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Abstract. The present paper is devoted to the investigation of the long term behavior of a class of

higher-dimensional singular diffusion processes that get absorbed by the extinction set in finite time

with probability one. Our primary focus is on the analysis of quasi-stationary distributions (QSDs),

which describe the long term behavior of the system conditioned on not being absorbed. Under

natural Lyapunov conditions, we construct a QSD and prove the sharp exponential convergence

to this QSD for compactly supported initial distributions. Under stronger Lyapunov conditions

ensuring that the diffusion process comes down from infinity, we show the uniqueness of a QSD and

the exponential convergence to the QSD for all initial distributions. Our results can be seen as the

higher-dimensional generalization of Cattiaux et al (Ann. Prob. 2009) as well as the complement

to Hening and Nguyen (Ann. Appl. Prob. 2018) which looks at the long term behavior of higher-

dimensional diffusions that can only become extinct asymptotically. As applications, we show how

our results can be applied to many ecological models, among which cooperative, competitive, and

predator-prey Lotka-Volterra systems.

The cornerstone of our approach revolves around a uniformly elliptic operator that we relate

through a two-step transform to the Fokker-Planck operator associated with the diffusion process.

This operator only has singular coefficients in its zeroth-order terms and can be handled more

easily than the Fokker-Planck operator, which is defined on an unbounded domain and exhibits

degeneracy in the extinction set. For this operator, we establish the discreteness of its spectrum,

its principal spectral theory, the stochastic representation of the semigroup generated by it, and the

global regularity for the associated parabolic equation. These results extend beyond the study of

QSDs and are of independent interest, especially in the context of spectral theory for degenerate

elliptic operators on unbounded domains. As direct consequences, we show that the extinction rate

associated with the QSD and the sharp exponential convergence rate are respectively given by the

absolute value of the principal eigenvalue and the spectral gap, between the principal eigenvalue

and the rest of the spectrum, of this operator. Such characterizations of the QSD and exponential

convergence rate were previously unknown in the context of irreversible singular diffusion processes.
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1. Introduction

Absorbed diffusion processes find frequent application in the field of population biology, serving

as models for the evolution of interacting species. In such ecological systems, it is a well-established

fact that the eventual extinction of all species is an inevitable outcome, driven by various factors such

as finite resources, limited population sizes, mortality rates, and more. However, what is crucial to

recognize is that, in practical terms and when measured against human timescales, species can persist

for a significant duration [8]. This prolonged persistence of species in ecological systems motivates

the need to gain insights into the behavior of the ecosystem before the eventual extinction occurs. As

a result, there is a strong impetus to study the dynamics of higher-dimensional diffusion processes

under the condition that they do not go extinct.

To be more specific, consider the stochastic Lotka–Volterra competition system:

dZi
t = Zi

t

ri − d∑
j=1

cijZ
j
t

 dt+
√
γiZi

tdW
i
t , i ∈ {1, . . . , d}, (1.1)

where Zt = (Zi
t) ∈ U := [0,∞)d are the abundances of the species at time t, {ri}i are per-

capita growth rates, {cii}i are the intra-specific competition rates, {cij}i ̸=j are inter-specific com-

petition rates, {γi}i are demographic parameters describing ecological timescales (see e.g. [7, 8]),

and {W i}i are independent standard one-dimensional Wiener processes on some probability space.

It is well-known (see e.g. [8, 15]) that Zt reaches the boundary, also called the extinction set,



QUASI-STATIONARY DISTRIBUTIONS 3

Γ :=
{
z = (zi) ∈ U : zi = 0 for some i ∈ {1, . . . , d}

}
, of U in finite time almost surely. This corre-

sponds to the extinction of at least one species of the considered community. Nonetheless, typical

trajectories or sample paths of Zt will stay in U := (0,∞)d for a long period before hitting Γ. This

can be interpreted as the temporary coexistence of species, before their ultimate extinction. To under-

stand this type of behavior, notions such as quasi-steady states and metastable states have been put

forward. These concepts are often formalized in terms of the quasi-stationary distributions (QSDs),

which are initial distributions of Zt on U such that the distribution of Zt conditioned on not reaching

Γ up to time t is independent of t ≥ 0. In this context, it is of fundamental mathematical importance

to analyze the existence, uniqueness, and domains of (exponential) attraction of QSDs.

The purpose of the present paper is to investigate the existence, uniqueness and exponential con-

vergence to QSDs for a class of irreversible diffusion processes given by models of the form

dZi
t = bi(Zt)dt+

√
ai(Zi

t)dW
i
t , i ∈ {1, . . . , d}, (1.2)

where Zt := (Zi
t) ∈ U , bi : U → R and ai : [0,∞) → [0,∞). We make the following assumptions.

(H1) ai ∈ C2([0,∞)), ai(0) = 0, a′i(0) > 0, ai > 0 on (0,∞), lim sups→∞

[
|a′

i(s)|
2

ai(s)
+ a′′i (s)

]
< ∞

and
∫∞
1

ds√
ai(s)

= ∞ for all i ∈ {1, . . . , d}.

(H2) bi ∈ C1(U) and bi|zi=0 = 0 for all i ∈ {1, . . . , d}, where zi = 0 means the set{
z = (zi) ∈ U : zi = 0

}
.

(H3) There exists a positive function V ∈ C2(U) satisfying the following conditions.

(1) lim|z|→∞ V (z) = ∞ and lim|z|→∞(b · ∇zV )(z) = −∞.

(2) There exists a non-negative and continuous function Ṽ : [0,∞) → [0,∞) satisfying∫ ∞

1

e−βṼ

ai
ds <∞, ∀β > 0 and i ∈ {1, . . . , d}

such that V (z) ≥
∑d

i=1 Ṽ (zi) for all z = (zi) ∈ U .
(3) lim|z|→∞

1
b·∇zV

∑d
i=1

(
|∂zibi|+

|a′
ibi|
ai

+ |a′i∂ziV |+ ai|∂2ziziV |
)
= 0.

(4) There exist constants C > 0 and R > 0 such that

d∑
i=1

(
ai|∂ziV |2 + b2i

ai

)
≤ −Cb · ∇zV in U \B+

R ,

where B+
R := {z = (zi) ∈ U : zi ∈ (0, R), ∀i ∈ {1, . . . , d}} for R > 0.

Assumption (H1) says that each ai(s) behaves like a′i(0)s near s ≈ 0, and allows each ai(s) to

behave like sγ for some γ ∈ (−∞, 2] near s ≈ ∞. Assumption (H2) is satisfied if bi(z) = zifi(z) for

fi ∈ C1(U). (H1) and (H2) ensure that (1.2) generates a diffusion process Zt on U having Γ as an

absorbing set. (H3)(1) and the condition lim|z|→∞

∑d
i=1 |ai∂

2
zizi

V |
b·∇zV

= 0 contained in (H3)(3) imply the

dissipativity of Zt, and hence, that it does not explode in finite time almost surely. Other assumptions

in (H3) are technical ones, but they are made according to examples discussed in Section 6. We note

that for a reversible system, the potential function is a natural choice for V . For irreversible systems,

polynomials are usually good choices for V , especially when the coefficients are polynomials or rational

functions – this is often the case in applications.

We show in Proposition 2.1 that Zt reaches Γ in finite time almost surely under (H1)-(H3), and

hence, that Zt does not admit a stationary distribution that has positive concentration in U . It is
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then natural to look at Zt before reaching Γ in order to understand the dynamics of Zt. This drives

us to examine quasi-stationary distributions of Zt or (1.2) conditioned on coexistence, i.e., [t < TΓ],

where TΓ := inf{t > 0 : Zt ∈ Γ} is the first time when Zt hits Γ. Denote by Pµ the law of Zt with

initial distribution µ, and by Eµ the expectation with respect to Pµ.

Definition 1.1 (Quasi-stationary distribution). A Borel probability measure µ on U is called a quasi-

stationary distribution (QSD) of Zt or (1.2) if for each f ∈ Cb(U), one has

Eµ
[
f(Zt)

∣∣t < TΓ
]
=

∫
U
fdµ, ∀t ≥ 0.

The QSDs of Zt are simply stationary distributions of Zt conditioned on [t < TΓ]. This is why

QSDs can be seen as governing the dynamics of Zt before extinction. It is known from the general

theory of QSDs (see e.g. [53, 18]) that if µ is a QSD of Zt, then there exists a unique λ > 0 such that

if Z0 ∼ µ the time TΓ is exponentially distributed with rate λ, i.e., Pµ [TΓ > t] = e−λt for all t ≥ 0.

In view of this, the number λ is often called the extinction rate associated with µ.

Our first result concerning the existence of QSDs and the conditioned dynamics of Zt is stated in

the following theorem. Denote by P(U) the set of Borel probability measures on U . For convenience,
we use the notation 0 < ϵ≪ 1 meaning that ϵ is as small as we want.

Theorem A. Assume (H1)-(H3). The process Zt admits a QSD µ1 satisfying
∫
U e

βV dµ1 < ∞ for

some β > 0, and there exists r1 > 0 such that the following statements hold:

• For any 0 < ϵ≪ 1 and µ ∈ P(U) with compact support in U ,

lim
t→∞

e(r1−ϵ)t ∥Pµ[Zt ∈ •|t < TΓ]− µ1∥TV = 0,

where ∥ · ∥TV denotes the total variational distance.

• There is f ∈ Cb(U) such that for a.e. x ∈ U , there is a family of sets {Kx,ϵ}0<ϵ≪1 in (0,∞)

satisfying Kx,ϵ2 ⊂ Kx,ϵ1 for 0 < ϵ1 < ϵ2 ≪ 1 and limϵ→0 infT>0 |Kx,ϵ ∩ (T, T + 1)| = 1 such

that

lim
t∈Kx,ϵ

t→∞

e(r1+ϵ)t

∣∣∣∣Ex[f(Zt)
∣∣t < TΓ]−

∫
U
fdµ1

∣∣∣∣ = ∞, ∀0 < ϵ≪ 1.

Remark 1.1. We make some comments about Theorem A.

• The two convergence results stated in Theorem A assert the sharp exponential convergence

with rate r1 of the conditional distribution Pµ[Zt ∈ •|t < TΓ] to the QSD µ1 as t→ ∞. While

it is fairly easy to show that

lim
t→∞

e(r1+ϵ)t sup
f∈Cb(U)
∥f∥∞=1

sup
x∈U

∣∣∣∣Ex[f(Zt)
∣∣t < TΓ]−

∫
U
fdµ1

∣∣∣∣ = ∞, ∀0 < ϵ≪ 1,

the second conclusion presented in Theorem A is much stronger.

• What is behind Theorem A is the spectral theory (more precisely, the discreteness of the spec-

trum and the principal spectral theory) of a uniformly elliptic operator with singular coefficients

in its zeroth-order term that we relate to the Fokker-Planck operator associated with Zt via

equivalent transforms. This allows us to address the challenges posed by the facts that the

Fokker-Planck operator associated with Zt is defined on the unbounded domain U and exhibits

degeneracy on its boundary Γ. The QSD µ1 is essentially given by the positive eigenfunction

associated with the principal eigenvalue −λ1 < 0, and the associated extinction rate is just the
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absolute value of the principal eigenvalue λ1. The sharp exponential convergence rate r1 is

given by the spectral gap, between the principal eigenvalue and the rest of the spectrum. Such

characterizations of the QSD and the exponential convergence rate have been obtained in [7, 8]

in the reversible case. Our result is the first of this type for the general setting when Zt is

irreversible.

• In the second conclusion, the function f is essentially an arbitrary non-zero element in the

range of the spectral projection of the elliptic operator associated with eigenvalues having real

part −λ1−r1. The set Kx,ϵ more or less corresponds to the ϵ-superlevel set of the function t 7→∣∣Ex[f(Xt)
∣∣t < TΓ]−

∫
U fdν1

∣∣. For irreversible systems, eigenvalues having real part −λ1 − r1
are generally complex, giving rise to oscillations (see (5.8)). As a result, the zeros of this

function, if they exist, form a sparse set, and thus,
⋃

0<ϵ≪1 Kx,ϵ is densely distributed in

(0,∞) as described in the statement.

• The assumptions (H1)-(H3) do not guarantee the uniqueness of QSDs of Zt. In the absence

of coming down from infinity [7], Zt could admit infinitely many QSDs that can be described

as follows: there exists λ∗ > 0 such that

– for any λ ∈ (0, λ∗], there is a unique QSD µλ having λ as the extinction rate;

– the QSDs {µλ : λ ∈ (0, λ∗]} are partially ordered in the sense that 0 < λ1 < λ2 ≤ λ∗
implies µλ1

((x,∞)) ≥ µλ2
((x,∞)) for all x ∈ (0,∞). For this reason, µλ∗ is often called

the minimal QSD.

Such a scenario of infinitely many QSDs is known in many situations (see e.g. [51, 47, 18, 67]

for one-dimensional diffusion processes, and [9, 24, 26] for jump processes). See Remark 6.3

for the higher-dimensional case.

• Theorem A applies to a large class of population models including stochastic Lotka-Volterra

models, models with Holling type functional responses, and Beddington-DeAngelis models. We

refer the reader to Section 6 for more details.

Although the QSD µ1 obtained in Theorem A attracts all compactly supported initial distributions,

there is no assertion that it is the unique QSD of the process Zt. To study the uniqueness, we make

the following additional assumption.

(H4) There exist positive constants C, γ and R∗ such that

lim
|z|→∞

V −γ−2
d∑

i=1

ai|∂ziV |2 = 0 and
1

2

d∑
i=1

ai∂
2
ziziV + b · ∇zV ≤ −CV γ+1 in U \B+

R∗
.

Theorem B. Assume (H1)-(H4). Let µ1 and r1 be as in Theorem A. Then, µ1 is the unique QSD

of Zt, and for any 0 < ϵ≪ 1 and µ ∈ P(U), there holds

lim
t→∞

e(r1−ϵ)t ∥Pµ[Zt ∈ •|t < TΓ]− µ1∥TV = 0.

Assumption (H4) concerns the strong dissipativity of Zt near infinity, and implies in particular that

Zt comes down from infinity (see Remark 5.3), that is, for each λ > 0, there exists R = R(λ) > 0 such

that supz∈U\B+
R
Ez
[
eλTR

]
< ∞, where TR := inf

{
t ≥ 0 : Zt ̸∈ U \B+

R

}
. This is more or less inspired

by [7], showing in dimension one that coming down from infinity is equivalent to the uniqueness of

QSDs. This property plays a crucial role in the proof of Theorem B. It says that with high probability

the process Zt quickly enters a bounded region. This happens even if the initial distribution of Zt has

a heavy tail near ∞. As a result, it makes no difference to the QSD µ1 whether the initial distribution
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of Zt is compactly supported or not. Theorem B applies to a large class of biological models including

in particular the stochastic competition system (1.1) and the stochastic weak cooperation system (i.e.,

the system (1.1) with {−cij}i ̸=j being positive and small in comparison to {cii}i). See Section 6 for

more details.

Comparison to existing literature. Due to their popularity in describing non-stationary states that

are often observed in applications, QSDs have been attracting significant attention. We refer the reader

to [57, 53, 18] and references therein for an overview of the theory, developments and applications

of QSD. We next present the current state of the art for diffusion processes. The investigation of

QSDs for one-dimensional diffusion processes has been analyzed thoroughly. We refer the reader to

[49, 19, 52, 62, 38, 69, 11, 12, 13] and references therein for the analysis of the regular case. For

singular diffusion processes including in particular (1.1) and (1.2) in the one-dimensional setting, the

work [7] lays the foundation and is generalized in [46, 54, 13, 34].

Recently, there has been a lot of progress in the study of QSDs for higher-dimensional diffusion

processes. Regular diffusion processes restricted to a bounded domain and killed on the boundary

have been studied in [56, 30, 41, 10, 15] and are well-understood. The stochastic competition system

(1.1) has been studied in [8] in the reversible case, and in [14] in the irreversible case. In both cases the

authors established the exponential convergence to the unique QSD. In [8], the authors also deal with

the model in the weak cooperation and reversible case. The model treated in [14] has a more general

deterministic vector field. These models are typical singular diffusion processes arising from ecology

or population biology. In [15, 31, 25], the authors study elliptic diffusion processes and show the

existence of a QSD and the exponential convergence to this QSD, which is the unique QSD satisfying

a mild integral condition. Similar results for hypoelliptic Hamiltonian systems are established in

[31, 32, 58, 42, 4]. In [4], the authors actually work on general degenerate diffusion processes under

accessibility conditions and Hörmander’s condition.

The works [8, 14, 15, 31, 25], which investigate higher-dimensional singular diffusion processes, are

the most relevant to our work. We comment on the approaches employed in these works. In [8], the

study of QSD relies on the spectral analysis of the generator, which is assumed to be reversible or

self-adjoint in the weighted space L2(U , dµ) with µ being the non-integrable Gibbs measure. Due

to the degeneracy of the diffusion coefficients, the authors adopt a two-step equivalent transform:

firstly, a homeomorphism over U is introduced to transfer the degeneracy of the diffusion coefficients

to the blow-up singularity of the drift; second, the standard Liouville transform is applied to convert

the generator of the new SDE obtained in the first step into a Schrödinger operator, for which the

spectral theory is well established. This methodology was previously developed in [7] to address the

one-dimensional case, whose generator is naturally self-adjoint. Clearly, the self-adjointness plays

a pivotal role in the generalizing these techniques to the higher-dimensional case. However, it is

important to note that most higher-dimensional diffusion processes are irreversible with non-self-

adjoint generators.

In [14, 15, 31, 25], the authors aim to establish a general probability framework, similar to

those used in the study of stationary distributions, for investigating QSDs in diffusion processes.

These frameworks typically consist of three essential ingredients: the Lyapunov condition, Doeblin-

type/minorization condition and certain regularity conditions. Checking these conditions is a routine

job for elliptic diffusion processes, and requires hypoelliptic conditions and controllability for degener-

ate ones. In [14], the authors focus on studying general absorbed time continuous Markov processes,
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with a particular application to (1.1). The framework introduced in [15] is applicable to both time-

discrete and continuous absorbed Markov processes. The primary objective of [31] is to investigate

QSDs of stochastic damping Hamiltonian systems when the position variable is constrained within

a bounded region. The work [25], originally not intended for studying QSDs, examines sub-Markov

semigroups and their results can be applied to absorbed processes. It is noteworthy that studying the

essential spectral radius of the semigroup under Lyapunov conditions plays a crucial role in both [31]

and [25].

Our approach is rooted in the spectral theory of the Fokker-Planck operator associated with Zt,

which is non-self-adjoint, defined on the unbounded domain U , and exhibits degeneracy on its bound-

ary Γ, causing significant challenges. Inspired by the methodology introduced in [7, 8] treating re-

versible diffusion processes, we develop a two-step equivalent transform to render the Fokker-Planck

operator more manageable. In the first step, we follow a procedure akin to that outlined in [8] to

eliminate the degeneracy of the Fokker-Planck operator and obtain a new Fokker-Planck operator

whose first-order terms have coefficients blow up at Γ. It is the second step that our approach show-

cases its novelty. Carefully examining the blow-up singularities in the first-order terms of the new

Fokker-Planck operator, we design a parameter-dependent Liouville-type transform. This transform

effectively eliminate these singularities, yielding a parameter-dependent uniformly elliptic operator

exhibiting blow-up coefficients only in its zeroth-order terms. The presence of the parameter expands

the degree of freedom for analysis and holds significant technical importance.

Through a careful analysis of the blow-up properties of these coefficients, we introduce a weighted

Sobolev space and successfully establish a priori estimates for this uniformly elliptic operator (with a

specified parameter) in the weighted Sobolev space. These a priori estimates ascertain the discreteness

of its spectrum, unravel the principal spectral theory, and uncover the C0-semigroup generated by it.

Leveraging the stochastic representation of this semigroup as a bridge, we are able to obtain fine

dynamical properties of Zt conditioned on non-extinction. As direct consequences of our approach,

we demonstrate the following: (i) The principal eigenpair of this operator gives rise to the QSD

µ1 in Theorem A, along with its associated extinction rate. (ii) The sharp exponential convergence

rate r1 stated in Theorem A is given by the spectral gap, between the principal eigenvalue and the

rest of the spectrum, of this operator. Such explicit characterizations of the QSD and the sharp

exponential convergence rate to the QSD were hitherto unknown for irreversible singular diffusion

processes. Moreover, given the significance of Liouville-type transforms, spectral theory, and the

stochastic representation of semigroups, our results extend beyond the study of QSDs and are of

independent interest, especially in the context of spectral theory for degenerate elliptic operators on

unbounded domains.

To this end, we would like to emphasize that applied to specific systems that do not assume re-

versibility, such as stochastic Lotka-Volterra models, both the results from [14, 15, 31, 25] (even though

these applications are not explicitly demonstrated in [31, 25]) and our own findings can establish the

(unique) existence of the QSD and its exponential attractivity. Additionally, our results provide the

precise exponential rate, which is determined by the spectral gap of the Fokker-Planck operator in a

specific function space.

Demographic and environmental stochasticity. Consider an isolated ecosystem of interacting

species. Due to finite population effects and demographic stochasticity, extinction of all species is

certain to occur in finite time for all populations. However, the time to extinction can be large and

the species densities can fluctuate before extinction occurs.
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QSD for Zt QSD for Xt LX
FP v = −λv

• spectrum of Lβ0 and L∗
β0

• semigroup (T ∗
t )t≥0 generated by L∗

β0

• stochastic representation for (T ∗
t )t≥0

• global regularity of ∂tu = L∗
β0
u

Lβ0
ṽ = −λṽ

ξ

ξ−1

Liouville-type

transform

Figure 1. Overview of proofs.

One way of capturing this behaviour is ignoring the effects of demographic stochasticity (i.e. finite

population effects) and focusing on models with environmental stochasticity where extinction can only

be asymptotic as t → ∞. This approach led to the development of the field of modern coexistence

theory (MCT), started by Lotka [48] and Volterra [64], and later developed by Chesson [16, 17] and

other authors [63, 28, 61, 5]. Recently, there have been powerful results that have led to a general

theory of coexistence and extinction [35, 3, 36].

A second way of analyzing the long term dynamics of the species is by including demographic

stochasticity and studying the QSDs of the system - this is the approach we took in this paper. Our

work can be seen as complementary to the work done for systems with environmental stochasticity.

Overview of proofs. The proofs of Theorem A and Theorem B use techniques from PDE, spectral

theory, semigroup theory and probability theory. For the reader’s convenience, we outline the strategy

of the proofs with the help of Figure 1.

• (Equivalent formalism) Theoretically, the study of QSDs of Zt can be accomplished by inves-

tigating the (principal) spectral theory of LZ
FP, the Fokker-Planck operator associated with

Zt. However, the degeneracy of LZ
FP on Γ would cause significant drawbacks. To circumvent

this, we first follow [8] to introduce a homeomorphism ξ : U → U and define a new process

Xt = ξ(Zt) whose Fokker-Planck operator LX
FP has 1

2∆ as its second-order term.

Although LX
FP has the best possible second-order term, the coefficients of its first-order

terms unfortunately have blow-up singularities on Γ. Introducing a parameter-dependent

Liouville-type transform, we convert LX
FP into a parameter-dependent uniformly elliptic op-

erator Lβ := e
Q
2 +βULX

FPe
−Q

2 −βU , whose blow-up singularities on Γ only appear in the coef-

ficients of the zeroth-order terms. Here, β > 0 is the parameter, U = V ◦ ξ−1, and Q, given

in (2.6), has singularities near Γ (see Remark A.1). The details are presented in Subsection

2.2. The parameter β is fixed to be β0 in Lemma 3.2 (3) so that a priori estimates can be

established for Lβ0 .

• (Spectral analysis) Our spectral analysis focuses on the operator Lβ0
in L2(U ;C) as well as its

adjoint L∗
β0
. According to the behavior of the coefficients of Lβ0

near Γ and infinity, we design

a weight function and define a weighted first-order Sobolev space H1(U ;C) that is compactly

embedded into L2(U ;C). Establishing a priori estimates for Lβ0
, we are able to solve the

elliptic problem for Lβ0
−M for some M ≫ 1 in H1(U ;C). The discreteness of the spectrum
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and principal spectral theory of Lβ0
and L∗

β0
then follow. The details are given in Subsection

3.3 and Subsection 3.4.

• (Semigroup and stochastic representation) The operator L∗
β0

generates an analytic and even-

tually compact semigroup (T ∗
t )t≥0 on L2(U ;C) that can be “block-diagonalized” according

to spectral projections. We establish the stochastic representation of (T ∗
t )t≥0 in terms of

Xt before reaching Γ, and therefore, connect the dynamics of (T ∗
t )t≥0 with that of Xt con-

ditioned on [t < SΓ], where SΓ is the first time that Xt hits Γ. More precisely, we show

that for each f ∈ Cb(U ;C) satisfying f̃ := fe−
Q
2 −β0U ∈ L2(U ;C), there holds T ∗

t f̃ =

e−
Q
2 −β0UE• [f(Xt)1{t<SΓ}

]
for all t ≥ 0. The semigroups are given in Subsection 3.3 and

Subsection 3.4. The stochastic representation of (T ∗
t )t≥0 is established in Subsection 4.3.

• (Global regularity and conclusions) The spectral theory and stochastic representation allow

us to prove the results stated in Theorem A and Theorem B for the process Xt. While proving

the existence of QSDs is pretty straightforward, we run into significant technical difficulties in

establishing the convergence even for compactly supported initial distributions. This is due

to: (i) the limitations of the stochastic representation because of the unboundedness of the

Liouville-type transform and its inverse (i.e., e
Q
2 +β0U and e−

Q
2 −β0U blow up near ∞ and at

Γ, respectively); (ii) the requirement of L∞ properties of (T ∗
t )t≥0. These issues are overcome

by establishing the global regularity of solutions of ∂tu = L∗
β0
u leading in particular to the

global regularity of (T ∗
t )t≥0. The details are given in Section 5.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries including

the proof of Zt being absorbed by Γ in finite time almost surely, the derivation of the operator Lβ0
,

and results related to the approximation of SΓ. In Section 3, we study the spectral theory of Lβ0
and

its adjoint operator L∗
β0
, and establish the associated semigroups (Tt)t≥0 and (T ∗

t )t≥0. Section 4 is

devoted to the stochastic representation of (T ∗
t )t≥0. In Section 5, we investigate the existence and

uniqueness of QSDs and the exponential convergence to QSDs of Xt conditioned on the coexistence.

Theorem A and Theorem B are proven in this section. In the last section, Section 6, we discuss

applications of Theorem A and Theorem B to a wider variety of ecological models including stochastic

Lotka-Volterra systems, and models with Holling type or Beddington-DeAngelis functional responses.

Appendix A is included to provide the proof of some technical lemmas.

2. Preliminaries

In Subsection 2.1, we show that Zt hits Γ in finite time almost surely. In Subsection 2.2, we present

equivalent formulations for studying the existence of QSDs, and derive the operator we shall focus on

in later sections. In Subsection 2.3, we fix a family of first exit times and present an approximation

result.

2.1. Hitting the absorbing boundary. We prove that Zt reaches Γ in finite time almost surely.

Denote by LZ the diffusion operator associated with Zt, namely,

LZ =
1

2

d∑
i=1

ai∂
2
zizi + b · ∇z. (2.1)

Proposition 2.1. Assume (H1)-(H3). Then, Pz[TΓ <∞] = 1 for each z ∈ U .
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Proof. The idea of the proof is more or less classical; our arguments are closer to that of [15, Proposi-

tion 4.4]. By (H1)-(H2), bi ∈ C1(U) and √
ai is locally Lipchitz in U and locally 1

2 -Hölder continuous

near Γ. The classical theorem of Yamada–Watanabe [65, 66] ensures the pathwise uniqueness as well

as the strong Markov property of solutions of (1.2).

Recall that for R > 0, B+
R = {z = (zi) ∈ U : zi ∈ (0, R), ∀i ∈ {1, . . . , d}}. The result is proven in

four steps.

Step 1. We claim that for each z ∈ U , Zt does not explode in finite time Pz-a.e., and there exists

R > 0 such that Pz[TR <∞] = 1 where TR := T̂R ∧ TΓ and T̂R := inf
{
t ≥ 0 : Zt ∈ B+

R

}
.

By the assumptions (H3)(1)(3), there is R > 0 such that LZV ≤ −1 in U \ B+
R . This together

with the Itô-Dynkin’s formula implies that Ez
[
V (Zt∧T̂R

)
]
≤ V (z)−Ez

[
t ∧ T̂R

]
for all t ≥ 0. Passing

to the limit t → ∞ yields Ez
[
T̂R

]
≤ V (z) < ∞ and thus, Pz[T̂R < ∞] = 1. The claim follows

immediately.

Step 2. We prove Pz[τ2R <∞] = 1 for each z ∈ B+
2R, where τ2R := inf

{
t ≥ 0 : Zt /∈ B+

2R

}
.

For each i ∈ {1, . . . , d}, we set bi := supB+
2R
bi, denote by Y i,yi

t the solution of the SDE dY i
t =

bidt +
√
ai(Yi)dW

i
t with initial condition Y i,yi

0 = yi ∈ [0,∞), and let τyi

i be the first time that

Y i,yi

t hits 0, namely, τyi

i = inf
{
t ≥ 0 : Y i,yi

t = 0
}
. The assumptions on ai and [37, Theorem VI-3.2]

guarantee that P [τyi

i <∞] = 1 for all yi ∈ [0,∞) and i ∈ {1, . . . , d}.
Let z = (zi) ∈ B+

2R. By the comparison theorem for one-dimensional SDEs (see e.g. [37, Theorem

VI-1.1]) and the fact that P [τzii <∞] = 1 for each i ∈ {1, . . . , d}, we find up to a set of probability

zero,

[τ2R = ∞] ⊂
[
Zi
t ≤ Y i,zi

t , ∀t ∈ [0, τzii ], i ∈ {1, . . . , d}
]
⊂ [τ2R <∞].

From this we conclude that Pz[τ2R = ∞] = 0.

Step 3. We show that inf
z∈B+

R

Pz[Zτ2R ∈ Γ] > 0.

Fix i ∈ {1, . . . , d}. Calculating the probability that the process Y i,R
t first exits the interval (0, 3R2 )

through 0 (see [37, Theorem VI-3.1]), we find P
[
Y i,R
t ∈ [0, 3R/2) , ∀t ∈ [0, τRi ]

]
> 0. Since

P
[
Y i,yi

t ≤ Y i,R
t , ∀t ∈ [0, τyi

i ]
]
= 1, ∀yi ∈ [0, R]

due to the comparison theorem (see e.g. [37, Theorem VI-1.1]), we deduce

inf
yi∈[0,R]

P
[
Y i,yi

t ∈ [0, 3R/2) , ∀t ∈ [0, τyi

i ]
]
≥ P

[
Y i,R
t ∈ [0, 3R/2) , ∀t ∈ [0, τRi ]

]
> 0.

This together with the comparison theorem yields for each z = (zi) ∈ B+
R ,

Pz[Zτ2R ∈ Γ] ≥ P
[
Y i,zi
t ∈ [0, 3R/2) , ∀t ∈ [0, τzii ], i ∈ {1, . . . , d}

]
≥

d∏
i=1

inf
yi∈[0,R]

P
[
Y i,yi

t ∈ [0, 3R/2) , ∀t ∈ [0, τyi

i ]
]
> 0,

where we used the independence of Y i,zi
t , i ∈ {1, . . . , d} in the equality. The claim follows.
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Step 4. We finish the proof of the proposition. By Step 3, p := infz∈∂B+
R\Γ P

z[Zτ2R ∈ Γ] > 0. Set

T
(1)
R := inf

{
t ∈ [0, TΓ] : Zt ∈ B+

R

}
and S

(1)
2R := inf

{
t ≥ T

(1)
R : Zt /∈ B+

2R

}
,

and recursively define for each n ≥ 1,

T
(n+1)
R := inf

{
t ∈ [S

(n)
2R , TΓ] : Zt ∈ B+

R

}
and S

(n+1)
2R := inf

{
t ≥ T

(n+1)
R : Zt /∈ B+

2R

}
.

Fix z ∈ U . Since Step 1, Step 2 and the strong Markov property ensure Pz
[
T

(n)
R <∞

]
= 1 and

Pz
[
S
(n)
2R <∞

]
= 1 for all n ∈ N, we find Pz

[
Z
S

(n)
2R

∈ ∂B+
2R \ Γ

]
≤ (1− p)n for all n ∈ N. As a result

Pz [TΓ = ∞] = Pz
[
S
(n)
2R <∞,∀n ∈ N

]
≤ lim

n→∞
(1− p)n = 0.

This completes the proof. □

Remark 2.1. The assumptions (H3)(2)(4) are not needed in the proof of Proposition 2.1.

2.2. Equivalent formulation. Denote by LZ
FP the Fokker-Planck operator associated with Zt or

(1.2), namely,

LZ
FPu :=

1

2

d∑
i=1

∂2zizi(aiu)−∇z · (bu) in U , ∀u ∈ C2(U). (2.2)

Proposition 2.2. Assume (H1)-(H2). Let µ be a QSD of Zt. Then, µ admits a positive density

u ∈ W 2,p
loc (U) for any p > d that satisfies −LZ

FPu = λ1u a.e. in U , where λ1 is the extinction rate

associated with µ.

Proof. Following the arguments leading to [53, Proposition 4], we see that∫
U
Ex[f(Zt)]dµ = e−λ1t

∫
U
fdµ, ∀f ∈ C∞

0 (U).

Since d
dtE

•[f(Zt)] = LZ(E•[f(Zt)]), we differentiate to find
∫
U (−LZ + λ1)fdµ = 0 for all f ∈ C∞

0 (U).
It follows from (H1)-(H2) and the classical regularity result in [6, Corollaries 2.10 and 2.11] that µ

has a positive density u ∈W 1,p
loc (U) for any p > d. Then, we can follow the classical procedures in the

PDE theory (see e.g. [29]) to show that u ∈W 2,p
loc (U) for any p > d. □

Proposition 2.2 suggests studying the principal spectral theory of the operator −LZ in order to

find a QSD for Zt. Direct analysis of the operator −LZ is however difficult due to the degeneracy of

the diffusion matrix diag{a1, . . . , ad} on the boundary Γ of U . To resolve this issue, we follow [7] to

define a new process that is equivalent to Zt and whose Fokker-Planck operator or diffusion operator

is uniformly non-degenerate in U . We proceed as follow.

For each i ∈ {1, . . . , d}, we define ξi : [0,∞) → [0,∞) by setting

ξi(zi) :=

∫ zi

0

1√
ai(s)

ds, zi ∈ [0,∞).

By (H1), each ξi is increasing and onto, and thus, ξ−1
i is well-defined. Set

ξ := (ξi) : U → U and ξ−1 := (ξ−1
i ) : U → U .

Clearly, ξ : U → U is a homeomorphism with inverse ξ−1, and satisfies ξ(Γ) = Γ and ξ(U) = U .
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Define a new process Xt = (Xi
t) by setting

Xi
t := ξi(Z

i
t), i ∈ {1, . . . , d}, or simply, Xt = ξ(Zt), t ≥ 0.

It is clear that Γ is also an absorbing set for the process Xt, and Xt reaches Γ in finite time almost

surely. Moreover, QSDs of Zt and Xt are in an one-to-one correspondence as shown in the next result

whose proof is straightforward.

Proposition 2.3. Let µ be a Borel probability measure on U . Then, µ is a QSD of Zt if and only if

ξ∗µ is a QSD of Xt, where ξ∗ is the pushforward operator induced by ξ. Moreover, µ and ξ∗µ have

the same extinction rates.

Since ξ ∈ C2(U), we apply Itô’s formula to find

dXi
t =

[
pi(Xt)− qi(X

i
t)
]
dt+ dW i

t , i ∈ {1, . . . , d} in U , (2.3)

where pi : U → R and qi : (0,∞) → R are given by

pi(x) :=
bi(ξ

−1(x))√
ai(ξ

−1
i (xi))

and qi(xi) :=
a′i(ξ

−1
i (xi))

4
√
ai(ξ

−1
i (xi))

, x = (xi) ∈ U .

Denote by LX
FP the Fokker-Planck operator associated with (2.3), namely,

LX
FPv =

1

2
∆v −∇ · ((p− q)v) in U , ∀v ∈ C2(U),

where p = (pi) and q = (qi). Then, Proposition 2.2 has a counterpart for QSDs of Xt.

Proposition 2.4. Assume (H1)-(H2). Let ν be a QSD of Xt with extinction rate λ1. Then, ν

admits a positive density v ∈W 2,p
loc (U) for any p > d that satisfies −LX

FPv = λ1v a.e. in U .

Remark 2.2. Note that the process Xt and the process generated by solutions of (2.3) are not really

the same, as (2.3) is only defined in U . However, the two processes agree as long as Xt stays in U .
More precisely, if we denote by SΓ the first time that Xt reaches Γ, that is, SΓ = inf {t ≥ 0 : Xt ∈ Γ},
then Xt satisfies (2.3) on the event [t < SΓ].

As indicated by Proposition 2.4, QSDs of Xt are closely related to positive eigenfunctions of −LX
FP,

and therefore, it is natural to investigate the associated eigenvalue problem, namely,

−LX
FPv = λv in U . (2.4)

Note that the operator LX
FP is uniformly elliptic in U , but the functions qi, i ∈ {1, . . . , d} appearing in

its first-order terms satisfy qi(xi) → ∞ as xi → 0+ for each i ∈ {1, . . . , d}. Such blow-up singularities

make the investigation of the above eigenvalue problem very hard. In the following, we generalize the

idea in [7] to transform (2.4) into the eigenvalue problem of another elliptic operator that has blow-up

singularities only in the zeroth-order term and thus is easier to deal with.

Set

U := V ◦ ξ−1 in U , (2.5)

where V is given in (H3), and

Q(x) :=

d∑
i=1

∫ xi

1

2qi(s)ds =
1

2

d∑
i=1

[
ln ai(ξ

−1
i (xi))− ln ai(ξ

−1
i (1))

]
, x ∈ U . (2.6)



QUASI-STATIONARY DISTRIBUTIONS 13

For each β > 0, we use the Liouville-type transform to define Lβ := e
Q
2 +βULX

FPe
−Q

2 −βU . It is

straightforward to check that

Lβ =
1

2
∆− (p+ β∇U) · ∇ − eβ in U , (2.7)

where

eβ =
1

2

(
β∆U − β2|∇U |2

)
− βp · ∇U +

1

2

d∑
i=1

(q2i − q′i)− p · q +∇ · p. (2.8)

Note that the coefficient of the first-order term −(p+ β∇U) is continuous up to the boundary Γ, and

the term 1
2

∑d
i=1(q

2
i − q′i)− p · q blows up at the boundary Γ, but it appears in the zeroth-order term.

The following proposition establishes the “equivalence” between the eigenvalue problem (2.4) and

the eigenvalue problem associated with the operator Lβ .

Proposition 2.5. Suppose v ∈ W 2,1
loc (U) and λ ∈ R. Set ṽ := ve

Q
2 +βU . Then, (v, λ) solves (2.4) if

and only if −Lβ ṽ = λṽ in U .

According to Proposition 2.5, the investigation of QSDs of Xt is reduced to the exploration of

the principal spectral theory of −Lβ (with a fixed β), something which we will do by choosing an

appropriate function space.

2.3. Approximation by first exit times. Let {Un}n∈N be a sequence of arbitrarily fixed bounded,

connected and open sets in U with C2 boundaries that satisfy Un ⊂⊂ Un+1 ⊂⊂ U for all n ∈ N and

U =
⋃

n∈N Un. For each n ∈ N, denote by τn the first time that Xt exits Un, namely,

τn = inf {t ≥ 0 : Xt ̸∈ Un} .

Recall that SΓ is the first time that Xt hits Γ. The following result turns out to be useful.

Lemma 2.1. Assume (H1)-(H3). For each x ∈ U , one has Px [limn→∞ τn = SΓ] = 1 and

lim
n→∞

Ex
[
f(Xt)1{t<τn}

]
= Ex

[
f(Xt)1{t<SΓ}

]
, ∀f ∈ Cb(U).

Proof. Fix x ∈ U . Obviously, τn < τn+1 for each n ∈ N. Set τ := limn→∞ τn. The first conclusion

follows if we show Px[τ = SΓ] = 1.

Clearly, τn < SΓ for each n ∈ N, leading to τ ≤ SΓ. Since Xt = ξ(Zt) for t ≥ 0, we find from

Proposition 2.1 that Px[SΓ <∞] = Pξ−1(x)[TΓ <∞] = 1. Therefore, Px[τ <∞] = 1.

Noting that arguments in the proof of Proposition 2.1 ensure that Zt and Xt do not explode in

finite time, we derive |Xτ | = limn→∞ |Xτn | < ∞. Moreover, since Xτn ∈ ∂Un and U = ∪n∈NUn, it

follows that Xτ ∈ Γ. As SΓ is the first hitting time of the boundary Γ and τ ≤ SΓ, one has τ = SΓ.

Since τn increases to SΓ P-a.s., we find limn→∞ 1{t<τn} = 1{t<SΓ} for each t ≥ 0. The second

conclusion then follows from the dominated convergence theorem. This completes the proof. □

3. Spectral theory and semigroup

This section is devoted to the spectral theory of −Lβ in an appropriate function space for some

appropriately fixed β, as well as the semigroup generated by Lβ . In Subsection 3.1 we define a weighted

Hilbert space. In Subsection 3.2 we derive some important estimates and meanwhile fix a special β,

denoted by β0. In Subsection 3.3 we study the (principal) spectral theory of −Lβ0
and the semigroup

generated by Lβ0 . In Subsection 3.4 the spectral theory of −L∗
β0
, where L∗

β0
is the adjoint operator

of Lβ0
, and the semigroup generated by L∗

β0
are investigated.
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Figure 2. Decomposition of U in dimension two.

3.1. A weighted Hilbert space. For δ ∈ (0, 1), let

Γδ := {x = (xi) ∈ U : xi ≤ δ for some i ∈ {1, . . . , d}} .

It is easy to see from (H3)(1) that there exists R0 > 0 such that supU\B+
R0

(b · ∇zV ) ◦ ξ−1 < 0,

where we recall B+
R = {x = (xi) ∈ U : xi ∈ (0, R), ∀i ∈ {1, . . . , d}} for R > 0. Fix some δ0 ∈ (0, 1).

Let α : U → R be defined by

α(x) :=



d∑
i=1

max

{
1

x2i
, 1

}
, x ∈ Γδ0 ∩B+

R0
,

d∑
i=1

max

{
1

x2i
, 1

}
− (b · ∇zV )(ξ−1(x)), x ∈ Γδ0 ∩ (U \B+

R0
),

−(b · ∇zV )(ξ−1(x)), x ∈ (U \ Γδ0) ∩ (U \B+
R0

),

1, otherwise.

(3.1)

See Figure 2 for an illustration of the subdomains used in (3.1). Obviously, infU α > 0, limx→Γ α(x) =

∞ and lim|x|→∞ α(x) = ∞. This α is defined according to the behavior of the coefficients of −Lβ near

Γ and ∞. Its significance is partially reflected in Lemma 3.2 below. See Remark 3.1 after Lemma 3.2

for more comments.

Denote by H1(U ;C) the space of all weakly differentiable complex-valued functions ϕ : U → C
satisfying ∥ϕ∥H1 :=

(∫
U α|ϕ|

2dx
) 1

2 +
(∫

U |∇ϕ|2dx
) 1

2 < ∞. It is not hard to verify that H1(U ;C) is a
Hilbert space with the inner product:

⟨ϕ, ψ⟩H1 :=

∫
U
αϕψdx+

∫
U
∇ϕ · ∇ψdx, ∀ϕ, ψ ∈ H1(U ;C),

where ψ denotes the complex conjugate of ψ.

Lemma 3.1. Assume (H3). Then, H1(U ;C) is compactly embedded into L2(U ;C).
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Proof. Let {ϕn}n∈N ⊂ H1(U ;C) satisfy supn∈N ∥ϕn∥H1 ≤ 1. Fix R > 0. Since the Rellich-Kondrachov

compactness theorem ensures the compact embedding of H1(B+
R ;C) into L2(B+

R ;C), there is a sub-

sequence, still denoted by {ϕn}n∈N, and a measurable function ϕR ∈ L2(B+
R ;C), such that ϕn(x) →

ϕR(x) for a.e. x ∈ B+
R and limn→∞

∫
B+

R
|ϕn − ϕR|2dx = 0.

Let {Rm}m ⊂ (0,∞) satisfy Rm → ∞ as m → ∞. Then, the above results hold for each Rm in

place of R. We apply the standard diagonal argument to find a subsequence, still denoted by {ϕn}n∈N,

and a measurable function ϕ : U → C such that ϕn → ϕ a.e. in U as n→ ∞, and

lim
n→∞

∫
B+

R

|ϕn − ϕ|2dx = 0, ∀R > 0. (3.2)

Applying Fatou’s lemma, we find
∫
U αϕ

2dx ≤ lim infn→∞
∫
U αϕ

2
ndx ≤ 1. It follows from (3.2) that

lim sup
n→∞

∫
U
|ϕn − ϕ|2dx ≤ lim sup

n→∞

∫
U\B+

R

|ϕn − ϕ|2dx, ∀R > 0.

Note that ∫
U\B+

R

|ϕn − ϕ|2dx ≤ 2

infU\B+
R
α

∫
U\B+

R

α
(
ϕ2n + ϕ2

)
dx ≤ 2

infU\B+
R
α
,

which together with the fact α(x) → ∞ as |x| → ∞ yields lim supn→∞
∫
U\B+

R
|ϕn − ϕ|2dx = 0, and

hence, limn→∞
∫
U |ϕn − ϕ|2dx = 0. This completes the proof. □

3.2. Some estimates. We recall from (2.8) the definition of eβ and define for N ≥ 1,

eβ,N : = eβ − N − 1

N
(∇ · p+ β∆U)

=

(
1

N
− 1

2

)
β∆U − β2

2
|∇U |2 − βp · ∇U +

1

2

d∑
i=1

(q2i − q′i)− p · q + ∇ · p
N

.

(3.3)

Obviously, eβ,1 = eβ for all β > 0. The main reason for introducing eβ,N is that they arise naturally

in deriving a priori estimates for both sesquilinear forms and partial differential equations related to

Lβ or its adjoint (see Lemma 3.3 and Lemma 4.1).

Lemma 3.2. Assume (H1)-(H3). Then, the following hold.

(1) There exists C > 0 such that |∇U |2 + |p|2 ≤ Cα in U , where α is defined in (3.1).

(2) For each β > 0, there is C(β) > 0 such that |eβ,N | ≤ C(β)α in U for all N ≥ 1.

(3) There are positive constants β0, M and C∗ such that eβ0,N +M ≥ C∗α in U for all N ≥ 1.

Since the proof of this lemma is long and relatively independent, we postpone it to Appendix A.1

for the sake of readability.

Remark 3.1. Note that eβ,1 = eβ is the zeroth-order term of the operator Lβ (see (2.7)) that has blow-

up singularities at Γ as mentioned earlier. Lemma 3.2 (3) says in particular that eβ is well-controlled

by the weight function α, laying the foundation for our analysis.

In what follows, the positive constants β0, M and C∗ are fixed such that the conclusion in Lemma

3.2 (3) holds.
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3.3. Spectrum and semigroup. We investigate the spectral theory of −Lβ0
and the semigroup

generated by Lβ0
. Corresponding results are stated in Theorem 3.1 and Theorem 3.2.

Denote by Eβ0
: H1(U ;C)×H1(U ;C) → C the sesquilinear form associated with −Lβ0

, namely,

Eβ0
(ϕ, ψ) =

1

2

∫
U
∇ϕ · ∇ψdx+

∫
U
(p+ β0∇U) · ∇ϕψdx+

∫
U
eβ0

ϕψdx, ∀ϕ, ψ ∈ H1(U ;C).

The following lemma addresses the boundedness and “coercivity” of Eβ0
, playing crucial roles in

analyzing the spectrum of −Lβ0
.

Lemma 3.3. Assume (H1)-(H3).

(1) There exists C > 0 such that |Eβ0
(ϕ, ψ)| ≤ C∥ϕ∥H1∥ψ∥H1 for all ϕ, ψ ∈ H1(U ;C).

(2) For each ϕ = ϕ1 + iϕ2 ∈ H1(U ;C), we have

Eβ0
(ϕ, ϕ) =

1

2

∫
U
|∇ϕ|2dx+

∫
U
eβ0,2|ϕ|2dx+ i

∫
U
(p+ β0∇U) · (ϕ1∇ϕ2 − ϕ2∇ϕ1)dx,

where eβ0,2 is defined in (3.3). In particular,

ℜEβ0(ϕ, ϕ) +M∥ϕ∥2L2 ≥ min

{
1

2
, C∗

}
∥ϕ∥2H1 , ∀ϕ ∈ H1(U ;C).

Proof. (1) Let ϕ, ψ ∈ H1(U ;C). Applying Hölder’s inequality, we derive

|Eβ0(ϕ, ψ)| ≤
1

2

(∫
U
|∇ϕ|2dx

) 1
2
(∫

U
|∇ψ|2dx

) 1
2

+

(∫
U
|∇ϕ|2dx

) 1
2
(∫

U
|p+ β0∇U |2|ψ|2dx

) 1
2

+

(∫
U
|eβ0 ||ϕ|2dx

) 1
2
(∫

U
|eβ0 ||ψ|2dx

) 1
2

.

By Lemma 3.2 (1), there is C > 0 such that
∫
U |p + β0∇U |2|ψ|2dx ≤ C(1 + β2

0)
∫
U α|ψ|

2dx. The

conclusion then follows readily from Lemma 3.2 (2) and the definition of the norm ∥ · ∥H1 .

(2) Let {ηn}n≥1 be a sequence of smooth functions on U taking values in [0, 1] and satisfying

ηn(x) =

1, x ∈
(
U \ Γ 2

n

)
∩B+

n
2
,

0, x ∈ Γ 1
n

⋃
(U \B+

n ) ,
and |∇ηn(x)| ≤

2n, x ∈ Γ 2
n
\ Γ 1

n
,

4, x ∈
(
U \ Γ 2

n

)
∩
(
B+

n \B+
n
2

)
.

Obviously, ηn has compact support and limn→∞ ηn = 1 locally uniform in U .
Fix ϕ ∈ H1(U ;R). We find from integration by parts that

Eβ0
(ϕ, η2nϕ) =

1

2

∫
U
η2n|∇ϕ|2dx+

∫
U
ηnϕ∇ϕ · ∇ηndx+

∫
U
(p+ β0∇U) · ∇ϕ(η2nϕ)dx

+

∫
U
eβ0η

2
n|ϕ|2dx =: I1(n) + I2(n) + I3(n) + I4(n).

(3.4)

We find limn→∞ I1(n) = 1
2

∫
U |∇ϕ|2dx from

∫
U |∇ϕ|2dx < ∞ and the dominated convergence

theorem. Clearly, |I2(n)| ≤
(∫

U η
2
n|∇ϕ|2dx

) 1
2
(∫

U |∇ηn|2|ϕ|2dx
) 1

2 . From the construction of ηn, we see

|∇ηn|2|ϕ|2 ≤


4n2|ϕ|2 in Γ 2

n
\ Γ 1

n
,

16|ϕ|2 in
(
U \ Γ 2

n

)
∩
(
B+

n \B+
n
2

)
,

0 otherwise.
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Since n2 ≤
∑d

i=1 max
{

1
x2
i
, 1
}
in Γ 2

n
\ Γ 1

n
for n ≥ 1, the definition of α yields the existence of C1 > 0

such that |∇ηn|2|ϕ|2 ≤ C1α|ϕ|2 in U for all n≫ 1. Since limn→∞ |∇ηn| = 0 locally uniform in U , we
apply the dominated convergence theorem to conclude

lim
n→∞

∫
U
|∇ηn|2|ϕ|2dx = 0, (3.5)

which leads to limn→∞ I2(n) = 0.

Denote ϕ = ϕ1 + iϕ2. Clearly, (∂jϕ)ϕ = 1
2∂j |ϕ|

2 + i(ϕ1∂jϕ2 − ϕ2∂jϕ1) for each j ∈ {1, . . . , d}. This
together with integration by parts yield

I3(n) =
1

2

∫
U
(p+ β0∇U) · η2n∇|ϕ|2dx+ i

∫
U
(p+ β0∇U) · η2n(ϕ1∇ϕ2 − ϕ2∇ϕ1)dx

= −1

2

∫
U
(∇ · p+ β0∆U)η2n|ϕ|2dx−

∫
U
(p+ β0∇U) · ∇ηn(ηn|ϕ|2)dx

+ i

∫
U
(p+ β0∇U) · η2n(ϕ1∇ϕ2 − ϕ2∇ϕ1)dx.

It follows that

I3(n) + I4(n) = −
∫
U
(p+ β0∇U) · ∇ηn(ηn|ϕ|2)dx+

∫
U
eβ0,2η

2
n|ϕ|2dx

+ i

∫
U
(p+ β0∇U) · η2n(ϕ1∇ϕ2 − ϕ2∇ϕ1)dx =: J1(n) + J2(n) + J3(n).

(3.6)

We apply Hölder’s inequality and the fact ηn ∈ [0, 1] to find∣∣∣∣∫
U
(p+ β0∇U) · ∇ηn(ηn|ϕ|2)dx

∣∣∣∣ ≤ (∫
U
|p+ β0∇U |2|ϕ|2dx

) 1
2
(∫

U
|∇ηn|2|ϕ|2dx

) 1
2

.

Note that Lemma 3.2 (1) gives
∫
U |p+β0∇U |2|ϕ|2dx ≤ C2

∫
U α|ϕ|

2dx for some C2 > 0, which together

with (3.5) yields limn→∞ J1(n) = 0. It follows from Lemma 3.2 (2) that |eβ0,2|η2n|ϕ|2 ≤ C3α|ϕ|2 for

some C3 > 0. Together with the fact ϕ ∈ H1(U ;R) and the dominated convergence theorem this

yields limn→∞ J2(n) =
∫
U eβ0,2|ϕ|2dx. Since Young’s inequality and the fact ηn ∈ [0, 1] give∣∣(p+ β0∇U) · η2n(ϕ1∇ϕ2 − ϕ2∇ϕ1)

∣∣ ≤ 1

2
|∇ϕ|2 + 1

2
|p+ β0∇U |2|ϕ|2,

the dominated convergence theorem leads to limn→∞ J3(n) = i
∫
U (p+ β0∇U) · (ϕ1∇ϕ2 − ϕ2∇ϕ1)dx.

Letting n→ ∞ in (3.6), we conclude that

lim
n→∞

[I3(n) + I4(n)] =

∫
U
eβ0,2ϕ

2dx+ i

∫
U
(p+ β0∇U) · (ϕ1∇ϕ2 − ϕ2∇ϕ1)dx.

Passing to the limit n→ ∞ in (3.4), we derive the expected identity from the limits of I1(n), I2(n),

I3(n) and I4(n) as n→ ∞. The inequality in (2) is an immediate consequence of Lemma 3.2 (3). □

Remark 3.2. It can be seen from the proof of Lemma 3.3 that limn→∞ ηnϕ = ϕ in H1(U ;R) for any

ϕ ∈ H1(U ;R). Therefore, C∞
0 (U) is dense in H1(U ;R).

For f ∈ L2(U ;C), we consider the following problem:

(−Lβ0
+M)u = f in U , (3.7)

and look for solutions in H1(U ;C).
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Definition 3.1. A function u ∈ H1(U ;C) is called a weak solution of (3.7) if

Eβ0
(u, ϕ) +M⟨u, ϕ⟩L2 = ⟨f, ϕ⟩L2 , ∀ϕ ∈ H1(U ;C),

where ⟨·, ·⟩L2 is the usual inner product on L2(U ;C).

Lemma 3.4. Assume (H1)-(H3). Then, for any f ∈ L2(U ;C), (3.7) admits a unique weak solution

uf in H1(U ;C). Moreover, the following hold.

(1) There is a constant C > 0 such that ∥uf∥H1 ≤ C∥f∥L2 for all f ∈ L2(U ;C).
(2) uf ∈ H2

loc(U ;C) satisfies (−Lβ0
+M)uf = f a.e. in U , and Eβ0

(uf , ϕ) = ⟨−Lβ0
uf , ϕ⟩L2 for

all ϕ ∈ H1(U ;C).
(3) If f ∈ L2(U ;C) satisfies f ≥ 0 a.e. in U , then uf ≥ 0 a.e. in U . If in addition f > 0 on a set

of positive Lebesgue measure, then uf > 0 a.e. in U .

Proof. Fix f ∈ L2(U ;C). Hölder’s inequality gives

|⟨f, ϕ⟩L2 | ≤
(∫

U

1

α
|f |2dx

) 1
2
(∫

U
α|ϕ|2dx

) 1
2

≤ 1

(infU α)
1
2

∥f∥L2∥ϕ∥H1 , ∀ϕ ∈ H1(U ;C). (3.8)

Hence, ϕ 7→ ⟨f, ϕ⟩L2 : H1(U ;C) → C is a continuous linear functional.

By Lemma 3.3 and the fact ∥ϕ∥L2 ≤ (infU α)
− 1

2 ∥ϕ∥H1 for ϕ ∈ H1(U ;C) one has

|Eβ0
(ϕ, ψ)|+M |⟨ϕ, ψ⟩L2 | ≤ C1∥ϕ∥H1∥ψ∥H1 , ∀ϕ, ψ ∈ H1(U ;C)

for some C1 > 0, and

ℜEβ0
(ϕ, ϕ) +M∥ϕ∥2L2 ≥ min

{
1

2
, C∗

}
∥ϕ∥2H1 , ∀ϕ ∈ H1(U ;C). (3.9)

We apply the Lax-Milgram theorem (see e.g. [29]) to find a unique uf ∈ H1(U ;C) such that

Eβ0
(uf , ϕ) +M⟨uf , ϕ⟩L2 = ⟨f, ϕ⟩L2 , ∀ϕ ∈ H1(U ;C). (3.10)

This shows that uf is the unique weak solution of (3.7).

(1) Setting ϕ = u in (3.10), we derive from (3.8) and (3.9) that

min

{
1

2
, C∗

}
∥uf∥2H1 ≤ ℜEβ0(uf , uf ) +M∥uf∥2L2 ≤ 1

(infU α)
1
2

∥f∥L2∥uf∥H1 .

(2) The classical regularity theory of elliptic equations ensures uf ∈ H2
loc(U ;C). Hence, uf is a

strong solution and obeys (−Lβ0 +M)uf = f a.e. in U . Multiplying this equation by ϕ ∈ C∞
0 (U ;C)

and integrating by parts result in

Eβ0
(uf , ϕ) = ⟨−Lβ0

uf , ϕ⟩L2 . (3.11)

Note that C∞
0 (U) is dense in H1(U ;R) (see Remark 3.2) and both sides of (3.11) are still well-defined

even if ϕ merely belongs to H1(U ;C). As a result, standard approximation arguments yield that (3.11)

holds for any ϕ ∈ H1(U ;C).
(3) Suppose f ≥ 0 a.e. in U . In this case, uf must be real-valued. It is easy to verify that the

negative part u−f := −min{uf , 0} ∈ H1(U ;C). Thanks to (2), we obtain

Eβ0(uf , u
−
f ) +M⟨uf , u−f ⟩L2 = ⟨f, u−f ⟩L2 ≥ 0.
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It follows from Lemma 3.3 (2), Eβ0
(uf , u

−
f ) = −Eβ0

(u−f , u
−
f ) and ⟨uf , u−f ⟩L2 = −⟨u−f , u

−
f ⟩L2 that

min

{
1

2
, C∗

}
∥u−f ∥

2
H1 ≤ Eβ0

(u−f , u
−
f ) +M∥u−f ∥

2
L2 ≤ 0.

This implies u−f = 0, and hence that uf ≥ 0. If in addition f > 0 on a set of positive Lebesgue

measure, then uf ̸= 0, which together with the weak Harnack’s inequality of weak solutions of elliptic

equations (see e.g. [29, Theorem 8.18]) yields uf > 0 a.e. □

By Lemma 3.4 and Lemma 3.1, the operator

(−Lβ0
+M)−1 : L2(U ;C) → L2(U ;C), f 7→ uf

is linear, positive and compact. In light of Lemma 3.4, we define the domain of Lβ0
as follows:

D : = (−Lβ0 +M)−1L2(U ;C) =
{
ϕ ∈ H1(U ;C) : Lβ0ϕ ∈ L2(U ;C)

}
.

The next result collects basic spectral properties of −Lβ0
.

Theorem 3.1. Assume (H1)-(H3). Then, the following hold.

(1) The operator −Lβ0
has a discrete spectrum and is contained in {λ ∈ C : ℜλ > −M}.

(2) The number λ1 := inf {ℜλ : λ ∈ σ(−Lβ0
)} is a simple eigenvalue of −Lβ0

, and is dominating,

in the sense that inf {ℜλ : λ ∈ σ(−Lβ0) \ {λ1}} > λ1.

(3) The eigenspace of λ1 is spanned over C by ṽ1 for some ṽ1 ∈ D a.e. positive in U .

Proof. Since (−Lβ0 +M)−1 is a compact operator on L2(U), we apply the Fredholm alternative (see

e.g. [68]) to find that

• the spectrum of (−Lβ0
+M)−1 except 0 consists of at most countable eigenvalues with each

having finite multiplicity and being a finite pole of the resolvent operator of (−Lβ0
+M)−1;

• 0 is the only possible accumulation point.

Denote L2
+(U) := {u ∈ L2(U) : u ≥ 0 a.e.}. Then, L2(U) becomes an ordered Hilbert space with

the positive cone L2
+(U). Since Lemma 3.4 (3) ensures the positivity of (−Lβ0

+M)−1 on L2(U), we
derive from [50, Theeorem 2.1] that the spectral radius r1 of (−Lβ0

+M)−1 is an eigenvalue and also

a finite pole of the corresponding resolvent operator.

Thanks to Lemma 3.4 (3), we see that ⟨(−Lβ0 +M)−1f, g⟩L2 ̸= 0 for all f, g ∈ L2
+(U) \ {0}. That

is, (−Lβ0
+M)−1 is nonsupporting (in the language of I. Sawashima [59, 50]). As a result, we are

able to apply the results in [59] (also see [50, Theeorem 2.3]) to conclude

• r1 is a simple eigenvalue of (−Lβ0
+M)−1;

• the eigenspace of r1 is spanned over C by ṽ1 which is quasi-interior in L2
+(U);

• r1 is dominating in the sense that sup
{
|λ| : λ ∈ σ((−Lβ0

+M)−1) \ {r1}
}
< r1.

Note that a function f ∈ L2
+(U) is called quasi-interior if and only if ⟨f, g⟩L2 ̸= 0 for any g ∈ L2

+(U).
Then, it is easy to see that ṽ1 is a.e. positive in U .

By the spectral mapping theorem (see e.g. [22, Theorem IV.1.13]), there holds

σ(−Lβ0) =

{
− 1

λ
−M : λ ∈ σ((−Lβ0

+M)−1) \ {0}
}
. (3.12)

We claim the existence of θ ∈ (0, π2 ) such that

S := {⟨(−Lβ0
+M)u, u⟩L2 : u ∈ D, ∥u∥L2 = 1} ⊂ {λ ∈ C : | arg λ| ≤ θ}. (3.13)
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As (3.12) implies that σ(−Lβ0
+ M) is discrete and consists of eigenvalues, we derive from [55,

Theorem 1.3.9] that σ(−Lβ0
+M) ⊂ S ⊂ {λ ∈ C : ℜλ ≥ 0}. It then follows from 0 ∈ ρ(−Lβ0

+M)

that σ(−Lβ0
) ⊂ {λ ∈ C : ℜλ > −M} and thus from (3.12) that ℜ(σ((−Lβ0

+M)−1) \ {0}) ⊂ (0,∞).

Hence, (1) holds and λ1 := − 1
r1

−M is just the principal eigenvalue of −Lβ0 and satisfies the desired

properties in (2)-(3).

It remains to show (3.13) for some θ ∈ (0, π2 ). Fix u ∈ D. Clearly, Lemma 3.4 (2) gives

⟨−(Lβ0 −M)u, u⟩L2 = Eβ0(u, u) +M∥u∥2L2 .

It follows from Lemma 3.3 (2) that

ℜ⟨−(Lβ0
−M)u, u⟩L2 = ℜEβ0

(u, u) +M∥u∥2L2 ≥ min

{
1

2
, C∗

}
∥u∥H1 .

Applying Young’s inequality, we derive from Lemma 3.3 (2) and Lemma 3.2 that

|ℑ⟨−(Lβ0 −M)u, u⟩L2 | = |ℑEβ0
(u, u)| ≤ 1

2

∫
U
|∇u|2dx+

1

2

∫
U
|p+ β0∇U |2|u|2dx

≤ 1

2

∫
U
|∇u|2dx+

C2

2

∫
U
α|u|2dx,

where C2 > 0 is independent of u ∈ D. Therefore,

0 ≤ |ℑ⟨−(Lβ0 −M)u, u⟩L2 |
ℜ⟨−(Lβ0

−M)u, u⟩L2

≤
1
2 + C2

2

min
{

1
2 , C∗

} .
This proves (3.13), and thus, completes the proof. □

Remark 3.3. We point out that the positive cone L2
+(U) has empty interior so that the celebrated

Krěın-Rutman theorem [39] for compact and strongly positive operators, often used to treat elliptic

operators on bounded domains, does not apply here. Restricting −Lβ0
to a smaller space does not help

as U is unbounded.

The number λ1 is often called the principal eigenvalue of −Lβ0 . So far, it is not clear whether λ1
is positive. The positivity of λ1 is shown later by means of the absorbing properties of the process Xt.

The following result concerns the semigroup generated by Lβ0
.

Theorem 3.2. Assume (H1)-(H3). Then, (Lβ0 ,D) generates a C0-semigroup (Tt)t≥0 on L2(U ;C).
Moreover, (Tt)t≥0 is positive (i.e., TtL

2
+(U) ⊂ L2

+(U) for all t ≥ 0), extends to an analytic semigroup

and is immediately compact.

Proof. Note that it is equivalent to studying the operator Lβ0
−M with domain D. First, we show

Lβ0
−M is densely defined and closed. In fact, the density of D in L2(U ;C) follows readily from the

fact C∞
0 (U ;C) ⊂ D. Since the resolvent set of Lβ0 −M is non-empty thanks to Theorem 3.1, the

closedness of (Lβ0
−M,D) follows.

Next, we see from Theorem 3.1 that (0,∞) ⊂ ρ(Lβ0
−M). For fixed λ > 0, we prove

∥(λ+M − Lβ0)
−1∥L2→L2 ≤ 1

λ
, ∀λ > 0.

Let f ∈ L2(U ;C) and u ∈ D be such that (λ +M − Lβ0
)u = f . It follows from Lemma 3.4 (2) that

Eβ0
(u, ϕ) + (λ+M)⟨u, ϕ⟩L2 = ⟨f, ϕ⟩L2 for all ϕ ∈ H1(U ;C). As a result, Lemma 3.3 (2) ensures

min

{
1

2
, C∗

}
∥u∥2H1 + λ∥u∥2L2 ≤ ℜEβ0

(u, ϕ) + λ∥u∥2L2 ≤ ∥f∥L2∥u∥L2 ,
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yielding the expected upper bound.

As a result, we apply the Hille-Yosida theorem (see e.g. [55, 22]) to find that (Lβ0
− M,D)

generates a C0-semigroup of contractions {Tt}t≥0 in L2(U ;C). By Lemma 3.4 (3), this semigroup

must be positive. Thanks to the compactness of (Lβ0 −M)−1 by Lemma 3.1, it follows from [22,

Theorem II.4.29] that (Tt)t≥0 is immediately compact.

It remains to show that (Tt)t≥0 extends to an analytic semigroup. Let S be defined as in (3.13) in

the proof of Theorem 3.1 and θ ∈ (0, π2 ) be such that S ⊂ {λ ∈ C : | arg λ| ≤ θ}. Then, σ(−Lβ0
+M) ⊂

{λ ∈ C : | arg λ| ≤ θ} \ {0}. Fixing θ∗ ∈ (θ, π2 ) and setting Σθ∗ := {λ ∈ C : | arg λ| > θ∗} ⊂ C \ S, we
find Σθ∗ ⊂ ρ(Lβ0

−M) and there is C1 > 0 such that d(λ, S) ≥ C1|λ| for all λ ∈ Σθ∗ . An application

of [55, Theorem 1.3.9] yields

∥(λ+M − Lβ0
)−1∥L2→L2 ≤ 1

d(λ, S)
≤ 1

C1|λ|
, ∀λ ∈ Σθ∗ .

As a result, [55, Theorem 2.5.2] enables us to extend (Tt)t≥0 to an analytic semigroup. This completes

the proof. □

3.4. Adjoint operator and semigroup. Let (L∗
β0
,D∗) be the adjoint operator of (Lβ0

,D) in

L2(U ;C). Then, D∗ is given by

D∗ :=
{
w ∈ L2(U ;C) : ∃f ∈ L2(U ;C) s.t. ⟨w,Lβ0ϕ⟩L2 = ⟨f, ϕ⟩L2 , ∀ϕ ∈ D

}
.

For each w ∈ D∗, L∗
β0
w is the unique element in L2(U ;C) such that ⟨w,Lβ0

ϕ⟩L2 = ⟨L∗
β0
w, ϕ⟩L2 for all

ϕ ∈ D. Integration by parts yields

L∗
β0
w =

1

2
∆w +∇ · ((p+ β0∇U)w)− eβ0w, w ∈ C∞

0 (U ;C). (3.14)

The following lemma summarizes some properties of the operator −L∗
β0
.

Lemma 3.5. Assume (H1)-(H3). Then, the following hold.

(1) σ(−L∗
β0
) = σ(−Lβ0

) ⊂ {λ ∈ C : ℜλ > −M}.
(2) D∗ =

{
w ∈ H1(U ;C) : L∗

β0
w ∈ L2(U ;C)

}
.

(3) For each ϕ ∈ H1(U ;C) and w ∈ D∗ one has ⟨ϕ,−L∗
β0
w⟩L2 = Eβ0

(ϕ,w).

(4) λ1 is a simple and dominating eigenvalue of −L∗
β0

with the associated eigenspace spanned over

C by ṽ∗1 for some ṽ∗1 ∈ D∗ a.e. positive in U .

Proof. (1) Note that σ(−L∗
β0
) = σ(−Lβ0). Since the spectrum of −Lβ0 consists of eigenvalues due

to Lemma 3.1 (1), and the coefficients of −Lβ0 are real-valued, we have Λ ∈ σ(−Lβ0) if and only if

Λ ∈ σ(−Lβ0). Hence, σ(−Lβ0) = σ(−Lβ0), which leads to σ(−L∗
β0
) = σ(−Lβ0).

(2) Since −1 −M ∈ ρ(−L∗
β0
) by (1), we see that D∗ = (−L∗

β0
+ 1 +M)−1L2(U ;C). Following

similar arguments as in the proof of Lemma 3.4, we deduce

(−L∗
β0

+M + 1)−1L2(U ;C) =
{
w ∈ H1(U ;C) : L∗

β0
w ∈ L2(U ;C)

}
,

leading to the desired result.

(3) Note that ⟨ϕ,−L∗
β0
w⟩L2 = ⟨−Lβ0

ϕ,w⟩L2 for all ϕ ∈ D and w ∈ D∗. It follows from Lemma 3.4

(2) that ⟨ϕ,−L∗
β0
w⟩L2 = Eβ0

(ϕ,w) for all ϕ ∈ D and w ∈ D∗. Since C∞
0 (U ;C) ⊂ D and is dense in

H1(U ;C) (see Remark 3.2), the conclusion follows from standard approximation arguments.

(4) This follows from (1) and arguments as in the proof of Theorem 3.1. □
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Denote by (T ∗
t )t≥0 the dual semigroup of (Tt)t≥0. It is well-known (see e.g. [55, Corollary 1.10.6])

that (T ∗
t )t≥0 is a C0-semigroup with infinitesimal generator (L∗

β0
,D∗).

Theorem 3.3. Assume (H1)-(H3). Then, (T ∗
t )t≥0 is an analytic semigroup. Moreover, it is positive,

i.e., T ∗
t L

2
+(U) ⊂ L2

+(U) for all t ≥ 0, and immediately compact.

Proof. Note that ρ(L∗
β0

− M) = ρ(Lβ0
− M). Thanks to [55, Theorem 2.5.2], the conclusion is a

straightforward consequence of the analyticity of (Tt)t≥0 and the fact ∥(λ +M − L∗
β0
)−1∥L2→L2 =

∥(λ +M − Lβ0
)−1∥L2→L2 for each λ ∈ C with ℜλ > 0. The positivity and immediate compactness

follow from arguments as in the proof of Theorem 3.2. □

4. Stochastic representation of semigroups

In this section, we study the stochastic representation of the semigroup (T ∗
t )t≥0. Subsection 4.1 and

Subsection 4.2 are respectively devoted to the stochastic representation and estimates of semigroups

generated by L∗
β0

restricted to bounded domains with zero Dirichlet boundary condition. In Subsection

4.3, we establish the stochastic representation for (T ∗
t )t≥0.

4.1. Stochastic representation in bounded domains. Let Ω ⊂⊂ U be a connected subdomain

with C2 boundary. Denote by LX the diffusion operator associated with Xt or (2.3), namely,

LX =
1

2
∆ + (p− q) · ∇.

For each N > 1, let LX
N |Ω be LX considered as an operator in LN (Ω;C) with domain W 2,N (Ω;C)∩

W 1,N
0 (Ω;C). It is well-known (see e.g. [29, 55, 22]) that the spectrum of −LX

N |Ω is discrete and

contained in {λ ∈ C : ℜλ > 0} and LX
N |Ω generates an analytic semigroup (S

(Ω,N)
t )t≥0 of contractions

on LN (Ω;C) that satisfies S
(Ω,N)
t LN

+ (Ω) ⊂ LN
+ (Ω) for all t ≥ 0. Moreover, the following stochastic

representation holds: for each f ∈ C(Ω;C),

S
(Ω,N)
t f(x) = Ex

[
f(Xt)1{t<τΩ}

]
, ∀(x, t) ∈ Ω× [0,∞), (4.1)

where τΩ := inf{t ≥ 0 : Xt ̸∈ Ω} is the first time that Xt exits Ω.

For N > 1, let L∗,N
β0

|Ω be L∗
β0

considered as an operator in LN (Ω;C) with domain W 2,N (Ω;C) ∩
W 1,N

0 (Ω;C).

Proposition 4.1. The following statements hold.

(1) The spectrum of −L∗,N
β0

|Ω is discrete and is contained in {λ ∈ C : ℜλ > 0}.
(2) L∗,N

β0
|Ω generates an analytic semigroup of contractions (T

(∗,Ω,N)
t )t≥0 on LN (Ω;C) that is

positive, namely, T
(∗,Ω,N)
t LN

+ (Ω) ⊂ LN
+ (Ω) for all t ≥ 0.

(3) For each f ∈ LN (Ω;C) and f̃ := e−
Q
2 −β0Uf ,

T
(∗,Ω,N)
t f̃ = e−

Q
2 −β0US

(Ω,N)
t f, ∀t ≥ 0.

(4) For each f ∈ C(Ω;C) and f̃ := e−
Q
2 −β0Uf ,

T
(∗,Ω,N)
t f̃(x) = e−

Q(x)
2 −β0U(x)Ex

[
f(Xt)1{t<τΩ}

]
, ∀(x, t) ∈ Ω× [0,∞).

(5) For any N1, N2 > 1, T
(∗,Ω,N1)
t and T

(∗,Ω,N2)
t coincide on LN1(Ω;C)∩LN2(Ω;C) for all t ≥ 0.
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Proof. For f ∈W 2,N (Ω;C) ∩W 1,N
0 (Ω;C), direct calculations give L∗,N

β0
|Ωf̃ = e−

Q
2 −β0ULX

N |Ωf , where
f̃ := e−

Q
2 −β0Uf , the conclusions (1)-(4) follow immediately from the corresponding properties of LX

N |Ω
and (S

(Ω,N)
t )t≥0.

In particular, for any N1, N2 > 1 we have T
(∗,Ω,N1)
t f̃ = T

(∗,Ω,N2)
t f̃ for all f̃ ∈ C(Ω;C). Statement

(5) then follows from the density of C(Ω;C) in LN (Ω;C) for any N > 1. □

4.2. Estimates of semigroups in bounded domains. We prove two useful lemmas concerning

some estimates of the semigroup (T
(∗,Ω,N)
t )t≥0.

Lemma 4.1. Let N ≥ 2 and f̃ ∈ LN (Ω). Then, w̃ := T
(∗,Ω,N)
• f̃ satisfies the following inequalities:

1

N

∫
Ω

|w̃|N (·, t)dx+
N − 1

2

∫ t

t1

∫
Ω

|w̃|N−2|∇w̃|2dxds+ C∗

∫ t

t1

∫
Ω

α|w̃|Ndxds

≤ 1 + eNM(t−t1)

N

∫
Ω

|w̃(·, t1)|Ndx, ∀t > t1 ≥ 0,

and

1

N

∫
Ω

|w̃|N (·, t)dx+
N − 1

2

∫ t

t2

∫
Ω

|w̃|N−2|∇w̃|2dxds+ C∗

∫ t

t2

∫
Ω

α|w̃|Ndxds

≤ 2

N(t2 − t1)

∫ t2

t1

∫
Ω

|w̃|Ndxds, ∀t > t2 > t1 ≥ 0.

Proof. Fix N ≥ 2 and f̃ ∈ LN (Ω). Then, w̃ := T
(∗,Ω,N)
• f̃ satisfies

∂tw̃ = L∗,N
β0

|Ωw̃ in Ω× (0,∞).

Recall L∗
β0

from (3.14) and L∗,N
β0

from Subsection 4.1. Multiplying the above equation by |w̃|N−2w̃

and integrating by parts, we find, after straightforward calculations, for t > 0∫
Ω

|w̃|N−2w̃∂tw̃dx = −N − 1

2

∫
Ω

|w̃|N−2|∇w̃|2dx−
∫
Ω

eβ0,N |w̃|Ndx, (4.2)

where we recall the definition of eβ0,N from (3.3).

Since |w̃|N−2w̃∂tw̃ = 1
N ∂t|w̃|

N , we integrate the above equality on [t1, t] ⊂ [0,∞) to derive

1

N

∫
Ω

|w̃|N (·, t)dx+
N − 1

2

∫ t

t1

∫
Ω

|w̃|N−2|∇w̃|2dxds+
∫ t

t1

∫
Ω

eβ0,N |w̃|Ndxds =
1

N

∫
Ω

|w̃|N (·, t1)dx.

As Lemma 3.2 (3) gives eβ0,N +M ≥ C∗α for all N ≥ 2, we find

1

N

∫
Ω

|w̃|N (·, t)dx+
N − 1

2

∫ t

t1

∫
Ω

|w̃|N−2|∇w̃|2dxds+ C∗

∫ t

t1

∫
Ω

α|w̃|Ndxds

≤M

∫ t

t1

∫
Ω

|w̃|Ndxds+
1

N

∫
Ω

|w̃|N (·, t1)dx, ∀t > t1 ≥ 0.

(4.3)

Setting g(t) :=
∫ t

t1

∫
Ω
|w̃|Ndxds for t ≥ t1, we arrive at 1

N g
′ ≤ Mg + 1

N ∥w̃(·, t1)∥NLN for all t > t1.

Gronwall’s inequality gives g(t) ≤ eNM(t−t1)

NM ∥w̃(·, t1)∥NLN for all t > t1. Inserting this into (4.3) yields

the first inequality.
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Now, we prove the second inequality. Fix t1, t2 ∈ [0,∞) with t1 < t2. Let η ∈ C∞((0,∞)) be

non-negative and non-decreasing such that η = 0 on [0, t1], η = 1 on [t2,∞] and max[t1,t2] η
′ ≤ 2

t2−t1
.

Multiplying (4.2) by η and integrating by parts, we find for t > t2,

1

N

∫
Ω

η(t)|w̃|N (·, t)dx− 1

N

∫ t

0

∫
Ω

η′|w̃|Ndxds

= −N − 1

2

∫ t

0

∫
Ω

η|w̃|N−2|∇w̃|2dxds−
∫ t

0

∫
Ω

ηeβ0,N |w̃|Ndxds.

The definition of η then gives

1

N

∫
Ω

|w̃|N (·, t)dx+
N − 1

2

∫ t

t2

∫
Ω

|w̃|N−2|∇w̃|2dxds+
∫ t

t2

∫
Ω

eβ0,N |w̃|Ndxds

≤ 1

N

∫ t2

t1

∫
Ω

η′|w̃|Ndxds ≤ 2

N(t2 − t1)

∫ t2

t1

∫
Ω

|w̃|Ndxds, ∀t > t2.

This completes the proof. □

Lemma 4.2. For each t > 0, there exists C = C(t), independent of the domain Ω, such that

∥T (∗,Ω,2∗)
t f̃∥L2(Ω) ≤ C∥f̃∥L2∗ (Ω), ∀f̃ ∈ L2∗(Ω),

where 2∗ := 2(d+2)
d+4 ∈ (1, 2) is the dual exponent of 2 + 4

d .

Proof. Take N ∈ (1, 2]. Then, N ′ := N
N−1 ≥ 2. Denote by (T

(Ω,N ′)
t )t≥0 the semigroup on LN ′

(Ω)

that is dual to (T
(∗,Ω,N)
t )t≥0. Let LN ′

β0
|Ω be Lβ0 considered as an operator in LN ′

(Ω) with domain

W 2,N ′
(Ω) ∩W 1,N ′

0 (Ω). It is not hard to check that LN ′

β0
|Ω, being Lβ0

considered as an operator in

LN ′
(Ω) with domain W 2,N ′

(Ω;C) ∩W 1,N ′

0 (Ω;C), is the generator of (T
(Ω,N ′)
t )t≥0.

Take g̃ ∈ LN ′
(Ω) and denote ṽ := T

(Ω,N ′)
• g̃. Then, ṽ is the solution of

∂tṽ = LN ′

β0
|Ωṽ in Ω× (0,∞).

Multiplying this equation by |ṽ|N ′−2ṽ and integrating by parts, we find, after straightforward calcu-

lations, for t > 0,∫
Ω

|ṽ|N
′−2ṽ∂tṽdx = −N

′ − 1

2

∫
Ω

|ṽ|N
′−2|∇ṽ|2dx−

∫
Ω

e∗β0,N ′ |ṽ|N
′
dx,

where e∗β0,N ′ := eβ0
− 1

N ′ (∇·p+β0∆U). We can follow the proof of Lemma 3.2 (3) to show e∗β0,N
+M ≥

C∗α in U for all N ≥ 1. Then, arguing as in the proof of Lemma 4.1 yields

1

N ′

∫
Ω

|ṽ|N
′
(·, t)dx+

N ′ − 1

2

∫ t

0

∫
Ω

|ṽ|N
′−2|∇ṽ|2dxds+ C∗

∫ t

0

∫
Ω

α|ṽ|N
′
dxds

≤ 1 + eN
′Mt

N ′

∫
Ω

|g̃|N
′
dx, ∀t > 0,

(4.4)

and

1

N ′

∫
Ω

|ṽ|N
′
(·, t)dx+

N ′ − 1

2

∫ t

t2

∫
Ω

|ṽ|N
′−2|∇ṽ|2dxds+ C∗

∫ t

t2

∫
Ω

α|ṽ|N
′
dxds

≤ 2

N ′(t2 − t1)

∫ t2

t1

∫
Ω

|ṽ|N
′
dxds, ∀t > t2 > t1 ≥ 0.

(4.5)
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f E• [f(Xt)1{t<SΓ}
]

f̃ T ∗
t f̃

×e−
Q
2 −β0U×e−

Q
2 −β0U

Figure 3. Illustration of the stochastic representation.

The Sobolev embedding theorem gives

∥ṽN′
2 ∥L2κ(Ω×[0,t]) ≤ C1

(
sup

s∈[0,t]

∥ṽN′
2 (·, s)∥L2(Ω) + ∥∇ṽN′

2 ∥L2(Ω×[0,t])

)
,

where κ = d+2
d and C1 > 0 depends only on d. This together with (4.4) gives rise to(∫ t

0

∫
Ω

|ṽ|κN
′
dxds

) 1
κ

≤ 2C2
1

(
sup

s∈[0,t]

∫
Ω

|ṽ(x, s)|N
′
dx+

|N ′|2

4

∫ t

0

∫
Ω

|ṽ|N
′−2|∇ṽ|2dxds

)

≤ C2(1 + eN
′Mt)

∫
Ω

|g̃|N
′
dx, ∀t > 0,

where C2 := 2C2
1

(
1 + N ′

2(N ′−1)

)
. We then deduce from (4.5) (with κN ′ instead of N ′) that

1

κN ′

∫
Ω

|ṽ|κN
′
(·, t)dx+

κN ′ − 1

2

∫ t

t2

∫
Ω

|ṽ|κN
′−2|∇ṽ|2dxds+ C∗

∫ t

t2

∫
Ω

α|ṽ|κN
′
dxds

≤ 2

κN ′(t2 − t1)

∫ t2

t1

∫
Ω

|ṽ|κN
′
dxds ≤ 2

κN ′(t2 − t1)
Cκ

2 (1 + eN
′Mt2)κ∥g̃∥κN

′

LN′ (Ω)

for all t > t2 > t1 ≥ 0, where we used (4.4) in the second inequality.

As a consequence, for each t > 0, there exists C3 = C3(d,N
′, t) > 0 such that

∥T (Ω,N ′)
t g̃∥LκN′ (Ω) = ∥ṽ(·, t)∥LκN′ (Ω) ≤ C3∥g̃∥LN′ (Ω).

Since T (Ω,N ′) and T
(∗,Ω,N)
t are adjoint to each other, it follows that

∥T (∗,Ω,N)
t f̃∥LN (Ω) ≤ C3∥f̃∥LN∗ (Ω), ∀f̃ ∈ LN∗(Ω) ∩ LN (Ω).

where N∗ := κN ′

κN ′−1 . Thanks to Proposition 4.1 (5), the above inequality holds for all f̃ ∈ LN∗(Ω).

Setting N = 2 yields 2∗ = 2(d+2)
d+4 ∈ (1, 2). This completes the proof. □

4.3. Stochastic representation. We prove the following theorem concerning the stochastic repre-

sentation of (T ∗
t )t≥0.

Theorem 4.1. Assume (H1)-(H3). For each f ∈ Cb(U ;C) satisfying f̃ := fe−
Q
2 −β0U ∈ L2(U ;C),

T ∗
t f̃(x) = e−

Q(x)
2 −β0U(x)Ex

[
f(Xt)1{t<SΓ}

]
, ∀(x, t) ∈ U × [0,∞).

For the reader’s convenience, we include Figure 3 to clarify the stochastic representation.



26 ALEXANDRU HENING, WEIWEI QI, ZHONGWEI SHEN, AND YINGFEI YI

Consider the following initial value problem associated with the operator L∗
β0
:{

∂tw̃ = 1
2∆w̃ +∇ · ((p+ β0∇U)w̃)− eβ0

w̃ in U × [0,∞),

w̃(·, 0) = f̃ in U .
(4.6)

Definition 4.1. A function w̃ ∈ C(U × [0,∞))∩L2
loc([0,∞),H1(U)) is called a weak solution of (4.6)

if for each ϕ ∈ C1,1
0 (U × [0,∞)) and t ∈ [0,∞) one has∫

U
w̃(·, t)ϕ(·, t)dx−

∫
U
f̃ϕ(·, 0)dx−

∫ t

0

∫
U
w̃∂tϕdxds

= −1

2

∫ t

0

∫
U
∇w̃ · ∇ϕdxds−

∫ t

0

∫
U
(p+ β0∇U) · w̃∇ϕdxds−

∫ t

0

∫
U
eβ0

w̃ϕdxds.

Lemma 4.3. Assume (H1)-(H3). For each f̃ ∈ C(U) ∩ L2(U), (4.6) admits at most one weak

solution.

The proof of the above lemma follows from energy methods and approximation arguments. Since

it is somewhat standard we present its proof in Appendix A.2.

Now, we prove Theorem 4.1.

Proof of Theorem 4.1. Treating the real and imaginary parts separately, we only need to prove the

theorem for f ∈ Cb(U) such that f̃ := fe−
Q
2 −β0U ∈ L2(U). Fix such an f .

We show T ∗
• f̃ is a weak solution of (4.6). Due to the analyticity of (T ∗

t )t≥0 (see Theorem 3.3) and

Lemma 3.5, we find

(1) T ∗
• f̃ ∈ C([0,∞), L2(U)) ∩ C1((0,∞), L2(U));

(2) T ∗
t f̃ ∈ D∗ ⊂ H1(U) ∩H2

loc(U) for all t > 0;

(3) d
dtT

∗
t f̃ = L∗

β0
T ∗
t f̃ for all t > 0.

Since f̃ ∈ C(U), the classical regularity theory of parabolic equations yields that T ∗
• f̃ ∈ C(U× [0,∞)).

Applying Lemma 3.3 (2) and Lemma 3.5, we find for each t > 0,

min

{
1

2
, C∗

}
∥T ∗

t f̃∥2H1 ≤ Eβ0
(T ∗

t f̃ , T
∗
t f̃) +M∥T ∗

t f̃∥2L2

= −⟨T ∗
t f̃ ,L∗

β0
T ∗
t f̃⟩L2 +M∥T ∗

t f̃∥2L2

= −⟨T ∗
t f̃ ,

d

dt
T ∗
t f̃⟩L2 +M∥T ∗

t f̃∥2L2 = −1

2

d

dt
∥T ∗

t f̃∥2L2 +M∥T ∗
t f̃∥2L2 .

It follows that

min

{
1

2
, C∗

}∫ t

0

∥T ∗
s f̃∥2H1ds ≤

1

2
∥f̃∥2L2 +M

∫ t

0

∥T ∗
s f̃∥2L2ds, ∀t > 0.

This yields T ∗
• f̃ ∈ L2

loc([0,∞),H1(U)). By (3), it is easy to check that the integral identity in Definition

4.1 holds with w̃ replaced by T ∗
• f̃ . As a consequence, T ∗

• f̃ is a weak solution of (4.6).

Define

w̃(x, t) := e−
Q(x)

2 −β0U(x)Ex
[
f(Xt)1{t<SΓ}

]
, (x, t) ∈ U × [0,∞).

We claim that w̃ is also a weak solution of (4.6). Then, Lemma 4.3 yields T ∗
• f̃ = w̃, leading to the

conclusion of the theorem.

The continuity of w̃ in U × [0,∞) follows from the definition and continuity properties of Xt. We

show w̃ ∈ L2
loc([0,∞),H1(U)). Let {Un}n∈N be as in Subsection 2.3. It follows from Lemma 2.1 and
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Proposition 4.1 (4) that w̃ = limn→∞ T
(∗,Un,2)
• f̃ |Un

in U × [0,∞), where we recall from Subsection

4.1 that (T
(∗,Un,2)
t )t≥0 is the positive analytic semigroup of contractions on L2(Un;C) generated by

L∗,2
β0

|Un
with domain W 2,2(Un;C) ∩W 1,2

0 (Un;C).
For convenience, we define w̃n := T

(∗,Un,2)
• f̃ |Un

for n ∈ N. Then, limn→∞ w̃n = w̃. Lemma 4.1

(with t1 = 0) gives for each t ∈ [0,∞) and n ∈ N,

1

2

∫
Un

w̃2
n(·, t)dx+

1

2

∫ t

0

∫
Un

|∇w̃n|2dxds+ C∗

∫ t

0

∫
Un

αw̃2
ndxds ≤

1 + e2Mt

2

∫
Un

f̃2dx.

Letting n → ∞ yields w̃ ∈ L2
loc([0,∞),H1(U)). Since ∂tw̃n = L∗,2

β0
|Un

w̃n in L2(Un) for all t > 0 and

n ∈ N, standard approximation arguments ensure that w̃ is a weak solution of (4.6). This finishes the

proof. □

5. QSD: existence, uniqueness and convergence

In this section, we study the existence and uniqueness of QSDs of Xt, as well as the exponential

convergence of the process Xt conditioned on the event [t < SΓ] to QSDs. In Subsection 5.1, we show

the existence of QSDs of Xt. In Subsection 5.2, we study the sharp exponential convergence of Xt

with compactly supported initial distributions. In Subsection 5.3, we investigate the uniqueness of

QSDs of Xt and the exponential convergence of Xt with arbitrary initial distribution. The proofs of

Theorems A and B are outlined in Subsection 5.4.

5.1. Existence. We construct QSDs for Xt. Recall that λ1 and ṽ1 are given in Theorem 3.1.

Theorem 5.1. Assume (H1)-(H3). Then, the following statements hold.

(1) λ1 > 0 and
∫
U ṽ1e

−Q
2 −βUdx < ∞ for any β > 0. Hence, dν1 := ṽ1e

−Q
2

−β0U∫
U ṽ1e

−Q
2

−β0Udx
dx ∈ P(U)

and satisfies
∫
U e

βUdν1 <∞ for any β ∈ [0, β0).

(2) For each f ∈ Cb(U),

Eν1
[
f(Xt)1{t<SΓ}

]
= e−λ1t

∫
U
fdν1, ∀t ≥ 0.

(3) ν1 is a QSD of Xt with extinction rate λ1.

We need the following lemma. Recall that the weight function α is defined in (3.1).

Lemma 5.1. Assume (H1)-(H3). Then, ṽ ∈ L2(U , αdx;C) implies
∫
U |ṽ|e−

Q
2 −βUdx < ∞ for any

β > 0.

Proof. Let β > 0. As
∫
U |ṽ|e−

Q
2 −βUdx ≤

(∫
U α|ṽ|

2dx
) 1

2
(∫

U
1
αe

−Q−2βUdx
) 1

2 , it suffices to verify∫
U

1

α
e−Q−2βUdx <∞. (5.1)

Let α̃(t) := max{ 1
t2 , 1} for t > 0. According to the definition of α given in (3.1) and the fact that

infU α > 0, there exists C1 > 0 such that α(x) ≥ C1

∑d
i=1 α̃(xi) for x ∈ U . Since U(x) = V (ξ−1(x)) ≥
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∑d
i=1 Ṽ (ξ−1

i (xi)) for x ∈ U due to (H3)(2) and e−Q =
[
∏d

i=1 ai(ξ
−1
i (1))]

1
2

[
∏d

i=1 ai(ξ
−1
i (xi))]

1
2
, we derive

∫
U

1

α
e−Q−2βUdx ≤

[∏d
i=1 ai(ξ

−1
i (1))

] 1
2

C1

∫
U

∏d
i=1 exp

{
−2βṼ (ξ−1

i (xi))
}

(∑d
i=1 α̃(xi)

)
×
[∏d

i=1 ai(ξ
−1
i (xi))

] 1
2

dx.

For each k ∈ {1, . . . , d}, let Σk be the collection of all subsets of {1, . . . , d} with k elements, and set

Ak := sup
σ∈Σk

∫
{xσ=(xi)i∈σ :xi>0, ∀i∈σ}

∏
i∈σ exp

{
−2βṼ (ξ−1

i (xi))
}

(∑
i∈σ α̃(xi)

)
×
[∏

i∈σ ai(ξ
−1
i (xi))

] 1
2

dxσ.

Clearly, (5.1) holds if Ad <∞. We show this by induction.

First, we show A1 < ∞. Following the arguments leading to (A.2), we can find C2 > 0 such that

ai(ξ
−1
i (xi)) ≥ C2

2x
2
i for xi ∈ [0, 1] and i ∈ {1, . . . , d}. It follows that for each i ∈ {1, . . . , d},

∫ ∞

0

e−2βṼ (ξ−1
i (xi))

α̃(xi)
[
ai(ξ

−1
i (xi))

] 1
2

dxi ≤
1

C2

∫ 1

0

e−2βṼ (ξ−1
i (xi))

α̃(xi)xi
dxi +

∫ ∞

1

e−2βṼ (ξ−1
i (xi))

α̃(xi)
[
ai(ξ

−1
i (xi))

] 1
2

dxi

≤ 1

C2

∫ 1

0

xie
−2βṼ (ξ−1

i (xi))dxi +

∫ ∞

1

e−2βṼ (ξ−1
i (xi))[

ai(ξ
−1
i (xi))

] 1
2

dxi

≤ 1

2C2
+

∫ ∞

ξ−1
i (1)

e−2βṼ (zi)

ai(zi)
dzi,

where we used the definition of α̃ in the second inequality, and the non-negativity of Ṽ a simple change

of variables in the third inequality. Since
∫∞
ξ−1
i (1)

e−2βṼ (zi)

ai(zi)
dzi <∞ by (H3)(2), we find A1 <∞.

Suppose Ak <∞ for some k ∈ {1, . . . , d− 1}, we show Ak+1 <∞. We only prove

A1
k+1 :=

∫ ∞

0

· · ·
∫ ∞

0

∏k+1
i=1 exp

{
−2βṼ (ξ−1

i (xi))
}

(∑k+1
i=1 α̃(xi)

)
×
[∏k+1

i=1 ai(ξ
−1
i (xi))

] 1
2

dx1 · · · dxk+1 <∞;

integrals corresponding to other σ ∈ Σk+1 can be treated in exactly the same way. Note that

B0 :=

∫ 1

0

· · ·
∫ 1

0

∏k+1
i=1 exp

{
−2βṼ (ξ−1

i (xi))
}

(∑k+1
i=1 α̃(xi)

)
×
[∏k+1

i=1 ai(ξ
−1
i (xi))

] 1
2

dx1 · · · dxk+1

≤ 1

Ck+1
2

∫ 1

0

· · ·
∫ 1

0

1(∑k+1
i=1

1
x2
i

)
×
∏k+1

i=1 xi
dx1 · · · dxk+1

≤ 1

(k + 1)Ck+1
2

∫ 1

0

· · ·
∫ 1

0

1(∏k+1
i=1 xi

)1− 2
k+1

dx1 · · · dxk+1 <∞.
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For j ∈ {1, . . . , k + 1}, we see that

Bj :=

∫ ∞

0

· · ·
∫ ∞

1

· · ·
∫ ∞

0

∏k+1
i=1 exp

{
−2βṼ (ξ−1

i (xi))
}

(∑k+1
i=1 α̃(xi)

)
×
[∏k+1

i=1 ai(ξ
−1
i (xi))

] 1
2

dx1 · · · dxj · · · dxk+1

≤ Ak

∫ ∞

1

e−2βṼ (ξ−1
j (xj))[

aj(ξ
−1
j (xj))

] 1
2

dxj = Ak

∫ ∞

ξ−1
j (1)

e−2βṼ (zj)

aj(zj)
dzj <∞,

where we used (H3)(2) in the last inequality. It follows that A1
k+1 =

∑k+1
j=0 Bj <∞. This completes

the proof. □

Proof of Theorem 5.1. (1) Since ṽ1 ∈ H1(U) ⊂ L2(U , αdx), Lemma 5.1 yields
∫
U ṽ1e

−Q
2 −βUdx < ∞

for any β > 0.

To see λ1 > 0, we fix f ∈ C∞
0 (U) and set f̃ := fe−

Q
2 −β0U . Clearly, f̃ ∈ L2(U). Theorem 4.1 gives

e
−Q(x)

2 −β0U(x)Ex
[
f(Xt)1{t<SΓ}

]
= T ∗

t f̃(x), ∀(x, t) ∈ U × [0,∞).

Set v1 := Cṽ1e
−Q

2 −β0U , where C :=
(∫

U ṽ1e
−Q

2 −β0Udx
)−1

. Obviously,∫
U
v1e

βUdx = C

∫
U
ṽ1e

−Q
2 −(β0−β)Udx <∞, ∀β ∈ [0, β0).

Moreover, we calculate∫
U
v1E• [f(Xt)1{t<SΓ}

]
dx = C⟨ṽ1, T ∗

t f̃⟩L2 = C⟨Ttṽ1, f̃⟩L2 , ∀t ≥ 0,

which together with Ttṽ1 = e−λ1tṽ1 yields∫
U
v1E• [f(Xt)1{t<SΓ}

]
dx = Ce−λ1t

∫
U
ṽ1f̃dx = e−λ1t

∫
U
v1fdx, ∀t ≥ 0. (5.2)

For each x ∈ U , the fact Px [SΓ <∞] = 1 implies limt→∞ Ex
[
f(Xt)1{t<SΓ}

]
= 0. This together

with the fact supx∈U
∣∣Ex

[
f(Xt)1{t<SΓ}

]∣∣ ≤ ∥f∥∞ for all t ≥ 0 and the dominated convergence

theorem implies limt→∞
∫
U v1E

• [f(Xt)1{t<SΓ}
]
dx = 0. From which, we conclude λ1 > 0, otherwise

a contradiction can be easily derived from (5.2).

(2) Fix f ∈ Cb(U) and take a sequence of functions {fn}n∈N ⊂ C∞
0 (U) that locally uniformly

converges to f as n→ ∞ and satisfies ∥fn∥∞ ≤ ∥f∥∞ for all n ∈ N. It follows from (5.2) that for each

t ≥ 0 and n ∈ N,
∫
U E• [fn(Xt)1{t<SΓ}

]
dν1 = e−λ1t

∫
U fndν1, where dν1 := v1dx. Letting n → ∞,

we conclude the result from the dominated convergence theorem.

(3) Applying (2) with f = 1U , we find Pν1 [t < SΓ] = Eν1
[
1{t<SΓ}

]
= e−λ1t for all t ≥ 0. Applying

(2) again, we conclude
Eν1 [f(Xt)1{t<SΓ}]

Pν1 [t<SΓ]
=
∫
U fdν1 for all f ∈ Cb(U). That is, ν1 is a QSD of Xt and

λ1 is the associated extinction rate. □

5.2. Sharp exponential convergence. We study the long-time dynamics of Xt before reaching the

boundary Γ. Ahead of stating the result, we recall and introduce some terminologies and notations.

Recall that the spectra of −L∗
β0

and −Lβ0 coincide, are discrete and contained in {λ ∈ C : ℜλ >
0 and arg λ ≤ θ} for some θ ∈ (0, π2 ). The number λ1 is the principal eigenvalue of both −L∗

β0
and
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−Lβ0
. Let ṽ∗1 be as in Lemma 3.5 (4) and suppose it satisfies the normalization

⟨ṽ1, ṽ∗1⟩L2 =

∫
U
ṽ1e

−Q
2 −β0Udx, (5.3)

where ṽ1 is given in Theorem 3.1. The last integral converges thanks to Lemma 5.1.

Set λ2 := min
{
ℜλ : λ ∈ σ(−L∗

β0
) and ℜλ > λ1

}
. Then, λ2 > λ1 and {λ ∈ σ(−L∗

β0
) : ℜλ = λ2}

consists of finitely many elements. For k = 1, 2, let P∗
k and Pk be respectively the spectral projections

of −L∗
β0

and −Lβ0 corresponding to {λ ∈ σ(−L∗
β0
) : ℜλ = λk}. Clearly, P∗

1 and P1 are adjoint to each

other and ranP1 and ranP∗
1 of −Lβ0

and −L∗
β0

corresponding to λ1 are respectively spanned over R
by ṽ1 and ṽ∗1 . Since the coefficients of −L∗

β0
and −Lβ0

are real-valued resulting in the symmetry of

the set {λ ∈ σ(−L∗
β0
) : ℜλ = λ2} with respect to the real axis, P∗

2 and P2 are also adjoint to each

other.

Suppose the set {λ ∈ σ(−L∗
β0
) : ℜλ = λ2} consists of N∗ elements and is enumerated as

λ2,i, i ∈ {0, . . . , N∗ − 1}.

Denote by P∗
2,i and P2,i the spectral projections of −L∗

β0
and −Lβ0 corresponding to λ2,i and λ2,i,

respectively. Note that P∗
2,i and P2,i are adjoint to each other. Obviously, P∗

2 =
∑N∗−1

i=0 P∗
2,i and

P2 =
∑N∗−1

i=0 P2,i.

For i ∈ {0, . . . , N∗ − 1}, we let

• Ni be the order of the pole λ2,i of the resolvent of −L∗
β0
,

• di = dim(ranP∗
2,i),

• {ṽ(∗,2)i,j : j ∈ {1, . . . , di}} and {ṽ(2)i,j : j ∈ {1, . . . , di}} be generalized eigenfunctions of −L∗
β0

and −Lβ0
that form bases of ranP∗

2,i and ranP2,i, respectively, and satisfy the normalization

⟨ṽ(2)i,j , ṽ
(∗,2)
i,k ⟩L2 = δjk, ∀j, k ∈ {1, . . . , di}. (5.4)

Recall that ν1 is the QSD of Xt obtained in Theorem 5.1, and {Tt}t≥0 and {T ∗
t }t≥0 are positive

and analytic semigroups of contractions on L2(U ;C) generated by Lβ0
and L∗

β0
, respectively.

The main result in this subsection is stated in the next theorem.

Theorem 5.2. Assume (H1)-(H3). For each ν ∈ P(U) with compact support in U , there holds for

each f ∈ Cb(U),

Eν [f(Xt)
∣∣t < SΓ]−

∫
U
fdν1

=
eλ1t∫

U e
Q
2 +β0U ṽ∗1dν

∫
U
e

Q
2 +β0UT ∗

t P∗
2

(
f̃ − 1̃U

∫
U
fdν1

)
dν + o(e−(λ2−λ1)t)

=
e−(λ2−λ1)t∫

U e
Q
2 +β0U ṽ∗1dν

×
∫
U
e

Q
2 +β0U

N∗−1∑
j=0

e−iℑλ2,jt

Nj−1∑
k=0

tk

k!
(L∗

β0
+ λ2,j)

kP∗
2,j

(
f̃ − 1̃U

∫
U
fdν1

)
dν

+ o(e−(λ2−λ1)t) as t→ ∞,

where f̃ := e−
Q
2 −β0Uf and 1̃U := e−

Q
2 −β0U1U . In particular, the following hold:

• For each 0 < ϵ≪ 1,

lim
t→∞

e(λ2−λ1−ϵ)t∥Pν [Xt ∈ •|t < SΓ]− ν1∥TV = 0.
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• If f ∈ Cb(U) is such that P∗
2

(
f̃ − 1̃U

∫
U fdν1

)
̸= 0, then for a.e. x ∈ U , there is a

family of sets {Kx,ϵ}0<ϵ≪1 in (0,∞) satisfying Kx,ϵ2 ⊂ Kx,ϵ1 for 0 < ϵ1 < ϵ2 ≪ 1 and

limϵ→0 infT>0 |Kx,ϵ ∩ (T, T + 1)| = 1 such that

lim
t∈Kx,ϵ

t→∞

e(λ2−λ1+ϵ)t

∣∣∣∣Ex[f(Xt)
∣∣t < SΓ]−

∫
U
fdν1

∣∣∣∣ = ∞, ∀0 < ϵ≪ 1.

Remark 5.1. We make some remarks about Theorem 5.2.

(1) Theorem 5.2 appears to be a direct consequence of the decomposition of (T ∗
t )t≥0 according to

spectral projections ensured by Theorem 3.3 and the stochastic representation given in Theorem

4.1. This is however deceptive due to the following two reasons: (i) the stochastic represen-

tation given in Theorem 4.1 is only true for f ∈ Cb(U) such that e−
Q
2 −β0Uf ∈ L2(U); this is

indeed a restriction as e−
Q
2 −β0U and e

Q
2 +β0U are respectively unbounded near Γ and ∞; (ii)

the semigroup (T ∗
t )t≥0 is naturally defined on L2(U), but we need its L∞ properties.

(2) For f ∈ Cb(U), the function f̃ := e−
Q
2 −β0Uf does not necessarily belong to L2(U). Neither

does f̃ − 1̃U
∫
U fdν1. Its projections under P∗

2 and P∗
2,j are justified in Lemma 5.2 (2).

(3) Theorem 5.2 actually holds for all initial distributions ν ∈ P(U) satisfying the condition∫
U e

Q
2 +β0Udν <∞. See Remark 5.2 for more details.

We need two lemmas before proving Theorem 5.2. The first one concerns some important properties

of T ∗
t , P∗

1 and P∗
2 .

Lemma 5.2. Assume (H1)-(H3). The following hold.

(1) P∗
1 f̃ = ṽ∗1

∫
U f̃ e

Q
2 +β0Udν1 for all f̃ ∈ L2(U).

(2) Both P∗
1 and P∗

2 are well-defined on {fe−
Q
2 −β0U : f ∈ Cb(U)} with values in L2(U).

(3) T ∗
t P∗

2 =
∑N∗−1

j=0 T ∗
t P∗

2,j = e−λ2t
∑N∗−1

j=0 e−iℑλ2,jt
∑Nj−1

k=0
tk

k! (L
∗
β0

+ λ2,j)
kP∗

2,j for all t ≥ 0.

(4) For each 0 < ϵ≪ 1, there exists C = C(ϵ) > 0 such that∥∥T ∗
t − e−λ1tP∗

1 − T ∗
t P∗

2

∥∥
L2→L2 ≤ Ce−(λ2+ϵ)t, ∀t ≥ 0.

(5) Let f ∈ ranP∗
2 \ {0}. Then, for a.e. x ∈ U , there is a family of sets {Kx,ϵ}0<ϵ≪1 in (0,∞)

satisfying Kx,ϵ2 ⊂ Kx,ϵ1 for 0 < ϵ1 < ϵ2 ≪ 1 and limϵ→0 infT>0 |Kx,ϵ ∩ (T, T + 1)| = 1 such

that

lim
t∈Kx,ϵ

t→∞

e(λ2+ϵ)t|T ∗
t f |(x) = ∞, ∀0 < ϵ≪ 1.

Proof. (1) Note that ran(P∗
1 |L2(U)) is spanned over R by ṽ∗1 . By the Riesz representation theorem,

there exists h ∈ L2(U) such that

P∗
1 f̃ = ⟨f̃ , h⟩L2 ṽ∗1 , ∀f̃ ∈ L2(U). (5.5)

As P1 and P∗
1 are adjoint to each other it must be true that P1ṽ = ⟨ṽ, ṽ∗1⟩L2h for all ṽ ∈ L2(U).

Since ran(P1|L2(U)) is spanned over R by ṽ1, there exists C1 ∈ R such that h = C1ṽ1. Thus, the

normalization (5.3) gives

ṽ1 = P1ṽ1 = C1⟨ṽ1, ṽ∗1⟩L2 ṽ1 = C1ṽ1

∫
U
ṽ1e

−Q
2 −β0Udx,

leading to C1 = 1∫
U ṽ1e

−Q
2

−β0Udx
, and hence, h = ṽ1∫

U ṽ1e
−Q

2
−β0Udx

. Inserting this into (5.5) and noting

the definition of ν1 give rise to the formula for P∗
1 f̃ .
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(2) Thanks to (1), it is obvious that the statement holds for P∗
1 . Note that ranP∗

2 and ranP2 are

finite dimensional and Lemma 5.1 ensures
∫
U e

−Q
2 −β0U |v|dx < ∞ for each v ∈ ranP2. Following the

same proof as in (1), we arrive at the conclusion for P∗
2 as well.

(3) and (4) are special cases of [22, Corollary V. 3.2] due to Theorem 3.3, the fact ℜλ2,i = λ2 for

all i ∈ {1, . . . , N∗}, and the simplicity of the principle eigenvalue λ1 of −L∗
β0
.

It remains to show (5). Fix f ∈ ranP∗
2 \ {0}. We consider three cases.

Case 1. N∗ = 1. In this case, {λ ∈ σ(−L∗
β0
) : ℜλ = λ2} = {λ2}. Then, f is a generalized

eigenfunction of −L∗
β0

associated with λ2, and thus, there exists Ñ ∈ N such that (L∗
β0

+λ2)
Ñ+1f = 0

and (L∗
β0

+ λ2)
Ñf ̸= 0 in U . It follows from the strong unique continuation principle for elliptic

equations (see e.g. [43]) that (L∗
β0

+ λ2)
Ñf ̸= 0 a.e. in U . Since

T ∗
t f = e−λ2t

Ñ∑
k=0

tk

k!
(L∗

β0
+ λ2)

kf = e−λ2t

(
tÑ

Ñ !
(L∗

β0
+ λ2)

Ñf + o(tÑ )

)
as t→ ∞,

we derive limt→∞ e(λ2+ϵ)t|T ∗
t f |(x) = ∞ for a.e. x ∈ U and each 0 < ϵ≪ 1. The conclusion follows.

Case 2. N∗ = 2K+1 for some K ∈ N. Considering the symmetry of the set {λ ∈ σ(−L∗
β0
) : ℜλ = λ2}

with respect to the real axis, we can re-enumerate it as {λ2,j}Kj=−K such that λ2,0 = λ2 and λ2,j = λ2,−j

for j ∈ {1, . . . ,K}.
Note that f =

∑K
j=−K fj , where fj is the projection of f onto the generalized eigenspace of λ2,j .

Since f is real-valued we must have fj = f−j for all j ∈ {1, . . . ,K}. We may assume, without loss of

generality, that fj ̸= 0 for all j ∈ {−K, . . . ,K}.
Since λ2,j is a pole of the resolvent of −L∗

β0
with finite order, there exists Ñj ∈ N such that

(L∗
β0

+ λ2,j)
Ñj+1fj = 0 and (L∗

β0
+ λ2,j)

Ñjfj ̸= 0. Applying the strong unique continuation principle

for elliptic equations (see e.g. [43]), we find

(L∗
β0

+ λ2,j)
Ñjfj ̸= 0 a.e. in U . (5.6)

Clearly, Ñj = Ñ−j for all j ∈ {1, . . . ,K}. Straightforward calculations then give for t≫ 1,

eλ2tT ∗
t f =

K∑
j=−K

e−ℑλ2,jt

Ñj∑
k=0

tk

k!
(L∗

β0
+ λ2,j)

kfj =

K∑
j=−K

e−iℑλ2,jt

[
tÑj

Ñj !
(L∗

β0
+ λ2,j)

Ñjfj + o(tÑj )

]

=

[
tÑ0

Ñ0!
(L∗

β0
+ λ2)

Ñ0f0 + o(tÑ0)

]
+

K∑
j=1

[
2tÑj

Ñj !
ℜ
(
e−iℑλ2,jt(L∗

β0
+ λ2,j)

Ñjfj

)
+ o(tÑj )

]
.

(5.7)

Since the asymptotics of eλ2tT ∗
t f as t→ ∞ is determined by the terms with the highest degree, we

may assume, without loss of generality, that Ñ0 = Ñ1 = · · · = ÑK .

Set F0 := 1
Ñ0!

(L∗
β0

+λ2)
Ñ0f0 and Fj :=

2
Ñj !

(L∗
β0

+λ2,j)
Ñjfj for j ∈ {1, . . . ,K}. We rewrite (5.7) as

eλ2tT ∗
t f

tÑ0

= F0 +

K∑
j=1

ℜ(e−iℑλ2,jtFj) + o(1) = F0 +

K∑
j=1

|Fj | sin(ℑλ2,jt+ φj) + o(1), ∀t≫ 1, (5.8)

where φj ∈ [0, 2π) satisfies tanφj = −ℜFj

ℑFj
for j ∈ {1, . . . ,K}.
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f ∈ Cb g := E• [f(X1)1{1<SΓ}
]

E• [f(Xt)1{t<SΓ}
]

f̃ ∈ L2∗ g̃ ∈ L2 g̃ = T ∗
t−2g̃ ∈ L2 T ∗

t−1g̃ ∈ L∞

×e−
Q
2 −β0U ×e−

Q
2 −β0U ×e−

Q
2 −β0U

Figure 4. Idea of the proof of Lemma 5.3.

Note that (5.6) ensures the set N := {x ∈ U : ∃j ∈ {0, 1, . . . ,K} s.t. |Fj |(x) = 0} has zero Lebesgue
measure. Fix x ∈ U \ N and set

Fx(t) := F0(x) +

K∑
j=1

|Fj |(x) sin(ℑλ2,jt+ φj), ∀t ∈ R.

If inft≫1 |Fx(t)| > 0, (5.8) implies limt→∞ e(λ2+ϵ)t|T ∗
t f |(x) = ∞ for each 0 < ϵ ≪ 1. Other-

wise, for each 0 < ϵ ≪ 1, we set Kx,ϵ := {t ∈ (0,∞) : |Fx(t)| ≥ ϵ}. Then, (5.8) ensures

limt∈Kx,ϵ

t→∞
e(λ2+ϵ)t|T ∗

t f |(x) = ∞. It remains to show

lim
ϵ→0

inf
T>0

|Kx,ϵ ∩ (T, T + 1)| = 1. (5.9)

If {ℑλ2,j}Kj=1 are rationally dependent, then Fx is periodic and (5.9) follows immediately. Oth-

erwise, Fx is quasi-periodic, or more generally, almost-periodic. Following the definition of almost-

periodic functions (see e.g. [44]), it is not hard to prove (5.9).

Case 3. N∗ = 2K for some K ∈ N. The proof is exactly the same as that in Case 2 except that f0
does not appear due to the fact λ2 ̸∈ {λ ∈ σ(−L∗

β0
) : ℜλ = λ2}.

This completes the proof. □

Lemma 5.3. Assume (H1)-(H3). For each 0 < ϵ≪ 1, there exists C = C(ϵ) > 0 such that for each

f ∈ Cb(U) and f̃ := e−
Q
2 −β0Uf and t ≥ 2,

∥T ∗
t P∗

2 f̃∥∞ ≤ Ce−(λ2−ϵ)t∥f∥∞, (5.10)

∣∣∣∣E• [f(Xt)1{t<SΓ}
]
− e

Q
2 +β0Ue−λ1tṽ∗1

∫
U
fdν1

∣∣∣∣ ≤ Ce
Q
2 +β0Ue−(λ2−ϵ)t∥f∥∞, (5.11)

and ∣∣∣∣E•[f(Xt)1{t<SΓ}]− e
Q
2 +β0U

(
e−λ1tṽ∗1

∫
U
fdν1 + T ∗

t P∗
2 f̃

)∣∣∣∣ ≤ Ce
Q
2 +β0Ue−(λ2+ϵ)t∥f∥∞. (5.12)

The idea of the proof is sketched in Figure 4.

Proof. Fix 0 < ϵ≪ 1 and f ∈ Cb(U). By the Markov property and homogeneity of Xt,

Ex
[
f(Xt)1{t<SΓ}

]
= Ex

[
g(Xt−1)1{t−1<SΓ}

]
, ∀(x, t) ∈ U × [1,∞), (5.13)

where g := E•[f(X1)1{1<SΓ}] ∈ Cb(U). For convenience, we set g̃ := e−
Q
2 −β0Ug and f̃ := e−

Q
2 −β0Uf .

The proof is broken into three steps.
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Step 1. We claim that g̃ ∈ L2(U) and there exists D1 > 0 (independent of f) such that

∥g̃∥L2 ≤ D1∥f∥∞. (5.14)

Recall that 2∗ := 2(d+2)
d+4 ∈ (1, 2) (see Lemma 4.2). Since e−

Q(x)
2 =

[
∏d

i=1 ai(ξ
−1
i (1))]

1
4

[
∏d

i=1 ai(ξ
−1
i (xi))]

1
4
, we find

∫
U
|f̃ |2∗dx =

∫
U
|f |2∗e−

2∗Q
2 −2∗β0Udx ≤ ∥f∥2∗∞

[
d∏

i=1

ai(ξ
−1
i (1))

] 2∗
4 ∫

U

e−2∗β0U[∏d
i=1 ai(ξ

−1
i (xi))

] 2∗
4

dx.

Arguments as in the proof of Lemma 5.1 yield
∫
U

e−2∗β0U(x)

[
∏d

i=1 ai(ξ
−1
i (xi))]

2∗
4

dx <∞. This implies the existence

of C1 > 0 (independent of f) such that

∥f̃∥L2∗ (U) ≤ C1∥f∥∞. (5.15)

Recall {Un}n∈N and {τn}n∈N from Subsection 2.3. For each n ∈ N, we recall from Subsection 4.1

that (T
(∗,Un,2∗)
t )t≥0 is the positive and analytic semigroup of contractions on L2∗(Un;C) generated by

(L∗,2∗
β0

|Un ,W
2,2∗(Un;C) ∩W 1,2∗

0 (Un;C)). Since f̃ ∈ C(Un), Proposition 4.1 ensures

T
(∗,Un,2∗)
t f̃ |Un

= e−
Q
2 −β0UE• [f(Xt)1{t<τn}

]
, ∀t ∈ [0,∞). (5.16)

It follows from Lemma 4.2 the existence of C2 > 0 such that ∥T (∗,Un,2∗)
1 f̃∥L2(Un) ≤ C2∥f̃∥L2∗ (Un) for

all n ∈ N. Letting n→ ∞, we derive from Lemma 2.1, (5.16) and Fatou’s lemma that

∥g̃∥L2 = ∥e−
Q
2 −β0UE• [f(X1)1{1<SΓ}

]
∥L2(U) ≤ C2∥f̃∥L2∗ (U) ≤ C1C2∥f∥∞,

where we used (5.15) in the last inequality.

Step 2. We claim the existence of D2 > 0 such that

∥T ∗
t h̃∥∞ ≤ D2∥T ∗

t−1h̃∥L2 , ∀t ≥ 1 and h̃ ∈ L2(U). (5.17)

Setting h̃ := g̃−P∗
1 g̃−P∗

2 g̃, we find from the above inequality, Lemma 5.2 (4) and the result in Step

1 that for some D3 > 0, there holds∥∥T ∗
t−1g̃ − T ∗

t−1P∗
1 g̃ − T ∗

t−1P∗
2 g̃
∥∥
∞ ≤ D3e

−(λ2+ϵ)t∥f∥∞, ∀t ≥ 2. (5.18)

We first prove (5.17) when h̃ = e−
Q
2 −β0Uh ∈ L2(U) for some h ∈ Cb(U). The general case follows

from standard approximation procedures. Note that Theorem 4.1 gives

T ∗
t h̃(x) = e−

Q(x)
2 −β0U(x)Ex

[
h(Xt)1{t<SΓ}

]
, ∀(x, t) ∈ U × [0,∞). (5.19)

Let {Un}n∈N and {τn}n∈N be as in Subsection 2.3. If we show the existence of C∗ > 0 such that

sup
Un

e−
Q
2 −β0U

∣∣E•[h(Xt)1{t<τn}
∣∣ ≤ C∗

∥∥∥e−Q
2 −β0UE• [h(Xt−1)1{t−1<τn}

]∥∥∥
L2(Un)

(5.20)

for all t ≥ 1 and n ∈ N, then (5.17) follows immediately from (5.19) and Lemma 2.1.

We show (5.20) by Moser iteration. Recall that for each n ∈ N and N > 1, (T
(∗,Un,N)
t )t≥0 is the

positive and analytic semigroup on LN (Un;C) generated by (L∗,N
β0

|Un
,W 2,N (Un;C) ∩W 1,N

0 (Un;C)).
Since here for each n we only consider the action of (T

(∗,Un,N)
t )t≥0 on functions in C(Un;C), we simply
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write (T
(n)
t )t≥0 for all

{
(T

(∗,Un,N)
t )t≥0, N > 1

}
in consideration of Proposition 4.1 (5). Obviously,

h̃n := h̃|Un ∈ C(Un) for all n ∈ N. It follows from Proposition 4.1 (4) that

T
(n)
t h̃n(x) = e−

Q(x)
2 −β0U(x)Ex

[
h(Xt)1{t<τn}

]
, ∀(x, t) ∈ Un × [0,∞) and n ∈ N. (5.21)

Set w̃n := T
(n)
• h̃n. We see from Lemma 4.1 that for all n ∈ N and N ≥ 2,

1

N

∫
Un

|w̃n|N (·, t2)dx+
N − 1

2

∫ t2

t1

∫
Un

|w̃n|N−2|∇w̃n|2dxds

≤ 1

N
(1 + eNM(t2−t1))

∫
Un

|w̃(·, t1)|Ndx, ∀t2 > t1 ≥ 0,

(5.22)

where we recall that M > 0 is fixed and independent of n ∈ N and N ≥ 2, such that the conclusion

in Lemma 3.2 (3) holds. The Sobolev embedding theorem gives

∥w̃
N
2
n ∥L2κ(Un×[t1,t2]) ≤ C3

(
sup

s∈[t1,t2]

∥w̃
N
2
n (·, s)∥L2(Un) + ∥∇w̃

N
2
n ∥L2(Un×[t1,t2])

)
,

where κ := d+2
d and C3 > 0 only depends on d. Therefore, (5.22) gives rise to

(∫ t2

t1

∫
Un

|w̃n|κNdxds

) 1
κ

≤ 4C2
3 (1 + eNM(t2−t1))

∫
Un

|w̃(·, t1)|Ndx, ∀t2 > t1 ≥ 0, (5.23)

for all n ∈ N and N ≥ 2. We then deduce from Lemma 4.1 (with κN instead of N) and (5.23) that

1

κN

∫
Un

|w̃n|κN (·, t3)dx ≤ 2

κN(t2 − t1)

∫ t2

t1

∫
Un

|w̃n|κNdxds

≤ 2(4C2
3 )

κ

κN(t2 − t1)

(
1 + eNM(t2−t1)

)κ
∥w̃(·, t1)∥κNLN (Un)

(5.24)

for all t3 > t2 > t1 ≥ 0, n ∈ N and N ≥ 2.

Fix t ≥ 1. For each ℓ ∈ N ∪ {0}, we set N = Nℓ := 2κℓ, t1 := t − 2−ℓ, t2 := t − 3
22

−(ℓ+1) and

t3 := t− 2−(ℓ+1) in (5.24) to find

∥w̃n(·, t− 2−(ℓ+1))∥LNℓ+1 (Un)
≤ C

1
Nℓ+1

4 2
ℓ+2

Nℓ+1 eM2−(ℓ+1)

∥w̃n(·, t− 2−ℓ)∥LNℓ (Un) (5.25)

for all ℓ ∈ N ∪ {0} and n ∈ N, where C4 > 0 is independent of ℓ and n. Set

Aℓ := C
1

Nℓ+1

4 2
ℓ+2

Nℓ+1 eM2−(ℓ+1)

, ℓ ∈ N ∪ {0}.

It follows from (5.25) that for each n ∈ N,

sup
x∈Un

|w̃n(x, t)| = lim
k→∞

∥w̃n(·, 1− 2−(k+1))∥LNk+1 ≤ C5∥w̃n(·, t− 1)∥L2(Un),

where C5 :=
∏∞

ℓ=0Aℓ <∞. This, together with (5.21), gives (5.20) and hence, leads to (5.17).
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Step 3. We rewrite the terms T ∗
t−1g̃, T

∗
t−1P∗

1 g̃ and T ∗
t−1P∗

2 g̃ in (5.18) and then, finish the proof.

It follows from Theorem 4.1 and (5.13) that

T ∗
t−1g̃ = e−

Q
2 −β0UE•[g(Xt−1)1{t−1<SΓ}] = e−

Q
2 −β0UE•[f(Xt)1{t<SΓ}], ∀t ≥ 1. (5.26)

Noting that Lemma 5.2 (1) and Theorem 5.1 (2) give

P∗
1 g̃ = ṽ∗1

∫
U
E•[f(X1)1{1<SΓ}]dν1 = ṽ∗1e

−λ1

∫
U
fdν1,

we deduce

T ∗
t−1P∗

1 g̃ = T ∗
t−1ṽ

∗
1e

−λ1

∫
U
fdν1 = e−λ1tṽ∗1

∫
U
fdν1, ∀t ≥ 1. (5.27)

Finally, we show T ∗
t−1P∗

2 g̃ = T ∗
t P∗

2 f̃ for all t ≥ 1. Obviously, it suffices to prove

P∗
2 g̃ = T ∗

1P∗
2 f̃ , ∀t ≥ 1, (5.28)

where f̃ := e−
Q
2 −β0Uf . Note that the stochastic representation in Theorem 4.1 ensures g̃ = T ∗

1 f̃ and

hence, (5.28) if f ∈ C∞
0 (U). Thanks to the result in Step 1 and Lemma 5.2 (2), both sides of (5.28)

are well defined even when f ∈ Cb(U). Then, (5.28) follows from standard approximation procedures.

Now, we finish the proof. Inserting (5.26), (5.27) and (5.28) into (5.18) yields∥∥∥∥e−Q
2 −β0UE•[f(Xt)1{t<SΓ}]− e−λ1tṽ∗1

∫
U
fdν1 − T ∗

t P∗
2 f̃

∥∥∥∥
∞

≤ D3e
−(λ2+ϵ)t∥f∥∞, ∀t ≥ 2.

Multiplying the above estimate by e
Q
2 +β0U gives rise to (5.12).

Thanks to Lemma 5.2 (3), we see that ∥T ∗
t P∗

2 h̃∥2 ≤ e−(λ2−ϵ)t∥h̃∥2 for any h̃ ∈ L2(U) and t ≥ 0.

Thus, it follows from T ∗
t P∗

2 f̃ = T ∗
t−1P∗

2 g̃, (5.17) and (5.14) that for t ≥ 2,

∥T ∗
t P∗

2 f̃∥∞ = ∥T ∗
t−1P∗

2 g̃∥∞ ≤ D2∥T ∗
t−2P∗

2 g̃∥2 ≤ D2e
−(λ2−ϵ)(t−2)∥g̃∥2 ≤ D1D2e

−(λ2−ϵ)(t−2)∥f∥∞,

giving rise to (5.10). Finally, (5.11) is an immediate result of (5.12) and (5.10). □

We are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let ν and f be as in the statement. For fixed 0 < ϵ ≪ 1, we apply (5.12) in

Lemma 5.3 to find C1 > 0 (independent of f) such that∣∣∣∣E•[f(Xt)1{t<SΓ}]− e
Q
2 +β0U

(
e−λ1tṽ∗1

∫
U
fdν1 + T ∗

t P∗
2 f̃

)∣∣∣∣ ≤ C1e
Q
2 +β0Ue−(λ2+ϵ)t∥f∥∞

for all t ≥ 2, where f̃ := e−
Q
2 −β0Uf .

Since ν is compactly supported in U , integrating the above inequality on U with respect to ν yields∣∣∣∣∫
U
E•[f(Xt)1{t<SΓ}]dν − e−λ1t

∫
U
e

Q
2 +β0U ṽ∗1dν

∫
U
fdν1 −

∫
U
e

Q
2 +β0UT ∗

t P∗
2 f̃dν

∣∣∣∣
≤ C1e

−(λ2+ϵ)t∥f∥∞
∫
U
e

Q
2 +β0Udν, ∀t ≥ 2.

In particular, setting f = 1U and 1̃U := e−
Q
2 −β0U1U yields∣∣∣∣∫

U
Px[t < SΓ]dν − e−λ1t

∫
U
e

Q
2 +β0U ṽ∗1dν −

∫
U
e

Q
2 +β0UT ∗

t P∗
2 1̃Udν

∣∣∣∣
≤ C1e

−(λ2+ϵ)t

∫
U
e

Q
2 +β0Udν, ∀t ≥ 2.
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Since ν is compactly supported in U , we find from (5.10) in Lemma 5.3 that

lim
t→∞

e(λ1+ϵ)t

∫
U
e

Q
2 +β0UT ∗

t P∗
2 f̃dν = 0 and lim

t→∞
e(λ1+ϵ)t

∫
U
e

Q
2 +β0UT ∗

t P∗
2 1̃Udν = 0.

It follows that as t→ ∞,∫
U E•[f(Xt)1{t<SΓ}]dν∫

U P•[t < SΓ]dν

=
e−λ1t

∫
U e

Q
2 +β0U ṽ∗1dν

∫
U fdν1 +

∫
U e

Q
2 +β0UT ∗

t P∗
2 f̃dν + o(e−λ2t)

e−λ1t
∫
U e

Q
2 +β0U ṽ∗1dν +

∫
U e

Q
2 +β0UT ∗

t P∗
2 1̃Udν + o(e−λ2t)

=

∫
U
fdν1 +

eλ1t∫
U e

Q
2 +β0U ṽ∗1dν

∫
U
e

Q
2 +β0UT ∗

t P∗
2

(
f̃ − 1̃U

∫
U
fdν1

)
dν + o(e−(λ2−λ1)t),

(5.29)

which together with Lemma 5.2 (3) leads to the result.

Thanks to (5.10) in Lemma 5.3, we derive∥∥∥∥T ∗
t P∗

2

(
f̃ − 1̃U

∫
U
fdν1

)∥∥∥∥
∞

≤ C2e
−(λ2−ϵ)t∥f∥∞, ∀t ≥ 2,

which together with (5.29) and the fact ν is compactly supported yields∣∣∣∣Eν [f(Xt)|t < SΓ]dν −
∫
U
fdν1

∣∣∣∣ ≤ C3e
−(λ2−λ1−ϵ)t∥f∥∞.

The first statement in the “In particular” part follows readily from the arbitrariness of f ∈ Cb(U).
Due to Lemma 5.2 (5), it is not hard to deduce the second one. □

Remark 5.2. Recall from Lemma 3.5 (4) that ṽ∗1 is positive a.e. in U and the eigenfunction of −L∗
β0

associated with λ1. Then, the result in Step 2 in the proof of Lemma 5.3 implies ṽ∗1 ∈ L∞(U).
Similarly, any other eigenfunctions of −L∗

β0
belong to L∞(U ;C) and hence, T ∗

t P∗
2 f̃ ∈ L∞(U ;C) where

f̃ is as in the proof of Theorem 5.2. Consequently, it is not hard to check the proof of Theorem 5.2 to

see that the conclusions apply to all initial distributions ν ∈ P(U) satisfying
∫
U e

Q
2 +β0Udν <∞.

5.3. Uniqueness and exponential convergence. In this subsection, we study the uniqueness of

QSDs of Xt as well as the conditioned dynamics of Xt for any initial distribution. The result is stated

as follows. Recall that ν1 is the QSD of Xt obtained in Theorem 5.1.

Theorem 5.3. Assume (H1)-(H4). Then, Xt admits a unique QSD, and for each ν ∈ P(U) and

0 < ϵ≪ 1, there holds

lim
t→∞

e(λ2−λ1−ϵ)t ∥Pν [Xt ∈ •|t < SΓ]− ν1∥TV = 0.

We need the following result asserting that Xt comes down from infinity under (H1)-(H4).

Lemma 5.4. Assume (H1)-(H4). For each λ > 0, there are R = R(λ) > 0 and C1 = C1(λ) > 0

such that Ex
[
eλSR

]
≤ C1 for all x ∈ U \B+

R , where SR := inf
{
t ≥ 0 : Xt ̸∈ U \B+

R

}
.

Proof. Recall from (2.5) that U = V ◦ ξ−1. Set w := exp
{
− ϵ

Uγ

}
, where γ > 0 is assumed to exist

in (H4) and ϵ > 0 is a parameter to be chosen. According to the assumptions on V , we can modify

V on a bounded domain to make sure infU V > 0, while preserving the other properties. We thus

assume without loss of generality that infU V > 0. This together with lim|z|→∞ V (z) = ∞ implies

0 < inf
U
w ≤ sup

U
w ≤ 1. (5.30)
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Let C, R∗ and γ be as in (H4). Recall LX = 1
2∆+ (pi − qi)∂i. Straightforward calculations give

LXU =
(
LZV

)
◦ ξ−1 ≤ −CU1+γ in U \ ξ(B+

R∗
). It follows that

LXw + λw =
ϵγwLXU

Uγ+1
+

1

2

(
ai|∂ziV |2

)
◦ ξ−1

[
−ϵγ(γ + 1)

Uγ+2
+

ϵ2γ2

U2γ+2

]
w + λw

≤ (−Cϵγ + λ)w +
1

2

(
ai|∂ziV |2

)
◦ ξ−1

[
−ϵγ(γ + 1)

Uγ+2
+

ϵ2γ2

U2γ+2

]
w in U \ ξ(B+

R∗
),

where we used (H4) in the inequality.

Set ϵ := 3λ
2Cγ . As lim|z|→∞ ai|∂ziV |2

[
− ϵγ(γ+1)

V γ+2 + ϵ2γ2

V 2γ+2

]
= 0 (by (H4)), there is R > 0 such that

LXw + λw ≤ −λ
3
w in U \B+

R . (5.31)

We recall from Remark 2.2 that Xt satisfies the SDE (2.3) before hitting Γ. An application of Itô’s

formula gives

deλtw(Xt) = (LXw + λw)(Xt)e
λtdt+ ∂iw(Xt)e

λtdW i
t in U .

It follows from (5.31) that for each (x, t) ∈ (U \B+
R)× [0,∞),

Ex
[
eλ(t∧SR)w(Xt∧SR

)
]
= w(x) + Ex

[∫ t∧SR

0

(LXw + λw)(Xs)e
λsds

]
≤ w(x),

where SR is as in the statement of the lemma. Thanks to (5.30), we pass to the limit t → ∞ in the

above inequality to conclude Ex
[
eλSR

]
≤ 1

inf w for all x ∈ U \B+
R . This completes the proof. □

Remark 5.3. Since Zt = ξ−1(Xt) and ξ−1 : U → U is a homeomorphism, we find from the above

lemma that for each λ > 0, there exists R = R(λ) > 0 such that supz∈U\B+
R
Ez[eλTR ] < ∞, where

TR := inf{t ≥ 0 : Zt /∈ U \B+
R}.

We next prove Theorem 5.3.

Proof of Theorem 5.3. Fix ν ∈ P(U), f ∈ Cb(U) and 0 < ϵ ≪ 1. Set λ := λ1 + λ2. By Lemma 5.4,

there exist R0 > 0 and C1 > 0 such that

sup
(x,t)∈(U\B+

R0
)×[0,∞)

eλtPx [t < SR0
] ≤ sup

x∈U\B+
R0

Ex
[
eλSR0

]
≤ C1. (5.32)

Clearly, the above inequality holds with R > R0 replacing R0. Choosing R0 large enough, we may

assume without loss of generality that ν(B+
R0

) > 0. We split

Eν
[
f(Xt)1{t<SΓ}

]
=

∫
B+

R0

E• [f(Xt)1{t<SΓ}
]
dν +

∫
U\B+

R0

E• [f(Xt)1{t<SΓ}
]
dν, ∀t ≥ 0.

Applying (5.11) in Lemma 5.3, we find the existence of C2 > 0 such that∣∣∣∣E• [f(Xt)1{t<SΓ}
]
− e

Q
2 +β0Ue−λ1tṽ∗1

∫
U
fdν1

∣∣∣∣ ≤ C2e
Q
2 +β0Ue−(λ2−ϵ)t∥f∥∞, ∀t ≥ 2, (5.33)

and thus,∣∣∣∣∣
∫
B+

R0

E• [f(Xt)1{t<SΓ}
]
dν −A1e

−λ1t

∫
U
fdν1

∣∣∣∣∣ ≤ C2e
−(λ2−ϵ)t∥f∥∞

∫
B+

R0

e
Q
2 +β0Udν, ∀t ≥ 2,

(5.34)
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where A1 :=
∫
B+

R0

e
Q
2 +β0U ṽ∗1dν. Note that ṽ∗1 is positive a.e. in U and ṽ∗1 ∈ L∞(U) (see Remark 5.2).

Then, we see from ν(B+
R0

) > 0 that 0 < A1 <∞.

We claim the existence of a bounded function A2 : [0,∞) → [0,∞) and a C3 > 0 such that∣∣∣∣∣
∫
U\B+

R0

E• [f(Xt)1{t<SΓ}
]
dν −A2(t)e

−λ1t

∫
U
fdν1

∣∣∣∣∣ ≤ C3e
−(λ2−ϵ)t∥f∥∞, ∀t≫ 1. (5.35)

This together with (5.34) leads to the existence of C4 > 0 such that∣∣∣∣Eν
[
f(Xt)1{t<SΓ}

]
− (A1 +A2(t))e

−λ1t

∫
U
fdν1

∣∣∣∣ ≤ C4e
−(λ2−ϵ)t∥f∥∞, ∀t≫ 1.

In particular, setting f = 1U yields
∣∣Pν [t < SΓ]− (A1 +A2(t))e

−λ1t
∣∣ ≤ C4e

−(λ2−ϵ)t for all t ≫ 1 and

thus, Pν [t < SΓ] ≥ A1e
−λ1t for t≫ 1. Consequently, we deduce∣∣∣∣Eν

[
f(Xt)

∣∣t < SΓ

]
−
∫
U
fdν1

∣∣∣∣ ≤ 1

Pν [t < SΓ]

∣∣∣∣Eν
[
f(Xt)1{t<SΓ}

]
− (A1 +A2(t))e

−λ1t

∫
U
fdν1

∣∣∣∣
+

∫
U |f |dν1

Pν [t < SΓ]

∣∣(A1 +A2(t))e
−λ1t − Pν [t < SΓ]

∣∣
≤ 2C4e

−(λ2−ϵ)t∥f∥∞
A1e−λ1t

, ∀t≫ 1.

Since f is arbitrary in Cb(U), it follows that

∥Pν [Xt ∈ •|t < SΓ]− ν1∥TV ≤ 2C4

A1
e−(λ2−λ1−ϵ)t, ∀t≫ 1,

leading to the desired result.

It remains to prove (5.35). To do so, we write for (x, t) ∈ (U \B+
R0

)× [0,∞),

Ex[f(Xt)1{t<SΓ}] = Ex[f(Xt)1{t<SR0
}] + Ex[f(Xt)1{SR0

≤t<SΓ}] =: E1(x, t) + E2(x, t).

It follows from (5.32) that∫
U\B+

R0

|E1(·, t)|dν ≤ ∥f∥∞ sup
x∈U\B+

R0

Px [t < SR0
] dν

≤ ∥f∥∞e−λt sup
x∈U\B+

R0

Ex[eλSR0 ] ≤ C1∥f∥∞e−λt, ∀t ≥ 0.
(5.36)

To treat E2, we set h(x, t) := Ex
[
f(Xt)1{t<SΓ}

]
for (x, t) ∈ U × [0,∞). Obviously, ∥h∥∞ ≤ ∥f∥∞

and h(x, t) = 0 for (x, t) ∈ Γ× [0,∞). The strong Markov property and homogeneity of Xt yield that

for each (x, t) ∈ (U \B+
R0

)× [0,∞),

E2(x, t) = Ex
[
f(Xt)1{SR0

≤t<SΓ}

]
= Ex

[
Ex
[
f(Xt)1{SR0

≤t<SΓ}
∣∣FSR0

]
1{SR0

≤t}

]
= Ex

[
h(XSR0

, t− SR0
)1{SR0

≤t}

]
= Ex

[
h(XSR0

, t− SR0
)1{SR0

≤t≤SR0
+2}

]
+ Ex

[
h(XSR0

, t− SR0
)1{t>SR0

+2}

]
=: E21(x, t) + E22(x, t).
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Note that (5.32) ensures∫
U\B+

R0

|E21(·, t)|dν ≤ ∥h∥∞
∫
U\B+

R0

Px[t < SR0
+ 2]dν

≤ ∥f∥∞e−λt

∫
U\B+

R0

Ex[eλ(SR0
+2)]dν ≤ C1∥f∥∞e2λ−λt, ∀t ≥ 0.

(5.37)

Fix 0 < ϵ ≪ 1. Setting Φ := exp

{
Q(XSR0

)

2 + β0U(XSR0
)

}
, we see from (5.33) that on the event

{t ≥ SR0
+ 2} there holds∣∣∣∣h(XSR0

, t− SR0)− Φe−λ1(t−SR0
)ṽ∗1(XSR0

)

∫
U
fdν1

∣∣∣∣ ≤ C2Φe
−(λ2−ϵ)(t−SR0

)∥f∥∞. (5.38)

Since SR0
≤ SΓ and h(XSR0

, t− SR0
) = 0 if SR0

= SΓ, we deduce

E22(x, t) = Ex
[
h(XSR0

, t− SR0
)1{SR0

<SΓ∧(t−2)}

]
, ∀(x, t) ∈ (U \B+

R0
)× [0,∞),

which together with (5.38) yields∣∣∣∣∣
∫
U\B+

R0

E22(·, t)dν − e−λ1t

∫
U\B+

R0

E•
[
Φeλ1SR0 ṽ∗1(XSR0

)1{SR0
<SΓ∧(t−2)}

]
dν

∫
U
fdν1

∣∣∣∣∣
≤ C2e

−(λ2−ϵ)t

∫
U\B+

R0

E•
[
Φe(λ2−ϵ)SR01{SR0

<SΓ∧(t−2)}

]
dν∥f∥∞

≤ C2e
−(λ2−ϵ)t∥f∥∞

(
max

U∩∂B+
R0

e
Q
2 +β0U

) sup
U\B+

R0

E•
[
e(λ2−ϵ)SR0

] ≤ C5e
−(λ2−ϵ)t∥f∥∞

(5.39)

for all t ≥ 0, where we used (5.32) and the fact maxU∩∂B+
R0

e
Q
2 +β0U <∞ to conclude the existence of

C5 > 0 in the last inequality.

Set

A2(t) :=

∫
U\B+

R0

E•
[
Φeλ1SR0 ṽ∗1(XSR0

)1{SR0
<SΓ∧(t−2)}

]
dν, ∀t ≥ 0.

Thanks to (5.32), the boundedness of ṽ∗1 and the fact |XSR0
| = R0 when SR0

< SΓ, it is clear that A2

is non-negative and bounded. Since∫
U\B+

R0

E• [f(Xt)1t<SΓ}
]
dν =

∫
U\B+

R0

[E1(·, t) + E21(·, t) + E22(·, t)] dν, ∀t ≥ 0,

we deduce from (5.36), (5.37) and (5.39) that∣∣∣∣∣
∫
U\B+

R0

E• [f(Xt)1t<SΓ}
]
dν −A2(t)e

−λ1t

∫
U
fdν1

∣∣∣∣∣ ≤ [C5e
−(λ2−ϵ)t + C1(1 + e2λ)e−λt

]
∥f∥∞

for all t ≥ 0. Since λ = λ1 + λ2 and 0 < ϵ≪ 1, (5.35) follows. This completes the proof. □

5.4. Proof of Theorem A and Theorem B. Because of the fact Xt = ξ(Zt) and Proposition

2.3, conclusions in Theorem A and Theorem B follow directly from Theorem 5.1, Theorem 5.2 and

Theorem 5.3.
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6. Applications

In this section, we discuss a series of important applications of Theorem A and Theorem B. We first

provide a general result that holds for most ecological models and then show how to apply this result

to specific situations, including: stochastic Lotka-Volterra systems of competitive, predator-prey or

cooperative type, systems modelled by Holling type functional responses and predator-prey systems

modelled by Beddington-DeAngelis functional responses.

Consider the following stochastic system:

dZi
t = Zi

tfi(Zt)dt+
√
γiZi

tdW
i
t , i ∈ {1, . . . , d}, (6.1)

where Zt = (Zi
t) ∈ U , {fi}i belong to C1(U), {γi}i are positive constants, and {W i}i are indepen-

dent standard one-dimensional Wiener processes on some probability space. We make the following

assumption.

(A) There exist m ≥ 0, 0 ≤ n ≤ m, C1, C2, C3, C4 > 0 and R > 0 such that

−C1

1 +

d∑
j=1

zmj

 ≤ fi(z) ≤ C21[0,R](zi)− C3z
m
i 1(R,∞)(zi) + δ

∑
j ̸=i

znj , ∀z ∈ U , (6.2)

and

|∂zifi(z)| ≤ C4|z|m−1, ∀z ∈ U \B+
R , (6.3)

for i ∈ {1, . . . , d} and δ = 0 if d = 1, δ ≥ 0 if d ≥ 2 and n < m, or δ ∈
[
0, C3

d−1

)
if d ≥ 2 and

n = m.

Remark 6.1. Conditions (6.2) and (6.3) say that fi and ∂zifi are bounded above and below by simple

polynomials. Conditions in the case n < m tells us that the intraspecific competition dominates the

interactions among species. In the case n = m, we can only treat weakly cooperative interactions

among species – this is reflected by the smallness of δ. These are natural assumptions that can be

applied to many population dynamics models: competitive Lotka-Volterra, weakly cooperative Lotka-

Volterra, predator-prey Lotka-Volterra as well as more complex systems modelled by Holling type-

II/III functional responses. These assumptions also allow us to use a very simple Lyapunov function

V (z) = |z|m+1 (when |z| ≥ 1) which satisfies (H1)-(H3) and sometimes (H4).

Under the assumption (A), the stochastic system (6.1) generates a diffusion process Zt that has Γ

as an absorbing set. Furthermore, Zt hits Γ in finite time almost surely.

Theorem 6.1. Assume (A).

(1) Zt admits a QSD µ1, and there exists r1 > 0 such that

• for any 0 < ϵ≪ 1 and µ ∈ P(U) with compact support in U one has

lim
t→∞

e(r1−ϵ)t ∥Pµ[Zt ∈ •|t < TΓ]− µ1∥TV = 0;

• there exists f ∈ Cb(U) such that for a.e. x ∈ U , there is a family of sets {Kx,ϵ}0<ϵ≪1 in

(0,∞) satisfying Kx,ϵ2 ⊂ Kx,ϵ1 for 0 < ϵ1 < ϵ2 ≪ 1 and limϵ→0 infT>0 |Kx,ϵ∩(T, T+1)| =
1 such that

lim
t∈Kx,ϵ

t→∞

e(r1+ϵ)t

∣∣∣∣Ex[f(Xt)
∣∣t < TΓ]−

∫
U
fdµ1

∣∣∣∣ = ∞, ∀0 < ϵ≪ 1.
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(2) If, in addition, (A) holds with m > 0, then Zt admits a unique QSD, and for any 0 < ϵ≪ 1

and µ ∈ P(U), there holds

lim
t→∞

e(r1−ϵ)t ∥Pµ[Zt ∈ •|t < TΓ]− µ1∥TV = 0.

Proof. Letm, C1, C2, C3, C4, R, δ be as in (A) and η ∈ C∞([0,∞) be such that η(t) = 0 if t ∈ [0, 12 ]

and η = 1 if t ≥ 1. Set V (z) := η(|z|)|z|m+1 for z ∈ U which obviously belongs to C2(U). Thanks to

Theorems A and B, it suffices to verity (H1)-(H3) when m ≥ 0 and (H4) when m > 0.

Since ∂i|z|m+1 = (m+ 1)|z|m−1zi, we deduce from (A) that for |z| ≥ 1,

d∑
i=1

zifi∂iV ≤ (m+ 1)|z|m−1

(C2R+ C3R
m+1

) d∑
i=1

zi − C3

d∑
i=1

zm+2
i + δ

d∑
i=1

∑
j ̸=i

z2i z
n
j

 . (6.4)

If d = 1, it follows from (6.4) and δ = 0 that there exists C5 > 0 such that

z1f(z1)V
′(z1) ≤ −C5z

2m+1
1 , z1 ≫ 1. (6.5)

In the following, we focus on d ≥ 2. In case m = n = 0, there holds

d∑
i=1

zifi∂iV ≤ (C2 + C3)R
√
d+ [−C3 + δ(d− 1)]|z| ≤ −C6|z|, ∀|z| ≫ 1 (6.6)

for some C6 > 0.

Now, we consider the case when m > 0. An application of Young’s inequality yields

z2i z
n
j ≤ 2α

m+ 2
zm+2
i +

mα− 2
m

m+ 2
z

n(m+2)
m

j ,

where α > 0 is a parameter to be determined. Then, it follows from (6.4) that

d∑
i=1

zifi∂iV ≤ (m+ 1)(C2R+ C3R
m+1)|z|m−1

d∑
i=1

zi +
δm(m+ 1)α− 2

m (d− 1)

m+ 2
|z|m−1

d∑
i=1

z
n(m+2)

m
i

− (m+ 1)

(
C3 −

2δα(d− 1)

m+ 2

)
|z|m−1

d∑
i=1

zm+2
i , ∀|z| ≥ 1.

(6.7)

We consider two cases.

• If n < m, we set α = (m+2)C3

4δ(d−1) in (6.7) (so that C3− 2δα(d−1)
m+2 = 1

2C3 > 0) to find the existence

of C ′
6 > 0 such that

d∑
i=1

zifi∂iV ≤ −C ′
6|z|2m+1 in |z| ≫ 1. (6.8)

• If n = m, setting α = 1 in (6.7) and using the fact δ ∈ [0, C3

d−1 ), we find (6.8) holds with a

possibly larger C ′
6.

Considering (6.5), (6.6) and (6.8), we no longer distinguish whether d = 1 or not, m = 0 or not

and assume (6.8) always holds.
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Now, we verify (H1)-(H3). It is easy to check that (H1) and (H2) hold. As V ≥ C(d)
∑d

i=1 z
m+1
i

in U for some C(d) > 0 and
∫∞
1

1
s exp

{
−βsm+1

}
ds < ∞ for any β > 0, (H3) (1)(2) follow from

(6.8). Since

∂i(zifi) = fi(z) + zi∂zifi(z),

γizi∂
2
ziziV = γi(m+ 1)(m− 1)|z|m−3z3i + γi(m+ 1)|z|m−1zi,

γizi|∂ziV |2 = γi(m+ 1)2|z|2m−2z3i ,

it is straightforward to verify (H3) (3)(4) by applying (6.2), (6.3) and (6.8). Hence, an application

of Theorem A gives the conclusions in (1).

If m > 0, (H4) holds with γ := m
m+1 . The conclusion in (2) follows from Theorem B. □

In the following, we apply Theorem 6.1 to various important ecological models.

Example 6.1 (Lotka-Volterra systems). For each i ∈ {1, . . . , d} let

fi(z) = ri −
d∑

j=1

cijzj , z ∈ U ,

where ri ∈ R, cii > 0 and cij ∈ R for j ̸= i.

Corollary 6.1. Consider (6.1) with fi, i ∈ {1, . . . , d} given in Example 6.1. If d ≥ 2, we further

assume

−min
i̸=j

cij <
1

d− 1
min
i
cii. (6.9)

Then, there exists a unique QSD of (6.1) such that the conclusions of Theorem 6.1 hold.

Proof. It is straightforward to check that the assumption (A) with m = n = 1, C3 = mini cii and

δ = 0 if d = 1 or δ = maxi ̸=j{−cij , 0} if d ≥ 2 is satisfied. The corollary then follows from Theorem

6.1. □

Remark 6.2. If the system is competitive, namely, cij ≥ 0 for all i ̸= j, then (6.9) is trivially

satisfied. If the Lotka-Volterra system has either cooperation or predation, the condition (6.9) says that

the intraspecific competition terms have to dominate in some sense the cooperative and the predation

terms. Note that cooperative systems are known to behave poorly: see [35, Example 2.3] for details as

to how a two-species stochastic cooperative system can exhibit either blow-up in finite time or have no

stationary distributions.

Example 6.2 (Holling type-II/III functional response). For each i ∈ {1, . . . , d},

fi(z) = ri −
d∑

j=1

cijz
k
j

1 + zkj
, z ∈ U ,

where k ∈ {1, 2}, ri ∈ R, cii > 0 and cij ∈ R for j ̸= i. In literature, k = 1 and k = 2 correspond to

Holling type-II and -III functional responses, respectively.

Corollary 6.2. Consider (6.1) with fi, i ∈ {1, . . . , d} given in Example 6.2. Assume

cii > ri, ∀i ∈ {1, . . . , d} and −min
i̸=j

cij <
1

d− 1
min
i
(cii − ri) if d ≥ 2.

Then, the conclusions of Theorem 6.1 (1) hold.
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Proof. We verify the assumption (A) with m = n = 0. The desired result then follows from Theorem

6.1. Clearly, fi is lower bounded. Let 0 < γ ≪ 1. Then, there exists R > 0 such that tk

1+tk
∈ (1−γ, 1)

for t > R. We compute

fi = ri −
d∑

j=1

cijz
k
j

1 + zkj
≤

{
ri + (d− 1)×maxi ̸=j{−cij , 0}, if zi ∈ [0, R],

ri − (1− γ)cii + (d− 1)×maxi ̸=j{−cij , 0}, if zi ∈ (R,∞).

Noting that cii > ri for d ≥ 1 and −mini ̸=j cij <
1

d−1 mini(cii−ri) for d ≥ 2, we derive supzi>R fi(z) <

0 for 0 < γ ≪ 1 and thus, (6.2). Straightforward calculations give (6.3). This verifies (A). □

Remark 6.3. For the stochastic Lotka-Volterra system with Holling type-II/ III functional response

considered in Example 6.2 or Corollary 6.2, the existence of a unique QSD that attracts all initial

distributions supported in U is not expected. This is essentially due to the weak dissipativity of the

system. Indeed, in the case d = 1, these properties are equivalent to showing that the process comes

down from infinity, and therefore, according to [7, Theorem 7.3 and Proposition 7.5], equivalent to

Assumption (H5) in [7]. However, it is easy to check that (H5) in [7] is not satisfied for the Holling

type-II/III functional responses.

The situation in higher dimensions is worse. Even in the competitive case, the dissipativity of the

system is weaker than that of the system with fi(z) = r∗ − c∗
∑d

j=1

zk
j

1+zk
j

for all i ∈ {1, . . . , d}, where
r∗ = mini∈{1,...,d} ri and c∗ = maxi,j∈{1,...,d} cij. This latter system does not come down from infinity

as it is bounded from below by a decoupled system whose individual components do not come down

from infinity. In fact, we have

r∗ − c∗

d∑
j=1

zkj
1 + zkj

≥ r∗ − c∗(d− 1)− c∗
zki

1 + zki
, ∀i ∈ {1, . . . , d} and z ∈ U .

Hence, the stochastic system in Example 6.2 or Corollary 6.2 does not come down from infinity.

We exhibit below a few more types of functional responses that can be treated by our framework.

Example 6.3. Consider the functional response

fi(z) = ri − ciizi −
∑
j ̸=i

cijz
k
j

1 + zkj
, z ∈ U ,

where k ∈ {1, 2}, ri ∈ R, cii > 0 and cij ∈ R for j ̸= i. This is a combination of the regular

intraspecific competition of the form −ciizi and Holling type functional responses for the interspecific

competition/predation.

Corollary 6.3. Consider (6.1) with fi, i ∈ {1, . . . , d} given in Example 6.3. Then, there exists a

unique QSD of (6.1) such that the conclusions of Theorem 6.1 hold.

Proof. It is straightforward to check that Assumption (A) holds with m = 1 and n = 0. Then, the

application of Theorem 6.1 yields the conclusion. □

Example 6.4. Consider the extensively used Beddington-DeAngelis predator-prey dynamics. For each

i ∈ {1, . . . , d}, let
fi(z) = ri − ciizi −

∑
j ̸=i

cijzj

1 +
∑d

l=1 zl
, z ∈ U ,

where ri ∈ R, cii > 0, and cij ∈ R for j ̸= i. This system was first proposed in [2, 21] in order to

better explain certain predator-prey interactions.
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Corollary 6.4. Consider (6.1) with fi, i ∈ {1, . . . , d} given in Example 6.4. Then, there exists a

unique QSD of (6.1) such that the conclusions of Theorem 6.1 hold.

Proof. It is straightforward to check that Assumption (A) holds with m = 1 and n = 0. Then, the

application of Theorem 6.1 yields the conclusion. □

Example 6.5. Let d = 2. Consider the Crowley-Martin dynamics. Let

f1(z) = r1 − c11z1 − z2
z1

β + αz1 + α2z2 + α3z1z2
, z ∈ U ,

f2(z) = −r2 − c22z2 + z1
z1

β + αz1 + α2z2 + α3z1z2
, z ∈ U ,

where c11, c22, β > 0 and all the other quantities are nonnegative. This system was first proposed in

[20] to study dragonflies.

Corollary 6.5. Consider (6.1) in the case d = 2 with f1 and f2 given in Example 6.5. Assume

α > 2
3min{2c11,c22} . Then, (6.1) admits a unique QSD such that the conclusions of Theorem 6.1 hold.

Proof. Note that f1(z) ≤ r1 − c11z1 and f2(z) ≤ −r2 − c22z2 +
z1
α . Following the arguments as in the

proof of Theorem 6.1, it is straightforward to see that V (z) := |z|2 for z ∈ U is a Lyapunov function

satisfying (H1)-(H4). From which, the conclusions of Theorem 6.1 hold. □

Appendix A. Proof of technical lemmas

We prove technical lemmas in this appendix.

A.1. Proof of Lemma 3.2. We need the following result.

Lemma A.1. Assume (H1). For each i ∈ {1, . . . , d}, limxi→0 x
2
i

[
q2i (xi)− q′i(xi)

]
= Ci > 0.

Proof. Recall that qi(xi) =
a′
i(ξ

−1
i (xi))

4
√

ai(ξ
−1
i (xi))

. Then, q′i(xi) =
1
4a

′′
i (ξ

−1
i (xi))−

|a′
i|

2(ξ−1
i (xi))

8ai(ξ
−1
i (xi))

, resulting in

(q2i − q′i)(xi) =
3|a′i|2(ξ

−1
i (xi))

16ai(ξ
−1
i (xi))

− 1

4
a′′i (ξ

−1
i (xi)). (A.1)

Since ξ−1
i ∈ C([0,∞)) and ξ−1

i (0) = 0, we see from (H1) that limxi→0 a
′
i(ξ

−1
i (xi)) = a′i(0) > 0 and

limxi→0 a
′′
i (ξ

−1
i (xi)) = a′′i (0). Hence,

(
q2i − q′i

)
(xi) ∼ 3|a′

i|
2(0)

16ai(ξ
−1
i (xi))

− 1
4a

′′
i (0) as xi → 0. The conclusion

follows if there is C > 0 such that

ai(ξ
−1
i (xi)) ∼ Cx2i as xi → 0. (A.2)

We show that (A.2) holds with C =
|a′

i(0)|
2

4 . The assumption (H1) and Taylor’s expansion give

ai(zi) ∼ a′i(0)zi + o(z2i ) as xi → 0, (A.3)

leading to ξi(zi) =
∫ zi
0

ds√
a′
i(0)s+o(s2)

∼ 2
√
zi√

a′
i(0)

as zi → 0. Thus, ξ−1
i (xi) ∼ a′

i(0)x
2
i

4 as xi → 0. Inserting

this into (A.3) yields (A.2) with C =
|a′

i(0)|
2

4 . This completes the proof. □

Remark A.1. Thanks to (A.2), it is easy to see from the definition of Q given in (2.6) that Q(x)

behaves like
∑d

i=1 lnxi as x approaches to Γ. Hence, e−
Q
2 is as singular as

∏d
i=1

1√
xi

near Γ.
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Proof of Lemma 3.2. We first prove (1). Recall that U is given in (2.5). Clearly,

∂xi
U(x) = ∂ziV (ξ−1(x))

√
ai(ξ

−1
i (xi)), ∀x ∈ U .

We derive from (H3) (4) the existence of C1 > 0 and R1 > 0 such that(
|∇U |2 + |p|2

)
(x) ≤ −C1(b · ∇zV )(ξ−1(x)) ≤ C1α(x), ∀x ∈ U \B+

R1
.

Since supB+
R1

(
|∇U |2 + |p|2

)
<∞ due to (H2) and (H3)(1) and infU α > 0, there must exist some

C2 > 0 such that (|∇U |2 + |p|2) < C2α in B+
R1

. Setting C := min{C1, C2} yields the result.

The rest of the proof is arranged as follows. In Step 1, we analyze the asymptotic behaviors of

terms in eβ,N near the boundary Γ and in the vicinity of infinity. Based on these, the asymptotic

behaviors of eβ,N are derived in Step 2. The proof of (2) and (3) are respectively given in Step 3

and Step 4. Recall that R0 and δ0 are fixed in Subsection 3.1 when defining α.

Step 1. We analyze the asymptotic behaviors of terms in eβ,N .

• For p · ∇U , we see from (H3) (1) that

(p · ∇U)(x) = (b · ∇V )(ξ−1(x)) → −∞ as |x| → ∞. (A.4)

• For 1
2

∑d
i=1(q

2
i −q′i), Lemma A.1 ensures the existence of δ∗ ∈ (0, δ0) and C3, C4 > 0 such that

C3

x2i
≤ 1

2
(q2i − q′i)(xi) ≤

C4

x2i
, ∀xi ∈ (0, δ∗] and i ∈ {1, . . . , d}. (A.5)

Since (H1) gives lim sups→∞

(
|a′

i(s)|
2

ai(s)
+ a′′i (s)

)
<∞, we find from (A.1) and (A.4) that for

any 0 < ϵ1 ≪ 1, there exists R2 = R2(ϵ1) > 0 such that

1

2
|q2i − q′i|(xi) ≤ −ϵ1

d
(p · ∇U)(x), ∀x ∈ {x ∈ U : xi ∈ (R2,∞)} and i ∈ {1, . . . , d}. (A.6)

• For ∆U , p · q and ∇ · p, we calculate

∂2xixi
U(x) =

[
∂2ziziV (ξ−1(x))ai(ξ

−1
i (xi)) +

1

2
∂ziV (ξ−1(x))a′i(ξ

−1
i (xi))

]
,

pi(x)qi(xi) =
bi(ξ

−1(x))a′i(ξ
−1
i (xi))

4ai(ξ
−1
i (xi))

, ∂xipi(x) = ∂zibi(ξ
−1(x))− bi(ξ

−1(x))a′i(ξ
−1
i (xi))

2ai(ξ
−1
i (xi))

.

By (H1)-(H3), we have U ∈ C2(U), and p · q,∇ · p ∈ C(U). Moreover, (H3)(3) and (A.4)

guarantee that for any 0 < ϵ2 ≪ 1, there exists R3 = R3(ϵ2) > 0 such that

|∆U |+ |p · q|+ |∇ · p| ≤ −ϵ2p · ∇U in U \B+
R3
. (A.7)

• For 1
2 |∇U |2, we find from |∇U |2(x) =

∑d
i=1 |∂ziV |2(ξ−1(x))ai(ξ

−1
i (xi)), (H3)(4) and (A.4)

that there are C5 > 0 and R4 > 0 such that

1

2
|∇U |2 ≤ −C5(p · ∇U) in U \B+

R4
. (A.8)
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Step 2. We analyze the asymptotic behaviors of eβ,N near Γ and in the vicinity of infinity.

Set R∗ := max{R0, R2, R3, R4} and C6 := 1
2 maxi maxxi∈[δ∗,R∗] |q2i − q′i|(xi). Obviously, R∗ and C6

depend on ϵ1 and ϵ2, which are to be determined in the proof of (3). Since α is piecewise defined, we

analyze eβ,N in four subdomains: Γδ∗ ∩B+
R∗

, Γδ∗ ∩ (U \B+
R∗

), (U \Γδ∗)∩B+
R∗

and (U \Γδ∗)∩ (U \B+
R∗

)

separately, where we recall Γδ∗ := {x ∈ U : xi ≤ δ∗ for some i ∈ {1, . . . , d}}. For simplicity, we set

Ψ :=
β

2
|∆U |+ β2

2
|∇U |2 + β|p · ∇U |+ |p · q|+ |∇ · p|.

(a) In Γδ∗ ∩B+
R∗

. We see from U ∈ C2(U) and p ·∇U , p · q,∇·p ∈ C(U) that maxΓδ∗∩B+
R∗

Ψ <∞.

It follows from (A.5) that

|eβ,N | ≤ C4

d∑
i=1

1

x2i
+ dC6 + max

Γδ∗∩B+
R∗

Ψ, eβ,N ≥ C3

d∑
i=1

max

{
1

x2i
, 1

}
− d

(
C3

δ2∗
+ C6

)
− max

Γδ∗∩B+
R∗

Ψ.

(b) In Γδ∗ ∩ (U \B+
R∗

). It follows from (A.5), (A.7) and (A.8) that

|eβ,N | ≤ C4

d∑
i=1

1

x2i
+ dC6 −

(
β + ϵ2(1 +

β

2
) + C5β

2

)
p · ∇U,

eβ,N ≥ C3

d∑
i=1

max

{
1

x2i
, 1

}
− d

(
C3

δ2∗
+ C6

)
−
(
β − ϵ2(1 +

β

2
)− C5β

2

)
p · ∇U.

(c) In (U \ Γδ∗) ∩B+
R∗

. There hold

|eβ,N | ≤ max
(U\Γδ∗ )∩B+

R∗

[
Ψ+

1

2

d∑
i=1

|q2i − q′i|

]
, eβ,N ≥ − max

(U\Γδ∗ )∩B+
R∗

[
Ψ+

1

2

d∑
i=1

|q2i − q′i|

]
.

(d) In (U \ Γδ∗) ∩ (U \B+
R∗

). It follows from (A.6), (A.7) and (A.8) that

|eβ,N | ≤ dC6 −
(
β + ϵ1 + ϵ2(1 +

β

2
) + C5β

2

)
p · ∇U,

eβ,N ≥ −dC6 −
(
β − ϵ1 − ϵ2(1 +

β

2
)− C5β

2

)
p · ∇U.

Step 3. We prove (2). As α ≥
∑d

i=1 max
{

1
x2
i
, 1
}

in Γδ∗ and infU α > 0, we deduce from Step 2 (a)

the existence of D1(β) > 0 such that eβ,N ≤ D1(β)α in Γδ∗ ∩B+
R∗

for all N ≥ 1.

Since infU α > 0 and

α =


d∑

i=1

max

{
1

x2i
, 1

}
− p · ∇U in Γδ∗ ∩ (U \B+

R∗
),

−p · ∇U in (U \ Γδ∗) ∩ (U \B+
R∗

),

Step 2 (b)(d) ensures the existence of D2(β) > 0 such that |eβ,N | ≤ D2(β)α in U \B+
R∗

for all N ≥ 1.

Thanks to infU α > 0, it follows from Step 2 (c) the existence of D3(β) > 0 such that |eβ,N | ≤
D3(β)α in (U \ Γδ∗) ∩B+

R∗
for all N ≥ 1. Setting C(β) := max{D1(β), D2(β), D3(β)} yields (2).
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Step 4. We show (3). Setting β0 := 1
2C5

, ϵ1 := min
{
1, 1

16C5

}
and ϵ2 := min

{
1, 1

2+8C5

}
, we deduce

from Step 2 (b)(d) that

eβ0,N ≥ C3

d∑
i=1

max

{
1

x2i
, 1

}
− d

(
C3

δ2∗
+ C6

)
−
(
β0 − ϵ2(1 +

β0
2
)− C5β

2
0

)
p · ∇U

≥ min

{
C3,

1

8C5

}
α− d

(
C3

δ2∗
+ C6

)
in Γδ∗ ∩ (U \B+

R∗
)

(A.9)

and

eβ0,N ≥ −dC6 −
(
β0 − ϵ1 − ϵ2(1 +

β0
2
)− C5β

2
0

)
p · ∇U

≥ 1

16C5
α− dC6 in (U \ Γδ∗) ∩ (U \B+

R∗
).

(A.10)

Since α ≤
∑d

i=1 max
{

1
x2
i
, 1
}
+ maxΓδ∗∩B+

R∗
|p · ∇U | in Γδ∗ ∩ B+

R∗
and sup(U\Γδ∗ )∩B+

R∗
α < ∞,

we conclude from (a) and (c) the existence of positive constants C7 and M > d
(

C3

δ2∗
+ C6

)
such

that eβ0,N + M ≥ C7α in B+
R∗

for all N ≥ 1, which together with (A.9) and (A.10) implies that

eβ0,N +M ≥ C∗α in U for all N ≥ 1, where C∗ := min{C3,
1

16C5
, C7}. This proves (3), and completes

the proof.

A.2. Proof of Lemma 4.3. Suppose w̃ ∈ C(U × [0,∞)) ∩ L2([0,∞),H1(U)) is a weak solution of

(4.6). The proof is broken into two steps.

Step 1. We show

1

2

∫
U
w̃2(·, t)dx+

1

2

∫ t

0

∫
U
|∇w̃|2dxds+

∫ t

0

∫
U
eβ0,2w̃

2dxds =
1

2

∫
U
f̃2dx, ∀t ∈ [0,∞). (A.11)

The idea of proving (A.11) is based on the classical “energy method”. But, we have to deal with

the fact that w̃ lacks the differentiability in t. For each 0 < h≪ 1, we define

w̃h(x, t) :=
1

h

∫ t+h

t

w̃(x, s)ds, (x, t) ∈ U × [0,∞).

Obviously, w̃h ∈ C(U × [0,∞)) ∩ L2([0,∞),H1(U)) and ∂tw̃h ∈ L2(U × [0, T ]) for each T > 0. It is

easy to verify that w̃h is a weak solution of (4.6) with f̃ replaced by f̃h := w̃h(·, 0) = 1
h

∫ h

0
w̃h(·, s)ds.

Namely, for each t ∈ [0,∞) and ϕ ∈ C1,1
0 (U × [0,∞)), one has∫

U
w̃h(·, t)ϕ(·, t)dx−

∫
U
f̃hϕ(·, 0)dx−

∫ t

0

∫
U
w̃h∂tϕdxds

= −1

2

∫ t

0

∫
U
∇w̃h · ∇ϕdxds−

∫ t

0

∫
U
(p+ β0∇U) · w̃h∇ϕdxds−

∫ t

0

∫
U
eβ0

w̃hϕdxds.

(A.12)

Let {ηn}n∈N ⊂ C∞
0 (U) be a sequence of functions taking values in [0, 1] and satisfying

ηn(x) =

1, x ∈
(
U \ Γ 2

n

)
∩B+

n
2
,

0, x ∈ Γ 1
n

⋃
(U \B+

n ) ,
and |∇ηn(x)| ≤

2n, x ∈ Γ 2
n
\ Γ 1

n
,

4, x ∈
(
U \ Γ 2

n

)
∩
(
B+

n \B+
n
2

)
.
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By standard approximation arguments, we deduce that (A.12) holds with ϕ replaced by η2nw̃h. More-

over, integration by parts shows that the left hand side of (A.12) with ϕ replaced by η2nw̃h equals
1
2

∫
U (η

2
nw̃

2
h)(·, t)dx− 1

2

∫
U η

2
nf̃

2
hdx. Thus, we find for each t ∈ [0,∞), n ∈ N and 0 < h≪ 1,

1

2

∫
U
(η2nw̃

2
h)(·, t)dx− 1

2

∫
U
η2nf̃

2
hdx

= −1

2

∫ t

0

∫
U
∇w̃h · ∇(η2nw̃h)dxds−

∫ t

0

∫
U
(p+ β0∇U) · w̃h∇(η2nw̃h)dxds

−
∫ t

0

∫
U
eβ0η

2
nw̃

2
hdxds.

(A.13)

We claim that passing to the limit h→ 0 in (A.13) yields that for each t ∈ [0,∞) and n ∈ N,

1

2

∫
U
(η2nw̃

2)(·, t)dx− 1

2

∫
U
η2nf̃

2dx

= −1

2

∫ t

0

∫
U
∇w̃ · ∇(η2nw̃)dxds−

∫ t

0

∫
U
(p+ β0∇U) · w̃∇(η2nw̃)dxds

−
∫ t

0

∫
U
eβ0

η2nw̃
2dxds.

(A.14)

Assuming (A.14), we conclude (A.11) from letting n→ ∞ in (A.14) and arguments as in the proof of

Lemma 3.3 (2).

It remains to justify (A.14). For notational simplicity, we rewrite (A.13) and (A.14) as

I0(h) = I1(h) + I2(h) + I3(h) and I0 = I1 + I2 + I3,

respectively, and show that limh→0 Ii(h) = Ii for i = 0, 1, 2, 3.

Fix t ∈ [0,∞) and n ∈ N. Note for each 0 < h≪ 1,

w̃h(·, t)− w̃(·, t) =
∫ 1

0

[w̃(·, t+ hs)− w̃(·, t)]ds, f̃h − f̃ =

∫ 1

0

[w̃(·, hs)− f̃ ]ds.

Since w̃ ∈ C(U × [0,∞)), we find for each compact set K ⊂ U ,

sup
K×[0,t]

|w̃h − w̃| → 0 as h→ 0 (A.15)

and supK |f̃h − f̃ | → 0 as h→ 0. It follows that limh→0 I0(h) = I0 and limh→0 I3(h) = I3.

We claim that

lim
h→0

∫ t

0

∫
U
|∇w̃h −∇w̃|2dxds = 0. (A.16)

Since ∇w̃h(·, t)−∇w̃(·, t) =
∫ 1

0
[∇w̃(·, t+ hs)−∇w̃(·, t)]ds, we find∫ t

0

∫
U
|∇w̃h −∇w̃|2dxdt′ ≤

∫ t

0

∫
U

∫ 1

0

|∇w̃(x, t′ + hs)−∇w̃(x, t′)|2dsdxdt′

≤ sup
s∈[0,h]

∫ t

0

∫
U
|∇w̃(x, t′ + s)−∇w̃(x, t′)|2dxdt′,

(A.17)

where we used Fubini’s theorem before taking the supremum.
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Since ∇w̃ ∈ L2(U × [0, 2t]) and C0(U × [0, 2t]) is dense in L2(U × [0, 2t]), for each ϵ > 0, we could

find some Φ ∈ C0(U× [0, 2t]) such that ∥Φ−∇w̃∥L2(U×[0,2t]) < ϵ. Obviously, Φ is uniformly continuous

on U × [0, 2t], resulting in sups∈[0,h]

∫ t

0

∫
U |Φ(x, t′ + s)− Φ(x, t′)|2dxdt′ → 0 as h→ 0. Therefore,

1

3
sup

s∈[0,h]

∫ t

0

∫
U
|∇w̃(x, t′ + s)−∇w̃(x, t′)|2dxdt′

≤ sup
s∈[0,h]

∫ t

0

∫
U
|∇w̃(x, t′ + s)− Φ(x, t′ + s)|2dxdt′ + sup

s∈[0,h]

∫ t

0

∫
U
|Φ(x, t′ + s)− Φ(x, t′)|2dxdt′

+ sup
s∈[0,h]

∫ t

0

∫
U
|Φ(x, t′)−∇w̃(x, t′)|2dxdt′ ≤ 2ϵ+ sup

s∈[0,h]

∫ t

0

∫
U
|Φ(x, t′ + s)− Φ(x, t′)|2dxdt′.

Letting h→ 0 in the above estimates, we find (A.16) from the arbitrariness of ϵ > 0 and (A.17).

It follows readily from (A.16) that limh→0

∫ t

0

∫
U η

2
n|∇w̃h|2dxds =

∫ t

0

∫
U η

2
n|∇w̃|2dxds. Since∫ t

0

∫
U
ηnw̃h∇w̃h · ∇ηndxds−

∫ t

0

∫
U
ηnw̃∇w̃ · ∇ηndxds

=

∫ t

0

∫
U
ηn(w̃h − w̃)∇w̃h · ∇ηndxds+

∫ t

0

∫
U
ηnw̃(∇w̃h −∇w̃) · ∇ηndxds,

we apply Hölder’s inequality to deduce from (A.15) and (A.16) that

lim
h→0

∫ t

0

∫
U
ηnw̃h∇w̃h · ∇ηndxds =

∫ t

0

∫
U
ηnw̃∇w̃ · ∇ηndxds.

Therefore,

lim
h→0

−2I1(h) = lim
h→0

(∫ t

0

∫
U
η2n|∇w̃h|2dxds+ 2

∫ t

0

∫
U
ηnw̃h∇w̃h · ∇ηndxds

)
=

∫ t

0

∫
U
η2n|∇w̃|2dxds+ 2

∫ t

0

∫
U
ηnw̃∇w̃ · ∇ηndxds = −2I1.

Similar arguments yield limh→0 I2(h) = I2. Hence, letting h→ 0 in (A.13) yields (A.14).

Step 2. We show that
∫
U w̃

2(·, t)dx ≤ e2Mt

M

∫
U f̃

2dx for all t ∈ [0,∞). Hence, w̃ = 0 if f̃ = 0. This

proves the lemma.

As eβ0,2 +M ≥ 0 by Lemma 3.2 (3), we derive from (A.11) that

1

2

∫
U
w̃2(·, t)dx ≤M

∫ t

0

∫
U
w̃2dxds+

∫
U
f̃2dx, ∀t ∈ [0,∞). (A.18)

Setting g(t) =
∫ t

0

∫
U w̃

2dxds for t ∈ [0,∞), we arrive at 1
2g

′(t) ≤ Mg(t) +
∫
U f̃

2dx for all t ∈ [0,∞).

The conclusion then follows from Gronwall’s inequality. □
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1. V. Bansaye and S. Méléard, Stochastic models for structured populations. Scaling limits and long time behavior.

Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems, 1.4. Springer, Cham; MBI

Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015.

2. J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. The

Journal of Animal Ecology (1975), 331-340.
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8. P. Cattiaux and S. Méléard, Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on

non-extinction. J. Math. Biol. 60 (2010), no. 6, 797-829.

9. J. A. Cavender, Quasi-stationary distributions of birth-and-death processes. Adv. in Appl. Probab. 10 (1978), no.

3, 570-586.

10. N. Champagnat, K. A. Coulibaly-Pasquier and D. Villemonais, Criteria for exponential convergence to quasi-

stationary distributions and applications to multi-dimensional diffusions. Séminaire de Probabilités XLIX, 165-182,
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