QUASI-STATIONARY DISTRIBUTIONS OF ABSORBED SINGULAR DIFFUSION PROCESSES IN HIGHER DIMENSIONS

ALEXANDRU HENING, WEIWEI QI, ZHONGWEI SHEN, AND YINGFEI YI

Abstract

The present paper is devoted to the investigation of the long term behavior of a class of higher-dimensional singular diffusion processes that get absorbed by the extinction set in finite time with probability one. Our primary focus is on the analysis of quasi-stationary distributions (QSDs), which describe the long term behavior of the system conditioned on not being absorbed. Under natural Lyapunov conditions, we construct a QSD and prove the sharp exponential convergence to this QSD for compactly supported initial distributions. Under stronger Lyapunov conditions ensuring that the diffusion process comes down from infinity, we show the uniqueness of a QSD and the exponential convergence to the QSD for all initial distributions. Our results can be seen as the higher-dimensional generalization of Cattiaux et al (Ann. Prob. 2009) as well as the complement to Hening and Nguyen (Ann. Appl. Prob. 2018) which looks at the long term behavior of higherdimensional diffusions that can only become extinct asymptotically. As applications, we show how our results can be applied to many ecological models, among which cooperative, competitive, and predator-prey Lotka-Volterra systems.

The cornerstone of our approach revolves around a uniformly elliptic operator that we relate through a two-step transform to the Fokker-Planck operator associated with the diffusion process. This operator only has singular coefficients in its zeroth-order terms and can be handled more easily than the Fokker-Planck operator, which is defined on an unbounded domain and exhibits degeneracy in the extinction set. For this operator, we establish the discreteness of its spectrum, its principal spectral theory, the stochastic representation of the semigroup generated by it, and the global regularity for the associated parabolic equation. These results extend beyond the study of QSDs and are of independent interest, especially in the context of spectral theory for degenerate elliptic operators on unbounded domains. As direct consequences, we show that the extinction rate associated with the QSD and the sharp exponential convergence rate are respectively given by the absolute value of the principal eigenvalue and the spectral gap, between the principal eigenvalue and the rest of the spectrum, of this operator. Such characterizations of the QSD and exponential convergence rate were previously unknown in the context of irreversible singular diffusion processes.

Contents

1. Introduction

[^0]2.2. Equivalent formulation 11
2.3. Approximation by first exit times 13
3. Spectral theory and semigroup 13
3.1. A weighted Hilbert space 14
3.2. Some estimates 15
3.3. Spectrum and semigroup 16
3.4. Adjoint operator and semigroup 21
4. Stochastic representation of semigroups 22
4.1. Stochastic representation in bounded domains 22
4.2. Estimates of semigroups in bounded domains 23
4.3. Stochastic representation 25
5. QSD: existence, uniqueness and convergence 27
5.1. Existence 27
5.2. Sharp exponential convergence 29
5.3. Uniqueness and exponential convergence 37
5.4. Proof of Theorem A and Theorem B 40
6. Applications 41
Appendix A. Proof of technical lemmas 45
A.1. Proof of Lemma 3.2 45
A.2. Proof of Lemma 4.3 48
References 50

1. Introduction

Absorbed diffusion processes find frequent application in the field of population biology, serving as models for the evolution of interacting species. In such ecological systems, it is a well-established fact that the eventual extinction of all species is an inevitable outcome, driven by various factors such as finite resources, limited population sizes, mortality rates, and more. However, what is crucial to recognize is that, in practical terms and when measured against human timescales, species can persist for a significant duration [8]. This prolonged persistence of species in ecological systems motivates the need to gain insights into the behavior of the ecosystem before the eventual extinction occurs. As a result, there is a strong impetus to study the dynamics of higher-dimensional diffusion processes under the condition that they do not go extinct.

To be more specific, consider the stochastic Lotka-Volterra competition system:

$$
\begin{equation*}
\mathrm{d} Z_{t}^{i}=Z_{t}^{i}\left(r_{i}-\sum_{j=1}^{d} c_{i j} Z_{t}^{j}\right) \mathrm{d} t+\sqrt{\gamma_{i} Z_{t}^{i}} \mathrm{~d} W_{t}^{i}, \quad i \in\{1, \ldots, d\} \tag{1.1}
\end{equation*}
$$

where $Z_{t}=\left(Z_{t}^{i}\right) \in \overline{\mathcal{U}}:=[0, \infty)^{d}$ are the abundances of the species at time $t,\left\{r_{i}\right\}_{i}$ are percapita growth rates, $\left\{c_{i i}\right\}_{i}$ are the intra-specific competition rates, $\left\{c_{i j}\right\}_{i \neq j}$ are inter-specific competition rates, $\left\{\gamma_{i}\right\}_{i}$ are demographic parameters describing ecological timescales (see e.g. [7, 8]), and $\left\{W^{i}\right\}_{i}$ are independent standard one-dimensional Wiener processes on some probability space. It is well-known (see e.g. [8, 15]) that Z_{t} reaches the boundary, also called the extinction set,
$\Gamma:=\left\{z=\left(z_{i}\right) \in \overline{\mathcal{U}}: z_{i}=0\right.$ for some $\left.i \in\{1, \ldots, d\}\right\}$, of $\overline{\mathcal{U}}$ in finite time almost surely. This corresponds to the extinction of at least one species of the considered community. Nonetheless, typical trajectories or sample paths of Z_{t} will stay in $\mathcal{U}:=(0, \infty)^{d}$ for a long period before hitting Γ. This can be interpreted as the temporary coexistence of species, before their ultimate extinction. To understand this type of behavior, notions such as quasi-steady states and metastable states have been put forward. These concepts are often formalized in terms of the quasi-stationary distributions (QSDs), which are initial distributions of Z_{t} on \mathcal{U} such that the distribution of Z_{t} conditioned on not reaching Γ up to time t is independent of $t \geq 0$. In this context, it is of fundamental mathematical importance to analyze the existence, uniqueness, and domains of (exponential) attraction of QSDs.

The purpose of the present paper is to investigate the existence, uniqueness and exponential convergence to QSDs for a class of irreversible diffusion processes given by models of the form

$$
\begin{equation*}
\mathrm{d} Z_{t}^{i}=b_{i}\left(Z_{t}\right) \mathrm{d} t+\sqrt{a_{i}\left(Z_{t}^{i}\right)} \mathrm{d} W_{t}^{i}, \quad i \in\{1, \ldots, d\} \tag{1.2}
\end{equation*}
$$

where $Z_{t}:=\left(Z_{t}^{i}\right) \in \overline{\mathcal{U}}, b_{i}: \overline{\mathcal{U}} \rightarrow \mathbb{R}$ and $a_{i}:[0, \infty) \rightarrow[0, \infty)$. We make the following assumptions.
(H1) $a_{i} \in C^{2}([0, \infty)), a_{i}(0)=0, a_{i}^{\prime}(0)>0, a_{i}>0$ on $(0, \infty), \lim \sup _{s \rightarrow \infty}\left[\frac{\left|a_{i}^{\prime}(s)\right|^{2}}{a_{i}(s)}+a_{i}^{\prime \prime}(s)\right]<\infty$ and $\int_{1}^{\infty} \frac{\mathrm{d} s}{\sqrt{a_{i}(s)}}=\infty$ for all $i \in\{1, \ldots, d\}$.
(H2) $b_{i} \in C^{1}(\overline{\mathcal{U}})$ and $\left.b_{i}\right|_{z_{i}=0}=0$ for all $i \in\{1, \ldots, d\}$, where $z_{i}=0$ means the set

$$
\left\{z=\left(z_{i}\right) \in \overline{\mathcal{U}}: z_{i}=0\right\} .
$$

(H3) There exists a positive function $V \in C^{2}(\overline{\mathcal{U}})$ satisfying the following conditions.
(1) $\lim _{|z| \rightarrow \infty} V(z)=\infty$ and $\lim _{|z| \rightarrow \infty}\left(b \cdot \nabla_{z} V\right)(z)=-\infty$.
(2) There exists a non-negative and continuous function $\tilde{V}:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\int_{1}^{\infty} \frac{e^{-\beta \tilde{V}}}{a_{i}} \mathrm{~d} s<\infty, \quad \forall \beta>0 \text { and } i \in\{1, \ldots, d\}
$$

such that $V(z) \geq \sum_{i=1}^{d} \tilde{V}\left(z_{i}\right)$ for all $z=\left(z_{i}\right) \in \overline{\mathcal{U}}$.
(3) $\lim _{|z| \rightarrow \infty} \frac{1}{b \cdot \nabla_{z} V} \sum_{i=1}^{d}\left(\left|\partial_{z_{i}} b_{i}\right|+\frac{\left|a_{i}^{\prime} b_{i}\right|}{a_{i}}+\left|a_{i}^{\prime} \partial_{z_{i}} V\right|+a_{i}\left|\partial_{z_{i} z_{i}}^{2} V\right|\right)=0$.
(4) There exist constants $C>0$ and $R>0$ such that

$$
\sum_{i=1}^{d}\left(a_{i}\left|\partial_{z_{i}} V\right|^{2}+\frac{b_{i}^{2}}{a_{i}}\right) \leq-C b \cdot \nabla_{z} V \quad \text { in } \quad \mathcal{U} \backslash B_{R}^{+}
$$

where $B_{R}^{+}:=\left\{z=\left(z_{i}\right) \in \mathcal{U}: z_{i} \in(0, R), \forall i \in\{1, \ldots, d\}\right\}$ for $R>0$.
Assumption (H1) says that each $a_{i}(s)$ behaves like $a_{i}^{\prime}(0) s$ near $s \approx 0$, and allows each $a_{i}(s)$ to behave like s^{γ} for some $\gamma \in(-\infty, 2]$ near $s \approx \infty$. Assumption (H2) is satisfied if $b_{i}(z)=z_{i} f_{i}(z)$ for $f_{i} \in C^{1}(\overline{\mathcal{U}})$. (H1) and (H2) ensure that (1.2) generates a diffusion process Z_{t} on $\overline{\mathcal{U}}$ having Γ as an absorbing set. (H3)(1) and the condition $\lim _{|z| \rightarrow \infty} \frac{\sum_{i=1}^{d}\left|a_{i} z_{z i z}^{2} z_{i} V\right|}{b \cdot \nabla_{z} V}=0$ contained in (H3)(3) imply the dissipativity of Z_{t}, and hence, that it does not explode in finite time almost surely. Other assumptions in (H3) are technical ones, but they are made according to examples discussed in Section 6. We note that for a reversible system, the potential function is a natural choice for V. For irreversible systems, polynomials are usually good choices for V, especially when the coefficients are polynomials or rational functions - this is often the case in applications.

We show in Proposition 2.1 that Z_{t} reaches Γ in finite time almost surely under (H1)-(H3), and hence, that Z_{t} does not admit a stationary distribution that has positive concentration in \mathcal{U}. It is
then natural to look at Z_{t} before reaching Γ in order to understand the dynamics of Z_{t}. This drives us to examine quasi-stationary distributions of Z_{t} or (1.2) conditioned on coexistence, i.e., $\left[t<T_{\Gamma}\right]$, where $T_{\Gamma}:=\inf \left\{t>0: Z_{t} \in \Gamma\right\}$ is the first time when Z_{t} hits Γ. Denote by \mathbb{P}^{μ} the law of Z_{t} with initial distribution μ, and by \mathbb{E}^{μ} the expectation with respect to \mathbb{P}^{μ}.

Definition 1.1 (Quasi-stationary distribution). A Borel probability measure μ on \mathcal{U} is called a quasistationary distribution $(Q S D)$ of Z_{t} or (1.2) if for each $f \in C_{b}(\mathcal{U})$, one has

$$
\mathbb{E}^{\mu}\left[f\left(Z_{t}\right) \mid t<T_{\Gamma}\right]=\int_{\mathcal{U}} f \mathrm{~d} \mu, \quad \forall t \geq 0
$$

The QSDs of Z_{t} are simply stationary distributions of Z_{t} conditioned on $\left[t<T_{\Gamma}\right]$. This is why QSDs can be seen as governing the dynamics of Z_{t} before extinction. It is known from the general theory of QSDs (see e.g. [53, 18]) that if μ is a QSD of Z_{t}, then there exists a unique $\lambda>0$ such that if $Z_{0} \sim \mu$ the time T_{Γ} is exponentially distributed with rate λ, i.e., $\mathbb{P}^{\mu}\left[T_{\Gamma}>t\right]=e^{-\lambda t}$ for all $t \geq 0$. In view of this, the number λ is often called the extinction rate associated with μ.

Our first result concerning the existence of QSDs and the conditioned dynamics of Z_{t} is stated in the following theorem. Denote by $\mathcal{P}(\mathcal{U})$ the set of Borel probability measures on \mathcal{U}. For convenience, we use the notation $0<\epsilon \ll 1$ meaning that ϵ is as small as we want.

Theorem A. Assume (H1)-(H3). The process Z_{t} admits a $Q S D \mu_{1}$ satisfying $\int_{\mathcal{U}} e^{\beta V} \mathrm{~d} \mu_{1}<\infty$ for some $\beta>0$, and there exists $r_{1}>0$ such that the following statements hold:

- For any $0<\epsilon \ll 1$ and $\mu \in \mathcal{P}(\mathcal{U})$ with compact support in \mathcal{U},

$$
\lim _{t \rightarrow \infty} e^{\left(r_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\mu}\left[Z_{t} \in \bullet \mid t<T_{\Gamma}\right]-\mu_{1}\right\|_{T V}=0
$$

where $\|\cdot\|_{T V}$ denotes the total variational distance.

- There is $f \in C_{b}(\mathcal{U})$ such that for a.e. $x \in \mathcal{U}$, there is a family of sets $\left\{\mathcal{K}_{x, \epsilon}\right\}_{0<\epsilon \ll 1}$ in $(0, \infty)$ satisfying $\mathcal{K}_{x, \epsilon_{2}} \subset \mathcal{K}_{x, \epsilon_{1}}$ for $0<\epsilon_{1}<\epsilon_{2} \ll 1$ and $\lim _{\epsilon \rightarrow 0} \inf _{T>0}\left|\mathcal{K}_{x, \epsilon} \cap(T, T+1)\right|=1$ such that

$$
\lim _{\substack{t \in \mathcal{K}_{x, \epsilon} \\ t \rightarrow \infty}} e^{\left(r_{1}+\epsilon\right) t}\left|\mathbb{E}^{x}\left[f\left(Z_{t}\right) \mid t<T_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \mu_{1}\right|=\infty, \quad \forall 0<\epsilon \ll 1
$$

Remark 1.1. We make some comments about Theorem A.

- The two convergence results stated in Theorem A assert the sharp exponential convergence with rate r_{1} of the conditional distribution $\mathbb{P}^{\mu}\left[Z_{t} \in \bullet \mid t<T_{\Gamma}\right]$ to the $Q S D \mu_{1}$ as $t \rightarrow \infty$. While it is fairly easy to show that

$$
\lim _{t \rightarrow \infty} e^{\left(r_{1}+\epsilon\right) t} \sup _{\substack{f \in C_{b}(\mathcal{U}) \\\|f\|_{\infty}=1}} \sup _{x \in \mathcal{U}}\left|\mathbb{E}^{x}\left[f\left(Z_{t}\right) \mid t<T_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \mu_{1}\right|=\infty, \quad \forall 0<\epsilon \ll 1
$$

the second conclusion presented in Theorem A is much stronger.

- What is behind Theorem A is the spectral theory (more precisely, the discreteness of the spectrum and the principal spectral theory) of a uniformly elliptic operator with singular coefficients in its zeroth-order term that we relate to the Fokker-Planck operator associated with Z_{t} via equivalent transforms. This allows us to address the challenges posed by the facts that the Fokker-Planck operator associated with Z_{t} is defined on the unbounded domain \mathcal{U} and exhibits degeneracy on its boundary Γ. The $Q S D \mu_{1}$ is essentially given by the positive eigenfunction associated with the principal eigenvalue $-\lambda_{1}<0$, and the associated extinction rate is just the
absolute value of the principal eigenvalue λ_{1}. The sharp exponential convergence rate r_{1} is given by the spectral gap, between the principal eigenvalue and the rest of the spectrum. Such characterizations of the $Q S D$ and the exponential convergence rate have been obtained in $[7,8]$ in the reversible case. Our result is the first of this type for the general setting when Z_{t} is irreversible.
- In the second conclusion, the function f is essentially an arbitrary non-zero element in the range of the spectral projection of the elliptic operator associated with eigenvalues having real part $-\lambda_{1}-r_{1}$. The set $\mathcal{K}_{x, \epsilon}$ more or less corresponds to the ϵ-superlevel set of the function $t \mapsto$ $\left|\mathbb{E}^{x}\left[f\left(X_{t}\right) \mid t<T_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right|$. For irreversible systems, eigenvalues having real part $-\lambda_{1}-r_{1}$ are generally complex, giving rise to oscillations (see (5.8)). As a result, the zeros of this function, if they exist, form a sparse set, and thus, $\bigcup_{0<\epsilon \ll 1} \mathcal{K}_{x, \epsilon}$ is densely distributed in $(0, \infty)$ as described in the statement.
- The assumptions (H1)-(H3) do not guarantee the uniqueness of $Q S D$ s of Z_{t}. In the absence of coming down from infinity [7], Z_{t} could admit infinitely many $Q S D$ s that can be described as follows: there exists $\lambda_{*}>0$ such that
- for any $\lambda \in\left(0, \lambda_{*}\right]$, there is a unique $Q S D \mu_{\lambda}$ having λ as the extinction rate;
- the QSDs $\left\{\mu_{\lambda}: \lambda \in\left(0, \lambda_{*}\right]\right\}$ are partially ordered in the sense that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{*}$ implies $\mu_{\lambda_{1}}((x, \infty)) \geq \mu_{\lambda_{2}}((x, \infty))$ for all $x \in(0, \infty)$. For this reason, $\mu_{\lambda_{*}}$ is often called the minimal $Q S D$.
Such a scenario of infinitely many QSDs is known in many situations (see e.g. [51, 47, 18, 67] for one-dimensional diffusion processes, and [9, 24, 26] for jump processes). See Remark 6.3 for the higher-dimensional case.
- Theorem A applies to a large class of population models including stochastic Lotka-Volterra models, models with Holling type functional responses, and Beddington-DeAngelis models. We refer the reader to Section 6 for more details.

Although the QSD μ_{1} obtained in Theorem A attracts all compactly supported initial distributions, there is no assertion that it is the unique QSD of the process Z_{t}. To study the uniqueness, we make the following additional assumption.
(H4) There exist positive constants C, γ and R_{*} such that

$$
\lim _{|z| \rightarrow \infty} V^{-\gamma-2} \sum_{i=1}^{d} a_{i}\left|\partial_{z_{i}} V\right|^{2}=0 \quad \text { and } \quad \frac{1}{2} \sum_{i=1}^{d} a_{i} \partial_{z_{i} z_{i}}^{2} V+b \cdot \nabla_{z} V \leq-C V^{\gamma+1} \quad \text { in } \quad \mathcal{U} \backslash B_{R_{*}}^{+}
$$

Theorem B. Assume (H1)-(H4). Let μ_{1} and r_{1} be as in Theorem A. Then, μ_{1} is the unique QSD of Z_{t}, and for any $0<\epsilon \ll 1$ and $\mu \in \mathcal{P}(\mathcal{U})$, there holds

$$
\lim _{t \rightarrow \infty} e^{\left(r_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\mu}\left[Z_{t} \in \bullet \mid t<T_{\Gamma}\right]-\mu_{1}\right\|_{T V}=0
$$

Assumption (H4) concerns the strong dissipativity of Z_{t} near infinity, and implies in particular that Z_{t} comes down from infinity (see Remark 5.3), that is, for each $\lambda>0$, there exists $R=R(\lambda)>0$ such that $\sup _{z \in \mathcal{U} \backslash B_{R}^{+}} \mathbb{E}^{z}\left[e^{\lambda T_{R}}\right]<\infty$, where $T_{R}:=\inf \left\{t \geq 0: Z_{t} \notin \mathcal{U} \backslash B_{R}^{+}\right\}$. This is more or less inspired by [7], showing in dimension one that coming down from infinity is equivalent to the uniqueness of QSDs. This property plays a crucial role in the proof of Theorem B. It says that with high probability the process Z_{t} quickly enters a bounded region. This happens even if the initial distribution of Z_{t} has a heavy tail near ∞. As a result, it makes no difference to the QSD μ_{1} whether the initial distribution
of Z_{t} is compactly supported or not. Theorem B applies to a large class of biological models including in particular the stochastic competition system (1.1) and the stochastic weak cooperation system (i.e., the system (1.1) with $\left\{-c_{i j}\right\}_{i \neq j}$ being positive and small in comparison to $\left\{c_{i i}\right\}_{i}$). See Section 6 for more details.

Comparison to existing literature. Due to their popularity in describing non-stationary states that are often observed in applications, QSDs have been attracting significant attention. We refer the reader to $[57,53,18]$ and references therein for an overview of the theory, developments and applications of QSD. We next present the current state of the art for diffusion processes. The investigation of QSDs for one-dimensional diffusion processes has been analyzed thoroughly. We refer the reader to $[49,19,52,62,38,69,11,12,13]$ and references therein for the analysis of the regular case. For singular diffusion processes including in particular (1.1) and (1.2) in the one-dimensional setting, the work [7] lays the foundation and is generalized in [46, 54, 13, 34].

Recently, there has been a lot of progress in the study of QSDs for higher-dimensional diffusion processes. Regular diffusion processes restricted to a bounded domain and killed on the boundary have been studied in $[56,30,41,10,15]$ and are well-understood. The stochastic competition system (1.1) has been studied in [8] in the reversible case, and in [14] in the irreversible case. In both cases the authors established the exponential convergence to the unique QSD. In [8], the authors also deal with the model in the weak cooperation and reversible case. The model treated in [14] has a more general deterministic vector field. These models are typical singular diffusion processes arising from ecology or population biology. In [15, 31, 25], the authors study elliptic diffusion processes and show the existence of a QSD and the exponential convergence to this QSD, which is the unique QSD satisfying a mild integral condition. Similar results for hypoelliptic Hamiltonian systems are established in $[31,32,58,42,4]$. In [4], the authors actually work on general degenerate diffusion processes under accessibility conditions and Hörmander's condition.

The works $[8,14,15,31,25]$, which investigate higher-dimensional singular diffusion processes, are the most relevant to our work. We comment on the approaches employed in these works. In [8], the study of QSD relies on the spectral analysis of the generator, which is assumed to be reversible or self-adjoint in the weighted space $L^{2}(\mathcal{U}, d \mu)$ with μ being the non-integrable Gibbs measure. Due to the degeneracy of the diffusion coefficients, the authors adopt a two-step equivalent transform: firstly, a homeomorphism over $\overline{\mathcal{U}}$ is introduced to transfer the degeneracy of the diffusion coefficients to the blow-up singularity of the drift; second, the standard Liouville transform is applied to convert the generator of the new SDE obtained in the first step into a Schrödinger operator, for which the spectral theory is well established. This methodology was previously developed in [7] to address the one-dimensional case, whose generator is naturally self-adjoint. Clearly, the self-adjointness plays a pivotal role in the generalizing these techniques to the higher-dimensional case. However, it is important to note that most higher-dimensional diffusion processes are irreversible with non-selfadjoint generators.

In $[14,15,31,25]$, the authors aim to establish a general probability framework, similar to those used in the study of stationary distributions, for investigating QSDs in diffusion processes. These frameworks typically consist of three essential ingredients: the Lyapunov condition, Doeblintype/minorization condition and certain regularity conditions. Checking these conditions is a routine job for elliptic diffusion processes, and requires hypoelliptic conditions and controllability for degenerate ones. In [14], the authors focus on studying general absorbed time continuous Markov processes,
with a particular application to (1.1). The framework introduced in [15] is applicable to both timediscrete and continuous absorbed Markov processes. The primary objective of [31] is to investigate QSDs of stochastic damping Hamiltonian systems when the position variable is constrained within a bounded region. The work [25], originally not intended for studying QSDs, examines sub-Markov semigroups and their results can be applied to absorbed processes. It is noteworthy that studying the essential spectral radius of the semigroup under Lyapunov conditions plays a crucial role in both [31] and [25].

Our approach is rooted in the spectral theory of the Fokker-Planck operator associated with Z_{t}, which is non-self-adjoint, defined on the unbounded domain \mathcal{U}, and exhibits degeneracy on its boundary Γ, causing significant challenges. Inspired by the methodology introduced in [7, 8] treating reversible diffusion processes, we develop a two-step equivalent transform to render the Fokker-Planck operator more manageable. In the first step, we follow a procedure akin to that outlined in [8] to eliminate the degeneracy of the Fokker-Planck operator and obtain a new Fokker-Planck operator whose first-order terms have coefficients blow up at Γ. It is the second step that our approach showcases its novelty. Carefully examining the blow-up singularities in the first-order terms of the new Fokker-Planck operator, we design a parameter-dependent Liouville-type transform. This transform effectively eliminate these singularities, yielding a parameter-dependent uniformly elliptic operator exhibiting blow-up coefficients only in its zeroth-order terms. The presence of the parameter expands the degree of freedom for analysis and holds significant technical importance.

Through a careful analysis of the blow-up properties of these coefficients, we introduce a weighted Sobolev space and successfully establish a priori estimates for this uniformly elliptic operator (with a specified parameter) in the weighted Sobolev space. These a priori estimates ascertain the discreteness of its spectrum, unravel the principal spectral theory, and uncover the C_{0}-semigroup generated by it. Leveraging the stochastic representation of this semigroup as a bridge, we are able to obtain fine dynamical properties of Z_{t} conditioned on non-extinction. As direct consequences of our approach, we demonstrate the following: (i) The principal eigenpair of this operator gives rise to the QSD μ_{1} in Theorem A, along with its associated extinction rate. (ii) The sharp exponential convergence rate r_{1} stated in Theorem A is given by the spectral gap, between the principal eigenvalue and the rest of the spectrum, of this operator. Such explicit characterizations of the QSD and the sharp exponential convergence rate to the QSD were hitherto unknown for irreversible singular diffusion processes. Moreover, given the significance of Liouville-type transforms, spectral theory, and the stochastic representation of semigroups, our results extend beyond the study of QSDs and are of independent interest, especially in the context of spectral theory for degenerate elliptic operators on unbounded domains.

To this end, we would like to emphasize that applied to specific systems that do not assume reversibility, such as stochastic Lotka-Volterra models, both the results from [14, 15, 31, 25] (even though these applications are not explicitly demonstrated in [31, 25]) and our own findings can establish the (unique) existence of the QSD and its exponential attractivity. Additionally, our results provide the precise exponential rate, which is determined by the spectral gap of the Fokker-Planck operator in a specific function space.

Demographic and environmental stochasticity. Consider an isolated ecosystem of interacting species. Due to finite population effects and demographic stochasticity, extinction of all species is certain to occur in finite time for all populations. However, the time to extinction can be large and the species densities can fluctuate before extinction occurs.

Figure 1. Overview of proofs.

One way of capturing this behaviour is ignoring the effects of demographic stochasticity (i.e. finite population effects) and focusing on models with environmental stochasticity where extinction can only be asymptotic as $t \rightarrow \infty$. This approach led to the development of the field of modern coexistence theory (MCT), started by Lotka [48] and Volterra [64], and later developed by Chesson [16, 17] and other authors [63, 28, 61, 5]. Recently, there have been powerful results that have led to a general theory of coexistence and extinction [35, 3, 36].

A second way of analyzing the long term dynamics of the species is by including demographic stochasticity and studying the QSDs of the system - this is the approach we took in this paper. Our work can be seen as complementary to the work done for systems with environmental stochasticity.

Overview of proofs. The proofs of Theorem A and Theorem B use techniques from PDE, spectral theory, semigroup theory and probability theory. For the reader's convenience, we outline the strategy of the proofs with the help of Figure 1.

- (Equivalent formalism) Theoretically, the study of QSDs of Z_{t} can be accomplished by investigating the (principal) spectral theory of $\mathcal{L}_{\mathbf{F P}}^{Z}$, the Fokker-Planck operator associated with Z_{t}. However, the degeneracy of $\mathcal{L}_{\mathbf{F P}}^{Z}$ on Γ would cause significant drawbacks. To circumvent this, we first follow [8] to introduce a homeomorphism $\xi: \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}}$ and define a new process $X_{t}=\xi\left(Z_{t}\right)$ whose Fokker-Planck operator $\mathcal{L}_{\mathbf{F P}}^{X}$ has $\frac{1}{2} \Delta$ as its second-order term.

Although $\mathcal{L}_{\mathbf{F P}}^{X}$ has the best possible second-order term, the coefficients of its first-order terms unfortunately have blow-up singularities on Γ. Introducing a parameter-dependent Liouville-type transform, we convert $\mathcal{L}_{\mathbf{F P}}^{X}$ into a parameter-dependent uniformly elliptic operator $\mathcal{L}_{\beta}:=e^{\frac{Q}{2}+\beta U} \mathcal{L}_{\mathbf{F P}}^{X} e^{-\frac{Q}{2}-\beta U}$, whose blow-up singularities on Γ only appear in the coefficients of the zeroth-order terms. Here, $\beta>0$ is the parameter, $U=V \circ \xi^{-1}$, and Q, given in (2.6), has singularities near Γ (see Remark A.1). The details are presented in Subsection 2.2. The parameter β is fixed to be β_{0} in Lemma 3.2 (3) so that a priori estimates can be established for $\mathcal{L}_{\beta_{0}}$.

- (Spectral analysis) Our spectral analysis focuses on the operator $\mathcal{L}_{\beta_{0}}$ in $L^{2}(\mathcal{U} ; \mathbb{C})$ as well as its adjoint $\mathcal{L}_{\beta_{0}}^{*}$. According to the behavior of the coefficients of $\mathcal{L}_{\beta_{0}}$ near Γ and infinity, we design a weight function and define a weighted first-order Sobolev space $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ that is compactly embedded into $L^{2}(\mathcal{U} ; \mathbb{C})$. Establishing a priori estimates for $\mathcal{L}_{\beta_{0}}$, we are able to solve the elliptic problem for $\mathcal{L}_{\beta_{0}}-M$ for some $M \gg 1$ in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. The discreteness of the spectrum
and principal spectral theory of $\mathcal{L}_{\beta_{0}}$ and $\mathcal{L}_{\beta_{0}}^{*}$ then follow. The details are given in Subsection 3.3 and Subsection 3.4.
- (Semigroup and stochastic representation) The operator $\mathcal{L}_{\beta_{0}}^{*}$ generates an analytic and eventually compact semigroup $\left(T_{t}^{*}\right)_{t \geq 0}$ on $L^{2}(\mathcal{U} ; \mathbb{C})$ that can be "block-diagonalized" according to spectral projections. We establish the stochastic representation of $\left(T_{t}^{*}\right)_{t \geq 0}$ in terms of X_{t} before reaching Γ, and therefore, connect the dynamics of $\left(T_{t}^{*}\right)_{t \geq 0}$ with that of X_{t} conditioned on $\left[t<S_{\Gamma}\right]$, where S_{Γ} is the first time that X_{t} hits Γ. More precisely, we show that for each $f \in C_{b}(\mathcal{U} ; \mathbb{C})$ satisfying $\tilde{f}:=f e^{-\frac{Q}{2}-\beta_{0} U} \in L^{2}(\mathcal{U} ; \mathbb{C})$, there holds $T_{t}^{*} \tilde{f}=$ $e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]$ for all $t \geq 0$. The semigroups are given in Subsection 3.3 and Subsection 3.4. The stochastic representation of $\left(T_{t}^{*}\right)_{t \geq 0}$ is established in Subsection 4.3.
- (Global regularity and conclusions) The spectral theory and stochastic representation allow us to prove the results stated in Theorem A and Theorem B for the process X_{t}. While proving the existence of QSDs is pretty straightforward, we run into significant technical difficulties in establishing the convergence even for compactly supported initial distributions. This is due to: (i) the limitations of the stochastic representation because of the unboundedness of the Liouville-type transform and its inverse (i.e., $e^{\frac{Q}{2}+\beta_{0} U}$ and $e^{-\frac{Q}{2}-\beta_{0} U}$ blow up near ∞ and at Γ, respectively); (ii) the requirement of L^{∞} properties of $\left(T_{t}^{*}\right)_{t \geq 0}$. These issues are overcome by establishing the global regularity of solutions of $\partial_{t} u=\mathcal{L}_{\beta_{0}}^{*} u$ leading in particular to the global regularity of $\left(T_{t}^{*}\right)_{t \geq 0}$. The details are given in Section 5.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries including the proof of Z_{t} being absorbed by Γ in finite time almost surely, the derivation of the operator $\mathcal{L}_{\beta_{0}}$, and results related to the approximation of S_{Γ}. In Section 3, we study the spectral theory of $\mathcal{L}_{\beta_{0}}$ and its adjoint operator $\mathcal{L}_{\beta_{0}}^{*}$, and establish the associated semigroups $\left(T_{t}\right)_{t \geq 0}$ and $\left(T_{t}^{*}\right)_{t \geq 0}$. Section 4 is devoted to the stochastic representation of $\left(T_{t}^{*}\right)_{t \geq 0}$. In Section 5, we investigate the existence and uniqueness of QSDs and the exponential convergence to QSDs of X_{t} conditioned on the coexistence. Theorem A and Theorem B are proven in this section. In the last section, Section 6, we discuss applications of Theorem A and Theorem B to a wider variety of ecological models including stochastic Lotka-Volterra systems, and models with Holling type or Beddington-DeAngelis functional responses. Appendix A is included to provide the proof of some technical lemmas.

2. Preliminaries

In Subsection 2.1, we show that Z_{t} hits Γ in finite time almost surely. In Subsection 2.2, we present equivalent formulations for studying the existence of QSDs, and derive the operator we shall focus on in later sections. In Subsection 2.3, we fix a family of first exit times and present an approximation result.
2.1. Hitting the absorbing boundary. We prove that Z_{t} reaches Γ in finite time almost surely. Denote by \mathcal{L}^{Z} the diffusion operator associated with Z_{t}, namely,

$$
\begin{equation*}
\mathcal{L}^{Z}=\frac{1}{2} \sum_{i=1}^{d} a_{i} \partial_{z_{i} z_{i}}^{2}+b \cdot \nabla_{z} . \tag{2.1}
\end{equation*}
$$

Proposition 2.1. Assume (H1)-(H3). Then, $\mathbb{P}^{z}\left[T_{\Gamma}<\infty\right]=1$ for each $z \in \mathcal{U}$.

Proof. The idea of the proof is more or less classical; our arguments are closer to that of [15, Proposition 4.4]. By (H1)-(H2), $b_{i} \in C^{1}(\overline{\mathcal{U}})$ and $\sqrt{a_{i}}$ is locally Lipchitz in \mathcal{U} and locally $\frac{1}{2}$-Hölder continuous near Γ. The classical theorem of Yamada-Watanabe [65, 66] ensures the pathwise uniqueness as well as the strong Markov property of solutions of (1.2).

Recall that for $R>0, B_{R}^{+}=\left\{z=\left(z_{i}\right) \in \mathcal{U}: z_{i} \in(0, R), \forall i \in\{1, \ldots, d\}\right\}$. The result is proven in four steps.

Step 1. We claim that for each $z \in \mathcal{U}, Z_{t}$ does not explode in finite time \mathbb{P}^{z}-a.e., and there exists $R>0$ such that $\mathbb{P}^{z}\left[T_{R}<\infty\right]=1$ where $T_{R}:=\hat{T}_{R} \wedge T_{\Gamma}$ and $\hat{T}_{R}:=\inf \left\{t \geq 0: Z_{t} \in \overline{B_{R}^{+}}\right\}$.

By the assumptions $(\mathbf{H} 3)(1)(3)$, there is $R>0$ such that $\mathcal{L}^{Z} V \leq-1$ in $\overline{\mathcal{U}} \backslash \overline{B_{R}^{+}}$. This together with the Itô-Dynkin's formula implies that $\mathbb{E}^{z}\left[V\left(Z_{t \wedge \hat{T}_{R}}\right)\right] \leq V(z)-\mathbb{E}^{z}\left[t \wedge \hat{T}_{R}\right]$ for all $t \geq 0$. Passing to the limit $t \rightarrow \infty$ yields $\mathbb{E}^{z}\left[\hat{T}_{R}\right] \leq V(z)<\infty$ and thus, $\mathbb{P}^{z}\left[\hat{T}_{R}<\infty\right]=1$. The claim follows immediately.

Step 2. We prove $\mathbb{P}^{z}\left[\tau_{2 R}<\infty\right]=1$ for each $z \in B_{2 R}^{+}$, where $\tau_{2 R}:=\inf \left\{t \geq 0: Z_{t} \notin B_{2 R}^{+}\right\}$.
For each $i \in\{1, \ldots, d\}$, we set $\bar{b}_{i}:=\sup _{B_{2 R}^{+}} b_{i}$, denote by $Y_{t}^{i, y_{i}}$ the solution of the $\operatorname{SDE~} \mathrm{d} Y_{t}^{i}=$ $\bar{b}_{i} \mathrm{~d} t+\sqrt{a_{i}\left(Y_{i}\right)} \mathrm{d} W_{t}^{i}$ with initial condition $Y_{0}^{i, y_{i}}=y_{i} \in[0, \infty)$, and let $\tau_{i}^{y_{i}}$ be the first time that $Y_{t}^{i, y_{i}}$ hits 0 , namely, $\tau_{i}^{y_{i}}=\inf \left\{t \geq 0: Y_{t}^{i, y_{i}}=0\right\}$. The assumptions on a_{i} and [37, Theorem VI-3.2] guarantee that $\mathbb{P}\left[\tau_{i}^{y_{i}}<\infty\right]=1$ for all $y_{i} \in[0, \infty)$ and $i \in\{1, \ldots, d\}$.

Let $z=\left(z_{i}\right) \in B_{2 R}^{+}$. By the comparison theorem for one-dimensional SDEs (see e.g. [37, Theorem VI-1.1]) and the fact that $\mathbb{P}\left[\tau_{i}^{z_{i}}<\infty\right]=1$ for each $i \in\{1, \ldots, d\}$, we find up to a set of probability zero,

$$
\left[\tau_{2 R}=\infty\right] \subset\left[Z_{t}^{i} \leq Y_{t}^{i, z_{i}}, \forall t \in\left[0, \tau_{i}^{z_{i}}\right], i \in\{1, \ldots, d\}\right] \subset\left[\tau_{2 R}<\infty\right]
$$

From this we conclude that $\mathbb{P}^{z}\left[\tau_{2 R}=\infty\right]=0$.
Step 3. We show that $\inf _{z \in \overline{B_{R}^{+}}} \mathbb{P}^{z}\left[Z_{\tau_{2 R}} \in \Gamma\right]>0$.
Fix $i \in\{1, \ldots, d\}$. Calculating the probability that the process $Y_{t}^{i, R}$ first exits the interval $\left(0, \frac{3 R}{2}\right)$ through 0 (see [37, Theorem VI-3.1]), we find $\mathbb{P}\left[Y_{t}^{i, R} \in[0,3 R / 2), \forall t \in\left[0, \tau_{i}^{R}\right]\right]>0$. Since

$$
\mathbb{P}\left[Y_{t}^{i, y_{i}} \leq Y_{t}^{i, R}, \forall t \in\left[0, \tau_{i}^{y_{i}}\right]\right]=1, \quad \forall y_{i} \in[0, R]
$$

due to the comparison theorem (see e.g. [37, Theorem VI-1.1]), we deduce

$$
\inf _{y_{i} \in[0, R]} \mathbb{P}\left[Y_{t}^{i, y_{i}} \in[0,3 R / 2), \forall t \in\left[0, \tau_{i}^{y_{i}}\right]\right] \geq \mathbb{P}\left[Y_{t}^{i, R} \in[0,3 R / 2), \forall t \in\left[0, \tau_{i}^{R}\right]\right]>0
$$

This together with the comparison theorem yields for each $z=\left(z_{i}\right) \in \overline{B_{R}^{+}}$,

$$
\begin{aligned}
\mathbb{P}^{z}\left[Z_{\tau_{2 R}} \in \Gamma\right] & \geq \mathbb{P}\left[Y_{t}^{i, z_{i}} \in[0,3 R / 2), \forall t \in\left[0, \tau_{i}^{z_{i}}\right], i \in\{1, \ldots, d\}\right] \\
& \geq \prod_{i=1}^{d} \inf _{y_{i} \in[0, R]} \mathbb{P}\left[Y_{t}^{i, y_{i}} \in[0,3 R / 2), \forall t \in\left[0, \tau_{i}^{y_{i}}\right]\right]>0
\end{aligned}
$$

where we used the independence of $Y_{t}^{i, z_{i}}, i \in\{1, \ldots, d\}$ in the equality. The claim follows.

Step 4. We finish the proof of the proposition. By Step 3, $p:=\inf _{z \in \partial B_{R}^{+} \backslash \Gamma} \mathbb{P}^{z}\left[Z_{\tau_{2 R}} \in \Gamma\right]>0$. Set

$$
T_{R}^{(1)}:=\inf \left\{t \in\left[0, T_{\Gamma}\right]: Z_{t} \in B_{R}^{+}\right\} \quad \text { and } \quad S_{2 R}^{(1)}:=\inf \left\{t \geq T_{R}^{(1)}: Z_{t} \notin B_{2 R}^{+}\right\}
$$

and recursively define for each $n \geq 1$,

$$
T_{R}^{(n+1)}:=\inf \left\{t \in\left[S_{2 R}^{(n)}, T_{\Gamma}\right]: Z_{t} \in B_{R}^{+}\right\} \quad \text { and } \quad S_{2 R}^{(n+1)}:=\inf \left\{t \geq T_{R}^{(n+1)}: Z_{t} \notin B_{2 R}^{+}\right\}
$$

Fix $z \in \mathcal{U}$. Since Step 1, Step 2 and the strong Markov property ensure $\mathbb{P}^{z}\left[T_{R}^{(n)}<\infty\right]=1$ and $\mathbb{P}^{z}\left[S_{2 R}^{(n)}<\infty\right]=1$ for all $n \in \mathbb{N}$, we find $\mathbb{P}^{z}\left[Z_{S_{2 R}^{(n)}} \in \partial B_{2 R}^{+} \backslash \Gamma\right] \leq(1-p)^{n}$ for all $n \in \mathbb{N}$. As a result

$$
\mathbb{P}^{z}\left[T_{\Gamma}=\infty\right]=\mathbb{P}^{z}\left[S_{2 R}^{(n)}<\infty, \forall n \in \mathbb{N}\right] \leq \lim _{n \rightarrow \infty}(1-p)^{n}=0
$$

This completes the proof.
Remark 2.1. The assumptions (H3)(2)(4) are not needed in the proof of Proposition 2.1.
2.2. Equivalent formulation. Denote by $\mathcal{L}_{\mathbf{F P}}^{Z}$ the Fokker-Planck operator associated with Z_{t} or (1.2), namely,

$$
\begin{equation*}
\mathcal{L}_{\mathbf{F P}}^{Z} u:=\frac{1}{2} \sum_{i=1}^{d} \partial_{z_{i} z_{i}}^{2}\left(a_{i} u\right)-\nabla_{z} \cdot(b u) \quad \text { in } \quad \mathcal{U}, \quad \forall u \in C^{2}(\mathcal{U}) \tag{2.2}
\end{equation*}
$$

Proposition 2.2. Assume (H1)-(H2). Let μ be a $Q S D$ of Z_{t}. Then, μ admits a positive density $u \in W_{\text {loc }}^{2, p}(\mathcal{U})$ for any $p>d$ that satisfies $-\mathcal{L}_{\mathbf{F P}}^{Z} u=\lambda_{1} u$ a.e. in \mathcal{U}, where λ_{1} is the extinction rate associated with μ.

Proof. Following the arguments leading to [53, Proposition 4], we see that

$$
\int_{\mathcal{U}} \mathbb{E}^{x}\left[f\left(Z_{t}\right)\right] d \mu=e^{-\lambda_{1} t} \int_{\mathcal{U}} f d \mu, \quad \forall f \in C_{0}^{\infty}(\mathcal{U})
$$

Since $\frac{d}{d t} \mathbb{E}^{\bullet}\left[f\left(Z_{t}\right)\right]=\mathcal{L}^{Z}\left(\mathbb{E}^{\bullet}\left[f\left(Z_{t}\right)\right]\right)$, we differentiate to find $\int_{\mathcal{U}}\left(-\mathcal{L}^{Z}+\lambda_{1}\right) f d \mu=0$ for all $f \in C_{0}^{\infty}(\mathcal{U})$. It follows from (H1)-(H2) and the classical regularity result in [6, Corollaries 2.10 and 2.11] that μ has a positive density $u \in W_{l o c}^{1, p}(\mathcal{U})$ for any $p>d$. Then, we can follow the classical procedures in the PDE theory (see e.g. [29]) to show that $u \in W_{\text {loc }}^{2, p}(\mathcal{U})$ for any $p>d$.

Proposition 2.2 suggests studying the principal spectral theory of the operator $-\mathcal{L}^{Z}$ in order to find a QSD for Z_{t}. Direct analysis of the operator $-\mathcal{L}^{Z}$ is however difficult due to the degeneracy of the diffusion matrix $\operatorname{diag}\left\{a_{1}, \ldots, a_{d}\right\}$ on the boundary Γ of \mathcal{U}. To resolve this issue, we follow [7] to define a new process that is equivalent to Z_{t} and whose Fokker-Planck operator or diffusion operator is uniformly non-degenerate in \mathcal{U}. We proceed as follow.

For each $i \in\{1, \ldots, d\}$, we define $\xi_{i}:[0, \infty) \rightarrow[0, \infty)$ by setting

$$
\xi_{i}\left(z_{i}\right):=\int_{0}^{z_{i}} \frac{1}{\sqrt{a_{i}(s)}} \mathrm{d} s, \quad z_{i} \in[0, \infty)
$$

By (H1), each ξ_{i} is increasing and onto, and thus, ξ_{i}^{-1} is well-defined. Set

$$
\xi:=\left(\xi_{i}\right): \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}} \quad \text { and } \quad \xi^{-1}:=\left(\xi_{i}^{-1}\right): \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}}
$$

Clearly, $\xi: \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}}$ is a homeomorphism with inverse ξ^{-1}, and satisfies $\xi(\Gamma)=\Gamma$ and $\xi(\mathcal{U})=\mathcal{U}$.

Define a new process $X_{t}=\left(X_{t}^{i}\right)$ by setting

$$
X_{t}^{i}:=\xi_{i}\left(Z_{t}^{i}\right), \quad i \in\{1, \ldots, d\}, \quad \text { or simply }, \quad X_{t}=\xi\left(Z_{t}\right), \quad t \geq 0
$$

It is clear that Γ is also an absorbing set for the process X_{t}, and X_{t} reaches Γ in finite time almost surely. Moreover, QSDs of Z_{t} and X_{t} are in an one-to-one correspondence as shown in the next result whose proof is straightforward.

Proposition 2.3. Let μ be a Borel probability measure on \mathcal{U}. Then, μ is a $Q S D$ of Z_{t} if and only if $\xi_{*} \mu$ is a $Q S D$ of X_{t}, where ξ_{*} is the pushforward operator induced by ξ. Moreover, μ and $\xi_{*} \mu$ have the same extinction rates.

Since $\xi \in C^{2}(\mathcal{U})$, we apply Itô's formula to find

$$
\begin{equation*}
\mathrm{d} X_{t}^{i}=\left[p_{i}\left(X_{t}\right)-q_{i}\left(X_{t}^{i}\right)\right] \mathrm{d} t+\mathrm{d} W_{t}^{i}, \quad i \in\{1, \ldots, d\} \quad \text { in } \quad \mathcal{U} \tag{2.3}
\end{equation*}
$$

where $p_{i}: \mathcal{U} \rightarrow \mathbb{R}$ and $q_{i}:(0, \infty) \rightarrow \mathbb{R}$ are given by

$$
p_{i}(x):=\frac{b_{i}\left(\xi^{-1}(x)\right)}{\sqrt{a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}} \quad \text { and } \quad q_{i}\left(x_{i}\right):=\frac{a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{4 \sqrt{a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}, \quad x=\left(x_{i}\right) \in \mathcal{U}
$$

Denote by $\mathcal{L}_{\mathbf{F P}}^{X}$ the Fokker-Planck operator associated with (2.3), namely,

$$
\mathcal{L}_{\mathbf{F P}}^{X} v=\frac{1}{2} \Delta v-\nabla \cdot((p-q) v) \quad \text { in } \quad \mathcal{U}, \quad \forall v \in C^{2}(\mathcal{U})
$$

where $p=\left(p_{i}\right)$ and $q=\left(q_{i}\right)$. Then, Proposition 2.2 has a counterpart for QSDs of X_{t}.
Proposition 2.4. Assume (H1)-(H2). Let ν be a $Q S D$ of X_{t} with extinction rate λ_{1}. Then, ν admits a positive density $v \in W_{\text {loc }}^{2, p}(\mathcal{U})$ for any $p>d$ that satisfies $-\mathcal{L}_{\mathbf{F P}}^{X} v=\lambda_{1} v$ a.e. in \mathcal{U}.

Remark 2.2. Note that the process X_{t} and the process generated by solutions of (2.3) are not really the same, as (2.3) is only defined in \mathcal{U}. However, the two processes agree as long as X_{t} stays in \mathcal{U}. More precisely, if we denote by S_{Γ} the first time that X_{t} reaches Γ, that is, $S_{\Gamma}=\inf \left\{t \geq 0: X_{t} \in \Gamma\right\}$, then X_{t} satisfies (2.3) on the event $\left[t<S_{\Gamma}\right]$.

As indicated by Proposition 2.4, QSDs of X_{t} are closely related to positive eigenfunctions of $-\mathcal{L}_{\mathbf{F P}}^{X}$, and therefore, it is natural to investigate the associated eigenvalue problem, namely,

$$
\begin{equation*}
-\mathcal{L}_{\mathbf{F P}}^{X} v=\lambda v \quad \text { in } \quad \mathcal{U} \tag{2.4}
\end{equation*}
$$

Note that the operator $\mathcal{L}_{\mathbf{F P}}^{X}$ is uniformly elliptic in \mathcal{U}, but the functions $q_{i}, i \in\{1, \ldots, d\}$ appearing in its first-order terms satisfy $q_{i}\left(x_{i}\right) \rightarrow \infty$ as $x_{i} \rightarrow 0^{+}$for each $i \in\{1, \ldots, d\}$. Such blow-up singularities make the investigation of the above eigenvalue problem very hard. In the following, we generalize the idea in [7] to transform (2.4) into the eigenvalue problem of another elliptic operator that has blow-up singularities only in the zeroth-order term and thus is easier to deal with.

Set

$$
\begin{equation*}
U:=V \circ \xi^{-1} \quad \text { in } \quad \mathcal{U} \tag{2.5}
\end{equation*}
$$

where V is given in (H3), and

$$
\begin{equation*}
Q(x):=\sum_{i=1}^{d} \int_{1}^{x_{i}} 2 q_{i}(s) d s=\frac{1}{2} \sum_{i=1}^{d}\left[\ln a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)-\ln a_{i}\left(\xi_{i}^{-1}(1)\right)\right], \quad x \in \mathcal{U} \tag{2.6}
\end{equation*}
$$

For each $\beta>0$, we use the Liouville-type transform to define $\mathcal{L}_{\beta}:=e^{\frac{Q}{2}+\beta U} \mathcal{L}_{\mathbf{F P}}^{X} e^{-\frac{Q}{2}-\beta U}$. It is straightforward to check that

$$
\begin{equation*}
\mathcal{L}_{\beta}=\frac{1}{2} \Delta-(p+\beta \nabla U) \cdot \nabla-e_{\beta} \quad \text { in } \mathcal{U}, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{\beta}=\frac{1}{2}\left(\beta \Delta U-\beta^{2}|\nabla U|^{2}\right)-\beta p \cdot \nabla U+\frac{1}{2} \sum_{i=1}^{d}\left(q_{i}^{2}-q_{i}^{\prime}\right)-p \cdot q+\nabla \cdot p . \tag{2.8}
\end{equation*}
$$

Note that the coefficient of the first-order term $-(p+\beta \nabla U)$ is continuous up to the boundary Γ, and the term $\frac{1}{2} \sum_{i=1}^{d}\left(q_{i}^{2}-q_{i}^{\prime}\right)-p \cdot q$ blows up at the boundary Γ, but it appears in the zeroth-order term.

The following proposition establishes the "equivalence" between the eigenvalue problem (2.4) and the eigenvalue problem associated with the operator \mathcal{L}_{β}.
Proposition 2.5. Suppose $v \in W_{\text {loc }}^{2,1}(\mathcal{U})$ and $\lambda \in \mathbb{R}$. Set $\tilde{v}:=v e^{\frac{Q}{2}+\beta U}$. Then, ($\left.v, \lambda\right)$ solves (2.4) if and only if $-\mathcal{L}_{\beta} \tilde{v}=\lambda \tilde{v}$ in \mathcal{U}.

According to Proposition 2.5, the investigation of QSDs of X_{t} is reduced to the exploration of the principal spectral theory of $-\mathcal{L}_{\beta}$ (with a fixed β), something which we will do by choosing an appropriate function space.
2.3. Approximation by first exit times. Let $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of arbitrarily fixed bounded, connected and open sets in \mathcal{U} with C^{2} boundaries that satisfy $\mathcal{U}_{n} \subset \subset \mathcal{U}_{n+1} \subset \subset \mathcal{U}$ for all $n \in \mathbb{N}$ and $\mathcal{U}=\bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}$. For each $n \in \mathbb{N}$, denote by τ_{n} the first time that X_{t} exits \mathcal{U}_{n}, namely,

$$
\tau_{n}=\inf \left\{t \geq 0: X_{t} \notin \mathcal{U}_{n}\right\} .
$$

Recall that S_{Γ} is the first time that X_{t} hits Γ. The following result turns out to be useful.
Lemma 2.1. Assume (H1)-(H3). For each $x \in \mathcal{U}$, one has $\mathbb{P}^{x}\left[\lim _{n \rightarrow \infty} \tau_{n}=S_{\Gamma}\right]=1$ and

$$
\lim _{n \rightarrow \infty} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{n}\right\}}\right]=\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right], \quad \forall f \in C_{b}(\mathcal{U}) .
$$

Proof. Fix $x \in \mathcal{U}$. Obviously, $\tau_{n}<\tau_{n+1}$ for each $n \in \mathbb{N}$. Set $\tau:=\lim _{n \rightarrow \infty} \tau_{n}$. The first conclusion follows if we show $\mathbb{P}^{x}\left[\tau=S_{\Gamma}\right]=1$.

Clearly, $\tau_{n}<S_{\Gamma}$ for each $n \in \mathbb{N}$, leading to $\tau \leq S_{\Gamma}$. Since $X_{t}=\xi\left(Z_{t}\right)$ for $t \geq 0$, we find from Proposition 2.1 that $\mathbb{P}^{x}\left[S_{\Gamma}<\infty\right]=\mathbb{P}^{\xi^{-1}(x)}\left[T_{\Gamma}<\infty\right]=1$. Therefore, $\mathbb{P}^{x}[\tau<\infty]=1$.

Noting that arguments in the proof of Proposition 2.1 ensure that Z_{t} and X_{t} do not explode in finite time, we derive $\left|X_{\tau}\right|=\lim _{n \rightarrow \infty}\left|X_{\tau_{n}}\right|<\infty$. Moreover, since $X_{\tau_{n}} \in \partial \mathcal{U}_{n}$ and $\mathcal{U}=\cup_{n \in \mathbb{N}} \mathcal{U}_{n}$, it follows that $X_{\tau} \in \Gamma$. As S_{Γ} is the first hitting time of the boundary Γ and $\tau \leq S_{\Gamma}$, one has $\tau=S_{\Gamma}$.

Since τ_{n} increases to $S_{\Gamma} \mathbb{P}$-a.s.s, we find $\lim _{n \rightarrow \infty} \mathbb{1}_{\left\{t<\tau_{n}\right\}}=\mathbb{1}_{\left\{t<S_{\Gamma}\right\}}$ for each $t \geq 0$. The second conclusion then follows from the dominated convergence theorem. This completes the proof.

3. Spectral theory and semigroup

This section is devoted to the spectral theory of $-\mathcal{L}_{\beta}$ in an appropriate function space for some appropriately fixed β, as well as the semigroup generated by \mathcal{L}_{β}. In Subsection 3.1 we define a weighted Hilbert space. In Subsection 3.2 we derive some important estimates and meanwhile fix a special β, denoted by β_{0}. In Subsection 3.3 we study the (principal) spectral theory of $-\mathcal{L}_{\beta_{0}}$ and the semigroup generated by $\mathcal{L}_{\beta_{0}}$. In Subsection 3.4 the spectral theory of $-\mathcal{L}_{\beta_{0}}^{*}$, where $\mathcal{L}_{\beta_{0}}^{*}$ is the adjoint operator of $\mathcal{L}_{\beta_{0}}$, and the semigroup generated by $\mathcal{L}_{\beta_{0}}^{*}$ are investigated.

Figure 2. Decomposition of \mathcal{U} in dimension two.
3.1. A weighted Hilbert space. For $\delta \in(0,1)$, let

$$
\Gamma_{\delta}:=\left\{x=\left(x_{i}\right) \in \mathcal{U}: x_{i} \leq \delta \text { for some } i \in\{1, \ldots, d\}\right\}
$$

It is easy to see from ($\mathbf{H} 3 \mathbf{)}(1)$ that there exists $R_{0}>0$ such that $\sup _{\mathcal{U} \backslash B_{R_{0}}^{+}}\left(b \cdot \nabla_{z} V\right) \circ \xi^{-1}<0$, where we recall $B_{R}^{+}=\left\{x=\left(x_{i}\right) \in \mathcal{U}: x_{i} \in(0, R), \forall i \in\{1, \ldots, d\}\right\}$ for $R>0$. Fix some $\delta_{0} \in(0,1)$. Let $\alpha: \mathcal{U} \rightarrow \mathbb{R}$ be defined by

$$
\alpha(x):= \begin{cases}\sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}, & x \in \Gamma_{\delta_{0}} \cap B_{R_{0}}^{+} \tag{3.1}\\ \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}-\left(b \cdot \nabla_{z} V\right)\left(\xi^{-1}(x)\right), & x \in \Gamma_{\delta_{0}} \cap\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \\ -\left(b \cdot \nabla_{z} V\right)\left(\xi^{-1}(x)\right), & x \in\left(\mathcal{U} \backslash \Gamma_{\delta_{0}}\right) \cap\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \\ 1, & \text { otherwise }\end{cases}
$$

See Figure 2 for an illustration of the subdomains used in (3.1). Obviously, $\inf _{\mathcal{U}} \alpha>0, \lim _{x \rightarrow \Gamma} \alpha(x)=$ ∞ and $\lim _{|x| \rightarrow \infty} \alpha(x)=\infty$. This α is defined according to the behavior of the coefficients of $-\mathcal{L}_{\beta}$ near Γ and ∞. Its significance is partially reflected in Lemma 3.2 below. See Remark 3.1 after Lemma 3.2 for more comments.

Denote by $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ the space of all weakly differentiable complex-valued functions $\phi: \mathcal{U} \rightarrow \mathbb{C}$ satisfying $\|\phi\|_{\mathcal{H}^{1}}:=\left(\int_{\mathcal{U}} \alpha|\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+\left(\int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}<\infty$. It is not hard to verify that $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ is a Hilbert space with the inner product:

$$
\langle\phi, \psi\rangle_{\mathcal{H}^{1}}:=\int_{\mathcal{U}} \alpha \phi \bar{\psi} \mathrm{d} x+\int_{\mathcal{U}} \nabla \phi \cdot \nabla \bar{\psi} \mathrm{d} x, \quad \forall \phi, \psi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})
$$

where $\bar{\psi}$ denotes the complex conjugate of ψ.
Lemma 3.1. Assume $(\mathbf{H} 3)$. Then, $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ is compactly embedded into $L^{2}(\mathcal{U} ; \mathbb{C})$.

Proof. Let $\left\{\phi_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ satisfy $\sup _{n \in \mathbb{N}}\left\|\phi_{n}\right\|_{\mathcal{H}^{1}} \leq 1$. Fix $R>0$. Since the Rellich-Kondrachov compactness theorem ensures the compact embedding of $H^{1}\left(B_{R}^{+} ; \mathbb{C}\right)$ into $L^{2}\left(B_{R}^{+} ; \mathbb{C}\right)$, there is a subsequence, still denoted by $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$, and a measurable function $\phi_{R} \in L^{2}\left(B_{R}^{+} ; \mathbb{C}\right)$, such that $\phi_{n}(x) \rightarrow$ $\phi_{R}(x)$ for a.e. $x \in B_{R}^{+}$and $\lim _{n \rightarrow \infty} \int_{B_{R}^{+}}\left|\phi_{n}-\phi_{R}\right|^{2} \mathrm{~d} x=0$.

Let $\left\{R_{m}\right\}_{m} \subset(0, \infty)$ satisfy $R_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Then, the above results hold for each R_{m} in place of R. We apply the standard diagonal argument to find a subsequence, still denoted by $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$, and a measurable function $\phi: \mathcal{U} \rightarrow \mathbb{C}$ such that $\phi_{n} \rightarrow \phi$ a.e. in \mathcal{U} as $n \rightarrow \infty$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{B_{R}^{+}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x=0, \quad \forall R>0 \tag{3.2}
\end{equation*}
$$

Applying Fatou's lemma, we find $\int_{\mathcal{U}} \alpha \phi^{2} \mathrm{~d} x \leq \liminf _{n \rightarrow \infty} \int_{\mathcal{U}} \alpha \phi_{n}^{2} \mathrm{~d} x \leq 1$. It follows from (3.2) that

$$
\limsup _{n \rightarrow \infty} \int_{\mathcal{U}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x \leq \limsup _{n \rightarrow \infty} \int_{\mathcal{U} \backslash B_{R}^{+}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x, \quad \forall R>0
$$

Note that

$$
\int_{\mathcal{U} \backslash B_{R}^{+}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x \leq \frac{2}{\inf _{\mathcal{U} \backslash B_{R}^{+}} \alpha} \int_{\mathcal{U} \backslash B_{R}^{+}} \alpha\left(\phi_{n}^{2}+\phi^{2}\right) \mathrm{d} x \leq \frac{2}{\inf _{\mathcal{U} \backslash B_{R}^{+}} \alpha},
$$

which together with the fact $\alpha(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ yields $\lim \sup _{n \rightarrow \infty} \int_{\mathcal{U} \backslash B_{R}^{+}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x=0$, and hence, $\lim _{n \rightarrow \infty} \int_{\mathcal{U}}\left|\phi_{n}-\phi\right|^{2} \mathrm{~d} x=0$. This completes the proof.
3.2. Some estimates. We recall from (2.8) the definition of e_{β} and define for $N \geq 1$,

$$
\begin{align*}
e_{\beta, N}: & =e_{\beta}-\frac{N-1}{N}(\nabla \cdot p+\beta \Delta U) \\
& =\left(\frac{1}{N}-\frac{1}{2}\right) \beta \Delta U-\frac{\beta^{2}}{2}|\nabla U|^{2}-\beta p \cdot \nabla U+\frac{1}{2} \sum_{i=1}^{d}\left(q_{i}^{2}-q_{i}^{\prime}\right)-p \cdot q+\frac{\nabla \cdot p}{N} . \tag{3.3}
\end{align*}
$$

Obviously, $e_{\beta, 1}=e_{\beta}$ for all $\beta>0$. The main reason for introducing $e_{\beta, N}$ is that they arise naturally in deriving a priori estimates for both sesquilinear forms and partial differential equations related to \mathcal{L}_{β} or its adjoint (see Lemma 3.3 and Lemma 4.1).

Lemma 3.2. Assume (H1)-(H3). Then, the following hold.
(1) There exists $C>0$ such that $|\nabla U|^{2}+|p|^{2} \leq C \alpha$ in \mathcal{U}, where α is defined in (3.1).
(2) For each $\beta>0$, there is $C(\beta)>0$ such that $\left|e_{\beta, N}\right| \leq C(\beta) \alpha$ in \mathcal{U} for all $N \geq 1$.
(3) There are positive constants β_{0}, M and C_{*} such that $e_{\beta_{0}, N}+M \geq C_{*} \alpha$ in \mathcal{U} for all $N \geq 1$.

Since the proof of this lemma is long and relatively independent, we postpone it to Appendix A. 1 for the sake of readability.

Remark 3.1. Note that $e_{\beta, 1}=e_{\beta}$ is the zeroth-order term of the operator \mathcal{L}_{β} (see (2.7)) that has blowup singularities at Γ as mentioned earlier. Lemma 3.2 (3) says in particular that e_{β} is well-controlled by the weight function α, laying the foundation for our analysis.

In what follows, the positive constants β_{0}, M and C_{*} are fixed such that the conclusion in Lemma 3.2 (3) holds.
3.3. Spectrum and semigroup. We investigate the spectral theory of $-\mathcal{L}_{\beta_{0}}$ and the semigroup generated by $\mathcal{L}_{\beta_{0}}$. Corresponding results are stated in Theorem 3.1 and Theorem 3.2.

Denote by $\mathcal{E}_{\beta_{0}}: \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) \times \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) \rightarrow \mathbb{C}$ the sesquilinear form associated with $-\mathcal{L}_{\beta_{0}}$, namely,

$$
\mathcal{E}_{\beta_{0}}(\phi, \psi)=\frac{1}{2} \int_{\mathcal{U}} \nabla \phi \cdot \nabla \bar{\psi} \mathrm{d} x+\int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \nabla \phi \bar{\psi} \mathrm{d} x+\int_{\mathcal{U}} e_{\beta_{0}} \phi \bar{\psi} \mathrm{~d} x, \quad \forall \phi, \psi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) .
$$

The following lemma addresses the boundedness and "coercivity" of $\mathcal{E}_{\beta_{0}}$, playing crucial roles in analyzing the spectrum of $-\mathcal{L}_{\beta_{0}}$.

Lemma 3.3. Assume (H1)-(H3).
(1) There exists $C>0$ such that $\left|\mathcal{E}_{\beta_{0}}(\phi, \psi)\right| \leq C\|\phi\|_{\mathcal{H}^{1}}\|\psi\|_{\mathcal{H}^{1}}$ for all $\phi, \psi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$.
(2) For each $\phi=\phi_{1}+i \phi_{2} \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$, we have

$$
\mathcal{E}_{\beta_{0}}(\phi, \phi)=\frac{1}{2} \int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x+\int_{\mathcal{U}} e_{\beta_{0}, 2}|\phi|^{2} \mathrm{~d} x+i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x
$$

where $e_{\beta_{0}, 2}$ is defined in (3.3). In particular,

$$
\Re \mathcal{E}_{\beta_{0}}(\phi, \phi)+M\|\phi\|_{L^{2}}^{2} \geq \min \left\{\frac{1}{2}, C_{*}\right\}\|\phi\|_{\mathcal{H}^{1}}^{2}, \quad \forall \phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})
$$

Proof. (1) Let $\phi, \psi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. Applying Hölder's inequality, we derive

$$
\begin{aligned}
\left|\mathcal{E}_{\beta_{0}}(\phi, \psi)\right| \leq & \frac{1}{2}\left(\int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}}|\nabla \psi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+\left(\int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}}\left|p+\beta_{0} \nabla U\right|^{2}|\psi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& +\left(\int_{\mathcal{U}}\left|e_{\beta_{0}}\right||\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}}\left|e_{\beta_{0}}\right||\psi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
\end{aligned}
$$

By Lemma 3.2 (1), there is $C>0$ such that $\int_{\mathcal{U}}\left|p+\beta_{0} \nabla U\right|^{2}|\psi|^{2} \mathrm{~d} x \leq C\left(1+\beta_{0}^{2}\right) \int_{\mathcal{U}} \alpha|\psi|^{2} \mathrm{~d} x$. The conclusion then follows readily from Lemma $3.2(2)$ and the definition of the norm $\|\cdot\|_{\mathcal{H}^{1}}$.
(2) Let $\left\{\eta_{n}\right\}_{n \geq 1}$ be a sequence of smooth functions on \mathcal{U} taking values in [0, 1] and satisfying

$$
\eta_{n}(x)=\left\{\begin{array}{ll}
1, & x \in\left(\mathcal{U} \backslash \Gamma_{\frac{2}{n}}\right) \cap B_{\frac{n}{2}}^{+}, \\
0, & x \in \Gamma_{\frac{1}{n}} \cup\left(\mathcal{U} \backslash B_{n}^{+}\right),
\end{array} \quad \text { and } \quad\left|\nabla \eta_{n}(x)\right| \leq \begin{cases}2 n, & x \in \Gamma_{\frac{2}{n}} \backslash \Gamma_{\frac{1}{n}}, \\
4, & x \in\left(\mathcal{U} \backslash \Gamma_{\frac{2}{n}}\right) \cap\left(B_{n}^{+} \backslash B_{\frac{n}{2}}^{+}\right) .\end{cases}\right.
$$

Obviously, η_{n} has compact support and $\lim _{n \rightarrow \infty} \eta_{n}=1$ locally uniform in \mathcal{U}.
Fix $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$. We find from integration by parts that

$$
\begin{align*}
\mathcal{E}_{\beta_{0}}\left(\phi, \eta_{n}^{2} \phi\right)= & \frac{1}{2} \int_{\mathcal{U}} \eta_{n}^{2}|\nabla \phi|^{2} \mathrm{~d} x+\int_{\mathcal{U}} \eta_{n} \bar{\phi} \nabla \phi \cdot \nabla \eta_{n} \mathrm{~d} x+\int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \nabla \phi\left(\eta_{n}^{2} \bar{\phi}\right) \mathrm{d} x \tag{3.4}\\
& +\int_{\mathcal{U}} e_{\beta_{0}} \eta_{n}^{2}|\phi|^{2} \mathrm{~d} x=: I_{1}(n)+I_{2}(n)+I_{3}(n)+I_{4}(n)
\end{align*}
$$

We find $\lim _{n \rightarrow \infty} I_{1}(n)=\frac{1}{2} \int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x$ from $\int_{\mathcal{U}}|\nabla \phi|^{2} \mathrm{~d} x<\infty$ and the dominated convergence theorem. Clearly, $\left|I_{2}(n)\right| \leq\left(\int_{\mathcal{U}} \eta_{n}^{2}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}}\left|\nabla \eta_{n}\right|^{2}|\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$. From the construction of η_{n}, we see

$$
\left|\nabla \eta_{n}\right|^{2}|\phi|^{2} \leq \begin{cases}4 n^{2}|\phi|^{2} & \text { in } \quad \Gamma_{\frac{2}{n}} \backslash \Gamma_{\frac{1}{n}} \\ 16|\phi|^{2} & \text { in } \quad\left(\mathcal{U} \backslash \Gamma_{\frac{2}{n}}\right) \cap\left(B_{n}^{+} \backslash B_{\frac{n}{2}}^{+}\right) \\ 0 & \text { otherwise. }\end{cases}
$$

Since $n^{2} \leq \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}$ in $\Gamma_{\frac{2}{n}} \backslash \Gamma_{\frac{1}{n}}$ for $n \geq 1$, the definition of α yields the existence of $C_{1}>0$ such that $\left|\nabla \eta_{n}\right|^{2}|\phi|^{2} \leq C_{1} \alpha|\phi|^{2}$ in \mathcal{U} for all $n \gg 1$. Since $\lim _{n \rightarrow \infty}\left|\nabla \eta_{n}\right|=0$ locally uniform in \mathcal{U}, we apply the dominated convergence theorem to conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathcal{U}}\left|\nabla \eta_{n}\right|^{2}|\phi|^{2} \mathrm{~d} x=0 \tag{3.5}
\end{equation*}
$$

which leads to $\lim _{n \rightarrow \infty} I_{2}(n)=0$.
Denote $\phi=\phi_{1}+i \phi_{2}$. Clearly, $\left(\partial_{j} \phi\right) \bar{\phi}=\frac{1}{2} \partial_{j}|\phi|^{2}+i\left(\phi_{1} \partial_{j} \phi_{2}-\phi_{2} \partial_{j} \phi_{1}\right)$ for each $j \in\{1, \ldots, d\}$. This together with integration by parts yield

$$
\begin{aligned}
I_{3}(n)= & \frac{1}{2} \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \eta_{n}^{2} \nabla|\phi|^{2} \mathrm{~d} x+i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \eta_{n}^{2}\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x \\
= & -\frac{1}{2} \int_{\mathcal{U}}\left(\nabla \cdot p+\beta_{0} \Delta U\right) \eta_{n}^{2}|\phi|^{2} \mathrm{~d} x-\int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \nabla \eta_{n}\left(\eta_{n}|\phi|^{2}\right) \mathrm{d} x \\
& +i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \eta_{n}^{2}\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x
\end{aligned}
$$

It follows that

$$
\begin{align*}
I_{3}(n)+I_{4}(n)= & -\int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \nabla \eta_{n}\left(\eta_{n}|\phi|^{2}\right) \mathrm{d} x+\int_{\mathcal{U}} e_{\beta_{0}, 2} \eta_{n}^{2}|\phi|^{2} \mathrm{~d} x \tag{3.6}\\
& +i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \eta_{n}^{2}\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x=: J_{1}(n)+J_{2}(n)+J_{3}(n) .
\end{align*}
$$

We apply Hölder's inequality and the fact $\eta_{n} \in[0,1]$ to find

$$
\left|\int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \nabla \eta_{n}\left(\eta_{n}|\phi|^{2}\right) \mathrm{d} x\right| \leq\left(\int_{\mathcal{U}}\left|p+\beta_{0} \nabla U\right|^{2}|\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}}\left|\nabla \eta_{n}\right|^{2}|\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

Note that Lemma $3.2(1)$ gives $\int_{\mathcal{U}}\left|p+\beta_{0} \nabla U\right|^{2}|\phi|^{2} \mathrm{~d} x \leq C_{2} \int_{\mathcal{U}} \alpha|\phi|^{2} \mathrm{~d} x$ for some $C_{2}>0$, which together with (3.5) yields $\lim _{n \rightarrow \infty} J_{1}(n)=0$. It follows from Lemma 3.2 (2) that $\left|e_{\beta_{0}, 2}\right| \eta_{n}^{2}|\phi|^{2} \leq C_{3} \alpha|\phi|^{2}$ for some $C_{3}>0$. Together with the fact $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$ and the dominated convergence theorem this yields $\lim _{n \rightarrow \infty} J_{2}(n)=\int_{\mathcal{U}} e_{\beta_{0}, 2}|\phi|^{2} \mathrm{~d} x$. Since Young's inequality and the fact $\eta_{n} \in[0,1]$ give

$$
\left|\left(p+\beta_{0} \nabla U\right) \cdot \eta_{n}^{2}\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right)\right| \leq \frac{1}{2}|\nabla \phi|^{2}+\frac{1}{2}\left|p+\beta_{0} \nabla U\right|^{2}|\phi|^{2}
$$

the dominated convergence theorem leads to $\lim _{n \rightarrow \infty} J_{3}(n)=i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x$.
Letting $n \rightarrow \infty$ in (3.6), we conclude that

$$
\lim _{n \rightarrow \infty}\left[I_{3}(n)+I_{4}(n)\right]=\int_{\mathcal{U}} e_{\beta_{0}, 2} \phi^{2} \mathrm{~d} x+i \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot\left(\phi_{1} \nabla \phi_{2}-\phi_{2} \nabla \phi_{1}\right) \mathrm{d} x
$$

Passing to the limit $n \rightarrow \infty$ in (3.4), we derive the expected identity from the limits of $I_{1}(n), I_{2}(n)$, $I_{3}(n)$ and $I_{4}(n)$ as $n \rightarrow \infty$. The inequality in (2) is an immediate consequence of Lemma 3.2 (3).

Remark 3.2. It can be seen from the proof of Lemma 3.3 that $\lim _{n \rightarrow \infty} \eta_{n} \phi=\phi$ in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$ for any $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$. Therefore, $C_{0}^{\infty}(\mathcal{U})$ is dense in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$.

For $f \in L^{2}(\mathcal{U} ; \mathbb{C})$, we consider the following problem:

$$
\begin{equation*}
\left(-\mathcal{L}_{\beta_{0}}+M\right) u=f \quad \text { in } \quad \mathcal{U} \tag{3.7}
\end{equation*}
$$

and look for solutions in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$.

Definition 3.1. A function $u \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ is called a weak solution of (3.7) if

$$
\mathcal{E}_{\beta_{0}}(u, \phi)+M\langle u, \phi\rangle_{L^{2}}=\langle f, \phi\rangle_{L^{2}}, \quad \forall \phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})
$$

where $\langle\cdot, \cdot\rangle_{L^{2}}$ is the usual inner product on $L^{2}(\mathcal{U} ; \mathbb{C})$.
Lemma 3.4. Assume (H1)-(H3). Then, for any $f \in L^{2}(\mathcal{U} ; \mathbb{C})$, (3.7) admits a unique weak solution u_{f} in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. Moreover, the following hold.
(1) There is a constant $C>0$ such that $\left\|u_{f}\right\|_{\mathcal{H}^{1}} \leq C\|f\|_{L^{2}}$ for all $f \in L^{2}(\mathcal{U} ; \mathbb{C})$.
(2) $u_{f} \in H_{\text {loc }}^{2}(\mathcal{U} ; \mathbb{C})$ satisfies $\left(-\mathcal{L}_{\beta_{0}}+M\right) u_{f}=f$ a.e. in \mathcal{U}, and $\mathcal{E}_{\beta_{0}}\left(u_{f}, \phi\right)=\left\langle-\mathcal{L}_{\beta_{0}} u_{f}, \phi\right\rangle_{L^{2}}$ for all $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$.
(3) If $f \in L^{2}(\mathcal{U} ; \mathbb{C})$ satisfies $f \geq 0$ a.e. in \mathcal{U}, then $u_{f} \geq 0$ a.e. in \mathcal{U}. If in addition $f>0$ on a set of positive Lebesgue measure, then $u_{f}>0$ a.e. in \mathcal{U}.

Proof. Fix $f \in L^{2}(\mathcal{U} ; \mathbb{C})$. Hölder's inequality gives

$$
\begin{equation*}
\left|\langle f, \phi\rangle_{L^{2}}\right| \leq\left(\int_{\mathcal{U}} \frac{1}{\alpha}|f|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}} \alpha|\phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \leq \frac{1}{\left(\inf _{\mathcal{U}} \alpha\right)^{\frac{1}{2}}}\|f\|_{L^{2}}\|\phi\|_{\mathcal{H}^{1}}, \quad \forall \phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) \tag{3.8}
\end{equation*}
$$

Hence, $\phi \mapsto\langle f, \phi\rangle_{L^{2}}: \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) \rightarrow \mathbb{C}$ is a continuous linear functional.
By Lemma 3.3 and the fact $\|\phi\|_{L^{2}} \leq\left(\inf _{\mathcal{U}} \alpha\right)^{-\frac{1}{2}}\|\phi\|_{\mathcal{H}^{1}}$ for $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ one has

$$
\left|\mathcal{E}_{\beta_{0}}(\phi, \psi)\right|+M\left|\langle\phi, \psi\rangle_{L^{2}}\right| \leq C_{1}\|\phi\|_{\mathcal{H}^{1}}\|\psi\|_{\mathcal{H}^{1}}, \quad \forall \phi, \psi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})
$$

for some $C_{1}>0$, and

$$
\begin{equation*}
\Re \mathcal{E}_{\beta_{0}}(\phi, \phi)+M\|\phi\|_{L^{2}}^{2} \geq \min \left\{\frac{1}{2}, C_{*}\right\}\|\phi\|_{\mathcal{H}^{1}}^{2}, \quad \forall \phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) \tag{3.9}
\end{equation*}
$$

We apply the Lax-Milgram theorem (see e.g. [29]) to find a unique $u_{f} \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ such that

$$
\begin{equation*}
\mathcal{E}_{\beta_{0}}\left(u_{f}, \phi\right)+M\left\langle u_{f}, \phi\right\rangle_{L^{2}}=\langle f, \phi\rangle_{L^{2}}, \quad \forall \phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}) . \tag{3.10}
\end{equation*}
$$

This shows that u_{f} is the unique weak solution of (3.7).
(1) Setting $\phi=u$ in (3.10), we derive from (3.8) and (3.9) that

$$
\min \left\{\frac{1}{2}, C_{*}\right\}\left\|u_{f}\right\|_{\mathcal{H}^{1}}^{2} \leq \Re \mathcal{E}_{\beta_{0}}\left(u_{f}, u_{f}\right)+M\left\|u_{f}\right\|_{L^{2}}^{2} \leq \frac{1}{\left(\inf _{\mathcal{U}} \alpha\right)^{\frac{1}{2}}}\|f\|_{L^{2}}\left\|u_{f}\right\|_{\mathcal{H}^{1}} .
$$

(2) The classical regularity theory of elliptic equations ensures $u_{f} \in H_{l o c}^{2}(\mathcal{U} ; \mathbb{C})$. Hence, u_{f} is a strong solution and obeys $\left(-\mathcal{L}_{\beta_{0}}+M\right) u_{f}=f$ a.e. in \mathcal{U}. Multiplying this equation by $\phi \in C_{0}^{\infty}(\mathcal{U} ; \mathbb{C})$ and integrating by parts result in

$$
\begin{equation*}
\mathcal{E}_{\beta_{0}}\left(u_{f}, \phi\right)=\left\langle-\mathcal{L}_{\beta_{0}} u_{f}, \phi\right\rangle_{L^{2}} . \tag{3.11}
\end{equation*}
$$

Note that $C_{0}^{\infty}(\mathcal{U})$ is dense in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{R})$ (see Remark 3.2) and both sides of (3.11) are still well-defined even if ϕ merely belongs to $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. As a result, standard approximation arguments yield that (3.11) holds for any $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$.
(3) Suppose $f \geq 0$ a.e. in \mathcal{U}. In this case, u_{f} must be real-valued. It is easy to verify that the negative part $u_{f}^{-}:=-\min \left\{u_{f}, 0\right\} \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. Thanks to (2), we obtain

$$
\mathcal{E}_{\beta_{0}}\left(u_{f}, u_{f}^{-}\right)+M\left\langle u_{f}, u_{f}^{-}\right\rangle_{L^{2}}=\left\langle f, u_{f}^{-}\right\rangle_{L^{2}} \geq 0
$$

It follows from Lemma $3.3(2), \mathcal{E}_{\beta_{0}}\left(u_{f}, u_{f}^{-}\right)=-\mathcal{E}_{\beta_{0}}\left(u_{f}^{-}, u_{f}^{-}\right)$and $\left\langle u_{f}, u_{f}^{-}\right\rangle_{L^{2}}=-\left\langle u_{f}^{-}, u_{f}^{-}\right\rangle_{L^{2}}$ that

$$
\min \left\{\frac{1}{2}, C_{*}\right\}\left\|u_{f}^{-}\right\|_{\mathcal{H}^{1}}^{2} \leq \mathcal{E}_{\beta_{0}}\left(u_{f}^{-}, u_{f}^{-}\right)+M\left\|u_{f}^{-}\right\|_{L^{2}}^{2} \leq 0
$$

This implies $u_{f}^{-}=0$, and hence that $u_{f} \geq 0$. If in addition $f>0$ on a set of positive Lebesgue measure, then $u_{f} \neq 0$, which together with the weak Harnack's inequality of weak solutions of elliptic equations (see e.g. [29, Theorem 8.18]) yields $u_{f}>0$ a.e.

By Lemma 3.4 and Lemma 3.1, the operator

$$
\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}: L^{2}(\mathcal{U} ; \mathbb{C}) \rightarrow L^{2}(\mathcal{U} ; \mathbb{C}), \quad f \mapsto u_{f}
$$

is linear, positive and compact. In light of Lemma 3.4, we define the domain of $\mathcal{L}_{\beta_{0}}$ as follows:

$$
\mathcal{D}:=\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1} L^{2}(\mathcal{U} ; \mathbb{C})=\left\{\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}): \mathcal{L}_{\beta_{0}} \phi \in L^{2}(\mathcal{U} ; \mathbb{C})\right\}
$$

The next result collects basic spectral properties of $-\mathcal{L}_{\beta_{0}}$.
Theorem 3.1. Assume (H1)-(H3). Then, the following hold.
(1) The operator $-\mathcal{L}_{\beta_{0}}$ has a discrete spectrum and is contained in $\{\lambda \in \mathbb{C}: \Re \lambda>-M\}$.
(2) The number $\lambda_{1}:=\inf \left\{\Re \lambda: \lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}\right)\right\}$ is a simple eigenvalue of $-\mathcal{L}_{\beta_{0}}$, and is dominating, in the sense that $\inf \left\{\Re \lambda: \lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}\right) \backslash\left\{\lambda_{1}\right\}\right\}>\lambda_{1}$.
(3) The eigenspace of λ_{1} is spanned over \mathbb{C} by \tilde{v}_{1} for some $\tilde{v}_{1} \in \mathcal{D}$ a.e. positive in \mathcal{U}.

Proof. Since $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$ is a compact operator on $L^{2}(\mathcal{U})$, we apply the Fredholm alternative (see e.g. [68]) to find that

- the spectrum of $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$ except 0 consists of at most countable eigenvalues with each having finite multiplicity and being a finite pole of the resolvent operator of $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$;
- 0 is the only possible accumulation point.

Denote $L_{+}^{2}(\mathcal{U}):=\left\{u \in L^{2}(\mathcal{U}): u \geq 0\right.$ a.e. $\}$. Then, $L^{2}(\mathcal{U})$ becomes an ordered Hilbert space with the positive cone $L_{+}^{2}(\mathcal{U})$. Since Lemma 3.4 (3) ensures the positivity of $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$ on $L^{2}(\mathcal{U})$, we derive from [50, Theeorem 2.1] that the spectral radius r_{1} of $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$ is an eigenvalue and also a finite pole of the corresponding resolvent operator.

Thanks to Lemma 3.4 (3), we see that $\left\langle\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1} f, g\right\rangle_{L^{2}} \neq 0$ for all $f, g \in L_{+}^{2}(\mathcal{U}) \backslash\{0\}$. That is, $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$ is nonsupporting (in the language of I. Sawashima [59,50]). As a result, we are able to apply the results in [59] (also see [50, Theeorem 2.3]) to conclude

- r_{1} is a simple eigenvalue of $\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}$;
- the eigenspace of r_{1} is spanned over \mathbb{C} by \tilde{v}_{1} which is quasi-interior in $L_{+}^{2}(\mathcal{U})$;
- r_{1} is dominating in the sense that $\sup \left\{|\lambda|: \lambda \in \sigma\left(\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}\right) \backslash\left\{r_{1}\right\}\right\}<r_{1}$.

Note that a function $f \in L_{+}^{2}(\mathcal{U})$ is called quasi-interior if and only if $\langle f, g\rangle_{L^{2}} \neq 0$ for any $g \in L_{+}^{2}(\mathcal{U})$. Then, it is easy to see that \tilde{v}_{1} is a.e. positive in \mathcal{U}.

By the spectral mapping theorem (see e.g. [22, Theorem IV.1.13]), there holds

$$
\begin{equation*}
\sigma\left(-\mathcal{L}_{\beta_{0}}\right)=\left\{-\frac{1}{\lambda}-M: \lambda \in \sigma\left(\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}\right) \backslash\{0\}\right\} \tag{3.12}
\end{equation*}
$$

We claim the existence of $\theta \in\left(0, \frac{\pi}{2}\right)$ such that

$$
\begin{equation*}
S:=\left\{\left\langle\left(-\mathcal{L}_{\beta_{0}}+M\right) u, u\right\rangle_{L^{2}}: u \in \mathcal{D},\|u\|_{L^{2}}=1\right\} \subset\{\lambda \in \mathbb{C}:|\arg \lambda| \leq \theta\} \tag{3.13}
\end{equation*}
$$

As (3.12) implies that $\sigma\left(-\mathcal{L}_{\beta_{0}}+M\right)$ is discrete and consists of eigenvalues, we derive from [55, Theorem 1.3.9] that $\sigma\left(-\mathcal{L}_{\beta_{0}}+M\right) \subset S \subset\{\lambda \in \mathbb{C}: \Re \lambda \geq 0\}$. It then follows from $0 \in \rho\left(-\mathcal{L}_{\beta_{0}}+M\right)$ that $\sigma\left(-\mathcal{L}_{\beta_{0}}\right) \subset\{\lambda \in \mathbb{C}: \Re \lambda>-M\}$ and thus from (3.12) that $\Re\left(\sigma\left(\left(-\mathcal{L}_{\beta_{0}}+M\right)^{-1}\right) \backslash\{0\}\right) \subset(0, \infty)$. Hence, (1) holds and $\lambda_{1}:=-\frac{1}{r_{1}}-M$ is just the principal eigenvalue of $-\mathcal{L}_{\beta_{0}}$ and satisfies the desired properties in (2)-(3).

It remains to show (3.13) for some $\theta \in\left(0, \frac{\pi}{2}\right)$. Fix $u \in \mathcal{D}$. Clearly, Lemma 3.4 (2) gives

$$
\left\langle-\left(\mathcal{L}_{\beta_{0}}-M\right) u, u\right\rangle_{L^{2}}=\mathcal{E}_{\beta_{0}}(u, u)+M\|u\|_{L^{2}}^{2}
$$

It follows from Lemma 3.3 (2) that

$$
\Re\left\langle-\left(\mathcal{L}_{\beta_{0}}-M\right) u, u\right\rangle_{L^{2}}=\Re \mathcal{E}_{\beta_{0}}(u, u)+M\|u\|_{L^{2}}^{2} \geq \min \left\{\frac{1}{2}, C_{*}\right\}\|u\|_{\mathcal{H}^{1}}
$$

Applying Young's inequality, we derive from Lemma 3.3 (2) and Lemma 3.2 that

$$
\begin{aligned}
\left|\Im\left\langle-\left(\mathcal{L}_{\beta_{0}}-M\right) u, u\right\rangle_{L^{2}}\right|=\left|\Im \mathcal{E}_{\beta_{0}}(u, u)\right| & \leq \frac{1}{2} \int_{\mathcal{U}}|\nabla u|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathcal{U}}\left|p+\beta_{0} \nabla U\right|^{2}|u|^{2} \mathrm{~d} x \\
& \leq \frac{1}{2} \int_{\mathcal{U}}|\nabla u|^{2} \mathrm{~d} x+\frac{C_{2}}{2} \int_{\mathcal{U}} \alpha|u|^{2} \mathrm{~d} x
\end{aligned}
$$

where $C_{2}>0$ is independent of $u \in \mathcal{D}$. Therefore,

$$
0 \leq \frac{\left|\Im\left\langle-\left(\mathcal{L}_{\beta_{0}}-M\right) u, u\right\rangle_{L^{2}}\right|}{\Re\left\langle-\left(\mathcal{L}_{\beta_{0}}-M\right) u, u\right\rangle_{L^{2}}} \leq \frac{\frac{1}{2}+\frac{C_{2}}{2}}{\min \left\{\frac{1}{2}, C_{*}\right\}}
$$

This proves (3.13), and thus, completes the proof.
Remark 3.3. We point out that the positive cone $L_{+}^{2}(\mathcal{U})$ has empty interior so that the celebrated Krein-Rutman theorem [39] for compact and strongly positive operators, often used to treat elliptic operators on bounded domains, does not apply here. Restricting $-\mathcal{L}_{\beta_{0}}$ to a smaller space does not help as \mathcal{U} is unbounded.

The number λ_{1} is often called the principal eigenvalue of $-\mathcal{L}_{\beta_{0}}$. So far, it is not clear whether λ_{1} is positive. The positivity of λ_{1} is shown later by means of the absorbing properties of the process X_{t}.

The following result concerns the semigroup generated by $\mathcal{L}_{\beta_{0}}$.
Theorem 3.2. Assume ($\mathbf{H} 1)-(\mathbf{H} 3)$. Then, $\left(\mathcal{L}_{\beta_{0}}, \mathcal{D}\right)$ generates a C_{0}-semigroup $\left(T_{t}\right)_{t \geq 0}$ on $L^{2}(\mathcal{U} ; \mathbb{C})$. Moreover, $\left(T_{t}\right)_{t \geq 0}$ is positive (i.e., $T_{t} L_{+}^{2}(\mathcal{U}) \subset L_{+}^{2}(\mathcal{U})$ for all $t \geq 0$), extends to an analytic semigroup and is immediately compact.

Proof. Note that it is equivalent to studying the operator $\mathcal{L}_{\beta_{0}}-M$ with domain \mathcal{D}. First, we show $\mathcal{L}_{\beta_{0}}-M$ is densely defined and closed. In fact, the density of \mathcal{D} in $L^{2}(\mathcal{U} ; \mathbb{C})$ follows readily from the fact $C_{0}^{\infty}(\mathcal{U} ; \mathbb{C}) \subset \mathcal{D}$. Since the resolvent set of $\mathcal{L}_{\beta_{0}}-M$ is non-empty thanks to Theorem 3.1, the closedness of $\left(\mathcal{L}_{\beta_{0}}-M, \mathcal{D}\right)$ follows.

Next, we see from Theorem 3.1 that $(0, \infty) \subset \rho\left(\mathcal{L}_{\beta_{0}}-M\right)$. For fixed $\lambda>0$, we prove

$$
\left\|\left(\lambda+M-\mathcal{L}_{\beta_{0}}\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{1}{\lambda}, \quad \forall \lambda>0
$$

Let $f \in L^{2}(\mathcal{U} ; \mathbb{C})$ and $u \in \mathcal{D}$ be such that $\left(\lambda+M-\mathcal{L}_{\beta_{0}}\right) u=f$. It follows from Lemma 3.4 (2) that $\mathcal{E}_{\beta_{0}}(u, \phi)+(\lambda+M)\langle u, \phi\rangle_{L^{2}}=\langle f, \phi\rangle_{L^{2}}$ for all $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$. As a result, Lemma 3.3 (2) ensures

$$
\min \left\{\frac{1}{2}, C_{*}\right\}\|u\|_{\mathcal{H}^{1}}^{2}+\lambda\|u\|_{L^{2}}^{2} \leq \Re \mathcal{E}_{\beta_{0}}(u, \phi)+\lambda\|u\|_{L^{2}}^{2} \leq\|f\|_{L^{2}}\|u\|_{L^{2}}
$$

yielding the expected upper bound.
As a result, we apply the Hille-Yosida theorem (see e.g. [55, 22]) to find that $\left(\mathcal{L}_{\beta_{0}}-M, \mathcal{D}\right)$ generates a C_{0}-semigroup of contractions $\left\{T_{t}\right\}_{t \geq 0}$ in $L^{2}(\mathcal{U} ; \mathbb{C})$. By Lemma 3.4 (3), this semigroup must be positive. Thanks to the compactness of $\left(\mathcal{L}_{\beta_{0}}-M\right)^{-1}$ by Lemma 3.1, it follows from [22, Theorem II.4.29] that $\left(T_{t}\right)_{t \geq 0}$ is immediately compact.

It remains to show that $\left(T_{t}\right)_{t \geq 0}$ extends to an analytic semigroup. Let S be defined as in (3.13) in the proof of Theorem 3.1 and $\theta \in\left(0, \frac{\pi}{2}\right)$ be such that $S \subset\{\lambda \in \mathbb{C}:|\arg \lambda| \leq \theta\}$. Then, $\sigma\left(-\mathcal{L}_{\beta_{0}}+M\right) \subset$ $\{\lambda \in \mathbb{C}:|\arg \lambda| \leq \theta\} \backslash\{0\}$. Fixing $\theta_{*} \in\left(\theta, \frac{\pi}{2}\right)$ and setting $\Sigma_{\theta_{*}}:=\left\{\lambda \in \mathbb{C}:|\arg \lambda|>\theta_{*}\right\} \subset \mathbb{C} \backslash \bar{S}$, we find $\Sigma_{\theta_{*}} \subset \rho\left(\mathcal{L}_{\beta_{0}}-M\right)$ and there is $C_{1}>0$ such that $d(\lambda, \bar{S}) \geq C_{1}|\lambda|$ for all $\lambda \in \Sigma_{\theta_{*}}$. An application of [55, Theorem 1.3.9] yields

$$
\left\|\left(\lambda+M-\mathcal{L}_{\beta_{0}}\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{1}{d(\lambda, \bar{S})} \leq \frac{1}{C_{1}|\lambda|}, \quad \forall \lambda \in \Sigma_{\theta_{*}}
$$

As a result, [55, Theorem 2.5.2] enables us to extend $\left(T_{t}\right)_{t \geq 0}$ to an analytic semigroup. This completes the proof.
3.4. Adjoint operator and semigroup. Let $\left(\mathcal{L}_{\beta_{0}}^{*}, \mathcal{D}^{*}\right)$ be the adjoint operator of $\left(\mathcal{L}_{\beta_{0}}, \mathcal{D}\right)$ in $L^{2}(\mathcal{U} ; \mathbb{C})$. Then, \mathcal{D}^{*} is given by

$$
\mathcal{D}^{*}:=\left\{w \in L^{2}(\mathcal{U} ; \mathbb{C}): \exists f \in L^{2}(\mathcal{U} ; \mathbb{C}) \text { s.t. }\left\langle w, \mathcal{L}_{\beta_{0}} \phi\right\rangle_{L^{2}}=\langle f, \phi\rangle_{L^{2}}, \forall \phi \in \mathcal{D}\right\}
$$

For each $w \in \mathcal{D}^{*}, \mathcal{L}_{\beta_{0}}^{*} w$ is the unique element in $L^{2}(\mathcal{U} ; \mathbb{C})$ such that $\left\langle w, \mathcal{L}_{\beta_{0}} \phi\right\rangle_{L^{2}}=\left\langle\mathcal{L}_{\beta_{0}}^{*} w, \phi\right\rangle_{L^{2}}$ for all $\phi \in \mathcal{D}$. Integration by parts yields

$$
\begin{equation*}
\mathcal{L}_{\beta_{0}}^{*} w=\frac{1}{2} \Delta w+\nabla \cdot\left(\left(p+\beta_{0} \nabla U\right) w\right)-e_{\beta_{0}} w, \quad w \in C_{0}^{\infty}(\mathcal{U} ; \mathbb{C}) \tag{3.14}
\end{equation*}
$$

The following lemma summarizes some properties of the operator $-\mathcal{L}_{\beta_{0}}^{*}$.
Lemma 3.5. Assume (H1)-(H3). Then, the following hold.
(1) $\sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right)=\sigma\left(-\mathcal{L}_{\beta_{0}}\right) \subset\{\lambda \in \mathbb{C}: \Re \lambda>-M\}$.
(2) $\mathcal{D}^{*}=\left\{w \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}): \mathcal{L}_{\beta_{0}}^{*} w \in L^{2}(\mathcal{U} ; \mathbb{C})\right\}$.
(3) For each $\phi \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ and $w \in \mathcal{D}^{*}$ one has $\left\langle\phi,-\mathcal{L}_{\beta_{0}}^{*} w\right\rangle_{L^{2}}=\mathcal{E}_{\beta_{0}}(\phi, w)$.
(4) λ_{1} is a simple and dominating eigenvalue of $-\mathcal{L}_{\beta_{0}}^{*}$ with the associated eigenspace spanned over \mathbb{C} by \tilde{v}_{1}^{*} for some $\tilde{v}_{1}^{*} \in \mathcal{D}^{*}$ a.e. positive in \mathcal{U}.

Proof. (1) Note that $\sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right)=\overline{\sigma\left(-\mathcal{L}_{\beta_{0}}\right)}$. Since the spectrum of $-\mathcal{L}_{\beta_{0}}$ consists of eigenvalues due to Lemma 3.1 (1), and the coefficients of $-\mathcal{L}_{\beta_{0}}$ are real-valued, we have $\Lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}\right)$ if and only if $\bar{\Lambda} \in \sigma\left(-\mathcal{L}_{\beta_{0}}\right)$. Hence, $\overline{\sigma\left(-\mathcal{L}_{\beta_{0}}\right)}=\sigma\left(-\mathcal{L}_{\beta_{0}}\right)$, which leads to $\sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right)=\sigma\left(-\mathcal{L}_{\beta_{0}}\right)$.
(2) Since $-1-M \in \rho\left(-\mathcal{L}_{\beta_{0}}^{*}\right)$ by (1), we see that $\mathcal{D}^{*}=\left(-\mathcal{L}_{\beta_{0}}^{*}+1+M\right)^{-1} L^{2}(\mathcal{U} ; \mathbb{C})$. Following similar arguments as in the proof of Lemma 3.4, we deduce

$$
\left(-\mathcal{L}_{\beta_{0}}^{*}+M+1\right)^{-1} L^{2}(\mathcal{U} ; \mathbb{C})=\left\{w \in \mathcal{H}^{1}(\mathcal{U} ; \mathbb{C}): \mathcal{L}_{\beta_{0}}^{*} w \in L^{2}(\mathcal{U} ; \mathbb{C})\right\}
$$

leading to the desired result.
(3) Note that $\left\langle\phi,-\mathcal{L}_{\beta_{0}}^{*} w\right\rangle_{L^{2}}=\left\langle-\mathcal{L}_{\beta_{0}} \phi, w\right\rangle_{L^{2}}$ for all $\phi \in \mathcal{D}$ and $w \in \mathcal{D}^{*}$. It follows from Lemma 3.4 (2) that $\left\langle\phi,-\mathcal{L}_{\beta_{0}}^{*} w\right\rangle_{L^{2}}=\mathcal{E}_{\beta_{0}}(\phi, w)$ for all $\phi \in \mathcal{D}$ and $w \in \mathcal{D}^{*}$. Since $C_{0}^{\infty}(\mathcal{U} ; \mathbb{C}) \subset \mathcal{D}$ and is dense in $\mathcal{H}^{1}(\mathcal{U} ; \mathbb{C})$ (see Remark 3.2), the conclusion follows from standard approximation arguments.
(4) This follows from (1) and arguments as in the proof of Theorem 3.1.

Denote by $\left(T_{t}^{*}\right)_{t \geq 0}$ the dual semigroup of $\left(T_{t}\right)_{t \geq 0}$. It is well-known (see e.g. [55, Corollary 1.10.6]) that $\left(T_{t}^{*}\right)_{t \geq 0}$ is a C_{0}-semigroup with infinitesimal generator $\left(\mathcal{L}_{\beta_{0}}^{*}, \mathcal{D}^{*}\right)$.

Theorem 3.3. Assume (H1)-(H3). Then, $\left(T_{t}^{*}\right)_{t \geq 0}$ is an analytic semigroup. Moreover, it is positive, i.e., $T_{t}^{*} L_{+}^{2}(\mathcal{U}) \subset L_{+}^{2}(\mathcal{U})$ for all $t \geq 0$, and immediately compact.

Proof. Note that $\rho\left(\mathcal{L}_{\beta_{0}}^{*}-M\right)=\rho\left(\mathcal{L}_{\beta_{0}}-M\right)$. Thanks to [55, Theorem 2.5.2], the conclusion is a straightforward consequence of the analyticity of $\left(T_{t}\right)_{t \geq 0}$ and the fact $\left\|\left(\lambda+M-\mathcal{L}_{\beta_{0}}^{*}\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}}=$ $\left\|\left(\bar{\lambda}+M-\mathcal{L}_{\beta_{0}}\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}}$ for each $\lambda \in \mathbb{C}$ with $\Re \lambda>0$. The positivity and immediate compactness follow from arguments as in the proof of Theorem 3.2.

4. Stochastic representation of semigroups

In this section, we study the stochastic representation of the semigroup $\left(T_{t}^{*}\right)_{t \geq 0}$. Subsection 4.1 and Subsection 4.2 are respectively devoted to the stochastic representation and estimates of semigroups generated by $\mathcal{L}_{\beta_{0}}^{*}$ restricted to bounded domains with zero Dirichlet boundary condition. In Subsection 4.3, we establish the stochastic representation for $\left(T_{t}^{*}\right)_{t \geq 0}$.
4.1. Stochastic representation in bounded domains. Let $\Omega \subset \subset \mathcal{U}$ be a connected subdomain with C^{2} boundary. Denote by \mathcal{L}^{X} the diffusion operator associated with X_{t} or (2.3), namely,

$$
\mathcal{L}^{X}=\frac{1}{2} \Delta+(p-q) \cdot \nabla .
$$

For each $N>1$, let $\left.\mathcal{L}_{N}^{X}\right|_{\Omega}$ be \mathcal{L}^{X} considered as an operator in $L^{N}(\Omega ; \mathbb{C})$ with domain $W^{2, N}(\Omega ; \mathbb{C}) \cap$ $W_{0}^{1, N}(\Omega ; \mathbb{C})$. It is well-known (see e.g. $[29,55,22]$) that the spectrum of $-\left.\mathcal{L}_{N}^{X}\right|_{\Omega}$ is discrete and contained in $\{\lambda \in \mathbb{C}: \Re \lambda>0\}$ and $\left.\mathcal{L}_{N}^{X}\right|_{\Omega}$ generates an analytic semigroup $\left(S_{t}^{(\Omega, N)}\right)_{t \geq 0}$ of contractions on $L^{N}(\Omega ; \mathbb{C})$ that satisfies $S_{t}^{(\Omega, N)} L_{+}^{N}(\Omega) \subset L_{+}^{N}(\Omega)$ for all $t \geq 0$. Moreover, the following stochastic representation holds: for each $f \in C(\bar{\Omega} ; \mathbb{C})$,

$$
\begin{equation*}
S_{t}^{(\Omega, N)} f(x)=\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{\Omega}\right\}}\right], \quad \forall(x, t) \in \bar{\Omega} \times[0, \infty) \tag{4.1}
\end{equation*}
$$

where $\tau_{\Omega}:=\inf \left\{t \geq 0: X_{t} \notin \Omega\right\}$ is the first time that X_{t} exits Ω.
For $N>1$, let $\left.\mathcal{L}_{\beta_{0}}^{*, N}\right|_{\Omega}$ be $\mathcal{L}_{\beta_{0}}^{*}$ considered as an operator in $L^{N}(\Omega ; \mathbb{C})$ with domain $W^{2, N}(\Omega ; \mathbb{C}) \cap$ $W_{0}^{1, N}(\Omega ; \mathbb{C})$.

Proposition 4.1. The following statements hold.
(1) The spectrum of $-\left.\mathcal{L}_{\beta_{0}}^{*, N}\right|_{\Omega}$ is discrete and is contained in $\{\lambda \in \mathbb{C}: \Re \lambda>0\}$.
(2) $\left.\mathcal{L}_{\beta_{0}}^{*, N}\right|_{\Omega}$ generates an analytic semigroup of contractions $\left(T_{t}^{(*, \Omega, N)}\right)_{t \geq 0}$ on $L^{N}(\Omega ; \mathbb{C})$ that is positive, namely, $T_{t}^{(*, \Omega, N)} L_{+}^{N}(\Omega) \subset L_{+}^{N}(\Omega)$ for all $t \geq 0$.
(3) For each $f \in L^{N}(\Omega ; \mathbb{C})$ and $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$,

$$
T_{t}^{(*, \Omega, N)} \tilde{f}=e^{-\frac{Q}{2}-\beta_{0} U} S_{t}^{(\Omega, N)} f, \quad \forall t \geq 0
$$

(4) For each $f \in C(\bar{\Omega} ; \mathbb{C})$ and $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$,

$$
T_{t}^{(*, \Omega, N)} \tilde{f}(x)=e^{-\frac{Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{\Omega}\right\}}\right], \quad \forall(x, t) \in \bar{\Omega} \times[0, \infty)
$$

(5) For any $N_{1}, N_{2}>1, T_{t}^{\left(*, \Omega, N_{1}\right)}$ and $T_{t}^{\left(*, \Omega, N_{2}\right)}$ coincide on $L^{N_{1}}(\Omega ; \mathbb{C}) \cap L^{N_{2}}(\Omega ; \mathbb{C})$ for all $t \geq 0$.

Proof. For $f \in W^{2, N}(\Omega ; \mathbb{C}) \cap W_{0}^{1, N}(\Omega ; \mathbb{C})$, direct calculations give $\left.\mathcal{L}_{\beta_{0}}^{*, N}\right|_{\Omega} \tilde{f}=\left.e^{-\frac{Q}{2}-\beta_{0} U} \mathcal{L}_{N}^{X}\right|_{\Omega} f$, where $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$, the conclusions (1)-(4) follow immediately from the corresponding properties of $\left.\mathcal{L}_{N}^{X}\right|_{\Omega}$ and $\left(S_{t}^{(\Omega, N)}\right)_{t \geq 0}$.

In particular, for any $N_{1}, N_{2}>1$ we have $T_{t}^{\left(*, \Omega, N_{1}\right)} \tilde{f}=T_{t}^{\left(*, \Omega, N_{2}\right)} \tilde{f}$ for all $\tilde{f} \in C(\bar{\Omega} ; \mathbb{C})$. Statement (5) then follows from the density of $C(\Omega ; \mathbb{C})$ in $L^{N}(\Omega ; \mathbb{C})$ for any $N>1$.
4.2. Estimates of semigroups in bounded domains. We prove two useful lemmas concerning some estimates of the semigroup $\left(T_{t}^{(*, \Omega, N)}\right)_{t \geq 0}$.

Lemma 4.1. Let $N \geq 2$ and $\tilde{f} \in L^{N}(\Omega)$. Then, $\tilde{w}:=T_{\bullet}^{(*, \Omega, N)} \tilde{f}$ satisfies the following inequalities:

$$
\begin{aligned}
& \frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x+\frac{N-1}{2} \int_{t_{1}}^{t} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{t_{1}}^{t} \int_{\Omega} \alpha|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \\
& \leq \frac{1+e^{N M\left(t-t_{1}\right)}}{N} \int_{\Omega}\left|\tilde{w}\left(\cdot, t_{1}\right)\right|^{N} \mathrm{~d} x, \quad \forall t>t_{1} \geq 0,
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x+\frac{N-1}{2} \int_{t_{2}}^{t} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{t_{2}}^{t} \int_{\Omega} \alpha|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \\
\leq \frac{2}{N\left(t_{2}-t_{1}\right)} \int_{t_{1}}^{t_{2}} \int_{\Omega}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s, \quad \forall t>t_{2}>t_{1} \geq 0 .
\end{gathered}
$$

Proof. Fix $N \geq 2$ and $\tilde{f} \in L^{N}(\Omega)$. Then, $\tilde{w}:=T_{\bullet}^{(*, \Omega, N)} \tilde{f}$ satisfies

$$
\partial_{t} \tilde{w}=\left.\mathcal{L}_{\beta_{0}}^{*, N}\right|_{\Omega} \tilde{w} \quad \text { in } \quad \Omega \times(0, \infty) .
$$

Recall $\mathcal{L}_{\beta_{0}}^{*}$ from (3.14) and $\mathcal{L}_{\beta_{0}}^{*, N}$ from Subsection 4.1. Multiplying the above equation by $|\tilde{w}|^{N-2} \tilde{w}$ and integrating by parts, we find, after straightforward calculations, for $t>0$

$$
\begin{equation*}
\int_{\Omega}|\tilde{w}|^{N-2} \tilde{w} \partial_{t} \tilde{w} \mathrm{~d} x=-\frac{N-1}{2} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x-\int_{\Omega} e_{\beta_{0}, N}|\tilde{w}|^{N} \mathrm{~d} x, \tag{4.2}
\end{equation*}
$$

where we recall the definition of $e_{\beta_{0}, N}$ from (3.3).
Since $|\tilde{w}|^{N-2} \tilde{w} \partial_{t} \tilde{w}=\frac{1}{N} \partial_{t}|\tilde{w}|^{N}$, we integrate the above equality on $\left[t_{1}, t\right] \subset[0, \infty)$ to derive

$$
\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x+\frac{N-1}{2} \int_{t_{1}}^{t} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+\int_{t_{1}}^{t} \int_{\Omega} e_{\beta_{0}, N}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s=\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}\left(\cdot, t_{1}\right) \mathrm{d} x .
$$

As Lemma 3.2 (3) gives $e_{\beta_{0}, N}+M \geq C_{*} \alpha$ for all $N \geq 2$, we find

$$
\begin{gather*}
\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x+\frac{N-1}{2} \int_{t_{1}}^{t} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{t_{1}}^{t} \int_{\Omega} \alpha|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \\
\leq M \int_{t_{1}}^{t} \int_{\Omega}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s+\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}\left(\cdot, t_{1}\right) \mathrm{d} x, \quad \forall t>t_{1} \geq 0 . \tag{4.3}
\end{gather*}
$$

Setting $g(t):=\int_{t_{1}}^{t} \int_{\Omega}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s$ for $t \geq t_{1}$, we arrive at $\frac{1}{N} g^{\prime} \leq M g+\frac{1}{N}\left\|\tilde{w}\left(\cdot, t_{1}\right)\right\|_{L^{N}}^{N}$ for all $t>t_{1}$. Gronwall's inequality gives $g(t) \leq \frac{e^{N M\left(t-t_{1}\right)}}{N M}\left\|\tilde{w}\left(\cdot, t_{1}\right)\right\|_{L^{N}}^{N}$ for all $t>t_{1}$. Inserting this into (4.3) yields the first inequality.

Now, we prove the second inequality. Fix $t_{1}, t_{2} \in[0, \infty)$ with $t_{1}<t_{2}$. Let $\eta \in C^{\infty}((0, \infty))$ be non-negative and non-decreasing such that $\eta=0$ on $\left[0, t_{1}\right], \eta=1$ on $\left[t_{2}, \infty\right]$ and $\max _{\left[t_{1}, t_{2}\right]} \eta^{\prime} \leq \frac{2}{t_{2}-t_{1}}$. Multiplying (4.2) by η and integrating by parts, we find for $t>t_{2}$,

$$
\begin{aligned}
& \frac{1}{N} \int_{\Omega} \eta(t)|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x-\frac{1}{N} \int_{0}^{t} \int_{\Omega} \eta^{\prime}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \\
& \quad=-\frac{N-1}{2} \int_{0}^{t} \int_{\Omega} \eta|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\Omega} \eta e_{\beta_{0}, N}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

The definition of η then gives

$$
\begin{gathered}
\frac{1}{N} \int_{\Omega}|\tilde{w}|^{N}(\cdot, t) \mathrm{d} x+\frac{N-1}{2} \int_{t_{2}}^{t} \int_{\Omega}|\tilde{w}|^{N-2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+\int_{t_{2}}^{t} \int_{\Omega} e_{\beta_{0}, N}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \\
\leq \frac{1}{N} \int_{t_{1}}^{t_{2}} \int_{\Omega} \eta^{\prime}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s \leq \frac{2}{N\left(t_{2}-t_{1}\right)} \int_{t_{1}}^{t_{2}} \int_{\Omega}|\tilde{w}|^{N} \mathrm{~d} x \mathrm{~d} s, \quad \forall t>t_{2}
\end{gathered}
$$

This completes the proof.
Lemma 4.2. For each $t>0$, there exists $C=C(t)$, independent of the domain Ω, such that

$$
\left\|T_{t}^{\left(*, \Omega, 2_{*}\right)} \tilde{f}\right\|_{L^{2}(\Omega)} \leq C\|\tilde{f}\|_{L^{2 *}(\Omega)}, \quad \forall \tilde{f} \in L^{2_{*}}(\Omega)
$$

where $2_{*}:=\frac{2(d+2)}{d+4} \in(1,2)$ is the dual exponent of $2+\frac{4}{d}$.
Proof. Take $N \in(1,2]$. Then, $N^{\prime}:=\frac{N}{N-1} \geq 2$. Denote by $\left(T_{t}^{\left(\Omega, N^{\prime}\right)}\right)_{t \geq 0}$ the semigroup on $L^{N^{\prime}}(\Omega)$ that is dual to $\left(T_{t}^{(*, \Omega, N)}\right)_{t \geq 0}$. Let $\left.\mathcal{L}_{\beta_{0}}^{N^{\prime}}\right|_{\Omega}$ be $\mathcal{L}_{\beta_{0}}$ considered as an operator in $L^{N^{\prime}}(\Omega)$ with domain $W^{2, N^{\prime}}(\Omega) \cap W_{0}^{1, N^{\prime}}(\Omega)$. It is not hard to check that $\left.\mathcal{L}_{\beta_{0}}^{N^{\prime}}\right|_{\Omega}$, being $\mathcal{L}_{\beta_{0}}$ considered as an operator in $L^{N^{\prime}}(\Omega)$ with domain $W^{2, N^{\prime}}(\Omega ; \mathbb{C}) \cap W_{0}^{1, N^{\prime}}(\Omega ; \mathbb{C})$, is the generator of $\left(T_{t}^{\left(\Omega, N^{\prime}\right)}\right)_{t \geq 0}$.

Take $\tilde{g} \in L^{N^{\prime}}(\Omega)$ and denote $\tilde{v}:=T_{\bullet}^{\left(\Omega, N^{\prime}\right)} \tilde{g}$. Then, \tilde{v} is the solution of

$$
\partial_{t} \tilde{v}=\left.\mathcal{L}_{\beta_{0}}^{N^{\prime}}\right|_{\Omega} \tilde{v} \quad \text { in } \quad \Omega \times(0, \infty)
$$

Multiplying this equation by $|\tilde{v}|^{N^{\prime}-2} \tilde{v}$ and integrating by parts, we find, after straightforward calculations, for $t>0$,

$$
\int_{\Omega}|\tilde{v}|^{N^{\prime}-2} \tilde{v} \partial_{t} \tilde{v} \mathrm{~d} x=-\frac{N^{\prime}-1}{2} \int_{\Omega}|\tilde{v}|^{N^{\prime}-2}|\nabla \tilde{v}|^{2} \mathrm{~d} x-\int_{\Omega} e_{\beta_{0}, N^{\prime}}^{*}|\tilde{v}|^{N^{\prime}} \mathrm{d} x
$$

where $e_{\beta_{0}, N^{\prime}}^{*}:=e_{\beta_{0}}-\frac{1}{N^{\prime}}\left(\nabla \cdot p+\beta_{0} \Delta U\right)$. We can follow the proof of Lemma 3.2 (3) to show $e_{\beta_{0}, N}^{*}+M \geq$ $C_{*} \alpha$ in \mathcal{U} for all $N \geq 1$. Then, arguing as in the proof of Lemma 4.1 yields

$$
\begin{align*}
& \frac{1}{N^{\prime}} \int_{\Omega}|\tilde{v}|^{N^{\prime}}(\cdot, t) \mathrm{d} x+\frac{N^{\prime}-1}{2} \int_{0}^{t} \int_{\Omega}|\tilde{v}|^{N^{\prime}-2}|\nabla \tilde{v}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{0}^{t} \int_{\Omega} \alpha|\tilde{v}|^{N^{\prime}} \mathrm{d} x \mathrm{~d} s \tag{4.4}\\
& \quad \leq \frac{1+e^{N^{\prime} M t}}{N^{\prime}} \int_{\Omega}|\tilde{g}|^{N^{\prime}} \mathrm{d} x, \quad \forall t>0,
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{N^{\prime}} \int_{\Omega}|\tilde{v}|^{N^{\prime}}(\cdot, t) \mathrm{d} x+\frac{N^{\prime}-1}{2} \int_{t_{2}}^{t} \int_{\Omega}|\tilde{v}|^{N^{\prime}-2}|\nabla \tilde{v}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{t_{2}}^{t} \int_{\Omega} \alpha|\tilde{v}|^{N^{\prime}} \mathrm{d} x \mathrm{~d} s \tag{4.5}\\
& \quad \leq \frac{2}{N^{\prime}\left(t_{2}-t_{1}\right)} \int_{t_{1}}^{t_{2}} \int_{\Omega}|\tilde{v}|^{N^{\prime}} \mathrm{d} x \mathrm{~d} s, \quad \forall t>t_{2}>t_{1} \geq 0 .
\end{align*}
$$

Figure 3. Illustration of the stochastic representation.

The Sobolev embedding theorem gives

$$
\left\|\tilde{v}^{\frac{N^{\prime}}{2}}\right\|_{L^{2 \kappa}(\Omega \times[0, t])} \leq C_{1}\left(\sup _{s \in[0, t]}\left\|\tilde{v}^{\frac{N^{\prime}}{2}}(\cdot, s)\right\|_{L^{2}(\Omega)}+\left\|\nabla \tilde{v}^{\frac{N^{\prime}}{2}}\right\|_{L^{2}(\Omega \times[0, t])}\right),
$$

where $\kappa=\frac{d+2}{d}$ and $C_{1}>0$ depends only on d. This together with (4.4) gives rise to

$$
\begin{aligned}
\left(\int_{0}^{t} \int_{\Omega}|\tilde{v}|^{\kappa N^{\prime}} \mathrm{d} x \mathrm{~d} s\right)^{\frac{1}{\kappa}} & \leq 2 C_{1}^{2}\left(\sup _{s \in[0, t]} \int_{\Omega}|\tilde{v}(x, s)|^{N^{\prime}} \mathrm{d} x+\frac{\left|N^{\prime}\right|^{2}}{4} \int_{0}^{t} \int_{\Omega}|\tilde{v}|^{N^{\prime}-2}|\nabla \tilde{v}|^{2} \mathrm{~d} x \mathrm{~d} s\right) \\
& \leq C_{2}\left(1+e^{N^{\prime} M t}\right) \int_{\Omega}|\tilde{g}|^{N^{\prime}} \mathrm{d} x, \quad \forall t>0,
\end{aligned}
$$

where $C_{2}:=2 C_{1}^{2}\left(1+\frac{N^{\prime}}{2\left(N^{\prime}-1\right)}\right)$. We then deduce from (4.5) (with κN^{\prime} instead of N^{\prime}) that

$$
\begin{aligned}
& \frac{1}{\kappa N^{\prime}} \int_{\Omega}|\tilde{v}|^{\kappa N^{\prime}}(\cdot, t) \mathrm{d} x+\frac{\kappa N^{\prime}-1}{2} \int_{t_{2}}^{t} \int_{\Omega}|\tilde{v}|^{\kappa N^{\prime}-2}|\nabla \tilde{v}|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{t_{2}}^{t} \int_{\Omega} \alpha|\tilde{v}|^{\kappa N^{\prime}} \mathrm{d} x \mathrm{~d} s \\
& \quad \leq \frac{2}{\kappa N^{\prime}\left(t_{2}-t_{1}\right)} \int_{t_{1}}^{t_{2}} \int_{\Omega}|\tilde{v}|^{\kappa N^{\prime}} \mathrm{d} x \mathrm{~d} s \leq \frac{2}{\kappa N^{\prime}\left(t_{2}-t_{1}\right)} C_{2}^{\kappa}\left(1+e^{N^{\prime} M t_{2}}\right)^{\kappa}\|\tilde{g}\|_{L^{N^{\prime}}(\Omega)}^{\kappa N^{\prime}}
\end{aligned}
$$

for all $t>t_{2}>t_{1} \geq 0$, where we used (4.4) in the second inequality.
As a consequence, for each $t>0$, there exists $C_{3}=C_{3}\left(d, N^{\prime}, t\right)>0$ such that

$$
\left\|T_{t}^{\left(\Omega, N^{\prime}\right)} \tilde{g}\right\|_{L^{\kappa N^{\prime}}(\Omega)}=\|\tilde{v}(\cdot, t)\|_{L^{\kappa N^{\prime}}(\Omega)} \leq C_{3}\|\tilde{g}\|_{L^{N^{\prime}}(\Omega)} .
$$

Since $T^{\left(\Omega, N^{\prime}\right)}$ and $T_{t}^{(*, \Omega, N)}$ are adjoint to each other, it follows that

$$
\left\|T_{t}^{(*, \Omega, N)} \tilde{f}\right\|_{L^{N}(\Omega)} \leq C_{3}\|\tilde{f}\|_{L^{N_{*}}(\Omega)}, \quad \forall \tilde{f} \in L^{N_{*}}(\Omega) \cap L^{N}(\Omega) .
$$

where $N_{*}:=\frac{\kappa N^{\prime}}{\kappa N^{\prime}-1}$. Thanks to Proposition 4.1 (5), the above inequality holds for all $\tilde{f} \in L^{N_{*}}(\Omega)$. Setting $N=2$ yields $2_{*}=\frac{2(d+2)}{d+4} \in(1,2)$. This completes the proof.
4.3. Stochastic representation. We prove the following theorem concerning the stochastic representation of $\left(T_{t}^{*}\right)_{t \geq 0}$.

Theorem 4.1. Assume (H1)-(H3). For each $f \in C_{b}(\mathcal{U} ; \mathbb{C})$ satisfying $\tilde{f}:=f e^{-\frac{Q}{2}-\beta_{0} U} \in L^{2}(\mathcal{U} ; \mathbb{C})$,

$$
T_{t}^{*} \tilde{f}(x)=e^{-\frac{Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right], \quad \forall(x, t) \in \mathcal{U} \times[0, \infty) .
$$

For the reader's convenience, we include Figure 3 to clarify the stochastic representation.

Consider the following initial value problem associated with the operator $\mathcal{L}_{\beta_{0}}^{*}$:

$$
\begin{cases}\partial_{t} \tilde{w}=\frac{1}{2} \Delta \tilde{w}+\nabla \cdot\left(\left(p+\beta_{0} \nabla U\right) \tilde{w}\right)-e_{\beta_{0}} \tilde{w} & \text { in } \mathcal{U} \times[0, \infty) \tag{4.6}\\ \tilde{w}(\cdot, 0)=\tilde{f} & \text { in } \mathcal{U}\end{cases}
$$

Definition 4.1. A function $\tilde{w} \in C(\mathcal{U} \times[0, \infty)) \cap L_{l o c}^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$ is called a weak solution of (4.6) if for each $\phi \in C_{0}^{1,1}(\mathcal{U} \times[0, \infty))$ and $t \in[0, \infty)$ one has

$$
\begin{aligned}
& \int_{\mathcal{U}} \tilde{w}(\cdot, t) \phi(\cdot, t) \mathrm{d} x-\int_{\mathcal{U}} \tilde{f} \phi(\cdot, 0) \mathrm{d} x-\int_{0}^{t} \int_{\mathcal{U}} \tilde{w} \partial_{t} \phi \mathrm{~d} x \mathrm{~d} s \\
& \quad=-\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}} \nabla \tilde{w} \cdot \nabla \phi \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \tilde{w} \nabla \phi \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}} e_{\beta_{0}} \tilde{w} \phi \mathrm{~d} x \mathrm{~d} s .
\end{aligned}
$$

Lemma 4.3. Assume (H1)-(H3). For each $\tilde{f} \in C(\mathcal{U}) \cap L^{2}(\mathcal{U})$, (4.6) admits at most one weak solution.

The proof of the above lemma follows from energy methods and approximation arguments. Since it is somewhat standard we present its proof in Appendix A.2.

Now, we prove Theorem 4.1.
Proof of Theorem 4.1. Treating the real and imaginary parts separately, we only need to prove the theorem for $f \in C_{b}(\mathcal{U})$ such that $\tilde{f}:=f e^{-\frac{Q}{2}-\beta_{0} U} \in L^{2}(\mathcal{U})$. Fix such an f.

We show $T_{\bullet}^{*} \tilde{f}$ is a weak solution of (4.6). Due to the analyticity of $\left(T_{t}^{*}\right)_{t \geq 0}$ (see Theorem 3.3) and Lemma 3.5, we find
(1) $T_{\bullet}^{*} \tilde{f} \in C\left([0, \infty), L^{2}(\mathcal{U})\right) \cap C^{1}\left((0, \infty), L^{2}(\mathcal{U})\right)$;
(2) $T_{t}^{*} \tilde{f} \in \mathcal{D}^{*} \subset \mathcal{H}^{1}(\mathcal{U}) \cap H_{l o c}^{2}(\mathcal{U})$ for all $t>0$;
(3) $\frac{\mathrm{d}}{\mathrm{d} t} T_{t}^{*} \tilde{f}=\mathcal{L}_{\beta_{0}}^{*} T_{t}^{*} \tilde{f}$ for all $t>0$.

Since $\tilde{f} \in C(\mathcal{U})$, the classical regularity theory of parabolic equations yields that $T_{\bullet}^{*} \tilde{f} \in C(\mathcal{U} \times[0, \infty))$. Applying Lemma 3.3 (2) and Lemma 3.5, we find for each $t>0$,

$$
\begin{aligned}
\min \left\{\frac{1}{2}, C_{*}\right\}\left\|T_{t}^{*} \tilde{f}\right\|_{\mathcal{H}^{1}}^{2} & \leq \mathcal{E}_{\beta_{0}}\left(T_{t}^{*} \tilde{f}, T_{t}^{*} \tilde{f}\right)+M\left\|T_{t}^{*} \tilde{f}\right\|_{L^{2}}^{2} \\
& =-\left\langle T_{t}^{*} \tilde{f}, \mathcal{L}_{\beta_{0}}^{*} T_{t}^{*} \tilde{f}\right\rangle_{L^{2}}+M\left\|T_{t}^{*} \tilde{f}\right\|_{L^{2}}^{2} \\
& =-\left\langle T_{t}^{*} \tilde{f}, \frac{\mathrm{~d}}{\mathrm{~d} t} T_{t}^{*} \tilde{f}\right\rangle_{L^{2}}+M\left\|T_{t}^{*} \tilde{f}\right\|_{L^{2}}^{2}=-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|T_{t}^{*} \tilde{f}\right\|_{L^{2}}^{2}+M\left\|T_{t}^{*} \tilde{f}\right\|_{L^{2}}^{2}
\end{aligned}
$$

It follows that

$$
\min \left\{\frac{1}{2}, C_{*}\right\} \int_{0}^{t}\left\|T_{s}^{*} \tilde{f}\right\|_{\mathcal{H}^{1}}^{2} \mathrm{~d} s \leq \frac{1}{2}\|\tilde{f}\|_{L^{2}}^{2}+M \int_{0}^{t}\left\|T_{s}^{*} \tilde{f}\right\|_{L^{2}}^{2} \mathrm{~d} s, \quad \forall t>0
$$

This yields $T_{\bullet}^{*} \tilde{f} \in L_{l o c}^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$. By (3), it is easy to check that the integral identity in Definition 4.1 holds with \tilde{w} replaced by $T_{\bullet}^{*} \tilde{f}$. As a consequence, $T_{\bullet}^{*} \tilde{f}$ is a weak solution of (4.6).

Define

$$
\tilde{w}(x, t):=e^{-\frac{Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right], \quad(x, t) \in \mathcal{U} \times[0, \infty)
$$

We claim that \tilde{w} is also a weak solution of (4.6). Then, Lemma 4.3 yields $T_{\bullet}^{*} \tilde{f}=\tilde{w}$, leading to the conclusion of the theorem.

The continuity of \tilde{w} in $\mathcal{U} \times[0, \infty)$ follows from the definition and continuity properties of X_{t}. We show $\tilde{w} \in L_{l o c}^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$. Let $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ be as in Subsection 2.3. It follows from Lemma 2.1 and

Proposition 4.1 (4) that $\tilde{w}=\left.\lim _{n \rightarrow \infty} T_{\bullet}^{\left(*, \mathcal{U}_{n}, 2\right)} \tilde{f}\right|_{\mathcal{U}_{n}}$ in $\mathcal{U} \times[0, \infty)$, where we recall from Subsection 4.1 that $\left(T_{t}^{\left(*, \mathcal{U}_{n}, 2\right)}\right)_{t \geq 0}$ is the positive analytic semigroup of contractions on $L^{2}\left(\mathcal{U}_{n} ; \mathbb{C}\right)$ generated by $\left.\mathcal{L}_{\beta_{0}}^{*, 2}\right|_{\mathcal{U}_{n}}$ with domain $W^{2,2}\left(\mathcal{U}_{n} ; \mathbb{C}\right) \cap W_{0}^{1,2}\left(\mathcal{U}_{n} ; \mathbb{C}\right)$.

For convenience, we define $\tilde{w}_{n}:=\left.T_{\bullet}^{\left(*, \mathcal{U}_{n}, 2\right)} \tilde{f}\right|_{\mathcal{U}_{n}}$ for $n \in \mathbb{N}$. Then, $\lim _{n \rightarrow \infty} \tilde{w}_{n}=\tilde{w}$. Lemma 4.1 (with $t_{1}=0$) gives for each $t \in[0, \infty)$ and $n \in \mathbb{N}$,

$$
\frac{1}{2} \int_{\mathcal{U}_{n}} \tilde{w}_{n}^{2}(\cdot, t) \mathrm{d} x+\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}_{n}}\left|\nabla \tilde{w}_{n}\right|^{2} \mathrm{~d} x \mathrm{~d} s+C_{*} \int_{0}^{t} \int_{\mathcal{U}_{n}} \alpha \tilde{w}_{n}^{2} \mathrm{~d} x \mathrm{~d} s \leq \frac{1+e^{2 M t}}{2} \int_{\mathcal{U}_{n}} \tilde{f}^{2} \mathrm{~d} x
$$

Letting $n \rightarrow \infty$ yields $\tilde{w} \in L_{l o c}^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$. Since $\partial_{t} \tilde{w}_{n}=\mathcal{L}_{\beta_{0}}^{*, 2} \mid \mathcal{U}_{n} \tilde{w}_{n}$ in $L^{2}\left(\mathcal{U}_{n}\right)$ for all $t>0$ and $n \in \mathbb{N}$, standard approximation arguments ensure that \tilde{w} is a weak solution of (4.6). This finishes the proof.

5. QSD: existence, uniqueness and convergence

In this section, we study the existence and uniqueness of QSDs of X_{t}, as well as the exponential convergence of the process X_{t} conditioned on the event $\left[t<S_{\Gamma}\right]$ to QSDs. In Subsection 5.1, we show the existence of QSDs of X_{t}. In Subsection 5.2, we study the sharp exponential convergence of X_{t} with compactly supported initial distributions. In Subsection 5.3 , we investigate the uniqueness of QSDs of X_{t} and the exponential convergence of X_{t} with arbitrary initial distribution. The proofs of Theorems A and B are outlined in Subsection 5.4.
5.1. Existence. We construct QSDs for X_{t}. Recall that λ_{1} and \tilde{v}_{1} are given in Theorem 3.1.

Theorem 5.1. Assume (H1)-(H3). Then, the following statements hold.
(1) $\lambda_{1}>0$ and $\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta U} \mathrm{~d} x<\infty$ for any $\beta>0$. Hence, $\mathrm{d} \nu_{1}:=\frac{\tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U}}{\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x} \mathrm{~d} x \in \mathcal{P}(\mathcal{U})$ and satisfies $\int_{\mathcal{U}} e^{\beta U} \mathrm{~d} \nu_{1}<\infty$ for any $\beta \in\left[0, \beta_{0}\right)$.
(2) For each $f \in C_{b}(\mathcal{U})$,

$$
\mathbb{E}^{\nu_{1}}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}, \quad \forall t \geq 0
$$

(3) ν_{1} is a $Q S D$ of X_{t} with extinction rate λ_{1}.

We need the following lemma. Recall that the weight function α is defined in (3.1).
Lemma 5.1. Assume (H1)-(H3). Then, $\tilde{v} \in L^{2}(\mathcal{U}, \alpha \mathrm{~d} x ; \mathbb{C})$ implies $\int_{\mathcal{U}}|\tilde{v}| e^{-\frac{Q}{2}-\beta U} \mathrm{~d} x<\infty$ for any $\beta>0$.

Proof. Let $\beta>0$. As $\int_{\mathcal{U}}|\tilde{v}| e^{-\frac{Q}{2}-\beta U} \mathrm{~d} x \leq\left(\int_{\mathcal{U}} \alpha|\tilde{v}|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\mathcal{U}} \frac{1}{\alpha} e^{-Q-2 \beta U} \mathrm{~d} x\right)^{\frac{1}{2}}$, it suffices to verify

$$
\begin{equation*}
\int_{\mathcal{U}} \frac{1}{\alpha} e^{-Q-2 \beta U} \mathrm{~d} x<\infty \tag{5.1}
\end{equation*}
$$

Let $\tilde{\alpha}(t):=\max \left\{\frac{1}{t^{2}}, 1\right\}$ for $t>0$. According to the definition of α given in (3.1) and the fact that $\inf _{\mathcal{U}} \alpha>0$, there exists $C_{1}>0$ such that $\alpha(x) \geq C_{1} \sum_{i=1}^{d} \tilde{\alpha}\left(x_{i}\right)$ for $x \in \mathcal{U}$. Since $U(x)=V\left(\xi^{-1}(x)\right) \geq$
$\sum_{i=1}^{d} \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)$ for $x \in \mathcal{U}$ due to (H3)(2) and $e^{-Q}=\frac{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}(1)\right)\right]^{\frac{1}{2}}}{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}}$, we derive

$$
\int_{\mathcal{U}} \frac{1}{\alpha} e^{-Q-2 \beta U} \mathrm{~d} x \leq \frac{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}(1)\right)\right]^{\frac{1}{2}}}{C_{1}} \int_{\mathcal{U}} \frac{\prod_{i=1}^{d} \exp \left\{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right\}}{\left(\sum_{i=1}^{d} \tilde{\alpha}\left(x_{i}\right)\right) \times\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x
$$

For each $k \in\{1, \ldots, d\}$, let Σ_{k} be the collection of all subsets of $\{1, \ldots, d\}$ with k elements, and set

$$
A_{k}:=\sup _{\sigma \in \Sigma_{k}} \int_{\left\{x_{\sigma}=\left(x_{i}\right)_{i \in \sigma}: x_{i}>0, \forall i \in \sigma\right\}} \frac{\prod_{i \in \sigma} \exp \left\{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right\}}{\left(\sum_{i \in \sigma} \tilde{\alpha}\left(x_{i}\right)\right) \times\left[\prod_{i \in \sigma} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{\sigma} .
$$

Clearly, (5.1) holds if $A_{d}<\infty$. We show this by induction.
First, we show $A_{1}<\infty$. Following the arguments leading to (A.2), we can find $C_{2}>0$ such that $a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right) \geq C_{2}^{2} x_{i}^{2}$ for $x_{i} \in[0,1]$ and $i \in\{1, \ldots, d\}$. It follows that for each $i \in\{1, \ldots, d\}$,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}{\tilde{\alpha}\left(x_{i}\right)\left[a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{i} & \leq \frac{1}{C_{2}} \int_{0}^{1} \frac{e^{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}{\tilde{\alpha}\left(x_{i}\right) x_{i}} \mathrm{~d} x_{i}+\int_{1}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}{\tilde{\alpha}\left(x_{i}\right)\left[a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{i} \\
& \leq \frac{1}{C_{2}} \int_{0}^{1} x_{i} e^{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)} \mathrm{d} x_{i}+\int_{1}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}{\left[a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{i} \\
& \leq \frac{1}{2 C_{2}}+\int_{\xi_{i}^{-1}(1)}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(z_{i}\right)}}{a_{i}\left(z_{i}\right)} \mathrm{d} z_{i}
\end{aligned}
$$

where we used the definition of $\tilde{\alpha}$ in the second inequality, and the non-negativity of \tilde{V} a simple change of variables in the third inequality. Since $\int_{\xi_{i}^{-1}(1)}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(z_{i}\right)}}{a_{i}\left(z_{i}\right)} \mathrm{d} z_{i}<\infty$ by $(\mathbf{H} 3)(2)$, we find $A_{1}<\infty$.

Suppose $A_{k}<\infty$ for some $k \in\{1, \ldots, d-1\}$, we show $A_{k+1}<\infty$. We only prove

$$
A_{k+1}^{1}:=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i=1}^{k+1} \exp \left\{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right\}}{\left(\sum_{i=1}^{k+1} \tilde{\alpha}\left(x_{i}\right)\right) \times\left[\prod_{i=1}^{k+1} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{k+1}<\infty
$$

integrals corresponding to other $\sigma \in \Sigma_{k+1}$ can be treated in exactly the same way. Note that

$$
\begin{aligned}
B_{0}:= & \int_{0}^{1} \cdots \int_{0}^{1} \frac{\prod_{i=1}^{k+1} \exp \left\{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right\}}{\left(\sum_{i=1}^{k+1} \tilde{\alpha}\left(x_{i}\right)\right) \times\left[\prod_{i=1}^{k+1} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{k+1} \\
& \leq \frac{1}{C_{2}^{k+1}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{1}{\left(\sum_{i=1}^{k+1} \frac{1}{x_{i}^{2}}\right) \times \prod_{i=1}^{k+1} x_{i}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{k+1} \\
& \leq \frac{1}{(k+1) C_{2}^{k+1}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{1}{\left(\prod_{i=1}^{k+1} x_{i}\right)^{1-\frac{2}{k+1}}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{k+1}<\infty .
\end{aligned}
$$

For $j \in\{1, \ldots, k+1\}$, we see that

$$
\begin{aligned}
B_{j}:= & \int_{0}^{\infty} \cdots \int_{1}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i=1}^{k+1} \exp \left\{-2 \beta \tilde{V}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right\}}{\left(\sum_{i=1}^{k+1} \tilde{\alpha}\left(x_{i}\right)\right) \times\left[\prod_{i=1}^{k+1} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{j} \cdots \mathrm{~d} x_{k+1} \\
& \leq A_{k} \int_{1}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(\xi_{j}^{-1}\left(x_{j}\right)\right)}}{\left[a_{j}\left(\xi_{j}^{-1}\left(x_{j}\right)\right)\right]^{\frac{1}{2}}} \mathrm{~d} x_{j}=A_{k} \int_{\xi_{j}^{-1}(1)}^{\infty} \frac{e^{-2 \beta \tilde{V}\left(z_{j}\right)}}{a_{j}\left(z_{j}\right)} \mathrm{d} z_{j}<\infty
\end{aligned}
$$

where we used (H3)(2) in the last inequality. It follows that $A_{k+1}^{1}=\sum_{j=0}^{k+1} B_{j}<\infty$. This completes the proof.

Proof of Theorem 5.1. (1) Since $\tilde{v}_{1} \in \mathcal{H}^{1}(\mathcal{U}) \subset L^{2}(\mathcal{U}, \alpha \mathrm{~d} x)$, Lemma 5.1 yields $\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta U} \mathrm{~d} x<\infty$ for any $\beta>0$.

To see $\lambda_{1}>0$, we fix $f \in C_{0}^{\infty}(\mathcal{U})$ and set $\tilde{f}:=f e^{-\frac{Q}{2}-\beta_{0} U}$. Clearly, $\tilde{f} \in L^{2}(\mathcal{U})$. Theorem 4.1 gives

$$
e^{\frac{-Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=T_{t}^{*} \tilde{f}(x), \quad \forall(x, t) \in \mathcal{U} \times[0, \infty)
$$

Set $v_{1}:=C \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U}$, where $C:=\left(\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x\right)^{-1}$. Obviously,

$$
\int_{\mathcal{U}} v_{1} e^{\beta U} \mathrm{~d} x=C \int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\left(\beta_{0}-\beta\right) U} \mathrm{~d} x<\infty, \quad \forall \beta \in\left[0, \beta_{0}\right)
$$

Moreover, we calculate

$$
\int_{\mathcal{U}} v_{1} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} x=C\left\langle\tilde{v}_{1}, T_{t}^{*} \tilde{f}\right\rangle_{L^{2}}=C\left\langle T_{t} \tilde{v}_{1}, \tilde{f}\right\rangle_{L^{2}}, \quad \forall t \geq 0
$$

which together with $T_{t} \tilde{v}_{1}=e^{-\lambda_{1} t} \tilde{v}_{1}$ yields

$$
\begin{equation*}
\int_{\mathcal{U}} v_{1} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} x=C e^{-\lambda_{1} t} \int_{\mathcal{U}} \tilde{v}_{1} \tilde{f} \mathrm{~d} x=e^{-\lambda_{1} t} \int_{\mathcal{U}} v_{1} f \mathrm{~d} x, \quad \forall t \geq 0 \tag{5.2}
\end{equation*}
$$

For each $x \in \mathcal{U}$, the fact $\mathbb{P}^{x}\left[S_{\Gamma}<\infty\right]=1$ implies $\lim _{t \rightarrow \infty} \mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=0$. This together with the fact $\sup _{x \in \mathcal{U}}\left|\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]\right| \leq\|f\|_{\infty}$ for all $t \geq 0$ and the dominated convergence theorem implies $\lim _{t \rightarrow \infty} \int_{\mathcal{U}} v_{1} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} x=0$. From which, we conclude $\lambda_{1}>0$, otherwise a contradiction can be easily derived from (5.2).
(2) Fix $f \in C_{b}(\mathcal{U})$ and take a sequence of functions $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset C_{0}^{\infty}(\mathcal{U})$ that locally uniformly converges to f as $n \rightarrow \infty$ and satisfies $\left\|f_{n}\right\|_{\infty} \leq\|f\|_{\infty}$ for all $n \in \mathbb{N}$. It follows from (5.2) that for each $t \geq 0$ and $n \in \mathbb{N}, \int_{\mathcal{U}} \mathbb{E}^{\bullet}\left[f_{n}\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu_{1}=e^{-\lambda_{1} t} \int_{\mathcal{U}} f_{n} \mathrm{~d} \nu_{1}$, where $\mathrm{d} \nu_{1}:=v_{1} \mathrm{~d} x$. Letting $n \rightarrow \infty$, we conclude the result from the dominated convergence theorem.
(3) Applying (2) with $f=\mathbb{1}_{\mathcal{U}}$, we find $\mathbb{P}^{\nu_{1}}\left[t<S_{\Gamma}\right]=\mathbb{E}^{\nu_{1}}\left[\mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=e^{-\lambda_{1} t}$ for all $t \geq 0$. Applying (2) again, we conclude $\frac{\mathbb{E}^{\nu_{1}}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]}{\mathbb{P}^{\nu_{1}}\left[t<S_{\Gamma}\right]}=\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}$ for all $f \in C_{b}(\mathcal{U})$. That is, ν_{1} is a QSD of X_{t} and λ_{1} is the associated extinction rate.
5.2. Sharp exponential convergence. We study the long-time dynamics of X_{t} before reaching the boundary Γ. Ahead of stating the result, we recall and introduce some terminologies and notations.

Recall that the spectra of $-\mathcal{L}_{\beta_{0}}^{*}$ and $-\mathcal{L}_{\beta_{0}}$ coincide, are discrete and contained in $\{\lambda \in \mathbb{C}: \Re \lambda>$ 0 and $\arg \lambda \leq \theta\}$ for some $\theta \in\left(0, \frac{\pi}{2}\right)$. The number λ_{1} is the principal eigenvalue of both $-\mathcal{L}_{\beta_{0}}^{*}$ and
$-\mathcal{L}_{\beta_{0}}$. Let \tilde{v}_{1}^{*} be as in Lemma 3.5 (4) and suppose it satisfies the normalization

$$
\begin{equation*}
\left\langle\tilde{v}_{1}, \tilde{v}_{1}^{*}\right\rangle_{L^{2}}=\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x \tag{5.3}
\end{equation*}
$$

where \tilde{v}_{1} is given in Theorem 3.1. The last integral converges thanks to Lemma 5.1.
Set $\lambda_{2}:=\min \left\{\Re \lambda: \lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right)\right.$ and $\left.\Re \lambda>\lambda_{1}\right\}$. Then, $\lambda_{2}>\lambda_{1}$ and $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}$ consists of finitely many elements. For $k=1,2$, let \mathcal{P}_{k}^{*} and \mathcal{P}_{k} be respectively the spectral projections of $-\mathcal{L}_{\beta_{0}}^{*}$ and $-\mathcal{L}_{\beta_{0}}$ corresponding to $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{k}\right\}$. Clearly, \mathcal{P}_{1}^{*} and \mathcal{P}_{1} are adjoint to each other and $\operatorname{ran} \mathcal{P}_{1}$ and $\operatorname{ran} \mathcal{P}_{1}^{*}$ of $-\mathcal{L}_{\beta_{0}}$ and $-\mathcal{L}_{\beta_{0}}^{*}$ corresponding to λ_{1} are respectively spanned over \mathbb{R} by \tilde{v}_{1} and \tilde{v}_{1}^{*}. Since the coefficients of $-\mathcal{L}_{\beta_{0}}^{*}$ and $-\mathcal{L}_{\beta_{0}}$ are real-valued resulting in the symmetry of the set $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}$ with respect to the real axis, \mathcal{P}_{2}^{*} and \mathcal{P}_{2} are also adjoint to each other.

Suppose the set $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}$ consists of N_{*} elements and is enumerated as

$$
\lambda_{2, i}, \quad i \in\left\{0, \ldots, N_{*}-1\right\} .
$$

Denote by $\mathcal{P}_{2, i}^{*}$ and $\mathcal{P}_{2, i}$ the spectral projections of $-\mathcal{L}_{\beta_{0}}^{*}$ and $-\mathcal{L}_{\beta_{0}}$ corresponding to $\lambda_{2, i}$ and $\overline{\lambda_{2, i}}$, respectively. Note that $\mathcal{P}_{2, i}^{*}$ and $\mathcal{P}_{2, i}$ are adjoint to each other. Obviously, $\mathcal{P}_{2}^{*}=\sum_{i=0}^{N_{*}-1} \mathcal{P}_{2, i}^{*}$ and $\mathcal{P}_{2}=\sum_{i=0}^{N_{*}-1} \mathcal{P}_{2, i}$.

For $i \in\left\{0, \ldots, N_{*}-1\right\}$, we let

- N_{i} be the order of the pole $\lambda_{2, i}$ of the resolvent of $-\mathcal{L}_{\beta_{0}}^{*}$,
- $d_{i}=\operatorname{dim}\left(\operatorname{ran} \mathcal{P}_{2, i}^{*}\right)$,
- $\left\{\tilde{v}_{i, j}^{(*, 2)}: j \in\left\{1, \ldots, d_{i}\right\}\right\}$ and $\left\{\tilde{v}_{i, j}^{(2)}: j \in\left\{1, \ldots, d_{i}\right\}\right\}$ be generalized eigenfunctions of $-\mathcal{L}_{\beta_{0}}^{*}$ and $-\mathcal{L}_{\beta_{0}}$ that form bases of $\operatorname{ran} \mathcal{P}_{2, i}^{*}$ and $\operatorname{ran} \mathcal{P}_{2, i}$, respectively, and satisfy the normalization

$$
\begin{equation*}
\left\langle\tilde{v}_{i, j}^{(2)}, \tilde{v}_{i, k}^{(*, 2)}\right\rangle_{L^{2}}=\delta_{j k}, \quad \forall j, k \in\left\{1, \ldots, d_{i}\right\} . \tag{5.4}
\end{equation*}
$$

Recall that ν_{1} is the QSD of X_{t} obtained in Theorem 5.1, and $\left\{T_{t}\right\}_{t \geq 0}$ and $\left\{T_{t}^{*}\right\}_{t \geq 0}$ are positive and analytic semigroups of contractions on $L^{2}(\mathcal{U} ; \mathbb{C})$ generated by $\mathcal{L}_{\beta_{0}}$ and $\mathcal{L}_{\beta_{0}}^{*}$, respectively.

The main result in this subsection is stated in the next theorem.
Theorem 5.2. Assume (H1)-(H3). For each $\nu \in \mathcal{P}(\mathcal{U})$ with compact support in \mathcal{U}, there holds for each $f \in C_{b}(\mathcal{U})$,

$$
\begin{aligned}
& \mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mid t<S_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \nu_{1} \\
& \quad=\frac{e^{\lambda_{1} t}}{\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*}\left(\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right) \mathrm{d} \nu+o\left(e^{-\left(\lambda_{2}-\lambda_{1}\right) t}\right) \\
& = \\
& \quad \frac{e^{-\left(\lambda_{2}-\lambda_{1}\right) t}}{\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu} \times \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \sum_{j=0}^{N_{*}-1} e^{-i \Im \lambda_{2, j} t} \sum_{k=0}^{N_{j}-1} \frac{t^{k}}{k!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{k} \mathcal{P}_{2, j}^{*}\left(\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right) \mathrm{d} \nu \\
& \quad+o\left(e^{-\left(\lambda_{2}-\lambda_{1}\right) t}\right) \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

where $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$ and $\tilde{\mathbb{1}}_{\mathcal{U}}:=e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{1}_{\mathcal{U}}$. In particular, the following hold:

- For each $0<\epsilon \ll 1$,

$$
\lim _{t \rightarrow \infty} e^{\left(\lambda_{2}-\lambda_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\nu}\left[X_{t} \in \bullet \mid t<S_{\Gamma}\right]-\nu_{1}\right\|_{T V}=0
$$

- If $f \in C_{b}(\mathcal{U})$ is such that $\mathcal{P}_{2}^{*}\left(\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right) \neq 0$, then for a.e. $x \in \mathcal{U}$, there is a family of sets $\left\{\mathcal{K}_{x, \epsilon}\right\}_{0<\epsilon \ll 1}$ in $(0, \infty)$ satisfying $\mathcal{K}_{x, \epsilon_{2}} \subset \mathcal{K}_{x, \epsilon_{1}}$ for $0<\epsilon_{1}<\epsilon_{2} \ll 1$ and $\lim _{\epsilon \rightarrow 0} \inf _{T>0}\left|\mathcal{K}_{x, \epsilon} \cap(T, T+1)\right|=1$ such that

$$
\lim _{\substack{t \in \mathcal{K}_{x, \epsilon} \\ t \rightarrow \infty}} e^{\left(\lambda_{2}-\lambda_{1}+\epsilon\right) t}\left|\mathbb{E}^{x}\left[f\left(X_{t}\right) \mid t<S_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right|=\infty, \quad \forall 0<\epsilon \ll 1
$$

Remark 5.1. We make some remarks about Theorem 5.2.
(1) Theorem 5.2 appears to be a direct consequence of the decomposition of $\left(T_{t}^{*}\right)_{t \geq 0}$ according to spectral projections ensured by Theorem 3.3 and the stochastic representation given in Theorem 4.1. This is however deceptive due to the following two reasons: (i) the stochastic representation given in Theorem 4.1 is only true for $f \in C_{b}(\mathcal{U})$ such that $e^{-\frac{Q}{2}-\beta_{0} U} f \in L^{2}(\mathcal{U})$; this is indeed a restriction as $e^{-\frac{Q}{2}-\beta_{0} U}$ and $e^{\frac{Q}{2}+\beta_{0} U}$ are respectively unbounded near Γ and ∞; (ii) the semigroup $\left(T_{t}^{*}\right)_{t \geq 0}$ is naturally defined on $L^{2}(\mathcal{U})$, but we need its L^{∞} properties.
(2) For $f \in C_{b}(\mathcal{U})$, the function $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$ does not necessarily belong to $L^{2}(\mathcal{U})$. Neither does $\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}$. Its projections under \mathcal{P}_{2}^{*} and $\mathcal{P}_{2, j}^{*}$ are justified in Lemma 5.2 (2).
(3) Theorem 5.2 actually holds for all initial distributions $\nu \in \mathcal{P}(\mathcal{U})$ satisfying the condition $\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu<\infty$. See Remark 5.2 for more details.

We need two lemmas before proving Theorem 5.2. The first one concerns some important properties of $T_{t}^{*}, \mathcal{P}_{1}^{*}$ and \mathcal{P}_{2}^{*}.

Lemma 5.2. Assume (H1)-(H3). The following hold.
(1) $\mathcal{P}_{1}^{*} \tilde{f}=\tilde{v}_{1}^{*} \int_{\mathcal{U}} \tilde{f} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu_{1}$ for all $\tilde{f} \in L^{2}(\mathcal{U})$.
(2) Both \mathcal{P}_{1}^{*} and \mathcal{P}_{2}^{*} are well-defined on $\left\{f e^{-\frac{Q}{2}-\beta_{0} U}: f \in C_{b}(\mathcal{U})\right\}$ with values in $L^{2}(\mathcal{U})$.
(3) $T_{t}^{*} \mathcal{P}_{2}^{*}=\sum_{j=0}^{N_{*}-1} T_{t}^{*} \mathcal{P}_{2, j}^{*}=e^{-\lambda_{2} t} \sum_{j=0}^{N_{*}-1} e^{-i \Im \lambda_{2, j} t} \sum_{k=0}^{N_{j}-1} \frac{t^{k}}{k!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{k} \mathcal{P}_{2, j}^{*}$ for all $t \geq 0$.
(4) For each $0<\epsilon \ll 1$, there exists $C=C(\epsilon)>0$ such that

$$
\left\|T_{t}^{*}-e^{-\lambda_{1} t} \mathcal{P}_{1}^{*}-T_{t}^{*} \mathcal{P}_{2}^{*}\right\|_{L^{2} \rightarrow L^{2}} \leq C e^{-\left(\lambda_{2}+\epsilon\right) t}, \quad \forall t \geq 0
$$

(5) Let $f \in \operatorname{ran} \mathcal{P}_{2}^{*} \backslash\{0\}$. Then, for a.e. $x \in \mathcal{U}$, there is a family of sets $\left\{\mathcal{K}_{x, \epsilon}\right\}_{0<\epsilon \ll 1}$ in $(0, \infty)$ satisfying $\mathcal{K}_{x, \epsilon_{2}} \subset \mathcal{K}_{x, \epsilon_{1}}$ for $0<\epsilon_{1}<\epsilon_{2} \ll 1$ and $\lim _{\epsilon \rightarrow 0} \inf _{T>0}\left|\mathcal{K}_{x, \epsilon} \cap(T, T+1)\right|=1$ such that

$$
\lim _{\substack{t \in \mathcal{K}_{x, \epsilon} \\ t \rightarrow \infty}} e^{\left(\lambda_{2}+\epsilon\right) t}\left|T_{t}^{*} f\right|(x)=\infty, \quad \forall 0<\epsilon \ll 1
$$

Proof. (1) Note that $\operatorname{ran}\left(\left.\mathcal{P}_{1}^{*}\right|_{L^{2}(\mathcal{U})}\right)$ is spanned over \mathbb{R} by \tilde{v}_{1}^{*}. By the Riesz representation theorem, there exists $h \in L^{2}(\mathcal{U})$ such that

$$
\begin{equation*}
\mathcal{P}_{1}^{*} \tilde{f}=\langle\tilde{f}, h\rangle_{L^{2}} \tilde{v}_{1}^{*}, \quad \forall \tilde{f} \in L^{2}(\mathcal{U}) \tag{5.5}
\end{equation*}
$$

As \mathcal{P}_{1} and \mathcal{P}_{1}^{*} are adjoint to each other it must be true that $\mathcal{P}_{1} \tilde{v}=\left\langle\tilde{v}, \tilde{v}_{1}^{*}\right\rangle_{L^{2}} h$ for all $\tilde{v} \in L^{2}(\mathcal{U})$. Since $\operatorname{ran}\left(\left.\mathcal{P}_{1}\right|_{L^{2}(\mathcal{U})}\right)$ is spanned over \mathbb{R} by \tilde{v}_{1}, there exists $C_{1} \in \mathbb{R}$ such that $h=C_{1} \tilde{v}_{1}$. Thus, the normalization (5.3) gives

$$
\tilde{v}_{1}=\mathcal{P}_{1} \tilde{v}_{1}=C_{1}\left\langle\tilde{v}_{1}, \tilde{v}_{1}^{*}\right\rangle_{L^{2}} \tilde{v}_{1}=C_{1} \tilde{v}_{1} \int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x
$$

leading to $C_{1}=\frac{1}{\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x}$, and hence, $h=\frac{\tilde{v}_{1}}{\int_{\mathcal{U}} \tilde{v}_{1} e^{-\frac{Q}{2}-\beta_{0} U} \mathrm{~d} x}$. Inserting this into (5.5) and noting the definition of ν_{1} give rise to the formula for $\mathcal{P}_{1}^{*} \tilde{f}$.
(2) Thanks to (1), it is obvious that the statement holds for \mathcal{P}_{1}^{*}. Note that ran \mathcal{P}_{2}^{*} and $\operatorname{ran} \mathcal{P}_{2}$ are finite dimensional and Lemma 5.1 ensures $\int_{\mathcal{U}} e^{-\frac{Q}{2}-\beta_{0} U}|v| \mathrm{d} x<\infty$ for each $v \in \operatorname{ran} \mathcal{P}_{2}$. Following the same proof as in (1), we arrive at the conclusion for \mathcal{P}_{2}^{*} as well.
(3) and (4) are special cases of [22, Corollary V. 3.2] due to Theorem 3.3, the fact $\Re \lambda_{2, i}=\lambda_{2}$ for all $i \in\left\{1, \ldots, N_{*}\right\}$, and the simplicity of the principle eigenvalue λ_{1} of $-\mathcal{L}_{\beta_{0}}^{*}$.

It remains to show (5). Fix $f \in \operatorname{ran} \mathcal{P}_{2}^{*} \backslash\{0\}$. We consider three cases.
Case 1. $N_{*}=1$. In this case, $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}=\left\{\lambda_{2}\right\}$. Then, f is a generalized eigenfunction of $-\mathcal{L}_{\beta_{0}}^{*}$ associated with λ_{2}, and thus, there exists $\tilde{N} \in \mathbb{N}$ such that $\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}+1} f=0$ and $\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}} f \neq 0$ in \mathcal{U}. It follows from the strong unique continuation principle for elliptic equations (see e.g. [43]) that $\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}} f \neq 0$ a.e. in \mathcal{U}. Since

$$
T_{t}^{*} f=e^{-\lambda_{2} t} \sum_{k=0}^{\tilde{N}} \frac{t^{k}}{k!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{k} f=e^{-\lambda_{2} t}\left(\frac{t^{\tilde{N}}}{\tilde{N}!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}} f+o\left(t^{\tilde{N}}\right)\right) \quad \text { as } \quad t \rightarrow \infty
$$

we derive $\lim _{t \rightarrow \infty} e^{\left(\lambda_{2}+\epsilon\right) t}\left|T_{t}^{*} f\right|(x)=\infty$ for a.e. $x \in \mathcal{U}$ and each $0<\epsilon \ll 1$. The conclusion follows.
Case 2. $N_{*}=2 K+1$ for some $K \in \mathbb{N}$. Considering the symmetry of the set $\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}$ with respect to the real axis, we can re-enumerate it as $\left\{\lambda_{2, j}\right\}_{j=-K}^{K}$ such that $\lambda_{2,0}=\lambda_{2}$ and $\lambda_{2, j}=\bar{\lambda}_{2,-j}$ for $j \in\{1, \ldots, K\}$.

Note that $f=\sum_{j=-K}^{K} f_{j}$, where f_{j} is the projection of f onto the generalized eigenspace of $\lambda_{2, j}$. Since f is real-valued we must have $f_{j}=\bar{f}_{-j}$ for all $j \in\{1, \ldots, K\}$. We may assume, without loss of generality, that $f_{j} \neq 0$ for all $j \in\{-K, \ldots, K\}$.

Since $\lambda_{2, j}$ is a pole of the resolvent of $-\mathcal{L}_{\beta_{0}}^{*}$ with finite order, there exists $\tilde{N}_{j} \in \mathbb{N}$ such that $\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}+1} f_{j}=0$ and $\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}} f_{j} \neq 0$. Applying the strong unique continuation principle for elliptic equations (see e.g. [43]), we find

$$
\begin{equation*}
\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}} f_{j} \neq 0 \quad \text { a.e. in } \quad \mathcal{U} \tag{5.6}
\end{equation*}
$$

Clearly, $\tilde{N}_{j}=\tilde{N}_{-j}$ for all $j \in\{1, \ldots, K\}$. Straightforward calculations then give for $t \gg 1$,

$$
\begin{align*}
e^{\lambda_{2} t} T_{t}^{*} f & =\sum_{j=-K}^{K} e^{-\Im \lambda_{2, j} t} \sum_{k=0}^{\tilde{N}_{j}} \frac{t^{k}}{k!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{k} f_{j}=\sum_{j=-K}^{K} e^{-i \Im \lambda_{2, j} t}\left[\frac{t^{\tilde{N}_{j}}}{\tilde{N}_{j}!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}} f_{j}+o\left(t^{\tilde{N}_{j}}\right)\right] \\
& =\left[\frac{t^{\tilde{N}_{0}}}{\tilde{N}_{0}!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}_{0}} f_{0}+o\left(t^{\tilde{N}_{0}}\right)\right]+\sum_{j=1}^{K}\left[\frac{2 t^{\tilde{N}_{j}}}{\tilde{N}_{j}!} \Re\left(e^{-i \Im \lambda_{2, j} t}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}} f_{j}\right)+o\left(t^{\tilde{N}_{j}}\right)\right] \tag{5.7}
\end{align*}
$$

Since the asymptotics of $e^{\lambda_{2} t} T_{t}^{*} f$ as $t \rightarrow \infty$ is determined by the terms with the highest degree, we may assume, without loss of generality, that $\tilde{N}_{0}=\tilde{N}_{1}=\cdots=\tilde{N}_{K}$.

Set $F_{0}:=\frac{1}{\tilde{N}_{0}!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2}\right)^{\tilde{N}_{0}} f_{0}$ and $F_{j}:=\frac{2}{\tilde{N}_{j}!}\left(\mathcal{L}_{\beta_{0}}^{*}+\lambda_{2, j}\right)^{\tilde{N}_{j}} f_{j}$ for $j \in\{1, \ldots, K\}$. We rewrite (5.7) as

$$
\begin{equation*}
\frac{e^{\lambda_{2} t} T_{t}^{*} f}{t^{\tilde{N}_{0}}}=F_{0}+\sum_{j=1}^{K} \Re\left(e^{-i \Im \lambda_{2, j} t} F_{j}\right)+o(1)=F_{0}+\sum_{j=1}^{K}\left|F_{j}\right| \sin \left(\Im \lambda_{2, j} t+\varphi_{j}\right)+o(1), \quad \forall t \gg 1 \tag{5.8}
\end{equation*}
$$

where $\varphi_{j} \in[0,2 \pi)$ satisfies $\tan \varphi_{j}=-\frac{\Re F_{j}}{\Im F_{j}}$ for $j \in\{1, \ldots, K\}$.

Figure 4. Idea of the proof of Lemma 5.3.

Note that (5.6) ensures the set $\mathcal{N}:=\left\{x \in \mathcal{U}: \exists j \in\{0,1, \ldots, K\}\right.$ s.t. $\left.\left|F_{j}\right|(x)=0\right\}$ has zero Lebesgue measure. Fix $x \in \mathcal{U} \backslash \mathcal{N}$ and set

$$
F_{x}(t):=F_{0}(x)+\sum_{j=1}^{K}\left|F_{j}\right|(x) \sin \left(\Im \lambda_{2, j} t+\varphi_{j}\right), \quad \forall t \in \mathbb{R}
$$

If $\inf _{t \gg 1}\left|F_{x}(t)\right|>0$, (5.8) implies $\lim _{t \rightarrow \infty} e^{\left(\lambda_{2}+\epsilon\right) t}\left|T_{t}^{*} f\right|(x)=\infty$ for each $0<\epsilon \ll 1$. Otherwise, for each $0<\epsilon \ll 1$, we set $\mathcal{K}_{x, \epsilon}:=\left\{t \in(0, \infty):\left|F_{x}(t)\right| \geq \epsilon\right\}$. Then, (5.8) ensures $\lim _{\substack{t \in \mathcal{K}_{x, \epsilon} \\ t \rightarrow \infty}} e^{\left(\lambda_{2}+\epsilon\right) t}\left|T_{t}^{*} f\right|(x)=\infty$. It remains to show

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \inf _{T>0}\left|\mathcal{K}_{x, \epsilon} \cap(T, T+1)\right|=1 \tag{5.9}
\end{equation*}
$$

If $\left\{\Im \lambda_{2, j}\right\}_{j=1}^{K}$ are rationally dependent, then F_{x} is periodic and (5.9) follows immediately. Otherwise, F_{x} is quasi-periodic, or more generally, almost-periodic. Following the definition of almostperiodic functions (see e.g. [44]), it is not hard to prove (5.9).
Case 3. $N_{*}=2 K$ for some $K \in \mathbb{N}$. The proof is exactly the same as that in Case 2 except that f_{0} does not appear due to the fact $\lambda_{2} \notin\left\{\lambda \in \sigma\left(-\mathcal{L}_{\beta_{0}}^{*}\right): \Re \lambda=\lambda_{2}\right\}$.

This completes the proof.
Lemma 5.3. Assume (H1)-(H3). For each $0<\epsilon \ll 1$, there exists $C=C(\epsilon)>0$ such that for each $f \in C_{b}(\mathcal{U})$ and $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$ and $t \geq 2$,

$$
\begin{gather*}
\left\|T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}\right\|_{\infty} \leq C e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty} \tag{5.10}\\
\left|\mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-e^{\frac{Q}{2}+\beta_{0} U} e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C e^{\frac{Q}{2}+\beta_{0} U} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty} \tag{5.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-e^{\frac{Q}{2}+\beta_{0} U}\left(e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}+T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}\right)\right| \leq C e^{\frac{Q}{2}+\beta_{0} U} e^{-\left(\lambda_{2}+\epsilon\right) t}\|f\|_{\infty} \tag{5.12}
\end{equation*}
$$

The idea of the proof is sketched in Figure 4.
Proof. Fix $0<\epsilon \ll 1$ and $f \in C_{b}(\mathcal{U})$. By the Markov property and homogeneity of X_{t},

$$
\begin{equation*}
\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=\mathbb{E}^{x}\left[g\left(X_{t-1}\right) \mathbb{1}_{\left\{t-1<S_{\Gamma}\right\}}\right], \quad \forall(x, t) \in \mathcal{U} \times[1, \infty) \tag{5.13}
\end{equation*}
$$

where $g:=\mathbb{E}^{\bullet}\left[f\left(X_{1}\right) \mathbb{1}_{\left\{1<S_{\Gamma}\right\}}\right] \in C_{b}(\mathcal{U})$. For convenience, we set $\tilde{g}:=e^{-\frac{Q}{2}-\beta_{0} U} g$ and $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$.
The proof is broken into three steps.

Step 1. We claim that $\tilde{g} \in L^{2}(\mathcal{U})$ and there exists $D_{1}>0$ (independent of f) such that

$$
\begin{equation*}
\|\tilde{g}\|_{L^{2}} \leq D_{1}\|f\|_{\infty} \tag{5.14}
\end{equation*}
$$

Recall that $2_{*}:=\frac{2(d+2)}{d+4} \in(1,2)$ (see Lemma 4.2). Since $e^{-\frac{Q(x)}{2}}=\frac{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}(1)\right)\right]^{\frac{1}{4}}}{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{1}{4}}}$, we find

$$
\int_{\mathcal{U}}|\tilde{f}|^{2_{*}} \mathrm{~d} x=\int_{\mathcal{U}}|f|^{2_{*}} e^{-\frac{2_{*} Q}{2}-2_{*} \beta_{0} U} \mathrm{~d} x \leq\|f\|_{\infty}^{2_{*}}\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}(1)\right)\right]^{\frac{2_{*}}{4}} \int_{\mathcal{U}} \frac{e^{-2_{*} \beta_{0} U}}{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{2_{*}}{4}}} \mathrm{~d} x
$$

Arguments as in the proof of Lemma 5.1 yield $\int_{\mathcal{U}} \frac{e^{-2_{*} \beta_{0} U(x)}}{\left[\prod_{i=1}^{d} a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right]^{\frac{2 \pi}{4}}} \mathrm{~d} x<\infty$. This implies the existence of $C_{1}>0$ (independent of f) such that

$$
\begin{equation*}
\|\tilde{f}\|_{L^{2 *}(\mathcal{U})} \leq C_{1}\|f\|_{\infty} \tag{5.15}
\end{equation*}
$$

Recall $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\tau_{n}\right\}_{n \in \mathbb{N}}$ from Subsection 2.3. For each $n \in \mathbb{N}$, we recall from Subsection 4.1 that $\left(T_{t}^{\left(*, \mathcal{U}_{n}, 2_{*}\right)}\right)_{t \geq 0}$ is the positive and analytic semigroup of contractions on $L^{2_{*}}\left(\mathcal{U}_{n} ; \mathbb{C}\right)$ generated by $\left(\left.\mathcal{L}_{\beta_{0}}^{*, 2_{*}}\right|_{\mathcal{U}_{n}}, W^{2,2_{*}}\left(\overline{\mathcal{U}}_{n} ; \mathbb{C}\right) \cap W_{0}^{1,2_{*}}\left(\mathcal{U}_{n} ; \mathbb{C}\right)\right)$. Since $\tilde{f} \in C\left(\overline{\mathcal{U}}_{n}\right)$, Proposition 4.1 ensures

$$
\begin{equation*}
\left.T_{t}^{\left(*, \mathcal{U}_{n}, 2_{*}\right)} \tilde{f}\right|_{\mathcal{U}_{n}}=e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{n}\right\}}\right], \quad \forall t \in[0, \infty) \tag{5.16}
\end{equation*}
$$

It follows from Lemma 4.2 the existence of $C_{2}>0$ such that $\left\|T_{1}^{\left(*, \mathcal{U}_{n}, 2_{*}\right)} \tilde{f}\right\|_{L^{2}\left(\mathcal{U}_{n}\right)} \leq C_{2}\|\tilde{f}\|_{L^{2 *}\left(\mathcal{U}_{n}\right)}$ for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$, we derive from Lemma 2.1, (5.16) and Fatou's lemma that

$$
\|\tilde{g}\|_{L^{2}}=\left\|e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[f\left(X_{1}\right) \mathbb{1}_{\left\{1<S_{\Gamma}\right\}}\right]\right\|_{L^{2}(\mathcal{U})} \leq C_{2}\|\tilde{f}\|_{L^{2} *(\mathcal{U})} \leq C_{1} C_{2}\|f\|_{\infty}
$$

where we used (5.15) in the last inequality.
Step 2. We claim the existence of $D_{2}>0$ such that

$$
\begin{equation*}
\left\|T_{t}^{*} \tilde{h}\right\|_{\infty} \leq D_{2}\left\|T_{t-1}^{*} \tilde{h}\right\|_{L^{2}}, \quad \forall t \geq 1 \text { and } \tilde{h} \in L^{2}(\mathcal{U}) \tag{5.17}
\end{equation*}
$$

Setting $\tilde{h}:=\tilde{g}-\mathcal{P}_{1}^{*} \tilde{g}-\mathcal{P}_{2}^{*} \tilde{g}$, we find from the above inequality, Lemma 5.2 (4) and the result in Step 1 that for some $D_{3}>0$, there holds

$$
\begin{equation*}
\left\|T_{t-1}^{*} \tilde{g}-T_{t-1}^{*} \mathcal{P}_{1}^{*} \tilde{g}-T_{t-1}^{*} \mathcal{P}_{2}^{*} \tilde{g}\right\|_{\infty} \leq D_{3} e^{-\left(\lambda_{2}+\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \geq 2 \tag{5.18}
\end{equation*}
$$

We first prove (5.17) when $\tilde{h}=e^{-\frac{Q}{2}-\beta_{0} U} h \in L^{2}(\mathcal{U})$ for some $h \in C_{b}(\mathcal{U})$. The general case follows from standard approximation procedures. Note that Theorem 4.1 gives

$$
\begin{equation*}
T_{t}^{*} \tilde{h}(x)=e^{-\frac{Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[h\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right], \quad \forall(x, t) \in \mathcal{U} \times[0, \infty) \tag{5.19}
\end{equation*}
$$

Let $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\tau_{n}\right\}_{n \in \mathbb{N}}$ be as in Subsection 2.3. If we show the existence of $C_{*}>0$ such that

$$
\begin{equation*}
\sup _{\mathcal{U}_{n}} e^{-\frac{Q}{2}-\beta_{0} U} \left\lvert\, \mathbb{E}^{\bullet}\left[h\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{n}\right\}} \left\lvert\, \leq C_{*}\left\|e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[h\left(X_{t-1}\right) \mathbb{1}_{\left\{t-1<\tau_{n}\right\}}\right]\right\|_{L^{2}\left(\mathcal{U}_{n}\right)}\right.\right.\right. \tag{5.20}
\end{equation*}
$$

for all $t \geq 1$ and $n \in \mathbb{N}$, then (5.17) follows immediately from (5.19) and Lemma 2.1.
We show (5.20) by Moser iteration. Recall that for each $n \in \mathbb{N}$ and $N>1,\left(T_{t}^{\left(*, \mathcal{U}_{n}, N\right)}\right)_{t \geq 0}$ is the positive and analytic semigroup on $L^{N}\left(\mathcal{U}_{n} ; \mathbb{C}\right)$ generated by $\left(\mathcal{L}_{\beta_{0}}^{*, N} \mid \mathcal{U}_{n}, W^{2, N}\left(\mathcal{U}_{n} ; \mathbb{C}\right) \cap W_{0}^{1, N}\left(\mathcal{U}_{n} ; \mathbb{C}\right)\right)$. Since here for each n we only consider the action of $\left(T_{t}^{\left(*, \mathcal{U}_{n}, N\right)}\right)_{t \geq 0}$ on functions in $C\left(\overline{\mathcal{U}}_{n} ; \mathbb{C}\right)$, we simply
write $\left(T_{t}^{(n)}\right)_{t \geq 0}$ for all $\left\{\left(T_{t}^{\left(*, \mathcal{U}_{n}, N\right)}\right)_{t \geq 0}, N>1\right\}$ in consideration of Proposition 4.1 (5). Obviously, $\tilde{h}_{n}:=\left.\tilde{h}\right|_{\mathcal{U}_{n}} \in C\left(\overline{\mathcal{U}}_{n}\right)$ for all $n \in \mathbb{N}$. It follows from Proposition 4.1 (4) that

$$
\begin{equation*}
T_{t}^{(n)} \tilde{h}_{n}(x)=e^{-\frac{Q(x)}{2}-\beta_{0} U(x)} \mathbb{E}^{x}\left[h\left(X_{t}\right) \mathbb{1}_{\left\{t<\tau_{n}\right\}}\right], \quad \forall(x, t) \in \mathcal{U}_{n} \times[0, \infty) \text { and } n \in \mathbb{N} \tag{5.21}
\end{equation*}
$$

Set $\tilde{w}_{n}:=T_{\bullet}^{(n)} \tilde{h}_{n}$. We see from Lemma 4.1 that for all $n \in \mathbb{N}$ and $N \geq 2$,

$$
\begin{align*}
& \frac{1}{N} \int_{\mathcal{U}_{n}}\left|\tilde{w}_{n}\right|^{N}\left(\cdot, t_{2}\right) \mathrm{d} x+\frac{N-1}{2} \int_{t_{1}}^{t_{2}} \int_{\mathcal{U}_{n}}\left|\tilde{w}_{n}\right|^{N-2}\left|\nabla \tilde{w}_{n}\right|^{2} \mathrm{~d} x \mathrm{~d} s \tag{5.22}\\
& \quad \leq \frac{1}{N}\left(1+e^{N M\left(t_{2}-t_{1}\right)}\right) \int_{\mathcal{U}_{n}}\left|\tilde{w}\left(\cdot, t_{1}\right)\right|^{N} \mathrm{~d} x, \quad \forall t_{2}>t_{1} \geq 0
\end{align*}
$$

where we recall that $M>0$ is fixed and independent of $n \in \mathbb{N}$ and $N \geq 2$, such that the conclusion in Lemma 3.2 (3) holds. The Sobolev embedding theorem gives

$$
\left\|\tilde{w}_{n}^{\frac{N}{2}}\right\|_{L^{2 \kappa}\left(\mathcal{U}_{n} \times\left[t_{1}, t_{2}\right]\right)} \leq C_{3}\left(\sup _{s \in\left[t_{1}, t_{2}\right]}\left\|\tilde{w}_{n}^{\frac{N}{2}}(\cdot, s)\right\|_{L^{2}\left(\mathcal{U}_{n}\right)}+\left\|\nabla \tilde{w}_{n}^{\frac{N}{2}}\right\|_{L^{2}\left(\mathcal{U}_{n} \times\left[t_{1}, t_{2}\right]\right)}\right)
$$

where $\kappa:=\frac{d+2}{d}$ and $C_{3}>0$ only depends on d. Therefore, (5.22) gives rise to

$$
\begin{equation*}
\left(\int_{t_{1}}^{t_{2}} \int_{\mathcal{U}_{n}}\left|\tilde{w}_{n}\right|^{\kappa N} \mathrm{~d} x \mathrm{~d} s\right)^{\frac{1}{\kappa}} \leq 4 C_{3}^{2}\left(1+e^{N M\left(t_{2}-t_{1}\right)}\right) \int_{\mathcal{U}_{n}}\left|\tilde{w}\left(\cdot, t_{1}\right)\right|^{N} \mathrm{~d} x, \quad \forall t_{2}>t_{1} \geq 0 \tag{5.23}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $N \geq 2$. We then deduce from Lemma 4.1 (with κN instead of N) and (5.23) that

$$
\begin{align*}
\frac{1}{\kappa N} \int_{\mathcal{U}_{n}}\left|\tilde{w}_{n}\right|^{\kappa N}\left(\cdot, t_{3}\right) \mathrm{d} x & \leq \frac{2}{\kappa N\left(t_{2}-t_{1}\right)} \int_{t_{1}}^{t_{2}} \int_{\mathcal{U}_{n}}\left|\tilde{w}_{n}\right|^{\kappa N} \mathrm{~d} x \mathrm{~d} s \tag{5.24}\\
& \leq \frac{2\left(4 C_{3}^{2}\right)^{\kappa}}{\kappa N\left(t_{2}-t_{1}\right)}\left(1+e^{N M\left(t_{2}-t_{1}\right)}\right)^{\kappa}\left\|\tilde{w}\left(\cdot, t_{1}\right)\right\|_{L^{N}\left(\mathcal{U}_{n}\right)}^{\kappa N}
\end{align*}
$$

for all $t_{3}>t_{2}>t_{1} \geq 0, n \in \mathbb{N}$ and $N \geq 2$.
Fix $t \geq 1$. For each $\ell \in \mathbb{N} \cup\{0\}$, we set $N=N_{\ell}:=2 \kappa^{\ell}, t_{1}:=t-2^{-\ell}, t_{2}:=t-\frac{3}{2} 2^{-(\ell+1)}$ and $t_{3}:=t-2^{-(\ell+1)}$ in (5.24) to find

$$
\begin{equation*}
\left\|\tilde{w}_{n}\left(\cdot, t-2^{-(\ell+1)}\right)\right\|_{L^{N_{\ell+1}}\left(\mathcal{U}_{n}\right)} \leq C_{4}^{\frac{1}{N_{\ell+1}}} 2^{\frac{\ell+2}{N_{\ell+1}}} e^{M 2^{-(\ell+1)}}\left\|\tilde{w}_{n}\left(\cdot, t-2^{-\ell}\right)\right\|_{L^{N_{\ell}}\left(\mathcal{U}_{n}\right)} \tag{5.25}
\end{equation*}
$$

for all $\ell \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{N}$, where $C_{4}>0$ is independent of ℓ and n. Set

$$
A_{\ell}:=C_{4}^{\frac{1}{N_{\ell+1}}} 2^{\frac{\ell+2}{N_{\ell+1}}} e^{M 2^{-(\ell+1)}}, \quad \ell \in \mathbb{N} \cup\{0\}
$$

It follows from (5.25) that for each $n \in \mathbb{N}$,

$$
\sup _{x \in \mathcal{U}_{n}}\left|\tilde{w}_{n}(x, t)\right|=\lim _{k \rightarrow \infty}\left\|\tilde{w}_{n}\left(\cdot, 1-2^{-(k+1)}\right)\right\|_{L^{N_{k+1}}} \leq C_{5}\left\|\tilde{w}_{n}(\cdot, t-1)\right\|_{L^{2}\left(\mathcal{U}_{n}\right)}
$$

where $C_{5}:=\prod_{\ell=0}^{\infty} A_{\ell}<\infty$. This, together with (5.21), gives (5.20) and hence, leads to (5.17).

Step 3. We rewrite the terms $T_{t-1}^{*} \tilde{g}, T_{t-1}^{*} \mathcal{P}_{1}^{*} \tilde{g}$ and $T_{t-1}^{*} \mathcal{P}_{2}^{*} \tilde{g}$ in (5.18) and then, finish the proof.
It follows from Theorem 4.1 and (5.13) that

$$
\begin{equation*}
T_{t-1}^{*} \tilde{g}=e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[g\left(X_{t-1}\right) \mathbb{1}_{\left\{t-1<S_{\Gamma}\right\}}\right]=e^{-\frac{Q}{2}-\beta_{0} U^{\bullet}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right], \quad \forall t \geq 1 . \tag{5.26}
\end{equation*}
$$

Noting that Lemma 5.2 (1) and Theorem 5.1 (2) give

$$
\mathcal{P}_{1}^{*} \tilde{g}=\tilde{v}_{1}^{*} \int_{\mathcal{U}} \mathbb{E} \cdot\left[f\left(X_{1}\right) \mathbb{1}_{\left\{1<S_{\Gamma}\right\}}\right] \mathrm{d} \nu_{1}=\tilde{v}_{1}^{*} e^{-\lambda_{1}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1},
$$

we deduce

$$
\begin{equation*}
T_{t-1}^{*} \mathcal{P}_{1}^{*} \tilde{g}=T_{t-1}^{*} \tilde{v}_{1}^{*} e^{-\lambda_{1}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}=e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}, \quad \forall t \geq 1 . \tag{5.27}
\end{equation*}
$$

Finally, we show $T_{t-1}^{*} \mathcal{P}_{2}^{*} \tilde{g}=T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}$ for all $t \geq 1$. Obviously, it suffices to prove

$$
\begin{equation*}
\mathcal{P}_{2}^{*} \tilde{g}=T_{1}^{*} \mathcal{P}_{2}^{*} \tilde{f}, \quad \forall t \geq 1, \tag{5.28}
\end{equation*}
$$

where $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$. Note that the stochastic representation in Theorem 4.1 ensures $\tilde{g}=T_{1}^{*} \tilde{f}$ and hence, (5.28) if $f \in C_{0}^{\infty}(\mathcal{U})$. Thanks to the result in Step 1 and Lemma 5.2 (2), both sides of (5.28) are well defined even when $f \in C_{b}(\mathcal{U})$. Then, (5.28) follows from standard approximation procedures.

Now, we finish the proof. Inserting (5.26), (5.27) and (5.28) into (5.18) yields

$$
\left\|e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}-T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}\right\|_{\infty} \leq D_{3} e^{-\left(\lambda_{2}+\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \geq 2 .
$$

Multiplying the above estimate by $e^{\frac{Q}{2}+\beta_{0} U}$ gives rise to (5.12).
Thanks to Lemma 5.2 (3), we see that $\left\|T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{h}\right\|_{2} \leq e^{-\left(\lambda_{2}-\epsilon\right) t}\|\tilde{h}\|_{2}$ for any $\tilde{h} \in L^{2}(\mathcal{U})$ and $t \geq 0$. Thus, it follows from $T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}=T_{t-1}^{*} \mathcal{P}_{2}^{*} \tilde{g}$, (5.17) and (5.14) that for $t \geq 2$,

$$
\left\|T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}\right\|_{\infty}=\left\|T_{t-1}^{*} \mathcal{P}_{2}^{*} \tilde{g}\right\|_{\infty} \leq D_{2}\left\|T_{t-2}^{*} \mathcal{P}_{2}^{*} \tilde{g}\right\|_{2} \leq D_{2} e^{-\left(\lambda_{2}-\epsilon\right)(t-2)}\|\tilde{g}\|_{2} \leq D_{1} D_{2} e^{-\left(\lambda_{2}-\epsilon\right)(t-2)}\|f\|_{\infty},
$$

giving rise to (5.10). Finally, (5.11) is an immediate result of (5.12) and (5.10).
We are ready to prove Theorem 5.2.
Proof of Theorem 5.2. Let ν and f be as in the statement. For fixed $0<\epsilon \ll 1$, we apply (5.12) in Lemma 5.3 to find $C_{1}>0$ (independent of f) such that

$$
\left|\mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-e^{\frac{Q}{2}+\beta_{0} U}\left(e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}+T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f}\right)\right| \leq C_{1} e^{\frac{Q}{2}+\beta_{0} U} e^{-\left(\lambda_{2}+\epsilon\right) t}\|f\|_{\infty}
$$

for all $t \geq 2$, where $\tilde{f}:=e^{-\frac{Q}{2}-\beta_{0} U} f$.
Since ν is compactly supported in \mathcal{U}, integrating the above inequality on \mathcal{U} with respect to ν yields

$$
\begin{aligned}
& \left|\int_{\mathcal{U}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu-e^{-\lambda_{1} t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}-\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f} \mathrm{~d} \nu\right| \\
& \quad \leq C_{1} e^{-\left(\lambda_{2}+\epsilon\right) t}\|f\|_{\infty} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu, \quad \forall t \geq 2 .
\end{aligned}
$$

In particular, setting $f=\mathbb{1}_{\mathcal{U}}$ and $\tilde{\mathbb{1}}_{\mathcal{U}}:=e^{-\frac{Q}{2}-\beta_{0} U} \mathbb{1}_{\mathcal{U}}$ yields

$$
\begin{aligned}
& \left|\int_{\mathcal{U}} \mathbb{P}^{x}\left[t<S_{\Gamma}\right] \mathrm{d} \nu-e^{-\lambda_{1} t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu-\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{\mathbb{I}}_{\mathcal{U}} \mathrm{d} \nu\right| \\
& \quad \leq C_{1} e^{-\left(\lambda_{2}+\epsilon\right) t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu, \quad \forall t \geq 2 .
\end{aligned}
$$

Since ν is compactly supported in \mathcal{U}, we find from (5.10) in Lemma 5.3 that

$$
\lim _{t \rightarrow \infty} e^{\left(\lambda_{1}+\epsilon\right) t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f} \mathrm{~d} \nu=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} e^{\left(\lambda_{1}+\epsilon\right) t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{\mathbb{1}}_{\mathcal{U}} \mathrm{d} \nu=0
$$

It follows that as $t \rightarrow \infty$,

$$
\begin{align*}
& \frac{\int_{\mathcal{U}} \mathbb{E} \bullet\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu}{\int_{\mathcal{U}} \mathbb{P} \bullet\left[t<S_{\Gamma}\right] \mathrm{d} \nu} \\
& \quad=\frac{e^{-\lambda_{1} t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}+\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f} \mathrm{~d} \nu+o\left(e^{-\lambda_{2} t}\right)}{e^{-\lambda_{1} t} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu+\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{\mathbb{1}}_{\mathcal{U}} \mathrm{d} \nu+o\left(e^{-\lambda_{2} t}\right)} \tag{5.29}\\
& \quad=\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}+\frac{e^{\lambda_{1} t}}{\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu} \int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} T_{t}^{*} \mathcal{P}_{2}^{*}\left(\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right) \mathrm{d} \nu+o\left(e^{-\left(\lambda_{2}-\lambda_{1}\right) t}\right),
\end{align*}
$$

which together with Lemma 5.2 (3) leads to the result.
Thanks to (5.10) in Lemma 5.3, we derive

$$
\left\|T_{t}^{*} \mathcal{P}_{2}^{*}\left(\tilde{f}-\tilde{\mathbb{1}}_{\mathcal{U}} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right)\right\|_{\infty} \leq C_{2} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \geq 2
$$

which together with (5.29) and the fact ν is compactly supported yields

$$
\left|\mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mid t<S_{\Gamma}\right] \mathrm{d} \nu-\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{3} e^{-\left(\lambda_{2}-\lambda_{1}-\epsilon\right) t}\|f\|_{\infty}
$$

The first statement in the "In particular" part follows readily from the arbitrariness of $f \in C_{b}(\mathcal{U})$. Due to Lemma 5.2 (5), it is not hard to deduce the second one.
Remark 5.2. Recall from Lemma 3.5 (4) that \tilde{v}_{1}^{*} is positive a.e. in \mathcal{U} and the eigenfunction of $-\mathcal{L}_{\beta_{0}}^{*}$ associated with λ_{1}. Then, the result in Step 2 in the proof of Lemma 5.3 implies $\tilde{v}_{1}^{*} \in L^{\infty}(\mathcal{U})$. Similarly, any other eigenfunctions of $-\mathcal{L}_{\beta_{0}}^{*}$ belong to $L^{\infty}(\mathcal{U} ; \mathbb{C})$ and hence, $T_{t}^{*} \mathcal{P}_{2}^{*} \tilde{f} \in L^{\infty}(\mathcal{U} ; \mathbb{C})$ where \tilde{f} is as in the proof of Theorem 5.2. Consequently, it is not hard to check the proof of Theorem 5.2 to see that the conclusions apply to all initial distributions $\nu \in \mathcal{P}(\mathcal{U})$ satisfying $\int_{\mathcal{U}} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu<\infty$.
5.3. Uniqueness and exponential convergence. In this subsection, we study the uniqueness of QSDs of X_{t} as well as the conditioned dynamics of X_{t} for any initial distribution. The result is stated as follows. Recall that ν_{1} is the QSD of X_{t} obtained in Theorem 5.1.

Theorem 5.3. Assume (H1)-(H4). Then, X_{t} admits a unique $Q S D$, and for each $\nu \in \mathcal{P}(\mathcal{U})$ and $0<\epsilon \ll 1$, there holds

$$
\lim _{t \rightarrow \infty} e^{\left(\lambda_{2}-\lambda_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\nu}\left[X_{t} \in \bullet \mid t<S_{\Gamma}\right]-\nu_{1}\right\|_{T V}=0
$$

We need the following result asserting that X_{t} comes down from infinity under (H1)-(H4).
Lemma 5.4. Assume (H1)-(H4). For each $\lambda>0$, there are $R=R(\lambda)>0$ and $C_{1}=C_{1}(\lambda)>0$ such that $\mathbb{E}^{x}\left[e^{\lambda S_{R}}\right] \leq C_{1}$ for all $x \in \mathcal{U} \backslash B_{R}^{+}$, where $S_{R}:=\inf \left\{t \geq 0: X_{t} \notin \mathcal{U} \backslash B_{R}^{+}\right\}$.
Proof. Recall from (2.5) that $U=V \circ \xi^{-1}$. Set $w:=\exp \left\{-\frac{\epsilon}{U^{\gamma}}\right\}$, where $\gamma>0$ is assumed to exist in (H4) and $\epsilon>0$ is a parameter to be chosen. According to the assumptions on V, we can modify V on a bounded domain to make sure $\inf _{\mathcal{U}} V>0$, while preserving the other properties. We thus assume without loss of generality that $\inf _{\mathcal{U}} V>0$. This together with $\lim _{|z| \rightarrow \infty} V(z)=\infty$ implies

$$
\begin{equation*}
0<\inf _{\mathcal{U}} w \leq \sup _{\mathcal{U}} w \leq 1 \tag{5.30}
\end{equation*}
$$

Let C, R_{*} and γ be as in (H4). Recall $\mathcal{L}^{X}=\frac{1}{2} \Delta+\left(p_{i}-q_{i}\right) \partial_{i}$. Straightforward calculations give $\mathcal{L}^{X} U=\left(\mathcal{L}^{Z} V\right) \circ \xi^{-1} \leq-C U^{1+\gamma}$ in $\mathcal{U} \backslash \xi\left(B_{R_{*}}^{+}\right)$. It follows that

$$
\begin{aligned}
\mathcal{L}^{X} w+\lambda w & =\frac{\epsilon \gamma w \mathcal{L}^{X} U}{U^{\gamma+1}}+\frac{1}{2}\left(a_{i}\left|\partial_{z_{i}} V\right|^{2}\right) \circ \xi^{-1}\left[-\frac{\epsilon \gamma(\gamma+1)}{U^{\gamma+2}}+\frac{\epsilon^{2} \gamma^{2}}{U^{2 \gamma+2}}\right] w+\lambda w \\
& \leq(-C \epsilon \gamma+\lambda) w+\frac{1}{2}\left(a_{i}\left|\partial_{z_{i}} V\right|^{2}\right) \circ \xi^{-1}\left[-\frac{\epsilon \gamma(\gamma+1)}{U^{\gamma+2}}+\frac{\epsilon^{2} \gamma^{2}}{U^{2 \gamma+2}}\right] w \text { in } \mathcal{U} \backslash \xi\left(B_{R_{*}}^{+}\right),
\end{aligned}
$$

where we used (H4) in the inequality.
Set $\epsilon:=\frac{3 \lambda}{2 C \gamma}$. As $\lim _{|z| \rightarrow \infty} a_{i}\left|\partial_{z_{i}} V\right|^{2}\left[-\frac{\epsilon \gamma(\gamma+1)}{V^{\gamma+2}}+\frac{\epsilon^{2} \gamma^{2}}{V^{2 \gamma+2}}\right]=0($ by $(\mathbf{H} 4)$), there is $R>0$ such that

$$
\begin{equation*}
\mathcal{L}^{X} w+\lambda w \leq-\frac{\lambda}{3} w \quad \text { in } \quad \mathcal{U} \backslash B_{R}^{+} \tag{5.31}
\end{equation*}
$$

We recall from Remark 2.2 that X_{t} satisfies the SDE (2.3) before hitting Γ. An application of Itô's formula gives

$$
\mathrm{d} e^{\lambda t} w\left(X_{t}\right)=\left(\mathcal{L}^{X} w+\lambda w\right)\left(X_{t}\right) e^{\lambda t} \mathrm{~d} t+\partial_{i} w\left(X_{t}\right) e^{\lambda t} \mathrm{~d} W_{t}^{i} \quad \text { in } \quad \mathcal{U}
$$

It follows from (5.31) that for each $(x, t) \in\left(\mathcal{U} \backslash B_{R}^{+}\right) \times[0, \infty)$,

$$
\mathbb{E}^{x}\left[e^{\lambda\left(t \wedge S_{R}\right)} w\left(X_{t \wedge S_{R}}\right)\right]=w(x)+\mathbb{E}^{x}\left[\int_{0}^{t \wedge S_{R}}\left(\mathcal{L}^{X} w+\lambda w\right)\left(X_{s}\right) e^{\lambda s} \mathrm{~d} s\right] \leq w(x)
$$

where S_{R} is as in the statement of the lemma. Thanks to (5.30), we pass to the limit $t \rightarrow \infty$ in the above inequality to conclude $\mathbb{E}^{x}\left[e^{\lambda S_{R}}\right] \leq \frac{1}{\inf w}$ for all $x \in \mathcal{U} \backslash B_{R}^{+}$. This completes the proof.

Remark 5.3. Since $Z_{t}=\xi^{-1}\left(X_{t}\right)$ and $\xi^{-1}: \overline{\mathcal{U}} \rightarrow \overline{\mathcal{U}}$ is a homeomorphism, we find from the above lemma that for each $\lambda>0$, there exists $R=R(\lambda)>0$ such that $\sup _{z \in \mathcal{U} \backslash B_{R}^{+}} \mathbb{E}^{z}\left[e^{\lambda T_{R}}\right]<\infty$, where $T_{R}:=\inf \left\{t \geq 0: Z_{t} \notin \mathcal{U} \backslash B_{R}^{+}\right\}$.

We next prove Theorem 5.3.
Proof of Theorem 5.3. Fix $\nu \in \mathcal{P}(\mathcal{U}), f \in C_{b}(\mathcal{U})$ and $0<\epsilon \ll 1$. Set $\lambda:=\lambda_{1}+\lambda_{2}$. By Lemma 5.4, there exist $R_{0}>0$ and $C_{1}>0$ such that

$$
\begin{equation*}
\sup _{(x, t) \in\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \times[0, \infty)} e^{\lambda t} \mathbb{P}^{x}\left[t<S_{R_{0}}\right] \leq \sup _{x \in \mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{x}\left[e^{\lambda S_{R_{0}}}\right] \leq C_{1} \tag{5.32}
\end{equation*}
$$

Clearly, the above inequality holds with $R>R_{0}$ replacing R_{0}. Choosing R_{0} large enough, we may assume without loss of generality that $\nu\left(B_{R_{0}}^{+}\right)>0$. We split

$$
\mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=\int_{B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu+\int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu, \quad \forall t \geq 0
$$

Applying (5.11) in Lemma 5.3, we find the existence of $C_{2}>0$ such that

$$
\begin{equation*}
\left|\mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-e^{\frac{Q}{2}+\beta_{0} U} e^{-\lambda_{1} t} \tilde{v}_{1}^{*} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{2} e^{\frac{Q}{2}+\beta_{0} U} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \geq 2, \tag{5.33}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
\left|\int_{B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu-A_{1} e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{2} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty} \int_{B_{R_{0}}^{+}} e^{\frac{Q}{2}+\beta_{0} U} \mathrm{~d} \nu, \quad \forall t \geq 2 \tag{5.34}
\end{equation*}
$$

where $A_{1}:=\int_{B_{R_{0}}^{+}} e^{\frac{Q}{2}+\beta_{0} U} \tilde{v}_{1}^{*} \mathrm{~d} \nu$. Note that \tilde{v}_{1}^{*} is positive a.e. in \mathcal{U} and $\tilde{v}_{1}^{*} \in L^{\infty}(\mathcal{U})$ (see Remark 5.2). Then, we see from $\nu\left(B_{R_{0}}^{+}\right)>0$ that $0<A_{1}<\infty$.

We claim the existence of a bounded function $A_{2}:[0, \infty) \rightarrow[0, \infty)$ and a $C_{3}>0$ such that

$$
\begin{equation*}
\left|\int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu-A_{2}(t) e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{3} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \gg 1 \tag{5.35}
\end{equation*}
$$

This together with (5.34) leads to the existence of $C_{4}>0$ such that

$$
\left|\mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-\left(A_{1}+A_{2}(t)\right) e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{4} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}, \quad \forall t \gg 1
$$

In particular, setting $f=\mathbb{1}_{\mathcal{U}}$ yields $\left|\mathbb{P}^{\nu}\left[t<S_{\Gamma}\right]-\left(A_{1}+A_{2}(t)\right) e^{-\lambda_{1} t}\right| \leq C_{4} e^{-\left(\lambda_{2}-\epsilon\right) t}$ for all $t \gg 1$ and thus, $\mathbb{P}^{\nu}\left[t<S_{\Gamma}\right] \geq A_{1} e^{-\lambda_{1} t}$ for $t \gg 1$. Consequently, we deduce

$$
\begin{aligned}
\left|\mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mid t<S_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq & \frac{1}{\mathbb{P}^{\nu}\left[t<S_{\Gamma}\right]}\left|\mathbb{E}^{\nu}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]-\left(A_{1}+A_{2}(t)\right) e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \\
& +\frac{\int_{\mathcal{U}}|f| \mathrm{d} \nu_{1}}{\mathbb{P}^{\nu}\left[t<S_{\Gamma}\right]}\left|\left(A_{1}+A_{2}(t)\right) e^{-\lambda_{1} t}-\mathbb{P}^{\nu}\left[t<S_{\Gamma}\right]\right| \\
\leq & \frac{2 C_{4} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}}{A_{1} e^{-\lambda_{1} t}}, \quad \forall t \gg 1
\end{aligned}
$$

Since f is arbitrary in $C_{b}(\mathcal{U})$, it follows that

$$
\left\|\mathbb{P}^{\nu}\left[X_{t} \in \bullet \mid t<S_{\Gamma}\right]-\nu_{1}\right\|_{T V} \leq \frac{2 C_{4}}{A_{1}} e^{-\left(\lambda_{2}-\lambda_{1}-\epsilon\right) t}, \quad \forall t \gg 1
$$

leading to the desired result.
It remains to prove (5.35). To do so, we write for $(x, t) \in\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \times[0, \infty)$,

$$
\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]=\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{R_{0}}\right\}}\right]+\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{S_{R_{0}} \leq t<S_{\Gamma}\right\}}\right]=: E_{1}(x, t)+E_{2}(x, t)
$$

It follows from (5.32) that

$$
\begin{align*}
\int_{\mathcal{U} \backslash B_{R_{0}}^{+}}\left|E_{1}(\cdot, t)\right| \mathrm{d} \nu & \leq\|f\|_{\infty} \sup _{x \in \mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{P}^{x}\left[t<S_{R_{0}}\right] \mathrm{d} \nu \tag{5.36}\\
& \leq\|f\|_{\infty} e^{-\lambda t} \sup _{x \in \mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{x}\left[e^{\lambda S_{R_{0}}}\right] \leq C_{1}\|f\|_{\infty} e^{-\lambda t}, \quad \forall t \geq 0 .
\end{align*}
$$

To treat E_{2}, we set $h(x, t):=\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{t<S_{\Gamma}\right\}}\right]$ for $(x, t) \in \overline{\mathcal{U}} \times[0, \infty)$. Obviously, $\|h\|_{\infty} \leq\|f\|_{\infty}$ and $h(x, t)=0$ for $(x, t) \in \Gamma \times[0, \infty)$. The strong Markov property and homogeneity of X_{t} yield that for each $(x, t) \in\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \times[0, \infty)$,

$$
\begin{aligned}
E_{2}(x, t) & =\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{S_{R_{0}} \leq t<S_{\Gamma}\right\}}\right]=\mathbb{E}^{x}\left[\mathbb{E}^{x}\left[f\left(X_{t}\right) \mathbb{1}_{\left\{S_{R_{0}} \leq t<S_{\Gamma}\right\}} \mid \mathcal{F}_{S_{R_{0}}}\right] \mathbb{1}_{\left\{S_{R_{0}} \leq t\right\}}\right] \\
& =\mathbb{E}^{x}\left[h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right) \mathbb{1}_{\left\{S_{R_{0}} \leq t\right\}}\right] \\
& =\mathbb{E}^{x}\left[h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right) \mathbb{1}_{\left\{S_{R_{0}} \leq t \leq S_{R_{0}}+2\right\}}\right]+\mathbb{E}^{x}\left[h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right) \mathbb{1}_{\left\{t>S_{R_{0}}+2\right\}}\right] \\
& =: E_{21}(x, t)+E_{22}(x, t) .
\end{aligned}
$$

Note that (5.32) ensures

$$
\begin{align*}
\int_{\mathcal{U} \backslash B_{R_{0}}^{+}}\left|E_{21}(\cdot, t)\right| \mathrm{d} \nu & \leq\|h\|_{\infty} \int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{P}^{x}\left[t<S_{R_{0}}+2\right] \mathrm{d} \nu \\
& \leq\|f\|_{\infty} e^{-\lambda t} \int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{x}\left[e^{\lambda\left(S_{R_{0}}+2\right)}\right] \mathrm{d} \nu \leq C_{1}\|f\|_{\infty} e^{2 \lambda-\lambda t}, \quad \forall t \geq 0 . \tag{5.37}
\end{align*}
$$

Fix $0<\epsilon \ll 1$. Setting $\Phi:=\exp \left\{\frac{Q\left(X_{S_{R_{0}}}\right)}{2}+\beta_{0} U\left(X_{S_{R_{0}}}\right)\right\}$, we see from (5.33) that on the event $\left\{t \geq S_{R_{0}}+2\right\}$ there holds

$$
\begin{equation*}
\left|h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right)-\Phi e^{-\lambda_{1}\left(t-S_{R_{0}}\right.} \tilde{v}_{1}^{*}\left(X_{S_{R_{0}}}\right) \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq C_{2} \Phi e^{-\left(\lambda_{2}-\epsilon\right)\left(t-S_{R_{0}}\right)}\|f\|_{\infty} \tag{5.38}
\end{equation*}
$$

Since $S_{R_{0}} \leq S_{\Gamma}$ and $h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right)=0$ if $S_{R_{0}}=S_{\Gamma}$, we deduce

$$
E_{22}(x, t)=\mathbb{E}^{x}\left[h\left(X_{S_{R_{0}}}, t-S_{R_{0}}\right) \mathbb{1}_{\left\{S_{R_{0}}<S_{\Gamma} \wedge(t-2)\right\}}\right], \quad \forall(x, t) \in\left(\mathcal{U} \backslash B_{R_{0}}^{+}\right) \times[0, \infty)
$$

which together with (5.38) yields

$$
\begin{align*}
& \mid \int_{\mathcal{U} \backslash B_{R_{0}}^{+}} E_{22}(\cdot, t) \mathrm{d} \nu-e^{-\lambda_{1} t} \int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[\Phi e^{\left.\lambda_{1} S_{R_{0}} \tilde{v}_{1}^{*}\left(X_{S_{R_{0}}}\right) \mathbb{1}_{\left\{S_{R_{0}}<S_{\Gamma} \wedge(t-2)\right\}}\right] \mathrm{d} \nu \int_{\mathcal{U}} f \mathrm{~d} \nu_{1} \mid}\right. \\
& \quad \leq C_{2} e^{-\left(\lambda_{2}-\epsilon\right) t} \int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[\Phi e^{\left(\lambda_{2}-\epsilon\right) S_{R_{0}}} \mathbb{1}_{\left\{S_{R_{0}}<S_{\Gamma} \wedge(t-2)\right\}}\right] \mathrm{d} \nu\|f\|_{\infty} \tag{5.39}\\
& \quad \leq C_{2} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}\left(\max _{\mathcal{U} \cap \partial B_{R_{0}}^{+}} e^{\frac{Q}{2}+\beta_{0} U}\right)\left(\sup _{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[e^{\left(\lambda_{2}-\epsilon\right) S_{R_{0}}}\right]\right) \leq C_{5} e^{-\left(\lambda_{2}-\epsilon\right) t}\|f\|_{\infty}
\end{align*}
$$

for all $t \geq 0$, where we used (5.32) and the fact $\max _{\mathcal{U} \cap \partial B_{R_{0}}^{+}} e^{\frac{Q}{2}+\beta_{0} U}<\infty$ to conclude the existence of $C_{5}>0$ in the last inequality.

Set

$$
A_{2}(t):=\int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[\Phi e^{\lambda_{1} S_{R_{0}}} \tilde{v}_{1}^{*}\left(X_{S_{R_{0}}}\right) \mathbb{1}_{\left\{S_{R_{0}}<S_{\Gamma} \wedge(t-2)\right\}}\right] \mathrm{d} \nu, \quad \forall t \geq 0
$$

Thanks to (5.32), the boundedness of \tilde{v}_{1}^{*} and the fact $\left|X_{S_{R_{0}}}\right|=R_{0}$ when $S_{R_{0}}<S_{\Gamma}$, it is clear that A_{2} is non-negative and bounded. Since

$$
\int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left.t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu=\int_{\mathcal{U} \backslash B_{R_{0}}^{+}}\left[E_{1}(\cdot, t)+E_{21}(\cdot, t)+E_{22}(\cdot, t)\right] \mathrm{d} \nu, \quad \forall t \geq 0
$$

we deduce from (5.36), (5.37) and (5.39) that

$$
\left|\int_{\mathcal{U} \backslash B_{R_{0}}^{+}} \mathbb{E}^{\bullet}\left[f\left(X_{t}\right) \mathbb{1}_{\left.t<S_{\Gamma}\right\}}\right] \mathrm{d} \nu-A_{2}(t) e^{-\lambda_{1} t} \int_{\mathcal{U}} f \mathrm{~d} \nu_{1}\right| \leq\left[C_{5} e^{-\left(\lambda_{2}-\epsilon\right) t}+C_{1}\left(1+e^{2 \lambda}\right) e^{-\lambda t}\right]\|f\|_{\infty}
$$

for all $t \geq 0$. Since $\lambda=\lambda_{1}+\lambda_{2}$ and $0<\epsilon \ll 1$, (5.35) follows. This completes the proof.
5.4. Proof of Theorem A and Theorem B. Because of the fact $X_{t}=\xi\left(Z_{t}\right)$ and Proposition 2.3, conclusions in Theorem A and Theorem B follow directly from Theorem 5.1, Theorem 5.2 and Theorem 5.3.

6. Applications

In this section, we discuss a series of important applications of Theorem A and Theorem B. We first provide a general result that holds for most ecological models and then show how to apply this result to specific situations, including: stochastic Lotka-Volterra systems of competitive, predator-prey or cooperative type, systems modelled by Holling type functional responses and predator-prey systems modelled by Beddington-DeAngelis functional responses.

Consider the following stochastic system:

$$
\begin{equation*}
\mathrm{d} Z_{t}^{i}=Z_{t}^{i} f_{i}\left(Z_{t}\right) \mathrm{d} t+\sqrt{\gamma_{i} Z_{t}^{i}} \mathrm{~d} W_{t}^{i}, \quad i \in\{1, \ldots, d\} \tag{6.1}
\end{equation*}
$$

where $Z_{t}=\left(Z_{t}^{i}\right) \in \overline{\mathcal{U}},\left\{f_{i}\right\}_{i}$ belong to $C^{1}(\overline{\mathcal{U}}),\left\{\gamma_{i}\right\}_{i}$ are positive constants, and $\left\{W^{i}\right\}_{i}$ are independent standard one-dimensional Wiener processes on some probability space. We make the following assumption.
(A) There exist $m \geq 0,0 \leq n \leq m, C_{1}, C_{2}, C_{3}, C_{4}>0$ and $R>0$ such that

$$
\begin{equation*}
-C_{1}\left(1+\sum_{j=1}^{d} z_{j}^{m}\right) \leq f_{i}(z) \leq C_{2} \mathbb{1}_{[0, R]}\left(z_{i}\right)-C_{3} z_{i}^{m} \mathbb{1}_{(R, \infty)}\left(z_{i}\right)+\delta \sum_{j \neq i} z_{j}^{n}, \quad \forall z \in \overline{\mathcal{U}} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\partial_{z_{i}} f_{i}(z)\right| \leq C_{4}|z|^{m-1}, \quad \forall z \in \mathcal{U} \backslash B_{R}^{+} \tag{6.3}
\end{equation*}
$$

for $i \in\{1, \ldots, d\}$ and $\delta=0$ if $d=1, \delta \geq 0$ if $d \geq 2$ and $n<m$, or $\delta \in\left[0, \frac{C_{3}}{d-1}\right)$ if $d \geq 2$ and $n=m$.

Remark 6.1. Conditions (6.2) and (6.3) say that f_{i} and $\partial_{z_{i}} f_{i}$ are bounded above and below by simple polynomials. Conditions in the case $n<m$ tells us that the intraspecific competition dominates the interactions among species. In the case $n=m$, we can only treat weakly cooperative interactions among species - this is reflected by the smallness of δ. These are natural assumptions that can be applied to many population dynamics models: competitive Lotka-Volterra, weakly cooperative LotkaVolterra, predator-prey Lotka-Volterra as well as more complex systems modelled by Holling typeII/III functional responses. These assumptions also allow us to use a very simple Lyapunov function $V(z)=|z|^{m+1} \quad($ when $|z| \geq 1)$ which satisfies $(\mathbf{H 1})-(\mathbf{H 3})$ and sometimes $(\mathbf{H} 4)$.

Under the assumption (A), the stochastic system (6.1) generates a diffusion process Z_{t} that has Γ as an absorbing set. Furthermore, Z_{t} hits Γ in finite time almost surely.

Theorem 6.1. Assume (A).
(1) Z_{t} admits a $Q S D \mu_{1}$, and there exists $r_{1}>0$ such that

- for any $0<\epsilon \ll 1$ and $\mu \in \mathcal{P}(\mathcal{U})$ with compact support in \mathcal{U} one has

$$
\lim _{t \rightarrow \infty} e^{\left(r_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\mu}\left[Z_{t} \in \bullet \mid t<T_{\Gamma}\right]-\mu_{1}\right\|_{T V}=0
$$

- there exists $f \in C_{b}(\mathcal{U})$ such that for a.e. $x \in \mathcal{U}$, there is a family of sets $\left\{\mathcal{K}_{x, \epsilon}\right\}_{0<\epsilon \ll 1}$ in $(0, \infty)$ satisfying $\mathcal{K}_{x, \epsilon_{2}} \subset \mathcal{K}_{x, \epsilon_{1}}$ for $0<\epsilon_{1}<\epsilon_{2} \ll 1$ and $\lim _{\epsilon \rightarrow 0} \inf _{T>0}\left|\mathcal{K}_{x, \epsilon} \cap(T, T+1)\right|=$ 1 such that

$$
\lim _{\substack{t \in \mathcal{K}_{x, \epsilon} \\ t \rightarrow \infty}} e^{\left(r_{1}+\epsilon\right) t}\left|\mathbb{E}^{x}\left[f\left(X_{t}\right) \mid t<T_{\Gamma}\right]-\int_{\mathcal{U}} f \mathrm{~d} \mu_{1}\right|=\infty, \quad \forall 0<\epsilon \ll 1
$$

(2) If, in addition, (A) holds with $m>0$, then Z_{t} admits a unique $Q S D$, and for any $0<\epsilon \ll 1$ and $\mu \in \mathcal{P}(\mathcal{U})$, there holds

$$
\lim _{t \rightarrow \infty} e^{\left(r_{1}-\epsilon\right) t}\left\|\mathbb{P}^{\mu}\left[Z_{t} \in \bullet \mid t<T_{\Gamma}\right]-\mu_{1}\right\|_{T V}=0
$$

Proof. Let $m, C_{1}, C_{2}, C_{3}, C_{4}, R, \delta$ be as in (A) and $\eta \in C^{\infty}\left([0, \infty)\right.$ be such that $\eta(t)=0$ if $t \in\left[0, \frac{1}{2}\right]$ and $\eta=1$ if $t \geq 1$. Set $V(z):=\eta(|z|)|z|^{m+1}$ for $z \in \mathcal{U}$ which obviously belongs to $C^{2}(\overline{\mathcal{U}})$. Thanks to Theorems A and B, it suffices to verity (H1)-(H3) when $m \geq 0$ and (H4) when $m>0$.

Since $\partial_{i}|z|^{m+1}=(m+1)|z|^{m-1} z_{i}$, we deduce from (A) that for $|z| \geq 1$,

$$
\begin{equation*}
\sum_{i=1}^{d} z_{i} f_{i} \partial_{i} V \leq(m+1)|z|^{m-1}\left[\left(C_{2} R+C_{3} R^{m+1}\right) \sum_{i=1}^{d} z_{i}-C_{3} \sum_{i=1}^{d} z_{i}^{m+2}+\delta \sum_{i=1}^{d} \sum_{j \neq i} z_{i}^{2} z_{j}^{n}\right] \tag{6.4}
\end{equation*}
$$

If $d=1$, it follows from (6.4) and $\delta=0$ that there exists $C_{5}>0$ such that

$$
\begin{equation*}
z_{1} f\left(z_{1}\right) V^{\prime}\left(z_{1}\right) \leq-C_{5} z_{1}^{2 m+1}, \quad z_{1} \gg 1 \tag{6.5}
\end{equation*}
$$

In the following, we focus on $d \geq 2$. In case $m=n=0$, there holds

$$
\begin{equation*}
\sum_{i=1}^{d} z_{i} f_{i} \partial_{i} V \leq\left(C_{2}+C_{3}\right) R \sqrt{d}+\left[-C_{3}+\delta(d-1)\right]|z| \leq-C_{6}|z|, \quad \forall|z| \gg 1 \tag{6.6}
\end{equation*}
$$

for some $C_{6}>0$.
Now, we consider the case when $m>0$. An application of Young's inequality yields

$$
z_{i}^{2} z_{j}^{n} \leq \frac{2 \alpha}{m+2} z_{i}^{m+2}+\frac{m \alpha^{-\frac{2}{m}}}{m+2} z_{j}^{\frac{n(m+2)}{m}},
$$

where $\alpha>0$ is a parameter to be determined. Then, it follows from (6.4) that

$$
\begin{align*}
\sum_{i=1}^{d} z_{i} f_{i} \partial_{i} V \leq & (m+1)\left(C_{2} R+C_{3} R^{m+1}\right)|z|^{m-1} \sum_{i=1}^{d} z_{i}+\frac{\delta m(m+1) \alpha^{-\frac{2}{m}}(d-1)}{m+2}|z|^{m-1} \sum_{i=1}^{d} z_{i}^{\frac{n(m+2)}{m}} \\
& -(m+1)\left(C_{3}-\frac{2 \delta \alpha(d-1)}{m+2}\right)|z|^{m-1} \sum_{i=1}^{d} z_{i}^{m+2}, \quad \forall|z| \geq 1 \tag{6.7}
\end{align*}
$$

We consider two cases.

- If $n<m$, we set $\alpha=\frac{(m+2) C_{3}}{4 \delta(d-1)}$ in (6.7) (so that $C_{3}-\frac{2 \delta \alpha(d-1)}{m+2}=\frac{1}{2} C_{3}>0$) to find the existence of $C_{6}^{\prime}>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{d} z_{i} f_{i} \partial_{i} V \leq-C_{6}^{\prime}|z|^{2 m+1} \quad \text { in } \quad|z| \gg 1 \tag{6.8}
\end{equation*}
$$

- If $n=m$, setting $\alpha=1$ in (6.7) and using the fact $\delta \in\left[0, \frac{C_{3}}{d-1}\right)$, we find (6.8) holds with a possibly larger C_{6}^{\prime}.
Considering (6.5), (6.6) and (6.8), we no longer distinguish whether $d=1$ or not, $m=0$ or not and assume (6.8) always holds.

Now, we verify (H1)-(H3). It is easy to check that (H1) and (H2) hold. As $V \geq C(d) \sum_{i=1}^{d} z_{i}^{m+1}$ in \mathcal{U} for some $C(d)>0$ and $\int_{1}^{\infty} \frac{1}{s} \exp \left\{-\beta s^{m+1}\right\} \mathrm{d} s<\infty$ for any $\beta>0$, (H3) (1)(2) follow from (6.8). Since

$$
\begin{aligned}
\partial_{i}\left(z_{i} f_{i}\right) & =f_{i}(z)+z_{i} \partial_{z_{i}} f_{i}(z) \\
\gamma_{i} z_{i} \partial_{z_{i} z_{i}}^{2} V & =\gamma_{i}(m+1)(m-1)|z|^{m-3} z_{i}^{3}+\gamma_{i}(m+1)|z|^{m-1} z_{i} \\
\gamma_{i} z_{i}\left|\partial_{z_{i}} V\right|^{2} & =\gamma_{i}(m+1)^{2}|z|^{2 m-2} z_{i}^{3}
\end{aligned}
$$

it is straightforward to verify (H3) (3)(4) by applying (6.2), (6.3) and (6.8). Hence, an application of Theorem A gives the conclusions in (1).

If $m>0,(\mathbf{H} 4)$ holds with $\gamma:=\frac{m}{m+1}$. The conclusion in (2) follows from Theorem B.
In the following, we apply Theorem 6.1 to various important ecological models.
Example 6.1 (Lotka-Volterra systems). For each $i \in\{1, \ldots, d\}$ let

$$
f_{i}(z)=r_{i}-\sum_{j=1}^{d} c_{i j} z_{j}, \quad z \in \overline{\mathcal{U}}
$$

where $r_{i} \in \mathbb{R}, c_{i i}>0$ and $c_{i j} \in \mathbb{R}$ for $j \neq i$.
Corollary 6.1. Consider (6.1) with $f_{i}, i \in\{1, \ldots, d\}$ given in Example 6.1. If $d \geq 2$, we further assume

$$
\begin{equation*}
-\min _{i \neq j} c_{i j}<\frac{1}{d-1} \min _{i} c_{i i} \tag{6.9}
\end{equation*}
$$

Then, there exists a unique QSD of (6.1) such that the conclusions of Theorem 6.1 hold.
Proof. It is straightforward to check that the assumption (A) with $m=n=1, C_{3}=\min _{i} c_{i i}$ and $\delta=0$ if $d=1$ or $\delta=\max _{i \neq j}\left\{-c_{i j}, 0\right\}$ if $d \geq 2$ is satisfied. The corollary then follows from Theorem 6.1.

Remark 6.2. If the system is competitive, namely, $c_{i j} \geq 0$ for all $i \neq j$, then (6.9) is trivially satisfied. If the Lotka-Volterra system has either cooperation or predation, the condition (6.9) says that the intraspecific competition terms have to dominate in some sense the cooperative and the predation terms. Note that cooperative systems are known to behave poorly: see [35, Example 2.3] for details as to how a two-species stochastic cooperative system can exhibit either blow-up in finite time or have no stationary distributions.

Example 6.2 (Holling type-II/III functional response). For each $i \in\{1, \ldots, d\}$,

$$
f_{i}(z)=r_{i}-\sum_{j=1}^{d} \frac{c_{i j} z_{j}^{k}}{1+z_{j}^{k}}, \quad z \in \overline{\mathcal{U}}
$$

where $k \in\{1,2\}, r_{i} \in \mathbb{R}, c_{i i}>0$ and $c_{i j} \in \mathbb{R}$ for $j \neq i$. In literature, $k=1$ and $k=2$ correspond to Holling type-II and -III functional responses, respectively.

Corollary 6.2. Consider (6.1) with $f_{i}, i \in\{1, \ldots, d\}$ given in Example 6.2. Assume

$$
c_{i i}>r_{i}, \quad \forall i \in\{1, \ldots, d\} \quad \text { and } \quad-\min _{i \neq j} c_{i j}<\frac{1}{d-1} \min _{i}\left(c_{i i}-r_{i}\right) \text { if } d \geq 2
$$

Then, the conclusions of Theorem 6.1 (1) hold.

Proof. We verify the assumption (A) with $m=n=0$. The desired result then follows from Theorem 6.1. Clearly, f_{i} is lower bounded. Let $0<\gamma \ll 1$. Then, there exists $R>0$ such that $\frac{t^{k}}{1+t^{k}} \in(1-\gamma, 1)$ for $t>R$. We compute

$$
f_{i}=r_{i}-\sum_{j=1}^{d} \frac{c_{i j} z_{j}^{k}}{1+z_{j}^{k}} \leq \begin{cases}r_{i}+(d-1) \times \max _{i \neq j}\left\{-c_{i j}, 0\right\}, & \text { if } z_{i} \in[0, R] \\ r_{i}-(1-\gamma) c_{i i}+(d-1) \times \max _{i \neq j}\left\{-c_{i j}, 0\right\}, & \text { if } z_{i} \in(R, \infty)\end{cases}
$$

Noting that $c_{i i}>r_{i}$ for $d \geq 1$ and $-\min _{i \neq j} c_{i j}<\frac{1}{d-1} \min _{i}\left(c_{i i}-r_{i}\right)$ for $d \geq 2$, we derive $\sup _{z_{i}>R} f_{i}(z)<$ 0 for $0<\gamma \ll 1$ and thus, (6.2). Straightforward calculations give (6.3). This verifies (A).

Remark 6.3. For the stochastic Lotka-Volterra system with Holling type-II/III functional response considered in Example 6.2 or Corollary 6.2, the existence of a unique QSD that attracts all initial distributions supported in \mathcal{U} is not expected. This is essentially due to the weak dissipativity of the system. Indeed, in the case $d=1$, these properties are equivalent to showing that the process comes down from infinity, and therefore, according to [7, Theorem 7.3 and Proposition 7.5], equivalent to Assumption (H5) in [7]. However, it is easy to check that (H5) in [7] is not satisfied for the Holling type-II/III functional responses.

The situation in higher dimensions is worse. Even in the competitive case, the dissipativity of the system is weaker than that of the system with $f_{i}(z)=r_{*}-c_{*} \sum_{j=1}^{d} \frac{z_{j}^{k}}{1+z_{j}^{k}}$ for all $i \in\{1, \ldots, d\}$, where $r_{*}=\min _{i \in\{1, \ldots, d\}} r_{i}$ and $c_{*}=\max _{i, j \in\{1, \ldots, d\}} c_{i j}$. This latter system does not come down from infinity as it is bounded from below by a decoupled system whose individual components do not come down from infinity. In fact, we have

$$
r_{*}-c_{*} \sum_{j=1}^{d} \frac{z_{j}^{k}}{1+z_{j}^{k}} \geq r_{*}-c_{*}(d-1)-c_{*} \frac{z_{i}^{k}}{1+z_{i}^{k}}, \quad \forall i \in\{1, \ldots, d\} \text { and } z \in \overline{\mathcal{U}}
$$

Hence, the stochastic system in Example 6.2 or Corollary 6.2 does not come down from infinity.
We exhibit below a few more types of functional responses that can be treated by our framework.
Example 6.3. Consider the functional response

$$
f_{i}(z)=r_{i}-c_{i i} z_{i}-\sum_{j \neq i} \frac{c_{i j} z_{j}^{k}}{1+z_{j}^{k}}, \quad z \in \overline{\mathcal{U}}
$$

where $k \in\{1,2\}, r_{i} \in \mathbb{R}, c_{i i}>0$ and $c_{i j} \in \mathbb{R}$ for $j \neq i$. This is a combination of the regular intraspecific competition of the form $-c_{i i} z_{i}$ and Holling type functional responses for the interspecific competition/predation.
Corollary 6.3. Consider (6.1) with $f_{i}, i \in\{1, \ldots, d\}$ given in Example 6.3. Then, there exists a unique $Q S D$ of (6.1) such that the conclusions of Theorem 6.1 hold.
Proof. It is straightforward to check that Assumption (A) holds with $m=1$ and $n=0$. Then, the application of Theorem 6.1 yields the conclusion.

Example 6.4. Consider the extensively used Beddington-DeAngelis predator-prey dynamics. For each $i \in\{1, \ldots, d\}$, let

$$
f_{i}(z)=r_{i}-c_{i i} z_{i}-\sum_{j \neq i} \frac{c_{i j} z_{j}}{1+\sum_{l=1}^{d} z_{l}}, \quad z \in \overline{\mathcal{U}}
$$

where $r_{i} \in \mathbb{R}, c_{i i}>0$, and $c_{i j} \in \mathbb{R}$ for $j \neq i$. This system was first proposed in $[2,21]$ in order to better explain certain predator-prey interactions.

Corollary 6.4. Consider (6.1) with $f_{i}, i \in\{1, \ldots, d\}$ given in Example 6.4. Then, there exists a unique $Q S D$ of (6.1) such that the conclusions of Theorem 6.1 hold.

Proof. It is straightforward to check that Assumption (A) holds with $m=1$ and $n=0$. Then, the application of Theorem 6.1 yields the conclusion.

Example 6.5. Let $d=2$. Consider the Crowley-Martin dynamics. Let

$$
\begin{array}{ll}
f_{1}(z)=r_{1}-c_{11} z_{1}-z_{2} \frac{z_{1}}{\beta+\alpha z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{1} z_{2}}, & z \in \overline{\mathcal{U}} \\
f_{2}(z)=-r_{2}-c_{22} z_{2}+z_{1} \frac{z_{1}}{\beta+\alpha z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{1} z_{2}}, & z \in \overline{\mathcal{U}}
\end{array}
$$

where $c_{11}, c_{22}, \beta>0$ and all the other quantities are nonnegative. This system was first proposed in [20] to study dragonflies.

Corollary 6.5. Consider (6.1) in the case $d=2$ with f_{1} and f_{2} given in Example 6.5. Assume $\alpha>\frac{2}{3 \min \left\{2 c_{11}, c_{22}\right\}}$. Then, (6.1) admits a unique QSD such that the conclusions of Theorem 6.1 hold.

Proof. Note that $f_{1}(z) \leq r_{1}-c_{11} z_{1}$ and $f_{2}(z) \leq-r_{2}-c_{22} z_{2}+\frac{z_{1}}{\alpha}$. Following the arguments as in the proof of Theorem 6.1, it is straightforward to see that $V(z):=|z|^{2}$ for $z \in \mathcal{U}$ is a Lyapunov function satisfying (H1)-(H4). From which, the conclusions of Theorem 6.1 hold.

Appendix A. Proof of technical lemmas

We prove technical lemmas in this appendix.
A.1. Proof of Lemma 3.2. We need the following result.

Lemma A.1. Assume (H1). For each $i \in\{1, \ldots, d\}, \lim _{x_{i} \rightarrow 0} x_{i}^{2}\left[q_{i}^{2}\left(x_{i}\right)-q_{i}^{\prime}\left(x_{i}\right)\right]=C_{i}>0$.
Proof. Recall that $q_{i}\left(x_{i}\right)=\frac{a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{4 \sqrt{a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}}$. Then, $q_{i}^{\prime}\left(x_{i}\right)=\frac{1}{4} a_{i}^{\prime \prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)-\frac{\left|a_{i}^{\prime}\right|^{2}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{8 a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}$, resulting in

$$
\begin{equation*}
\left(q_{i}^{2}-q_{i}^{\prime}\right)\left(x_{i}\right)=\frac{3\left|a_{i}^{\prime}\right|^{2}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{16 a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}-\frac{1}{4} a_{i}^{\prime \prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right) \tag{A.1}
\end{equation*}
$$

Since $\xi_{i}^{-1} \in C([0, \infty))$ and $\xi_{i}^{-1}(0)=0$, we see from (H1) that $\lim _{x_{i} \rightarrow 0} a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)=a_{i}^{\prime}(0)>0$ and $\lim _{x_{i} \rightarrow 0} a_{i}^{\prime \prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)=a_{i}^{\prime \prime}(0)$. Hence, $\left(q_{i}^{2}-q_{i}^{\prime}\right)\left(x_{i}\right) \sim \frac{3\left|a_{i}^{\prime}\right|^{2}(0)}{16 a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}-\frac{1}{4} a_{i}^{\prime \prime}(0)$ as $x_{i} \rightarrow 0$. The conclusion follows if there is $C>0$ such that

$$
\begin{equation*}
a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right) \sim C x_{i}^{2} \quad \text { as } \quad x_{i} \rightarrow 0 \tag{A.2}
\end{equation*}
$$

We show that (A.2) holds with $C=\frac{\left|a_{i}^{\prime}(0)\right|^{2}}{4}$. The assumption (H1) and Taylor's expansion give

$$
\begin{equation*}
a_{i}\left(z_{i}\right) \sim a_{i}^{\prime}(0) z_{i}+o\left(z_{i}^{2}\right) \quad \text { as } \quad x_{i} \rightarrow 0 \tag{A.3}
\end{equation*}
$$

leading to $\xi_{i}\left(z_{i}\right)=\int_{0}^{z_{i}} \frac{\mathrm{~d} s}{\sqrt{a_{i}^{\prime}(0) s+o\left(s^{2}\right)}} \sim \frac{2 \sqrt{z_{i}}}{\sqrt{a_{i}^{\prime}(0)}}$ as $z_{i} \rightarrow 0$. Thus, $\xi_{i}^{-1}\left(x_{i}\right) \sim \frac{a_{i}^{\prime}(0) x_{i}^{2}}{4}$ as $x_{i} \rightarrow 0$. Inserting this into (A.3) yields (A.2) with $C=\frac{\left|a_{i}^{\prime}(0)\right|^{2}}{4}$. This completes the proof.

Remark A.1. Thanks to (A.2), it is easy to see from the definition of Q given in (2.6) that $Q(x)$ behaves like $\sum_{i=1}^{d} \ln x_{i}$ as x approaches to Γ. Hence, $e^{-\frac{Q}{2}}$ is as singular as $\prod_{i=1}^{d} \frac{1}{\sqrt{x_{i}}}$ near Γ.

Proof of Lemma 3.2. We first prove (1). Recall that U is given in (2.5). Clearly,

$$
\partial_{x_{i}} U(x)=\partial_{z_{i}} V\left(\xi^{-1}(x)\right) \sqrt{a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}, \quad \forall x \in \mathcal{U}
$$

We derive from (H3) (4) the existence of $C_{1}>0$ and $R_{1}>0$ such that

$$
\left(|\nabla U|^{2}+|p|^{2}\right)(x) \leq-C_{1}\left(b \cdot \nabla_{z} V\right)\left(\xi^{-1}(x)\right) \leq C_{1} \alpha(x), \quad \forall x \in \mathcal{U} \backslash B_{R_{1}}^{+}
$$

Since $\sup _{B_{R_{1}}^{+}}\left(|\nabla U|^{2}+|p|^{2}\right)<\infty$ due to (H2) and (H3)(1) and $\inf _{\mathcal{U}} \alpha>0$, there must exist some $C_{2}>0$ such that $\left(|\nabla U|^{2}+|p|^{2}\right)<C_{2} \alpha$ in $B_{R_{1}}^{+}$. Setting $C:=\min \left\{C_{1}, C_{2}\right\}$ yields the result.

The rest of the proof is arranged as follows. In Step 1, we analyze the asymptotic behaviors of terms in $e_{\beta, N}$ near the boundary Γ and in the vicinity of infinity. Based on these, the asymptotic behaviors of $e_{\beta, N}$ are derived in Step 2. The proof of (2) and (3) are respectively given in Step 3 and Step 4. Recall that R_{0} and δ_{0} are fixed in Subsection 3.1 when defining α.

Step 1. We analyze the asymptotic behaviors of terms in $e_{\beta, N}$.

- For $p \cdot \nabla U$, we see from (H3) (1) that

$$
\begin{equation*}
(p \cdot \nabla U)(x)=(b \cdot \nabla V)\left(\xi^{-1}(x)\right) \rightarrow-\infty \quad \text { as } \quad|x| \rightarrow \infty \tag{A.4}
\end{equation*}
$$

- For $\frac{1}{2} \sum_{i=1}^{d}\left(q_{i}^{2}-q_{i}^{\prime}\right)$, Lemma A. 1 ensures the existence of $\delta_{*} \in\left(0, \delta_{0}\right)$ and $C_{3}, C_{4}>0$ such that

$$
\begin{equation*}
\frac{C_{3}}{x_{i}^{2}} \leq \frac{1}{2}\left(q_{i}^{2}-q_{i}^{\prime}\right)\left(x_{i}\right) \leq \frac{C_{4}}{x_{i}^{2}}, \quad \forall x_{i} \in\left(0, \delta_{*}\right] \text { and } i \in\{1, \ldots, d\} \tag{A.5}
\end{equation*}
$$

Since (H1) gives $\lim \sup _{s \rightarrow \infty}\left(\frac{\left|a_{i}^{\prime}(s)\right|^{2}}{a_{i}(s)}+a_{i}^{\prime \prime}(s)\right)<\infty$, we find from (A.1) and (A.4) that for any $0<\epsilon_{1} \ll 1$, there exists $R_{2}=R_{2}\left(\epsilon_{1}\right)>0$ such that
$\frac{1}{2}\left|q_{i}^{2}-q_{i}^{\prime}\right|\left(x_{i}\right) \leq-\frac{\epsilon_{1}}{d}(p \cdot \nabla U)(x), \quad \forall x \in\left\{x \in \mathcal{U}: x_{i} \in\left(R_{2}, \infty\right)\right\}$ and $i \in\{1, \ldots, d\}$.

- For $\Delta U, p \cdot q$ and $\nabla \cdot p$, we calculate

$$
\begin{aligned}
\partial_{x_{i} x_{i}}^{2} U(x) & =\left[\partial_{z_{i} z_{i}}^{2} V\left(\xi^{-1}(x)\right) a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)+\frac{1}{2} \partial_{z_{i}} V\left(\xi^{-1}(x)\right) a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)\right] \\
p_{i}(x) q_{i}\left(x_{i}\right) & =\frac{b_{i}\left(\xi^{-1}(x)\right) a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{4 a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}, \quad \partial_{x_{i}} p_{i}(x)=\partial_{z_{i}} b_{i}\left(\xi^{-1}(x)\right)-\frac{b_{i}\left(\xi^{-1}(x)\right) a_{i}^{\prime}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}{2 a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)}
\end{aligned}
$$

By (H1)-(H3), we have $U \in C^{2}(\overline{\mathcal{U}})$, and $p \cdot q, \nabla \cdot p \in C(\overline{\mathcal{U}})$. Moreover, (H3)(3) and (A.4) guarantee that for any $0<\epsilon_{2} \ll 1$, there exists $R_{3}=R_{3}\left(\epsilon_{2}\right)>0$ such that

$$
\begin{equation*}
|\Delta U|+|p \cdot q|+|\nabla \cdot p| \leq-\epsilon_{2} p \cdot \nabla U \quad \text { in } \quad \mathcal{U} \backslash B_{R_{3}}^{+} . \tag{A.7}
\end{equation*}
$$

- For $\frac{1}{2}|\nabla U|^{2}$, we find from $|\nabla U|^{2}(x)=\sum_{i=1}^{d}\left|\partial_{z_{i}} V\right|^{2}\left(\xi^{-1}(x)\right) a_{i}\left(\xi_{i}^{-1}\left(x_{i}\right)\right)$, (H3)(4) and (A.4) that there are $C_{5}>0$ and $R_{4}>0$ such that

$$
\begin{equation*}
\frac{1}{2}|\nabla U|^{2} \leq-C_{5}(p \cdot \nabla U) \quad \text { in } \quad \mathcal{U} \backslash B_{R_{4}}^{+} \tag{A.8}
\end{equation*}
$$

Step 2. We analyze the asymptotic behaviors of $e_{\beta, N}$ near Γ and in the vicinity of infinity.
Set $R_{*}:=\max \left\{R_{0}, R_{2}, R_{3}, R_{4}\right\}$ and $C_{6}:=\frac{1}{2} \max _{i} \max _{x_{i} \in\left[\delta_{*}, R_{*}\right]}\left|q_{i}^{2}-q_{i}^{\prime}\right|\left(x_{i}\right)$. Obviously, R_{*} and C_{6} depend on ϵ_{1} and ϵ_{2}, which are to be determined in the proof of (3). Since α is piecewise defined, we analyze $e_{\beta, N}$ in four subdomains: $\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}, \Gamma_{\delta_{*}} \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right),\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}$and $\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right)$ separately, where we recall $\Gamma_{\delta_{*}}:=\left\{x \in \mathcal{U}: x_{i} \leq \delta_{*}\right.$ for some $\left.i \in\{1, \ldots, d\}\right\}$. For simplicity, we set

$$
\Psi:=\frac{\beta}{2}|\Delta U|+\frac{\beta^{2}}{2}|\nabla U|^{2}+\beta|p \cdot \nabla U|+|p \cdot q|+|\nabla \cdot p| .
$$

(a) In $\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}$. We see from $U \in C^{2}(\overline{\mathcal{U}})$ and $p \cdot \nabla U, p \cdot q, \nabla \cdot p \in C(\overline{\mathcal{U}})$ that $\max _{\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}} \Psi<\infty$. It follows from (A.5) that

$$
\left|e_{\beta, N}\right| \leq C_{4} \sum_{i=1}^{d} \frac{1}{x_{i}^{2}}+d C_{6}+\max _{\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}} \Psi, \quad e_{\beta, N} \geq C_{3} \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}-d\left(\frac{C_{3}}{\delta_{*}^{2}}+C_{6}\right)-\max _{\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}} \Psi
$$

(b) In $\Gamma_{\delta_{*}} \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right)$. It follows from (A.5), (A.7) and (A.8) that

$$
\begin{aligned}
\left|e_{\beta, N}\right| & \leq C_{4} \sum_{i=1}^{d} \frac{1}{x_{i}^{2}}+d C_{6}-\left(\beta+\epsilon_{2}\left(1+\frac{\beta}{2}\right)+C_{5} \beta^{2}\right) p \cdot \nabla U \\
e_{\beta, N} & \geq C_{3} \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}-d\left(\frac{C_{3}}{\delta_{*}^{2}}+C_{6}\right)-\left(\beta-\epsilon_{2}\left(1+\frac{\beta}{2}\right)-C_{5} \beta^{2}\right) p \cdot \nabla U
\end{aligned}
$$

(c) In $\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}$. There hold

$$
\left|e_{\beta, N}\right| \leq \max _{\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}}\left[\Psi+\frac{1}{2} \sum_{i=1}^{d}\left|q_{i}^{2}-q_{i}^{\prime}\right|\right], \quad e_{\beta, N} \geq-\max _{\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}}\left[\Psi+\frac{1}{2} \sum_{i=1}^{d}\left|q_{i}^{2}-q_{i}^{\prime}\right|\right] .
$$

(d) In $\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right)$. It follows from (A.6), (A.7) and (A.8) that

$$
\begin{aligned}
\left|e_{\beta, N}\right| & \leq d C_{6}-\left(\beta+\epsilon_{1}+\epsilon_{2}\left(1+\frac{\beta}{2}\right)+C_{5} \beta^{2}\right) p \cdot \nabla U \\
e_{\beta, N} & \geq-d C_{6}-\left(\beta-\epsilon_{1}-\epsilon_{2}\left(1+\frac{\beta}{2}\right)-C_{5} \beta^{2}\right) p \cdot \nabla U
\end{aligned}
$$

Step 3. We prove (2). As $\alpha \geq \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}$ in $\Gamma_{\delta_{*}}$ and $\inf _{\mathcal{U}} \alpha>0$, we deduce from Step 2 (a) the existence of $D_{1}(\beta)>0$ such that $e_{\beta, N} \leq D_{1}(\beta) \alpha$ in $\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}$for all $N \geq 1$.

Since $\inf _{\mathcal{U}} \alpha>0$ and

$$
\alpha= \begin{cases}\sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}-p \cdot \nabla U & \text { in } \quad \Gamma_{\delta_{*}} \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right) \\ -p \cdot \nabla U & \text { in } \quad\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right)\end{cases}
$$

Step $2(\mathrm{~b})(\mathrm{d})$ ensures the existence of $D_{2}(\beta)>0$ such that $\left|e_{\beta, N}\right| \leq D_{2}(\beta) \alpha$ in $\mathcal{U} \backslash B_{R_{*}}^{+}$for all $N \geq 1$.
Thanks to $\inf _{\mathcal{U}} \alpha>0$, it follows from Step 2 (c) the existence of $D_{3}(\beta)>0$ such that $\left|e_{\beta, N}\right| \leq$ $D_{3}(\beta) \alpha$ in $\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}$for all $N \geq 1$. Setting $C(\beta):=\max \left\{D_{1}(\beta), D_{2}(\beta), D_{3}(\beta)\right\}$ yields (2).

Step 4. We show (3). Setting $\beta_{0}:=\frac{1}{2 C_{5}}, \epsilon_{1}:=\min \left\{1, \frac{1}{16 C_{5}}\right\}$ and $\epsilon_{2}:=\min \left\{1, \frac{1}{2+8 C_{5}}\right\}$, we deduce from Step 2 (b)(d) that

$$
\begin{align*}
e_{\beta_{0}, N} & \geq C_{3} \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}-d\left(\frac{C_{3}}{\delta_{*}^{2}}+C_{6}\right)-\left(\beta_{0}-\epsilon_{2}\left(1+\frac{\beta_{0}}{2}\right)-C_{5} \beta_{0}^{2}\right) p \cdot \nabla U \tag{A.9}\\
& \geq \min \left\{C_{3}, \frac{1}{8 C_{5}}\right\} \alpha-d\left(\frac{C_{3}}{\delta_{*}^{2}}+C_{6}\right) \quad \text { in } \quad \Gamma_{\delta_{*}} \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right)
\end{align*}
$$

and

$$
\begin{align*}
e_{\beta_{0}, N} & \geq-d C_{6}-\left(\beta_{0}-\epsilon_{1}-\epsilon_{2}\left(1+\frac{\beta_{0}}{2}\right)-C_{5} \beta_{0}^{2}\right) p \cdot \nabla U \tag{A.10}\\
& \geq \frac{1}{16 C_{5}} \alpha-d C_{6} \quad \text { in } \quad\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap\left(\mathcal{U} \backslash B_{R_{*}}^{+}\right) .
\end{align*}
$$

Since $\alpha \leq \sum_{i=1}^{d} \max \left\{\frac{1}{x_{i}^{2}}, 1\right\}+\max _{\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}}|p \cdot \nabla U|$ in $\Gamma_{\delta_{*}} \cap B_{R_{*}}^{+}$and $\sup _{\left(\mathcal{U} \backslash \Gamma_{\delta_{*}}\right) \cap B_{R_{*}}^{+}} \alpha<\infty$, we conclude from (a) and (c) the existence of positive constants C_{7} and $M>d\left(\frac{C_{3}}{\delta_{*}^{2}}+C_{6}\right)$ such that $e_{\beta_{0}, N}+M \geq C_{7} \alpha$ in $B_{R_{*}}^{+}$for all $N \geq 1$, which together with (A.9) and (A.10) implies that $e_{\beta_{0}, N}+M \geq C_{*} \alpha$ in \mathcal{U} for all $N \geq 1$, where $C_{*}:=\min \left\{C_{3}, \frac{1}{16 C_{5}}, C_{7}\right\}$. This proves (3), and completes the proof.
A.2. Proof of Lemma 4.3. Suppose $\tilde{w} \in C(\mathcal{U} \times[0, \infty)) \cap L^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$ is a weak solution of (4.6). The proof is broken into two steps.

Step 1. We show

$$
\begin{equation*}
\frac{1}{2} \int_{\mathcal{U}} \tilde{w}^{2}(\cdot, t) \mathrm{d} x+\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+\int_{0}^{t} \int_{\mathcal{U}} e_{\beta_{0}, 2} \tilde{w}^{2} \mathrm{~d} x \mathrm{~d} s=\frac{1}{2} \int_{\mathcal{U}} \tilde{f}^{2} \mathrm{~d} x, \quad \forall t \in[0, \infty) \tag{A.11}
\end{equation*}
$$

The idea of proving (A.11) is based on the classical "energy method". But, we have to deal with the fact that \tilde{w} lacks the differentiability in t. For each $0<h \ll 1$, we define

$$
\tilde{w}_{h}(x, t):=\frac{1}{h} \int_{t}^{t+h} \tilde{w}(x, s) \mathrm{d} s, \quad(x, t) \in \mathcal{U} \times[0, \infty)
$$

Obviously, $\tilde{w}_{h} \in C(\mathcal{U} \times[0, \infty)) \cap L^{2}\left([0, \infty), \mathcal{H}^{1}(\mathcal{U})\right)$ and $\partial_{t} \tilde{w}_{h} \in L^{2}(\mathcal{U} \times[0, T])$ for each $T>0$. It is easy to verify that \tilde{w}_{h} is a weak solution of (4.6) with \tilde{f} replaced by $\tilde{f}_{h}:=\tilde{w}_{h}(\cdot, 0)=\frac{1}{h} \int_{0}^{h} \tilde{w}_{h}(\cdot, s) \mathrm{d} s$. Namely, for each $t \in[0, \infty)$ and $\phi \in C_{0}^{1,1}(\mathcal{U} \times[0, \infty))$, one has

$$
\begin{align*}
& \int_{\mathcal{U}} \tilde{w}_{h}(\cdot, t) \phi(\cdot, t) \mathrm{d} x-\int_{\mathcal{U}} \tilde{f}_{h} \phi(\cdot, 0) \mathrm{d} x-\int_{0}^{t} \int_{\mathcal{U}} \tilde{w}_{h} \partial_{t} \phi \mathrm{~d} x \mathrm{~d} s \tag{A.12}\\
& \quad=-\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}} \nabla \tilde{w}_{h} \cdot \nabla \phi \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \tilde{w}_{h} \nabla \phi \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}} e_{\beta_{0}} \tilde{w}_{h} \phi \mathrm{~d} x \mathrm{~d} s .
\end{align*}
$$

Let $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset C_{0}^{\infty}(\mathcal{U})$ be a sequence of functions taking values in $[0,1]$ and satisfying

$$
\eta_{n}(x)=\left\{\begin{array}{ll}
1, & x \in\left(\mathcal{U} \backslash \Gamma_{\frac{2}{n}}\right) \cap B_{\frac{n}{2}}^{+}, \\
0, & x \in \Gamma_{\frac{1}{n}} \cup\left(\mathcal{U} \backslash B_{n}^{+}\right),
\end{array} \quad \text { and } \quad\left|\nabla \eta_{n}(x)\right| \leq \begin{cases}2 n, & x \in \Gamma_{\frac{2}{n}} \backslash \Gamma_{\frac{1}{n}}, \\
4, & x \in\left(\mathcal{U} \backslash \Gamma_{\frac{2}{n}}\right) \cap\left(B_{n}^{+} \backslash B_{\frac{n}{2}}^{+}\right) .\end{cases}\right.
$$

By standard approximation arguments, we deduce that (A.12) holds with ϕ replaced by $\eta_{n}^{2} \tilde{w}_{h}$. Moreover, integration by parts shows that the left hand side of (A.12) with ϕ replaced by $\eta_{n}^{2} \tilde{w}_{h}$ equals $\frac{1}{2} \int_{\mathcal{U}}\left(\eta_{n}^{2} \tilde{w}_{h}^{2}\right)(\cdot, t) \mathrm{d} x-\frac{1}{2} \int_{\mathcal{U}} \eta_{n}^{2} \tilde{f}_{h}^{2} \mathrm{~d} x$. Thus, we find for each $t \in[0, \infty), n \in \mathbb{N}$ and $0<h \ll 1$,

$$
\begin{align*}
\frac{1}{2} \int_{\mathcal{U}} & \left(\eta_{n}^{2} \tilde{w}_{h}^{2}\right)(\cdot, t) \mathrm{d} x-\frac{1}{2} \int_{\mathcal{U}} \eta_{n}^{2} \tilde{f}_{h}^{2} \mathrm{~d} x \\
= & -\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}} \nabla \tilde{w}_{h} \cdot \nabla\left(\eta_{n}^{2} \tilde{w}_{h}\right) \mathrm{d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \tilde{w}_{h} \nabla\left(\eta_{n}^{2} \tilde{w}_{h}\right) \mathrm{d} x \mathrm{~d} s \tag{A.13}\\
& -\int_{0}^{t} \int_{\mathcal{U}} e_{\beta_{0}} \eta_{n}^{2} \tilde{w}_{h}^{2} \mathrm{~d} x \mathrm{~d} s
\end{align*}
$$

We claim that passing to the limit $h \rightarrow 0$ in (A.13) yields that for each $t \in[0, \infty)$ and $n \in \mathbb{N}$,

$$
\begin{align*}
& \frac{1}{2} \int_{\mathcal{U}}\left(\eta_{n}^{2} \tilde{w}^{2}\right)(\cdot, t) \mathrm{d} x-\frac{1}{2} \int_{\mathcal{U}} \eta_{n}^{2} \tilde{f}^{2} \mathrm{~d} x \\
& = \tag{A.14}\\
& -\frac{1}{2} \int_{0}^{t} \int_{\mathcal{U}} \nabla \tilde{w} \cdot \nabla\left(\eta_{n}^{2} \tilde{w}\right) \mathrm{d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}}\left(p+\beta_{0} \nabla U\right) \cdot \tilde{w} \nabla\left(\eta_{n}^{2} \tilde{w}\right) \mathrm{d} x \mathrm{~d} s \\
& \quad-\int_{0}^{t} \int_{\mathcal{U}} e_{\beta_{0}} \eta_{n}^{2} \tilde{w}^{2} \mathrm{~d} x \mathrm{~d} s
\end{align*}
$$

Assuming (A.14), we conclude (A.11) from letting $n \rightarrow \infty$ in (A.14) and arguments as in the proof of Lemma 3.3 (2).

It remains to justify (A.14). For notational simplicity, we rewrite (A.13) and (A.14) as

$$
I_{0}(h)=I_{1}(h)+I_{2}(h)+I_{3}(h) \quad \text { and } \quad I_{0}=I_{1}+I_{2}+I_{3}
$$

respectively, and show that $\lim _{h \rightarrow 0} I_{i}(h)=I_{i}$ for $i=0,1,2,3$.
Fix $t \in[0, \infty)$ and $n \in \mathbb{N}$. Note for each $0<h \ll 1$,

$$
\tilde{w}_{h}(\cdot, t)-\tilde{w}(\cdot, t)=\int_{0}^{1}[\tilde{w}(\cdot, t+h s)-\tilde{w}(\cdot, t)] \mathrm{d} s, \quad \tilde{f}_{h}-\tilde{f}=\int_{0}^{1}[\tilde{w}(\cdot, h s)-\tilde{f}] \mathrm{d} s
$$

Since $\tilde{w} \in C(\mathcal{U} \times[0, \infty))$, we find for each compact set $K \subset \mathcal{U}$,

$$
\begin{equation*}
\sup _{K \times[0, t]}\left|\tilde{w}_{h}-\tilde{w}\right| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 \tag{A.15}
\end{equation*}
$$

and $\sup _{K}\left|\tilde{f}_{h}-\tilde{f}\right| \rightarrow 0$ as $h \rightarrow 0$. It follows that $\lim _{h \rightarrow 0} I_{0}(h)=I_{0}$ and $\lim _{h \rightarrow 0} I_{3}(h)=I_{3}$.
We claim that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{0}^{t} \int_{\mathcal{U}}\left|\nabla \tilde{w}_{h}-\nabla \tilde{w}\right|^{2} \mathrm{~d} x \mathrm{~d} s=0 \tag{A.16}
\end{equation*}
$$

Since $\nabla \tilde{w}_{h}(\cdot, t)-\nabla \tilde{w}(\cdot, t)=\int_{0}^{1}[\nabla \tilde{w}(\cdot, t+h s)-\nabla \tilde{w}(\cdot, t)] \mathrm{d} s$, we find

$$
\begin{align*}
\int_{0}^{t} \int_{\mathcal{U}}\left|\nabla \tilde{w}_{h}-\nabla \tilde{w}\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} & \leq \int_{0}^{t} \int_{\mathcal{U}} \int_{0}^{1}\left|\nabla \tilde{w}\left(x, t^{\prime}+h s\right)-\nabla \tilde{w}\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} s \mathrm{~d} x \mathrm{~d} t^{\prime} \tag{A.17}\\
& \leq \sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\nabla \tilde{w}\left(x, t^{\prime}+s\right)-\nabla \tilde{w}\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime}
\end{align*}
$$

where we used Fubini's theorem before taking the supremum.

Since $\nabla \tilde{w} \in L^{2}(\mathcal{U} \times[0,2 t])$ and $C_{0}(\mathcal{U} \times[0,2 t])$ is dense in $L^{2}(\mathcal{U} \times[0,2 t])$, for each $\epsilon>0$, we could find some $\Phi \in C_{0}(\mathcal{U} \times[0,2 t])$ such that $\|\Phi-\nabla \tilde{w}\|_{L^{2}(\mathcal{U} \times[0,2 t])}<\epsilon$. Obviously, Φ is uniformly continuous on $\mathcal{U} \times[0,2 t]$, resulting in $\sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\Phi\left(x, t^{\prime}+s\right)-\Phi\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} \rightarrow 0$ as $h \rightarrow 0$. Therefore,

$$
\begin{aligned}
& \frac{1}{3} \sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\nabla \tilde{w}\left(x, t^{\prime}+s\right)-\nabla \tilde{w}\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} \\
& \quad \leq \sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\nabla \tilde{w}\left(x, t^{\prime}+s\right)-\Phi\left(x, t^{\prime}+s\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime}+\sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\Phi\left(x, t^{\prime}+s\right)-\Phi\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} \\
& \quad+\sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\Phi\left(x, t^{\prime}\right)-\nabla \tilde{w}\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} \leq 2 \epsilon+\sup _{s \in[0, h]} \int_{0}^{t} \int_{\mathcal{U}}\left|\Phi\left(x, t^{\prime}+s\right)-\Phi\left(x, t^{\prime}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t^{\prime} .
\end{aligned}
$$

Letting $h \rightarrow 0$ in the above estimates, we find (A.16) from the arbitrariness of $\epsilon>0$ and (A.17).
It follows readily from (A.16) that $\lim _{h \rightarrow 0} \int_{0}^{t} \int_{\mathcal{U}} \eta_{n}^{2}\left|\nabla \tilde{w}_{h}\right|^{2} \mathrm{~d} x \mathrm{~d} s=\int_{0}^{t} \int_{\mathcal{U}} \eta_{n}^{2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s$. Since

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w}_{h} \nabla \tilde{w}_{h} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s-\int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w} \nabla \tilde{w} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s \\
& \quad=\int_{0}^{t} \int_{\mathcal{U}} \eta_{n}\left(\tilde{w}_{h}-\tilde{w}\right) \nabla \tilde{w}_{h} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s+\int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w}\left(\nabla \tilde{w}_{h}-\nabla \tilde{w}\right) \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

we apply Hölder's inequality to deduce from (A.15) and (A.16) that

$$
\lim _{h \rightarrow 0} \int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w}_{h} \nabla \tilde{w}_{h} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s=\int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w} \nabla \tilde{w} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s
$$

Therefore,

$$
\begin{aligned}
\lim _{h \rightarrow 0}-2 I_{1}(h) & =\lim _{h \rightarrow 0}\left(\int_{0}^{t} \int_{\mathcal{U}} \eta_{n}^{2}\left|\nabla \tilde{w}_{h}\right|^{2} \mathrm{~d} x \mathrm{~d} s+2 \int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w}_{h} \nabla \tilde{w}_{h} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s\right) \\
& =\int_{0}^{t} \int_{\mathcal{U}} \eta_{n}^{2}|\nabla \tilde{w}|^{2} \mathrm{~d} x \mathrm{~d} s+2 \int_{0}^{t} \int_{\mathcal{U}} \eta_{n} \tilde{w} \nabla \tilde{w} \cdot \nabla \eta_{n} \mathrm{~d} x \mathrm{~d} s=-2 I_{1}
\end{aligned}
$$

Similar arguments yield $\lim _{h \rightarrow 0} I_{2}(h)=I_{2}$. Hence, letting $h \rightarrow 0$ in (A.13) yields (A.14).
Step 2. We show that $\int_{\mathcal{U}} \tilde{w}^{2}(\cdot, t) \mathrm{d} x \leq \frac{e^{2 M t}}{M} \int_{\mathcal{U}} \tilde{f}^{2} \mathrm{~d} x$ for all $t \in[0, \infty)$. Hence, $\tilde{w}=0$ if $\tilde{f}=0$. This proves the lemma.

As $e_{\beta_{0}, 2}+M \geq 0$ by Lemma 3.2 (3), we derive from (A.11) that

$$
\begin{equation*}
\frac{1}{2} \int_{\mathcal{U}} \tilde{w}^{2}(\cdot, t) \mathrm{d} x \leq M \int_{0}^{t} \int_{\mathcal{U}} \tilde{w}^{2} \mathrm{~d} x \mathrm{~d} s+\int_{\mathcal{U}} \tilde{f}^{2} \mathrm{~d} x, \quad \forall t \in[0, \infty) \tag{A.18}
\end{equation*}
$$

Setting $g(t)=\int_{0}^{t} \int_{\mathcal{U}} \tilde{w}^{2} \mathrm{~d} x \mathrm{~d} s$ for $t \in[0, \infty)$, we arrive at $\frac{1}{2} g^{\prime}(t) \leq M g(t)+\int_{\mathcal{U}} \tilde{f}^{2} \mathrm{~d} x$ for all $t \in[0, \infty)$. The conclusion then follows from Gronwall's inequality.

References

1. V. Bansaye and S. Méléard, Stochastic models for structured populations. Scaling limits and long time behavior. Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems, 1.4. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015.
2. J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. The Journal of Animal Ecology (1975), 331-340.
3. M. Benaïm, Stochastic persistence. https://arxiv.org/abs/1806.08450
4. M. Benaïm, N. Champagnat, W. Oçafrain and D. Villemonais, Degenerate processes killed at the boundary of a domain. https://arxiv.org/pdf/2103.08534.pdf

QUASI-STATIONARY DISTRIBUTIONS
5. M. Benaïm, J. Hofbauer and W. H. Sandholm, Robust permanence and impermanence for stochastic replicator dynamics. Journal of Biological Dynamics 2.2 (2008): 180-195.
6. V. I. Bogachev, N. V. Krylov, and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Partial Differential Equations 26 (2001), no. 11-12, 2037-2080.
7. P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard and J. San Martín, Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab. 37 (2009), no. 5, 1926-1969.
8. P. Cattiaux and S. Méléard, Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction. J. Math. Biol. 60 (2010), no. 6, 797-829.
9. J. A. Cavender, Quasi-stationary distributions of birth-and-death processes. Adv. in Appl. Probab. 10 (1978), no. 3, 570-586.
10. N. Champagnat, K. A. Coulibaly-Pasquier and D. Villemonais, Criteria for exponential convergence to quasistationary distributions and applications to multi-dimensional diffusions. Séminaire de Probabilités XLIX, 165-182, Lecture Notes in Math., 2215, Springer, Cham, 2018.
11. N. Champagnat and D. Villemonais, Exponential convergence to quasi-stationary distribution and Q-process. Probab. Theory Related Fields 164 (2016), no. 1-2, 243-283.
12. N. Champagnat and D. Villemonais, Exponential convergence to quasi-stationary distribution for absorbed onedimensional diffusions with killing. ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 1, 177-199.
13. N. Champagnat and D. Villemonais, Uniform convergence of conditional distributions for absorbed one-dimensional diffusions. Adv. in Appl. Probab. 50 (2018), no. 1, 178-203.
14. N. Champagnat and D. Villemonais, Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes. Stochastic Process. Appl. 135 (2021), 51-74.
15. N. Champagnat and D. Villemonais, General criteria for the study of quasi-stationarity. (English summary) Electron. J. Probab. 28 (2023), Paper No. 22, 84 pp.
16. P. Chesson, The stabilizing effect of a random environment. Journal of Mathematical Biology 15.1 (1982): 1-36.
17. P. Chesson, General theory of competitive coexistence in spatially-varying environments. Theoretical population biology 58.3 (2000): 211-237.
18. P. Collet, S. Martínez and J. San Martín, Quasi-stationary distributions. Markov chains, diffusions and dynamical systems. Probability and its Applications (New York). Springer, Heidelberg, 2013.
19. P. Collet, S. Martínez and J. San Martín, Asymptotic laws for one-dimensional diffusions conditioned to nonabsorption. Ann. Probab. 23 (1995), no. 3, 1300-1314.
20. P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population. Journal of the North American Benthological Society 8.3 (1989): 211-221.
21. D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for tropic interaction. Ecology, 56 (1975), no. 4, 881-892.
22. K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
23. S. N. Ethier and T. G. Kurtz, Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley \& Sons, Inc., New York, 1986.
24. P. A. Ferrari, H. Kesten, S. Martinez and P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Probab. 23 (1995), no. 2, 501-521.
25. G. Ferré, M. Rousset and G. Stoltz, More on the long time stability of Feynman-Kac semigroups. Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 3, 630-673.
26. R. Fierro, S. Martínez and J. San Martín, Limiting conditional and conditional invariant distributions for the Poisson process with negative drift. J. Appl. Probab. 36 (1999), no. 4, 1194-1209.
27. A. Friedman, Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
28. T. C. Gard, Persistence in stochastic food web models. Bulletin of Mathematical Biology 46.3 (1984): 357-370.
29. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
30. G. L. Gong, M. P. Qian and Z. X. Zhao, Killed diffusions and their conditioning. Probab. Theory Related Fields 80 (1988), no. 1, 151-167.
31. A. Guillin, B. Nectoux and L. Wu. Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems. https://hal . archives-ouvertes.fr/hal-03068461
32. A. Guillin, B. Nectoux and L. Wu. Quasi-stationary distribution for Hamiltonian dynamics with singular potentials. (English summary) Probab. Theory Related Fields 185 (2023), no. 3-4, 921-959.
33. Q. Han and F. Lin, Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.
34. A. Hening and M. Kolb, Quasistationary distributions for one-dimensional diffusions with singular boundary points. Stochastic Process. Appl. 129 (2019), no. 5, 1659-1696.
35. A. Hening and D. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems. Annals of Applied Probability. 28 (2018), no. 3, 1893-1942.
36. A. Hening, D. H. Nguyen and P. Chesson, A general theory of coexistence and extinction for stochastic ecological communities. Journal of Mathematical Biology. 82 (2021), 6.
37. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981.
38. M. Kolb and D. Steinsaltz, Quasilimiting behavior for one-dimensional diffusions with killing. Ann. Probab. 40 (2012), no. 1, 162-212.
39. M. G. Kreǐn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Translation 1950, (1950). no. 26, 128 pp.
40. O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.
41. C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18 (2012), no. 2, 119-146.
42. T. Lelièvre, M. Ramil and J. Reygner, Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence. Stochastic Process. Appl. 144 (2022), 173-201.
43. N. Lerner, Carleman inequalities. An introduction and more. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 353. Springer, Cham, 2019.
44. B. M. Levitan and V.V. Zhikov, Almost periodic functions and differential equations. Translated from the Russian by L. W. Longdon. Cambridge University Press, Cambridge-New York, 1982.
45. G. M. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
46. J. Littin C., Uniqueness of quasistationary distributions and discrete spectra when ∞ is an entrance boundary and 0 is singular. J. Appl. Probab. 49 (2012), no. 3, 719-730.
47. M. Lladser and J. San Martín, Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process. J. Appl. Probab. 37 (2000), no. 2, 511-520.
48. A. Lotka, Elements of physical biology. Science Progress in the Twentieth Century (1919-1933) 21.82 (1926): 341343.
49. P. Mandl, Spectral theory of semi-groups connected with diffusion processes and its application. Czechoslovak Math. J. 11(86) (1961), 558-569.
50. I. Marek, Frobenius theory of positive operators: Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 607-628.
51. S. Martínez and J. San Martín, Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (1994), no. 4, 911-920.
52. S. Martínez and J. San Martín, Classification of killed one-dimensional diffusions. Ann. Probab. 32 (2004), no. 1A, 530-552.
53. S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes. Probab. Surv. 9 (2012), 340-410.
54. Y. Miura, Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch. Anal. Appl. 32 (2014), no. 4, 591-601.
55. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
56. R. G. Pinsky, On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985), no. 2, 363-378.
57. P. K. Pollet, Quasi-stationary distributions: a bibliography. https://people.smp.uq.edu.au/PhilipPollett/ papers/qsds/qsds.pdf
58. M. Ramil. Processus cinétiques dans les domaines à bord et quasi-stationnarité. Mathématiques générales. Université Paris-Est, 2020. https://pastel.archives-ouvertes.fr/tel-03413317
59. I. Sawashima, On spectral properties of some positive operators. Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 53-64.
60. H. H. Schaefer, Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.
61. S. Schreiber, M. Benaïm and K. Atchadé, Persistence in fluctuating environments. Journal of Mathematical Biology 62.5 (2011): 655-683.
62. D. Steinsaltz and S. N. Evans, Quasistationary distributions for one-dimensional diffusions with killing. Trans. Amer. Math. Soc. 359 (2007), no. 3, 1285-1324.
63. M. Turelli, Random environments and stochastic calculus. Theoretical population biology 12.2 (1977): 140-178.
64. V. Volterra, Variations and fluctuations of the number of individuals in animal species living together. ICES Journal of Marine Science 3.1 (1928): 3-51.
65. S. Watanabe and T. Yamada, On the uniqueness of solutions of stochastic differential equations. II. J. Math. Kyoto Univ. 11 (1971), 553-563.
66. T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971), 155-167.
67. K. Yamato, A unifying approach to non-minimal quasi-stationary distributions for one-dimensional diffusions. J. Appl. Probab. 59 (2022), no. 4, 1106-1128.
68. K. Yosida, Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
69. H. Zhang and G. He, Existence and construction of quasi-stationary distributions for one-dimensional diffusions. J. Math. Anal. Appl. 434 (2016), no. 1, 171-181.

Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, United States
Email address: ahening@tamu.edu
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada

Email address: wqi2@ualberta.ca
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada

Email address: zhongwei@ualberta.ca
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada, and School of Mathematics, Jilin University, Changchun 130012, PRC

Email address: yingfei@ualberta.ca

[^0]: 2010 Mathematics Subject Classification. Primary 60J60, 60J70, 34F05; secondary 92D25, 60H10.
 Key words and phrases. diffusion process, quasi-stationary distribution, existence, uniqueness, exponential convergence, spectral theory, semigroup, stochastic representation, stochastic Lotka-Volterra system.
 A.H. was supported by NSF through the grants DMS 1853463 and DMS 2147903 . W.Q. was partially supported by a research associate fellowship from the University of Alberta. Z.S. was partially supported by a start-up grant from the University of Alberta, NSERC RGPIN-2018-04371 and NSERC DGECR-2018-00353. Y.Y. was partially supported by NSERC RGPIN-2020-04451, PIMS CRG grant, a faculty development grant from the University of Alberta, and a Scholarship from Jilin University.

