

ε

dx

) 1
p∗

.

We show (6.3) for some p∗ ∈ (1, 2). Fix 0 < δ � 1. By (H)(1)-(3), there is x1 ∈ (0, 1) such that

b(x) ≥ (1− δ)b′(0)x and 1− δ ≤ αε(x)

x(ε2a′(0) + |σ′(0)|2x)
≤ 1 + δ, ∀x ∈ (0, x1). (6.4)

We split ∫ ∞
0

e−pVε

α
p
4+

1
2

ε

dx =

∫ x1

0

e−pVε

α
p
4+

1
2

ε

dx+

∫ ∞
x1

e−pVε

α
p
4+

1
2

ε

dx =: Iε(p) + IIε(p).

Following arguments as in the proof of Lemma 3.6, we find supε IIε(p) <∞ for each p ∈ (1, 2).

Now, we treat Iε(p). We deduce from (6.4) that

−Vε(x) =

∫ x

x1

b

αε
ds+

∫ x1

1

b

αε
ds

≤
∫ x

x1

(1− δ)b′(0)

(1 + δ)(ε2a′(0) + |σ′(0)|2s)
ds+

∫ x1

1

b

αε
ds

≤ (1− δ)b′(0)

(1 + δ)|σ′(0)|2
ln

ε2a′(0) + |σ′(0)|2x
ε2a′(0) + |σ′(0)|2x1

+

∫ 1

x1

|b|
σ2
ds, ∀x ∈ (0, x1).

(6.5)

As Λ0 > 0, κ := 2(1−δ)b′(0)
(1+δ)|σ′(0)|2 > 1. Fix some p∗ ∈

(
max

{
1,
(
κ− 1

2

)−1}
, 2
)

. It follows from (6.4) and

(6.5) that

Iε(p∗) ≤
C

[ε2a′(0) + |σ′(0)|2x1]
p∗κ
2

∫ x1

0

[ε2a′(0) + |σ′(0)|2x]
p∗κ
2 −

p∗
4 −

1
2

x
p∗
4 + 1

2

dx

≤ C

[(ε2a′(0) + |σ′(0)|2x1)]
p∗
4 + 1

2

∫ x1

0

1

x
p∗
4 + 1

2

dx ≤ C

( 1
2 −

p∗
4 ) [|σ′(0)|2]

p∗
4 + 1

2 x
p∗
2
1

,
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where C = (1− δ)−
p∗
4 −

1
2 e
p∗
∫ 1
x1

|b|
σ2
ds

, and we used in the second inequality the fact p∗κ
2 −

p∗
4 −

1
2 > 0

so that ∫ x1

0

[ε2a′(0) + |σ′(0)|2x]
p∗κ
2 −

p∗
4 −

1
2

x
p∗
4 + 1

2

dx ≤ [ε2a′(0) + |σ′(0)|2x1]
p∗κ
2 −

p∗
4 −

1
2

∫ x1

0

1

x
p∗
4 + 1

2

dx.

As a result, supε
∫∞
0

e−p∗Vε

α
p∗
4

+ 1
2

ε

dx = supε[Iε(p∗) + IIε(p∗)] <∞, that is, (6.3) is true.

Step 4. We finish the proof. Note that Q̃εk := ŨεUεQ
ε
kU
−1
ε Ũ−1ε is the spectral projection of LSε

corresponding to {−λε,j}j≥k. As P̃ εt and Q̃εk are commutative, we apply Steps 1-2 to deduce for

f̃ ∈ Lp∗((0, yε,∞)) (where p∗ is given in Step 3) and t > 2 that

‖P̃ εt Q̃εkf̃‖∞ ≤ D1(∞)‖P̃ εt−1Q̃εkf̃‖L2

≤ D1(∞)e−λε,k(t−2)‖P̃ ε1 f̃‖L2 ≤ D1(∞)D1(p′∗)e
−λε,k(t−2)‖f̃‖Lp∗ ,

where p′∗ is the dual exponent of p∗. This together with Step 3 yields for f ∈ Cb((0,∞)) and t > 2,

|P εtQεkf | = |U−1ε Ũ−1ε P̃ εt Q̃
ε
kŨεUεf |

= |(P̃ εt Q̃εkŨεUεf) ◦ ξε|
(
uGε
√
αε
)− 1

2

≤ ‖P̃ εt Q̃εkŨεUεf‖L∞α
1
4
ε e

Vε

≤ D1(∞)D1(p′∗)e
−λε,k(t−2)‖ŨεUεf‖Lp∗α

1
4
ε e

Vε

≤ D1(∞)D1(p′∗)D2e
−λε,k(t−2)α

1
4
ε e

Vε‖f‖∞.

As supε λε,k <∞ by Lemma 3.2, the result follows. �

Now, we prove Theorem C.

Proof of Theorem C. Let µ ∈ P((0,∞)) be such that supp(µ) ⊂ K. Recall that φε,1 is the positive

eigenfunction of −Lε associated with λε,1 and satisfies the normalization ‖φε,1‖L2(uGε ) = 1. We apply

Lemma 3.1 (6) to find that for f ∈ Cb((0,∞)) and t > 0,

Eεµ[f(Xε
t )1t<T ε0 ] = e−λε,1t〈f, φε,1〉L2(uGε )

∫ ∞
0

φε,1dµ+

∫ ∞
0

P εtQ
ε
2fdµ.

Recall the density of the QSD µε is given by uε =
φε,1u

G
ε

‖φε,1‖L1(uGε )
. Let αε,1 = ‖φε,1‖L1(uGε )φε,1 be as in

the statement. Then,

Eεµ[f(Xε
t )1t<T ε0 ] = e−λε,1t‖φε,1‖L1(uGε )

∫ ∞
0

φε,1dµ

∫ ∞
0

fuεdx+

∫ ∞
0

P εtQ
ε
2fdµ

= e−λε,1t〈µ, αε,1〉
∫ ∞
0

fuεdx+

∫ ∞
0

P εtQ
ε
2fdµ.

Setting f ≡ 1 yields Pεµ[t < T ε0 ] = e−λε,1t〈µ, αε,1〉+
∫∞
0
P εtQ

ε
21dµ. Hence,

Eεµ[f(Xε
t )] = Eεµ[f(Xε

t )1t<T ε0 ] + f(0) (1− Pε[t < T ε0 ])

= e−λε,1t〈µ, αε,1〉
∫ ∞
0

fuεdx+
(
1− e−λε,1t〈µ, αε,1〉

)
f(0) +

∫ ∞
0

P εtQ
ε
2(f − f(0))dµ.
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It follows from Lemma 6.1 that there is C > 0 such that for t > 2,∣∣∣∣Eεµ[f(Xε
t )]−

[
e−λε,1t〈µ, αε,1〉

∫ ∞
0

fuεdx+
(
1− e−λε,1t〈µ, αε,1〉

)
f(0)

]∣∣∣∣
≤ C‖f‖∞e−λε,2t

∫ ∞
0

α
1
4
ε e

Vεdµ ≤ C̃e−λε,2t‖f‖L∞ ,

where C̃ = C̃(K) := 1 + supK
√
|σ|e

∫ •
1

b
σ2
ds. As a result, we find∥∥Pεµ[Xε

t ∈ •]−
[
e−λε,1t〈µ, αε,1〉µε +

(
1− e−λε,1t〈µ, αε,1〉

)
δ0
]∥∥
TV
≤ C̃e−λε,2t, ∀t > 2.

Note that if we establish the limit

lim
ε→0

αε = 1 locally uniformly in (0,∞), (6.6)

then the conclusion of the theorem follows for t > 2. Making C̃ larger if necessary, the conclusion

holds for all t ≥ 0. Thus, it remains to show (6.6).

To do so, we let φ̃ε,1 be the positive eigenfunction of −Lε associated with λε,1 and satisfy the

normalization (5.20), namely, ‖φ̃ε,1‖L1((0,2);uGε ) + ‖φ̃ε,1‖L2((1,∞);uGε ) = 1. Since φ̃ε,1 is proportional to

φε,1, there holds αε,1 =
‖φ̃ε,1‖L1(uGε )

‖φ̃ε,1‖2
L2(uGε )

φ̃ε,1. As Step 2 in the proof of Theorem 5.3 says

lim
ε→0

φ̃ε,1 = C1 locally uniformly in (0,∞) (6.7)

for some constant C1 > 0, (6.6) follows if we can show

lim
ε→0
‖φ̃ε,1‖L1(uGε ) = C1

∫ ∞
0

uG0 dx and lim
ε→0
‖φ̃ε,1‖2L2(uGε ) = C2

1

∫ ∞
0

uG0 dx. (6.8)

For any κ > 1, we split∫ ∞
0

φ̃ε,1u
G
ε dx− C1

∫ ∞
0

uG0 dx

=

∫ κ

1
κ

φ̃ε,1u
G
ε dx− C1

∫ κ

1
κ

uG0 dx+

(∫ 1
κ

0

+

∫ ∞
κ

)
φ̃ε,1u

G
ε dx+ C1

(∫ 1
κ

0

+

∫ ∞
κ

)
uG0 dx

(6.9)

and∫ ∞
0

φ̃2ε,1u
G
ε dx− C2

1

∫ ∞
0

uG0 dx

=

∫ κ

1
κ

φ̃2ε,1u
G
ε dx− C2

1

∫ κ

1
κ

uG0 dx+

(∫ 1
κ

0

+

∫ ∞
κ

)
φ̃2ε,1u

G
ε dx+ C2

1

(∫ 1
κ

0

+

∫ ∞
κ

)
uG0 dx.

(6.10)

By (3.2) and (6.7), we see that

lim
ε→0

∣∣∣∣∣
∫ κ

1
κ

φ̃ε,1u
G
ε dx− C1

∫ κ

1
κ

uG0 dx

∣∣∣∣∣ = 0, lim
ε→0

∣∣∣∣∣
∫ κ

1
κ

φ̃2ε,1u
G
ε dx− C2

1

∫ κ

1
κ

uG0 dx

∣∣∣∣∣ = 0, ∀κ > 1.

Lemmas 5.1 and 5.3 yield

lim
κ→∞

sup
ε

∫ 1
κ

0

φ̃ε,1u
G
ε dx = 0, lim

κ→∞
sup
ε

∫ ∞
κ

φ̃2ε,1u
G
ε dx = 0. (6.11)

From which and Lemma 5.5, we apply Hölder’s inequality to find limκ→∞ supε
∫∞
κ
φ̃ε,1u

G
ε dx = 0.

Furthermore, we see from (5.32) and (6.11) that limκ→0 supε
∫ 1
κ

0
φ̃2ε,1u

G
ε dx = 0.
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Given these limits, (6.8) follows immediately from taking the limit ε→ 0 and then κ→∞ in (6.9)

and (6.10). This completes the proof. �

7. Asymptotic bounds of the mean extinction time

In this section, we adopt probabilistic methods to study the asymptotic of the mean extinction

time Eεx[T ε0 ]. In particular, we prove Theorem D.

We begin with the introduction of some notations that are used frequently in the rest of this section.

For 0 < δ � 1, (H) (1)-(3) ensures the existence of β = β(δ) ∈ (0, 1) such that

1− δ ≤ b(x)

b′(0)x
,

αε(x)

x[ε2a′(0) + |σ′(0)|2x]
≤ 1 + δ, ∀x ∈ (0, β) and 0 < ε� 1. (7.1)

Set

κ− = κ−(δ) :=
2(1− δ)b′(0)

(1 + δ)|σ′(0)|2
and κ+ = κ+(δ) :=

2(1 + δ)b′(0)

(1− δ)|σ′(0)|2
. (7.2)

Note that κ− < κ+ < 1 when Λ0 < 0, and κ+ > κ− > 1 when Λ0 > 0.

Fix x∗ = x∗(δ) ∈ (0, β). Denote by τ ε = τ ε(δ) the first time Xε
t exits from (0, β), namely,

τ ε := inf{t ≥ 0 : Xε
t = 0 or β}, and by τ εx∗ = τ εx∗(δ) the first time Xε

t hits x∗, namely, τ εx∗(δ) :=

inf{t ≥ 0 : Xε
t = x∗}.

For each 0 < ε� 1 and x ∈ (0,∞), we define

sε(x) = sε(x, δ) : =

∫ x

x∗

e−2
∫ y
x∗

b
αε
dsdy,

rε(x) = rε(x, δ) : =

∫ x

x∗

e−2
∫ y
x∗

b
αε
ds

∫ y

x∗

1

αε(z)
e2
∫ z
x∗

b
αε
dsdzdy.

In literature (see e.g. [37]), sε is referred to as the scale function. The function rε arises naturally in

the study of the mean exit time Eε•[τ ε] (see [34, 37] or the proof of Lemma 7.2). It is easy to check

that sε(0+) ∈ (−∞, 0) and rε(0+) ∈ (0,∞).

Replacing αε by σ2 in the definition of sε and rε, we define s0 and r0. It is straightforward to check

that s0(0+) ∈ (−∞, 0) when Λ0 < 0, and s0(0+) = −∞ when Λ0 > 0. Moreover, r0(0+) =∞.

We establish three lemmas before proving Theorem D. The first one concerns the asymptotic of

sε(0+) and Pεx[Xε
τε = β] for x ∈ (0, β).

Lemma 7.1. Assume (H). Then, limε→0 sε = s0. Moreover,

(1) if Λ0 < 0, then limε→0 sε(0+) = s0(0+) > −∞ and

lim
ε→0

Pεx[Xε
τε = β] =

s0(x)− s0(0+)

s0(β)− s0(0+)
∈ (0, 1), ∀x ∈ (0, β);

(2) if Λ0 > 0, then there are C1, C2 > 0 (depending on δ) such that

C1ε
−2(κ−−1) .ε −sε(0+) .ε C2ε

−2(κ+−1),

and for each x ∈ (0, β), there are C3, C4 > 0 such that

1− C3ε
2(κ−−1) .ε Pεx[Xε

τε = β] .ε 1− C4ε
2(κ+−1).

Proof. Since αε ↓ σ2 on (0, β) as ε → 0, we apply the monotone convergence theorem to find

limε→0 sε = s0 and limε→0 sε(0+) = s0(0+).
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It is well known (see e.g. [34, Theorem 6.3.1]) that

Pεx[Xε
τε = β] =

sε(x)− sε(0+)

sε(β)− sε(0+)
, ∀x ∈ (0, β). (7.3)

(1) It is easy to see that −s0(0+) <∞. The limiting equality follows by letting ε→ 0 in (7.3).

(2) Using (7.1), we find

−sε(0+) ≤
∫ x∗

0

e
1+δ
1−δ

∫ x∗
y

2b′(0)
ε2a′(0)+|σ′(0)|2s

ds
dy =

∫ x∗

0

[
ε2a′(0) + |σ′(0)|2x∗
ε2a′(0) + |σ′(0)|2y

]κ+

dy.

Note that κ+ > κ− > 1 in this case. Calculating the last integral leads to

−sε(0+) ≤ 2x
κ+
∗ |σ′(0)|2(κ+−1)

(κ+ − 1)[ε2a′(0)]κ+−1

{
1− [ε2a′(0)]κ+−1

[ε2a′(0) + |σ′(0)|2x∗]κ+−1

}
≈ε

2x
κ+
∗ |σ′(0)|2(κ+−1)

(κ+ − 1)[a′(0)]κ+−1
ε−2(κ+−1) =: C1ε

−2(κ+−1),

which together with (7.3) leads to

Pεx[Xε
τ = β] = 1− sε(β)− sε(x)

sε(β)− sε(0+)
≈ε 1− s0(β)− s0(x)

s0(β)− sε(0+)

.ε 1− [s0(β)− s0(x)]C−11 ε2(κ+−1) =: 1− C2ε
2(κ+−1).

Similarly, there are C3, C4 > 0 such that −sε(0) &ε C3ε
−2(κ−−1) and Pεx[Xε

τ = β] &ε 1−C4ε
2(κ−−1).

This proves (2). �

In the second lemma, we study the asymptotic bounds of the mean exit time Eεx∗ [τ
ε].

Lemma 7.2. Assume (H).

(1) If Λ0 < 0, then there are C1, C2 > 0 (depending on δ) such that

C1| ln ε| .ε Eεx∗ [τ
ε] .ε C2| ln ε|.

(2) If Λ0 > 0, then infε Eεx∗ [τ
ε] > 0 and Eεx∗ [τ

ε] .ε ε−2(κ+−κ−+δ).

Proof. We first show that

Eεx∗ [τ
ε] =

2 [rε(0+)sε(β)− rε(β)sε(0+)]

sε(β)− sε(0+)
. (7.4)

It is well known that uε := Eε•[τ ε] solves{
1
2αεu

′′
ε + bu′ε = −1 in (0, β),

uε(0) = 0 = uε(β).

Direct calculations yield

uε(x) = −2rε(x) +
2(sε(x)− sε(0+))

sε(β)− sε(0+)
rε(β) +

2(sε(β)− sε(x))

sε(β)− sε(0+)
rε(0+).

Setting x = x∗, we derive (7.4) from sε(x∗) = 0 and rε(x∗) = 0.

(1) Note limε→0 rε(β) = r0(β). Since limε→0 sε(β) = s0(β) and limε→0 sε(0+) = s0(0+) by Lemma

7.1, we find from (7.4) that

Eεx∗ [τ
ε] ≈ε

2s0(β)rε(0+)

s0(β)− s0(0+)
− 2r0(β)s0(0+)

s0(β)− s0(0+)
. (7.5)
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If there are C1, C2 > 0 (depending on δ) such that

C1| ln ε| .ε rε(0+) .ε C2| ln ε|, (7.6)

we deduce from (7.5) that 2C1s0(β)
s0(β)−s0(0+) | ln ε| .ε E

ε
x∗ [τ

ε] .ε
2C2s0(β)

s0(β)−s0(0+) | ln ε|, leading to the conclusion.

It remains to show (7.6). Thanks to (7.1), we compute

rε(0+) =

∫ x∗

0

∫ x∗

y

1

αε(z)
e2
∫ z
y

b
αε
dsdzdy

≥
∫ x∗

0

∫ x∗

y

1

(1 + δ)z[ε2a′(0) + |σ′(0)|2z]
e

1−δ
1+δ

∫ z
y

2b′(0)
ε2a′(0)+|σ′(0)|2s

ds
dzdy

=
1

1 + δ

∫ x∗

0

∫ x∗

y

1

z
[ε2a′(0) + |σ′(0)|z]κ−−1[ε2a′(0) + |σ′(0)|y]−κ−dzdy

≥ 1

1 + δ

∫ x∗
2

0

∫ 2y

y

[ε2a′(0) + |σ′(0)|y]−1
1

z

[
ε2a′(0) + |σ′(0)|z
ε2a′(0) + |σ′(0)|y

]κ−−1
dzdy.

Noting that

ε2a′(0) + |σ′(0)|z
ε2a′(0) + |σ′(0)|y

≤ 2ε2a′(0) + |σ′(0)|2y
ε2a′(0) + |σ′(0)|y

= 2, ∀y ∈
(

0,
x∗
2

)
and z ∈ (y, 2y),

we deduce from the fact κ− < 1 that

rε(0+) ≥ 1

1 + δ

∫ x∗
2

0

[ε2a′(0) + |σ′(0)|y]−1
∫ 2y

y

1

z
2κ−−1dzdy

=
2κ−−1 ln 2

(1 + δ)|σ′(0)|2
ln

(
1 +
|σ′(0)|2x∗
2ε2a′(0)

)
≈ε C1| ln ε|,

where C1 := 2κ− ln 2
(1+δ)|σ′(0)|2 , and the equality follows from direct calculations of the double integral.

To derive an upper bound, we change the order of integration to rewrite rε(0+) as

rε(0+) =

∫ x∗

0

∫ z

0

1

αε(z)
e2(Vε(y)−Vε(z))dydz, (7.7)

which is just Iε in (5.17). By (5.19), rε(0+) .ε C2| ln ε| for some C2 > 0. Hence, (7.6) follows.

(2) Let x̂ ∈ (0, x∗). Obviously, Eεx∗ [τ
ε] ≥ Eεx∗ [τ̂

ε], where τ̂ ε := inf{t ≥ 0 : Xε
t = x̂ or β}. Note that

Eε•[τ̂ ε] solves {
1
2αεu

′′ + bu′ = −1 in (x̂, β),

u(x̂) = 0 = u(β).

As limε→0 αε = σ2 uniformly in [x̂, β], the classical PDE theory ensures that limε→0 Eε•[τ̂ ε] = u0
uniformly in [x̂, β], where u0 is the unique solution of{

1
2σ

2u′′0 + bu′0 = −1 in (x̂, β),

u0(x̂) = 0 = u0(β).

Since u0(x∗) > 0 by the maximum principle, we conclude infε Eεx∗ [τ
ε] > 0.

It remains to derive the upper bound for Eεx∗ [τ
ε]. Note that κ+ > κ− > 1. Using (7.7), we apply

(5.14) to find rε(0+) .ε ε−2(κ+−1+δ). Since −sε(0+) &ε C1ε
−2(κ−−1) due to Lemma 7.1, we deduce
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from (7.4) that

Eεx∗ [τ
ε] ≈ε

2s0(β)rε(0+)

s0(β)− sε(0+)
+ 2r0(β) .ε

2s0(β)ε−2(κ+−1+δ)

C1ε−2(κ−−1)
=

2s0(β)

C1
ε−2(κ+−κ−+δ).

This completes the proof. �

The third lemma addresses the uniform-in-ε finiteness of the mean hitting time Eε•[τ εx∗ ].

Lemma 7.3. Assume (H). Then, supε Eεx[τ εx∗ ] <∞ for each x > x∗.

Proof. Fix x > x∗. As in the proof of Proposition 4.1, we can find a function V ∈ C2(0,∞) and a

number N0 ∈ (x,∞) such that V (N0) > 0 and LεV ≤ − b2

2σ2 in (N0,∞). Since limx→∞
b
|σ| = −∞ by

(H4), we may assume LεV ≤ −1 in (N0,∞). Set τ εN0
:= inf{t ≥ 0 : Xε

t = N0}. An application of

Itô-Dynkin’s formula yields 0 ≤ EεN0+1[V (τ εN0
)] ≤ V (N0 + 1)− EεN0+1[τ εN0

], leading to

sup
ε

EεN0+1[τ εN0
] ≤ V (N0 + 1). (7.8)

Set τ ε(x∗,N0+1) := {t ≥ 0 : Xε
t = x∗ or N0 + 1}. Then, Eε•[τ ε(x∗,N0+1)] on [x∗, N0 + 1] solves{

Lεu = −1 in (x∗, N0 + 1),

u(x∗) = 0 = u(N0 + 1).

Arguing as in the proof of Lemma 7.2 (2), we find

sup
ε

EεN0
[τ ε(x∗,N0+1)] <∞. (7.9)

Let Xε
0 = N0, τ̂ ε0 = 0 and define recursively the following sequences of stopping times: before the

first time Xε
t reaches x∗ (i.e., τ εx∗), for n ∈ N, we let τ εn be the first time after τ̂ εn−1 at which Xε

t reaches

N0 + 1, and τ̂ εn be the first time after τ εn at which Xε
t reaches N0; since PεN0

[τ εx∗ <∞] = 1, τ εn and τ̂ εn
are defined up to some random index n0 ∈ N ∪ {0}; let τ εn = τ̂ εn = τ εx∗ for all n ≥ n0 + 1. To be more

specific, we recursively define for each n ∈ N,

τ εn := inf
{
t ≥ τ̂ εn−1 : Xε

t = N0 + 1
}
∧ τ εx∗ , τ̂ εn := inf {t ≥ τ εn : Xε

t = N0} ∧ τ εx∗ .

Clearly, τ εn = inf{t ≥ τ̂ εn−1 : Xε
t = x∗ or N0 + 1} and τ εn ↑ τ εx∗ as n→∞ for PεN0

-a.e. Hence,

EεN0
[τ εx∗ ] = lim

n→∞
EεN0

[τ εn] =
∞∑
n=1

EεN0
[τ εn − τ̂ εn−1] +

∞∑
n=1

EεN0
[τ̂ εn − τ εn]. (7.10)

Thanks to [34, Theorem 6.3.1] and Lemma 7.1, pε := PN0
[Xε

τε1
= N0 + 1] satisfies

lim
ε→0

pε = lim
ε→0

sε(N0)− sε(x∗)
sε(N0 + 1)− sε(x∗)

=
s0(N0)− s0(x∗)

s0(N0 + 1)− s0(x∗)
∈ (0, 1). (7.11)

For n ≥ 1, we show

PεN0
[Xε

τεn
= β] = pnε , EεN0

[τ εn − τ̂ εn−1] = pn−1ε EεN0
[τ ε1 ] and EεN0

[τ̂ εn − τ εn] = pnε EεN0+1[τ εN0
]. (7.12)

The first two equalities for n = 1 are obvious. Thanks to the strong Markov property and time-

homogeneity of Xε
t , we find

EεN0
[τ̂ ε1 − τ ε1 ] = EεN0

[τ̂ ε1 − τ ε1 |Xε
τε1

= x∗]× PεN0
[Xε

τε1
= x∗]

+ EεN0
[τ̂ ε1 − τ ε1 |Xε

τε1
= N0 + 1]× PεN0

[Xε
τε1

= N0 + 1]

= EεN0
[τ̂ ε1 − τ ε1 |Xε

τε1
= N0 + 1]× PεN0

[Xε
τε1

= N0 + 1] = EεN0+1[τ εN0
]pε.
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Hence, (7.12) holds for n = 1. Suppose it is true for n = k − 1 with k ≥ 2. By the strong Markov

property and time-homogeneity of Xε
t ,

PεN0
[Xε

τεk
= N0 + 1] = PεN0

[Xε
τεk

= N0 + 1|Xε
τ̂εk−1

= N0]

× PεN0
[Xε

τ̂εk−1
= N0|Xε

τεk−1
= N0 + 1]× PεN0

[Xε
τεk−1

= N0 + 1] = pkε ,

EεN0
[τ εk − τ̂ εk−1] = EεN0

[
τ εk − τ̂ εk−1|Xε

τ̂εk−1
= N0

]
× PεN0

[Xε
τ̂εk−1

= N0|Xε
τεk−1

= N0 + 1]× PεN0
[Xε

τεk−1
= N0 + 1]

= EεN0

[
τ εk − τ̂ εk−1|Xε

τ̂εk−1
= N0

]
× PεN0

[Xε
τεk−1

= N0 + 1] = EεN0
[τ ε1 ]pk−1ε ,

EεN0
[τ̂ εk − τ εk] = EεN0

[
τ̂ εk − τ εk|Xε

τεk
= N0 + 1

]
× PεN0

[Xε
τεk

= N0 + 1] = EεN0+1[τ εN0
]pkε .

Consequently, (7.12) holds for n = k and thus, holds for all n ∈ N by induction.

Given (7.12), we see from (7.10) that

EεN0
[τ εx∗ ] =

∞∑
n=1

(
pn−1ε EεN0

[τ ε1 ] + pnε EεN0+1[τ εN0
]
)

=
1

1− pε
EεN0

[τ ε1 ] +
pε

1− pε
EεN0+1[τ εN0

],

which together with (7.8), (7.9) and (7.11) yields supε Eεx[τ εx∗ ] ≤ supε EεN0
[τ εx∗ ] <∞. �

We are ready to prove Theorem D.

Proof of Theorem D. Clearly, it suffices to prove the result for Eεx[T ε0 ] for each x ∈ (0,∞).

Fix x ∈ (0,∞). Let 0 < δ � 1 (depending on x) and then take β = β(δ) and x∗ = x∗(δ) ∈ (0, β) so

that x∗ ∈ (0, x). They are introduced at the beginning of this section. The strong Markov property

and time-homogeneity of Xε
t then imply that

Eεx[T ε0 ] = Eεx
[
Eεx
[
(T ε0 − τ εx∗ + τ εx∗)

∣∣Xε
τεx∗

]]
= Eεx∗ [T

ε
0 ] + Eεx[τ εx∗ ]. (7.13)

Since supε Eεx[τ εx∗ ] <∞ by Lemma 7.3, it suffices to study the asymptotic bounds of Eεx∗ [T
ε
0 ].

We follow the same idea as in the proof of Lemma 7.3. Let Xε
0 = x∗, τ̂

ε
0 = 0 and define recursively

the following sequences of stopping times: before the first time Xε
t reaches 0 (i.e., T ε0 ), for n ∈ N, we

let τ εn be the first time after τ̂ εn−1 at which Xε
t reaches β, and τ̂ εn be the first time after τ εn at which

Xε
t reaches x∗; since Px∗ [T ε0 <∞] = 1, τ εn and τ̂ εn are defined up to some random index n0 ∈ N ∪ {0};

let τ εn = τ̂ εn = T εx∗ for all n ≥ n0 + 1. To be more specific, we recursively define for each n ∈ N,

τ εn := inf
{
t ≥ τ̂ εn−1 : Xε

t = β
}
∧ T ε0 , τ̂ εn := inf {t ≥ τ εn : Xε

t = x∗} ∧ T ε0 .

Clearly, τ εn = inf{t ≥ τ̂ εn−1 : Xε
t = 0 or β} and τ εn ↑ T ε0 as n→∞ for Pεx∗ -a.e. Hence,

Eεx∗ [T
ε
0 ] = lim

n→∞
Eεx∗ [τ

ε
n] =

∞∑
n=1

Eεx∗ [τ
ε
n − τ̂ εn−1] +

∞∑
n=1

Eεx∗ [τ̂
ε
n − τ εn]. (7.14)

Set pε := Px∗ [Xε
τε1

= β]. Following arguments as in the proof of Lemma 7.3, we have for each n ≥ 1,

Pεx∗ [X
ε
τεn

= β] = pnε , Eεx∗ [τ
ε
n − τ̂ εn−1] = pn−1ε Eεx∗ [τ

ε
1 ] and Eεx∗ [τ̂

ε
n − τ εn] = pnε Eεβ [τ εx∗ ],

This together with (7.14) yields

Eεx∗ [T
ε
0 ] =

∞∑
n=1

(
pn−1ε Eεx∗ [τ

ε
1 ] + pnε Eεβ [τ εx∗ ]

)
=

1

1− pε
Eεx∗ [τ

ε
1 ] +

pε
1− pε

Eεβ [τ εx∗ ]. (7.15)
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Case Λ0 < 0. Thanks to Lemmas 7.1, 7.2 and 7.3, there are C1, C2 > 0 such that C1| ln ε| .ε
Eεx∗ [T

ε
0 ] .ε C2| ln ε|. From which and (7.13), the desired result follows.

Case: Λ0 > 0. We rewrite (7.15) as

Eεx∗ [T
ε
0 ] =

1

1− pε
(
Eεx∗ [τ

ε
1 ] + Eεβ [τ εx∗ ]

)
− Eεβ [τ εx∗ ]. (7.16)

By Lemmas 7.1, 7.2 and 7.3, there are positive constants C3, C4, C5 and C6 such that

C3ε
−2(κ−−1) .ε

1

1− pε
.ε C4ε

−2(κ+−1), C5 .ε Eεx∗ [τ
ε
1 ] + Eεβ [τ εx∗ ] .ε C6ε

−2(κ+−κ−+δ),

which together with (7.16) yield C3C5ε
−2(κ−−1) .ε Eεx∗ [T

ε
0 ] .ε C4C6ε

−2(κ+−1+κ+−κ−+δ).

We see from the definition of κ+ and κ− in (7.2) that for any 0 < γ � 1, there exists δ > 0 (and

corresponding x∗ = x∗(δ)) so that

−(κ− − 1) ≤ 1− (1− γ)
2b′(0)

|σ′(0)|
and 1− (1 + γ)

2b′(0)

|σ′(0)|
≤ −(κ+ − 1 + κ+ − κ− + δ),

leading to C3C5ε
2−(1−γ) 4b′(0)

|σ′(0)| .ε Eεx∗ [T
ε
0 ] .ε C4C6ε

2−(1+γ) 4b′(0)
|σ′(0)| . This together with (7.13) yields the

result.

The proof is complete. �
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