
Journal of Functional Analysis 277 (2019) 108281
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Existence of periodic probability solutions to 

Fokker-Planck equations with applications ✩

Min Ji a,b, Weiwei Qi b,c,∗, Zhongwei Shen c, Yingfei Yi c,d

a Hua Loo-Keng Key Laboratory of Mathematics and Academy of Mathematics and 
Systems Science, Chinese Academy of Sciences, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Department of Mathematical and Statistical Sciences, University of Alberta, 
Edmonton, AB T6G 2G1, Canada
d School of Mathematics, Jilin University, Changchun 130012, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2018
Accepted 22 June 2019
Available online 29 July 2019
Communicated by J. Wei

MSC:
primary 35Q84
secondary 35J25, 37B25, 60J60

Keywords:
Fokker-Planck equation
Periodic probability solution
Stochastic differential inclusion
Stochastic damping Hamiltonian 
system

In the present paper, we consider a Fokker-Planck equation 
associated to periodic stochastic differential equations with 
irregular coefficients. We define periodic probability solutions 
to be periodic analogs of stationary measures for stationary 
Fokker-Planck equations, and study their existence in both 
non-degenerate and degenerate cases. In the non-degenerate 
case, a Lyapunov condition is imposed to ensure the existence 
of periodic probability solutions to the Fokker-Planck equation 
with Sobolev coefficients. In the degenerate case with slightly 
more regular coefficients, the existence is established under 
the same Lyapunov condition. As applications of our results, 
we construct periodic probability solutions to Fokker-Planck 
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equations associated to stochastic damping Hamiltonian 
systems and stochastic differential inclusions.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Ordinary differential equations (ODEs) of the form

ẋ = V (x, t), x ∈ U , (1.1)

where U ⊂ Rd is open and connected, and the vector field V is T -periodic in its second 
variable, have been widely used to model many processes arising in biology, chemistry, 
climate, engineering, finance, physics, etc. As real processes are subject to noises and are 
often lack of mechanisms, the ODE model (1.1) can hardly capture the entire dynamics 
of these processes. To incorporate such uncertainties into the model (1.1), we consider 
stochastic perturbations to (1.1) resulting in the following stochastic differential equation 
(SDE):

dx = V (x, t)dt + G(x, t)dWt, x ∈ U , (1.2)

where the noise intensity G : U × R → Rd×m is T -periodic in its second variable and 
W := (Wt)t∈R is a standard m-dimensional Wiener process. We assume m ≥ d.

One of the central problems concerning the SDE (1.2) is the long-time dynamics of 
solutions. This problem has been extensively studied when V (x, t) = V (x) and G(x, t) =
G(x) are independent of t. Khasminskii [28] initiated the study of the existence and 
uniqueness of invariant measures and the convergence of solutions to invariant measures 
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when V (x) and G(x) are sufficiently regular. These results are largely generalized and 
improved in later works (see e.g. [29,41,37,1] and references therein). In this case, the 
theory of random dynamical system [2] has been developed and applied to study the 
dynamics with the focus on random attractors, random invariant manifolds, etc.

In modeling complex fluid flows (see e.g. [39]), situations with rough V (x) and G(x) are 
often the case, and gives rise to challenging mathematical problems. The well-posedness 
of such equations (with time-dependent coefficients) have attracted a lot of attention in 
recent years (see e.g. [34,21,44,19] and references therein). Concerning the global dynam-
ics, a large amount of literature has been carried out towards the understanding of the 
existence and uniqueness of stationary measures of the associated Fokker-Planck equa-
tion (or Kolmogorov forward equation) (see e.g. [8,12,6,9,11,7,23] and references therein). 
The convergence of solutions to Fokker-Planck equations to stationary measures is stud-
ied in [26]. We point out that invariant measures of an SDE are necessarily stationary 
measures of the associated Fokker-Planck equation, while the converse is also true under 
additional mild conditions (see e.g. [42]).

When V (x, t) and G(x, t) are T -periodic in t, the roles played by invariant measures or 
stationary measures in the time-independent case are replaced by their periodic analogs, 
called periodic solutions. There exist only a few results on periodic solutions (with dif-
ferent definitions) under rather different conditions. Khasminskii [29] defined periodic 
solutions in the sense of periodic Markov process and proved the existence under a peri-
odic Lyapunov condition. Chen, Han, Li and Yang [15] studied the existence of classical 
periodic solutions to the Fokker-Planck equation associated to (1.2) assuming the ex-
istence of an unusual Lyapunov function. The coefficients in [29,15] are assumed to be 
locally Lipschitz. Under the same assumptions on the coefficients, the existence of peri-
odic solutions to semilinear SDEs has been established (see [38,24,16,14] and references 
therein). Zhao and Zheng [45], and Feng, Zhao and Zhou [20] studied the existence of 
the so-called random periodic solutions to (1.2) in the framework of random dynami-
cal systems. As random periodic solutions are trajectory based, the study of them does 
not require the global dissipativity of the system, and therefore, they are in general not 
expected to control the global dynamics.

The purpose of the present paper is to study periodic solutions to (1.2) with irregular 
(in particular, non-Lipschitz) coefficients in the sense of distribution. As transition prob-
abilities associated to solutions of (1.2) can hardly be defined in this case, we consider 
the following Fokker-Planck equation associated to (1.2):

L∗u := −∂tu + ∂2
ij(aiju) − ∂i(V iu) = 0, (x, t) ∈ U ×R, (1.3)

where the diffusion matrix (aij) := 1
2GG� is pointwise semi-positive definite on U×R and 

T -periodic in its second variable, the drift field (V i) is T -periodic in its second variable, 
∂i = ∂xi

, ∂2
ij = ∂2

xixj
, for all i, j ∈ {1, . . . , d}, and the usual summation convention is 

used. It is known that the distribution of solutions to (1.2) is governed by (1.3) at least 
when the coefficients are sufficiently regular, say, locally Lipschitz continuous. Therefore, 
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Table 1
Notations.

Cc(U) The space of compactly supported continuous functions on U
C2

c (U) Cc(U) ∩ C2(U)
C0(U × R) The space of compactly supported continuous functions on U × R
Cc(U × R) The space of continuous functions u : U × R → R such that u(t, ·) ∈ Cc(U) for each

t ∈ R
CT (U × R) The space of T -periodic and continuous functions on U × R
C2,1(U × R) The space of continuous functions u : U×R → R such that ∂iu, ∂2

iju ∂tu are continuous
on U × R for all i, j ∈ {1, . . . , d}

C2,1
0 (U × R) C2,1(U × R) ∩ C0(U × R)

C2,1
c (U × R) C2,1(U × R) ∩ Cc(U × R)

C2,1
T (U × R) C2,1(U × R) ∩ CT (U × R)

Cα(R, Cγ(U)) The space of continuous functions u : U × R → R such that u(t, ·) ∈ Cγ(U) for each
t ∈ R and the function t �→ |u(t, ·)|Cγ(Ω) lies in Cα(R) for each bounded domain
Ω ⊂ U

CT (R,W 1,p
loc (U)) The space of T -periodic functions u : U ×R → R such that u(t, ·) ∈ W 1,p

loc (U) for each
t ∈ R and the function t �→ ‖u(t, ·)‖W 1,p(Ω) is continuous for each bounded domain
Ω ⊂ U

L∞
loc(R,W 1,p

loc (U)) The space of measurable functions u : U × R → R such that u(t, ·) ∈ W 1,p
loc (U) for

a.e. t ∈ R and the function t �→ ‖u(t, ·)‖W 1,p(Ω) is locally essentially bounded for each
bounded domain Ω ⊂ U

the distribution of periodic solutions to (1.2) correspond to periodic solutions to (1.3). 
While the converse is expected to be true under additional mild assumptions as in the 
time-independent case mentioned earlier, it remains an interesting open question. As 
(1.3) with irregular coefficients does not admit classical solutions in general, and we are 
mainly interested in the distribution of solutions to (1.2) if exist, we look for periodic 
solutions to (1.3) in the space of Borel probability measures on U . This allows us to deal 
with much worse coefficients.

From now on, we begin to use some function spaces, which, except the usual ones, are 
collected in Table 1 in Section 1. For convenience, we denote by

L := ∂t + aij∂2
ij + V i∂i

the formal L2-adjoint of L∗. Motivated by the definition of stationary measures to (1.3)
when V (x, t) = V (x) and G(x, t) = G(x) (see e.g. [8]), and measure solutions to (1.3)
(see e.g. [4]), we define periodic solutions to (1.3) as follows.

Definition 1.1 (Periodic probability solution). A Borel measure μ on U × R is called a 
periodic probability solution to (1.3) if there is a family of Borel probability measures 
{μt}t∈R on U satisfying

μt = μt+T , ∀t ∈ R,

aij , V i ∈ L1
loc(U ×R, dμtdt), ∀i, j ∈ {1, . . . , d}

and L∗μ = 0 in U ×R in the sense that
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ˆ

R

ˆ

U

Lφdμtdt = 0, ∀φ ∈ C2,1
0 (U ×R),

such that dμ = dμtdt.

Following [29], we use Lyapunov-type functions to quantify the global dissipativity 
of (1.3), and thus, ensure the existence of periodic probability solutions to (1.3). For a 
non-negative function U ∈ C2,1

T (U × R) (see Table 1 for the definition), we define for 
each ρ > 0, the ρ-sublevel set

Ωρ = {(x, t) ∈ U ×R : U(x, t) < ρ}

and its t-sections

Ωt
ρ = {x ∈ U : U(x, t) < ρ} , ∀t ∈ R.

Definition 1.2 (Unbounded Lyapunov function). A non-negative function U ∈ C2,1
T (U ×

R) is called an unbounded Lyapunov function with respect to L if there is a sequence 
{Un}n∈N of open sets in U satisfying Un ⊂ Un+1 ⊂⊂ U for all n ∈ N and U = ∪∞

n=1Un

such that

inf
(U\Un)×R

U → ∞ as n → ∞, (1.4)

and there exist a ρm > 0, called an essential lower bound of U , and a constant γ > 0, 
called a Lyapunov constant of U , such that

LU(x, t) ≤ −γ, ∀(x, t) ∈ (U ×R) \ Ωρm
. (1.5)

Before stating our main results on the existence of periodic probability solutions to 
(1.3), we make some assumptions on the coefficients.

(H) Let p > d + 2. The diffusion matrix A(x, t) = (aij(x, t)) is semi-positive definite for 
each (x, t) ∈ U × R, and aij ∈ L∞

loc(R; W 1,p
loc (U)) for each i, j ∈ {1, . . . , d}. The drift 

vector field V = (V i) satisfies V i ∈ Lp
loc(U ×R) for each i ∈ {1, . . . , d}.

We point out that only semi-positive definiteness of A is assumed in (H). Our first 
main result concerning the existence of periodic probability solutions to (1.3) in the non-
degenerate case is stated in the following theorem. A = (aij) is called locally uniformly 
positive definite if for each bounded domain W ⊂⊂ U , there exist λW , ΛW > 0 such that

λW |ξ|2 ≤ aij(x, t)ξiξj ≤ ΛW |ξ|2, ∀(x, t) ∈ W ×R, ξ ∈ Rd.

Theorem A. Assume (H). Suppose A = (aij) is locally uniformly positive definite, and 
there is an unbounded Lyapunov function with respect to L. Then, (1.3) admits a periodic 
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probability solution with a density in Cα(R, Cγ(U)) for some α > 0 and γ > 0 depending 
on d and p.

In [29, Theorem 3.8] and the footnote on the same page, Khasminskii proved the 
existence of a special solution, which is a T -periodic Markov process, to the SDE (1.2)
with locally Lipschitz coefficients provided the existence of an unbounded Lyapunov 
function as in Definition 1.2. It is easy to see that the distribution of the special solution 
is a periodic probability solution to (1.3). Therefore, Theorem A establishes a more 
general framework.

The existence result in Theorem A is also a periodic counterpart of the existence 
of stationary measures for stationary Fokker-Planck equations established in [11]. In 
fact, for time-independent coefficients (aij) ∈ W 1,p

loc (Rd) being locally uniformly positive 
definite and (V i) ∈ Lp

loc(Rd) for p > d, the authors proved in [11] the existence of 
stationary measures for the stationary Fokker-Planck equation on the whole space Rd in 
the presence of a time-independent unbounded Lyapunov function, namely, a function 
U ∈ C2(Rd) satisfying U(x) → ∞ as |x| → ∞ such that the inequality aij∂2

ijU+V i∂iU ≤
−γ holds in an exterior domain for some γ > 0. Stationary measures for the stationary 
Fokker-Planck equations on Rd and any open and connected domain U ⊂ Rd were 
later shown to exist in [7, Corollary 2.4.2] and [23], respectively, under quasi-compact 
or generalized Lyapunov conditions. Similar results for the stationary Fokker-Planck 
equations on Rd in the degenerate case have been established in [7, Corollary 2.4.4].

Given Theorem A, we are able to apply perturbation techniques to construct periodic 
probability solutions to (1.3) in the degenerate case as stated in the next result.

Theorem B. Assume (H). Suppose A = (aij) ∈ CT (R; W 1,p
loc (U)) and V = (V i) ∈ CT (U×

R), and there is an unbounded Lyapunov function with respect to L. Then, (1.3) admits 
a periodic probability solution.

Our study of (1.3) in the degenerate case is mainly motivated by the following stochas-
tic damping Hamiltonian system:

{
dx = ydt,
dy = − [b(x, y)y + ∇V (x, t)] dt + σ(x, y, t)dWt,

(x, y) ∈ Rd ×Rd, (1.6)

where b(x, y) is the damping, V (x, t) is the T -periodic potential and σ(x, y, t) is the 
T -periodic noise intensity. The Fokker-Planck equation associated to (1.6) is given by

L∗
Hu := −∂tu+∂2

yiyj
(aiju)−∂xi

(yiu)+∂yi

(
(bijyj + ∂xi

V )u
)

= 0, (x, y, t) ∈ Rd×Rd×R,

which is obviously degenerate. Under appropriate assumptions on the coefficients, we 
are able to construct an unbounded Lyapunov function with respect to LH, the formal 
L2-adjoint of L∗

H , and hence, we can apply Theorem B to find periodic probability 
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solutions to L∗
Hu = 0. See Theorem 5.1 for more details. Besides, we use Theorem B to 

study stochastic differential inclusions in Theorem 5.2.
In the present paper, only the existence of periodic probability solutions to (1.3) is 

studied. In the forthcoming work [25], we study the uniqueness of periodic probability 
solutions to (1.3), the global dynamics of (1.3) and the ergodicity of (1.2).

The rest of the paper is organized as follows. In Section 2, we present some prelim-
inaries including the definition of measure solutions to (1.3) in general spatio-temporal 
domains, the regularity theory of measure solutions to (1.3) and a priori estimates for 
measure solutions to (1.3). Theorem A and Theorem B are proven in Section 3 and 
Section 4, respectively. Applications of Theorem B to stochastic damping Hamiltonian 
systems and stochastic differential inclusions are given in Section 5.

2. Preliminaries

In Subsection 2.1, we define measure solutions to (1.3), present some equivalent 
formalisms, and recall the regularity theory. In Subsection 2.2, we establish a priori 
estimates for measure solutions to (1.3).

2.1. Measure solutions and regularity

We first define measure solutions to (1.3). Let Q be an open and connected domain 
in U × R, and C2,1

0 (Q) be the space of continuous functions u : Q → R such that u is 
compactly supported and ∂iu, ∂2

iju and ∂tu are continuous on Q for all i, j ∈ {1, . . . , d}.

Definition 2.1. A σ-finite Borel measure μ on Q is called a measure solution to (1.3) in 
Q if

aij , V i ∈ L1
loc(Q,dμ), ∀i, j ∈ {1, . . . , d},

and L∗μ = 0 in Q in the sense that
¨

Q

Lφdμ = 0, ∀φ ∈ C2,1
0 (Q). (2.1)

If, in addition, μ admits a continuous density u in Q, then μ or u is called a weak solution
to (1.3) in Q.

Arguing as in [7, Proposition 6.1.2] and [10, Lemma 1.1], the following equivalent 
formalisms hold for (2.1) in the case Q = U ×R.

Corollary 2.1. Let μ be a measure solution to (1.3) in U × R. Suppose there is a family 
of σ-finite Borel measures {μt : t ∈ R} on U such that dμ = dμtdt. Then, the following 
conditions are equivalent to (2.1) with Q = U ×R:
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(1) for each φ ∈ C2
c (U), there exists a subset Jφ ⊂ R satisfying |R \ Jφ| = 0 such that

ˆ

U

φdμt =
ˆ

U

φdμs +
tˆ

s

ˆ

U

Lφdμτdτ, ∀s, t ∈ Jφ; (2.2)

(2) for each φ ∈ C2,1
c (U ×R), there exists a subset Jφ ⊂ R satisfying |R \ Jφ| = 0 such 

that

ˆ

U

φdμt =
ˆ

U

φdμs +
tˆ

s

ˆ

U

Lφdμτdτ, ∀s, t ∈ Jφ. (2.3)

Remark 2.1. We claim that there exists a subset J ⊂ R satisfying |R \ J | = 0 such that 
(2.2) (resp. (2.3)) holds for all φ ∈ C2

c (U) (resp. φ ∈ C2,1
c (U ×R)) and for all s, t ∈ J . In 

particular, if μ admits a continuous density in U × R, then (2.2) and (2.3) hold for all 
s, t ∈ R.

We prove the claim for (2.2); the claim for (2.3) can be proven in the same manner. 
Let D be a countable basis for C2

c (U). For each φ ∈ D, there exists Jφ ⊂ R satisfying 
|R \ Jφ| = 0 such that (2.2) holds for all s, t ∈ Jφ. Set J := ∩φ∈DJφ. Then, |R \ J | = 0
and for any s, t ∈ J , there holds

ˆ

U

φdμt =
ˆ

U

φdμs +
tˆ

s

ˆ

U

Lφdμτdτ, ∀φ ∈ D. (2.4)

Now, let φ ∈ C2
c (U). There is a sequence {φn}n∈N ⊂ D such that φn → φ in C2

c (U) as 
n → ∞ in the sense that

lim
n→∞

max
U

⎛
⎝|φn − φ| +

d∑
i=1

|∂iφn − ∂iφ| +
d∑

i,j=1
|∂2

ijφn − ∂2
ijφ|

⎞
⎠ = 0.

It follows that for each t ∈ J , there holds∣∣∣∣∣∣
ˆ

U

φndμt −
ˆ

U

φdμt

∣∣∣∣∣∣ ≤ max
U

|φn − φ| → 0 as n → ∞.

As aij , V i ∈ L1
loc(U × R, dμtdt) for all i, j ∈ {1, . . . , d}, we see that for s, t ∈ J with 

s < t

lim
n→∞

tˆ

s

ˆ

U

|Lφn − Lφ| dμtdt ≤ lim
n→∞

tˆ

s

ˆ

U

[∣∣aij(∂2
ijφn − ∂2

ijφ)
∣∣+ ∣∣V i(∂iφn − ∂iφ)

∣∣]dμtdt

= 0.
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The claim then follows from setting φ = φn in (2.4) and letting n → ∞.
For the “In particular” part, let us fix any φ ∈ C2

c (U). As μ admits a density, the 
functions t �→

´
U φdμt : R → R and (s, t) �→

´ t

s

´
U Lφdμτdτ : {(s, t) : s < t} → R are 

continuous. Since J is dense in R and (2.4) holds for all s, t ∈ J , a density argument 
shows that (2.4) holds for all s, t ∈ R.

We recall the regularity theory of measure solutions to (1.3) in U × R. Recall p >
d + 2. Let H1,p

0 (U × R) be the space of measurable functions u on U × R such that 
u(·, t) ∈ W 1,p

0 (U) for a.e. t ∈ R and the function t �→ ‖u(t, ·)‖W 1,p
0 (U) lies in Lp(R). Let 

H−1,p′(U ×R) be the dual space of H1,p
0 (U ×R), where p′ > 1 is such that 1

p + 1
p′ = 1.

Let H1,p
loc(U × R) be the space of measurable functions u on U × R such that ηu ∈

H1,p
0 (U ×R) and ∂t(ηu) ∈ H−1,p(U ×R) for each η ∈ C∞

0 (Rd+1). By [7, Theorem 6.2.2], 
there exist α > 1

p and γ > 0 (depending only on d and p) such that H1,p
loc(U × R) is 

continuously embedded into Cα− 1
p (R, Cγ(U)).

Theorem 2.1 ([5,7]). Assume (H). Suppose A = (aij) is locally uniformly positive defi-
nite. Let μ = {μt}t∈R be a measure solution to (1.3) in U ×R. Then, μ admits a positive 
density u ∈ H1,p

loc(U × R). Moreover, for each closed interval [t1, t2] ⊂⊂ [t̃1, ̃t2] and each 
open subset W ⊂⊂ W1 ⊂⊂ U , there holds

‖u‖
C

α− 1
p ([t1,t2],Cγ(W))

≤ N

t̃2ˆ

t̃1

μs(W1)ds (2.5)

for some N > 0 depending only on d, p, t1, t2, t̃1, t̃2, W, W1, λW1 , ΛW1 , 
supt∈[t̃1,t̃2] ‖aij(·, t)‖W 1,p(W1) and ‖V i‖Lp(W1×[t̃1,t̃2]).

2.2. A priori estimates

We establish measure estimates for measure solutions, with continuous and periodic 
densities, to (1.3). The proof is inspired by [11, Theorem 2].

Theorem 2.2. Assume (H). Let U ∈ C2,1
T (U ×R) be non-negative and satisfy

LU ≤ −γ in (U ×R) \ Ωρm
(2.6)

for some ρm > 0 and γ > 0. Let ρ1 > ρm be such that Ωρ1 ⊂⊂ U ×R. If μ is a measure 
solution to (1.3) in U×R and admits a density in CT (U×R), then for each ρ0 ∈ (ρm, ρ1)
there exists C∗ > 0 (depending only on ρm and ρ0) such that

μ

⎛
⎝ ⋃ (

(Ωs
ρ1

\ Ωs
ρ0

) × {s}
)⎞⎠ ≤ Cμ

⎛
⎝ ⋃ (

Ωs
ρ0

× {s}
)⎞⎠ , ∀t ∈ R, (2.7)
s∈[t,t+T ] s∈[t,t+T ]
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where C = C∗
γ

(
maxΩρ0

aij∂iU∂jU
)
.

Proof. Let {μt}t∈R be a family of Borel probability measures on U such that dμ =
dμtdt. By the assumptions on μ, Corollary 2.1 and Remark 2.1, there holds for each 
φ ∈ C2,1

c (U ×R) ∩ CT (U ×R)

t+Tˆ

t

ˆ

U

Lφdμsds =
ˆ

U

φ(x, t + T )dμt+T −
ˆ

U

φ(x, t)dμt = 0, ∀t ∈ R. (2.8)

Fix ρ0 ∈ (ρm, ρ1). Let {ζρ}ρ∈(ρ0,ρ1) be a family of smooth non-decreasing functions 
on [0, ∞) satisfying

ζρ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [0, ρm],
t, t ∈ [ρ0, ρ],
ρ+ρ1

2 , t ∈ [ρ1,∞),
and ζ ′′ρ ≤ 0 on [ρ, ρ1].

In addition, we let the functions {ζρ}ρ∈(ρ0,ρ1) coincide on [0, ρ0].
Obviously, ζρ(U) − ρ+ρ1

2 ∈ C2,1
c (U × R) ∩ CT (U × R). Setting φ = ζρ(U) − ρ+ρ1

2 in 
(2.8), we find from

L
(
ζρ(U) − ρ + ρ1

2

)
= ζ ′ρ(U)LU + ζ ′′ρ (U)aij∂iU∂jU

that

t+Tˆ

t

ˆ

U

[
ζ ′ρ(U)LU + ζ ′′ρ (U)aij∂iU∂jU

]
dμsds = 0, ∀t ∈ R. (2.9)

As ζ ′ρ ≥ 0 on [ρm, ρ1), ζ ′ρ = 1 on [ρ0, ρ] and ζ ′ρ = 0 otherwise, we obtain from (2.6) that

ζ ′ρ(U)LU ≤
{
−γ, in Ωρ \ Ωρ0 ,

0, otherwise.
(2.10)

Since (aij) is semi-positive definite, ζ ′′ρ �≡ 0 on [ρm, ρ0], ζ ′′ρ ≤ 0 on [ρ, ρ1] and ζ ′′ρ = 0
otherwise, we find

ζ ′′ρ (U)aij∂iU∂jU ≤

⎧⎨
⎩C∗

(
maxΩρ0

aij∂iU∂jU
)
, in Ωρ0 \ Ωρm

,

0, otherwise,
(2.11)

where C∗ := maxt∈[ρm,ρ0] ζ
′′
ρ (t) < ∞ is independent of ρ ∈ (ρ0, ρ1) due to the construc-

tion of {ζρ}ρ∈(ρ0,ρ1). Applying (2.10) and (2.11) to (2.9), we find
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γ

t+Tˆ

t

μs(Ωs
ρ \ Ωs

ρ0
)ds ≤ −

t+Tˆ

t

ˆ

U

ζ ′ρ(U)LUdμsds

=
t+Tˆ

t

ˆ

U

ζ ′′ρ (U)aij∂iU∂jUdμsds

≤ C∗

(
max
Ωρ0

aij∂iU∂jU

) t+Tˆ

t

μs(Ωs
ρ0

)ds, ∀ρ ∈ (ρ0, ρ1).

Letting ρ → ρ−1 in the above inequality, the conclusion follows. �
3. Proof of Theorem A

Subsection 3.1 is devoted to the study of periodic solutions to (1.3) on product spaces 
of the form Ω ×R, where Ω ⊂ U is open and bounded. The proof of Theorem A is done 
in Subsection 3.2.

3.1. Periodic solutions in bounded domains

Let Ω ⊂⊂ U be a bounded domain with smooth boundary. Denote by CT (Ω×R) the 
space of T -periodic and continuous functions on Ω ×R.

Let αij , βi ∈ CT (Ω × R) be C3 on Ω × R, namely, all of their partial derivatives up 
to the third order are continuous on Ω×R, for all i, j ∈ {1, . . . , d}. In addition, let (αij)
be uniformly positive definite on Ω×R. Consider the following eigenvalue problem with 
the reflecting boundary condition

⎧⎪⎪⎨
⎪⎪⎩
−∂tφ + ∂2

ij(αijφ) − ∂i(βiφ) = λφ in Ω ×R,

νi
(
∂j(αijφ) − βiφ

)
= 0 on ∂Ω ×R,

φ ∈ CT (Ω ×R) ∩ C2,1(Ω ×R),
(3.1)

where ν = (ν1, . . . , νd) is the unit outward normal vector field along ∂Ω, and C2,1(Ω ×R)
is the space of continuous functions u : Ω ×R → R such that ∂iu, ∂2

iju ∂tu are continuous 
on Ω ×R for all i, j ∈ {1, . . . , d}.

Definition 3.1. A number λ ∈ R is called a principal eigenvalue of the eigenvalue problem 
(3.1), if there is a non-negative and non-zero function φ ∈ CT (Ω × R) ∩ C2,1(Ω × R)
such that the pair (λ, φ) solves the problem (3.1). In this case, the function φ is called a 
principal eigenfunction associated to λ.

Theorem 3.1. 0 is an algebraically simple and isolated principal eigenvalue of the eigen-
value problem (3.1), and it is the only eigenvalue admitting a non-negative eigenfunction.
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Proof. By the parabolic regularity theory (see e.g. [33,35]), the maximum principle (see 
e.g. [40]) and the Krěın-Rutman theorem (see e.g. [32,22]), the eigenvalue problem admits 
an eigenvalue λ as in the statement of the theorem. Let φ be a non-negative eigenfunction 
associated to λ.

We show that λ = 0. Fix t ∈ R. Integrating the equation satisfied by the pair (λ, φ)
over Ω × (t, t + T ), we find

t+Tˆ

t

ˆ

Ω

−∂tφdxds +
t+Tˆ

t

ˆ

Ω

∂2
ij(αijφ) − ∂i(βiφ)dxds = λ

t+Tˆ

t

ˆ

Ω

φdxds.

Applying the divergence theorem to the second term on the left hand side, we find from 
the boundary condition satisfied by φ and the periodicity of φ that

−
t+Tˆ

t

d
ds

ˆ

Ω

φdxds +
t+Tˆ

t

ˆ

Ω

∂2
ij(αijφ) − ∂i(βiφ)dxds

= −
ˆ

Ω

φ(x, t + T )dx +
ˆ

Ω

φ(x, t)dx +
t+Tˆ

t

ˆ

∂Ω

νi
(
∂j(αijφ) − βiφ

)
dSxds = 0.

Hence, λ ́ t+T

t

´
Ωρ

φdxds = 0, which yields λ = 0. �
We recall the definition of weak solutions to (1.3) in Definition 2.1.

Corollary 3.1. Assume (H). Suppose A = (aij) is locally uniformly positive definite and 
let U be an unbounded Lyapunov function with respect to L with an essential lower bound 
ρm and a Lyapunov constant γ. Then, for any ρ > ρm, there is a weak solution u to 
(1.3) in Ωρ satisfying the following properties:

• u is a non-negative, T -periodic and Hölder continuous function on Ωρ;
• there holds 

´ t+T

t

´
Ωs

ρ
u(x, s)dxds = T for all t ∈ R;

• for any ρ0 ∈ (ρm, ρ) there exists C∗ > 0 depending only on ρm and ρ0 such that

μ

⎛
⎝ ⋃

s∈[t,t+T ]

(
(Ωs

ρ \ Ωs
ρ0

) × {s}
)⎞⎠ ≤ Cμ

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠ , ∀t ∈ R,

where dμ := udxdt and C := C∗
γ

(
maxΩρ0

aij∂iU∂jU
)
.

Proof. To highlight the dependence of L on the coefficients, we write LA,V = ∂t+aij∂2
ij+

V i∂i. Fix ρ > ρm and (x0, t0) ∈ Ωρm
. Since U satisfies (1.4), there exist a bounded subset 
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Ω ⊂ U with smooth boundary and a bounded subset Ω∗ ⊂ U such that Ω ⊂⊂ Ω∗ and 
Ωρ ⊂⊂ Ω ×R.

We first construct a sequence of smooth functions (An)n and (Vn)n to approximate 
A and V , respectively. To do so, we fix some non-negative function η ∈ C∞

0 (Rd+1)
satisfying

η(x, t) = 0 for |(x, t)| ≥ 1 and
ˆ

R

ˆ

Rd

ηdxdt = 1,

and define

ηn(x, t) = nd+1η(nx, nt), n ∈ N.

Define An := (aijn ) and Vn := (V i
n) as follows:

aijn (x, t) =
ˆ

R

ˆ

U

ηn(x− y, t− s)1Ω∗(y, s)aij(y, s)dyds, (x, t) ∈ Ω∗ ×R,

V i
n(x, t) =

ˆ

R

ˆ

U

ηn(x− y, t− s)1Ω∗(y, s)V i(y, s)dyds, (x, t) ∈ Ω∗ ×R.

It is straightforward to check that for all n � 1, An and Vn are smooth and T -periodic 
in t, and An(·, t) and Vn(·, t) are compactly supported in Ω∗ for each t ∈ R. Moreover,

tˆ

s

‖An(·, τ) −A(·, τ)‖qW 1,p(Ω) dτ → 0, ‖Vn − V ‖Lp(Ω×[s,t]) → 0 as n → ∞ (3.2)

for any q > 1 and t > s.
For each n � 1, we apply Theorem 3.1 to find a non-negative function un ∈ CT (Ω ×

R) ∩ C2,1(Ω ×R) satisfying

∂tun = ∂2
ij(aijn un) − ∂i(V i

nun) in Ω ×R, (3.3)

and the normalization

un(x0, t0) = 1. (3.4)

Since A = (aij) is locally uniformly positive definite, there are positive constants λ
and Λ depending only on Ω∗ such that

λ|ξ|2 ≤ aijn (x, t)ξiξj ≤ Λ|ξ|2, ∀(x, t) ∈ Ω ×R, ξ ∈ Rd, n � 1.

Moreover, we see from (3.2) that there exists M > 0 such that
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∥∥|∂jaijn | + |V i
n|
∥∥
Lp(Ω×[t,t+T ]) ≤ M, ∀i ∈ {1, . . . , d}, t ∈ R, n � 1.

We then apply classical results on local Hölder estimates and Harnack’s inequality (see 
e.g. [33,35]) to obtain that for each Ω∗ ⊂⊂ Ω and t ∈ R, there exist constants α ∈ (0, 1)
and C1, C2 > 0 (depending only on d, λ, Λ, M , T , Ω and Ω∗) such that

|un|α,α2 ;Ω∗×[t−T,t] ≤ C1 sup
Ω∗×[t−T,t]

un ≤ C2 inf
Ω∗×[t+T,t+2T ]

un, (3.5)

where |u|α,α2 ;Ω∗×[t−T,t] denotes the sum of the α-Hölder norm in space and the α2 -Hölder 
norm in time in the domain Ω∗ × [t − T, t].

As un is T -periodic and un(x0, t0) = 1 for each n � 1, we find for each t ∈ R, 
infΩ∗×[t+T,t+2T ] un ≤ 1 implying |un|α,α2 ;Ω∗×[t−T,t] ≤ C2. Applying the Arzelà-Ascoli 
theorem and the standard diagonal argument, we find a subsequence of {un}n, still 
denoted by {un}n, and a non-negative function u ∈ CT (Ω × R) such that un locally 
uniformly converges to u as n → ∞. By (3.5), u is Hölder continuous in Ω ×R. Moreover, 
u(x0, t0) = 1 due to the normalization (3.4). In particular, u is non-zero.

Now, we show that u is a weak solution to (1.3) in Ω × R. Multiplying (3.3) by 
φ ∈ C2,1

0 (Ω × R) and integrating the resulting equation over Ω × R, we conclude from 
the divergence theorem that

ˆ

R

ˆ

Ω

(LAn,Vn
φ)undxds = 0. (3.6)

Since ‖LAn,Vn
φ −LA,V φ‖Lp(Ω×R) → 0 as n → ∞ due to (3.2), and un uniformly converges 

to u on supp(φ) as n → ∞, we deduce
ˆ

R

ˆ

U

|LAn,Vn
φ(un − u)|dxdt

≤
(

max
supp(φ)

|un − u|
)
|supp(φ)|1− 1

p sup
n

‖LAn,Vn
φ‖Lp(Ω×R) → 0,

and
ˆ

R

ˆ

U

|LAn,Vn
φ− LA,V φ|u(x, t)dxdt

≤ ‖LAn,Vn
φ− LA,V φ‖Lp(Ω×R)

(
max

supp(φ)
u

)
|supp(φ)|1−

1
p → 0

as n → ∞. Letting n → ∞ in (3.6), we find 
´
R

´
Ω(LA,V φ)udxds = 0. Thus, u is a weak 

solution to (1.3) in Ω ×R.
Finally, we rescale u to finish the proof. Due to the periodicity of u, t �→

1 ´ t+T ´
s u(x, s)dxds is a constant function on R. Denote this constant by C̃. Set
T t Ωρ
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ũ := 1
C̃
u and dμ̃ := ũdxdt.

Clearly, ũ is a non-negative, T -periodic and Hölder continuous weak solution to (1.3) in 
Ω ×R, and hence in particular in Ωρ. From Theorem 2.2, we see that for each ρ0 ∈ (ρm, ρ)
there exists C∗ depending only on ρm and ρ0 such that

μ̃

⎛
⎝ ⋃

s∈[t,t+T ]

(
(Ωs

ρ \ Ωs
ρ0

) × {s}
)⎞⎠

≤ C∗
γ

(
max
Ωρ0

aij∂iU∂jU

)
μ̃

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠ , ∀t ∈ R.

This completes the proof. �
3.2. Proof of Theorem A

Let U be an unbounded Lyapunov function with respect to L with an essential lower 
bound ρm and a Lyapunov constant γ. The proof is done within three steps.

Step 1. We construct a weak solution μ, with a density u ∈ CT (U × R) ∩
Cα− 1

p (R, Cγ(U)), to (1.3) in U ×R.
Let {ρn}n∈N ⊂ (ρm, ∞) be increasing and satisfy limn→∞ ρn = ∞. For each n � 1, 

let un be the weak solution to (1.3) in Ωρn obtained in Corollary 3.1. Note that for each 
open set V ⊂⊂ U , there exists n0 = n0(V) such that V × R ⊂⊂ Ωρn for all n > n0. By 
Theorem 2.1, for each t ∈ R, there exists Ñ > 0 such that

|un|
C

α− 1
p
(
[t,t+T ],Cγ(V)

) ≤ Ñ , ∀n > n0. (3.7)

Applying the Arzelà-Ascoli theorem and the standard diagonal argument, we may as-
sume, without loss of generality, that un converges locally uniformly in U × R to some 
non-negative function u ∈ CT (U × R) as n → ∞. For any t ∈ R and V ⊂⊂ U , it fol-
lows easily from (3.7) that |u|

C
α− 1

p
(
[t,t+T ],Cγ(V)

) ≤ Ñ for some Ñ > 0. As t and V are 

arbitrary in R and U respectively, we deduce that u ∈ Cα− 1
p (R, Cγ(U)).

Moreover, setting dμ = dμtdt := udxdt, we conclude from Fatou’s lemma that

μ(U × [t, t + T ]) =
t+Tˆ

t

ˆ

U

u(x, s)dxds ≤ lim inf
n→∞

t+Tˆ

t

ˆ

U

un(x, s)1Ωρn
(x, s)dxds = T

for all t ∈ R. In particular, μ is σ-finite.
Note that for any φ ∈ C2,1

0 (U ×R), there exists n1 ∈ N such that supp(φ) ⊂ Ωρn for 
all n > n1. Since un is a weak solution to (1.3) in Ωρn , we find 

˜
U×R Lφundxdt = 0 for 

all n > n1. Letting n → ∞, we find
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¨

U×R

Lφudxdt = 0.

Since φ ∈ C2,1
0 (U ×R) is arbitrary, μ is a weak solution to (1.3) in U ×R.

Step 2. We claim that u is non-zero on U ×R. Otherwise, u ≡ 0, namely, un converges 
locally uniformly in U ×R to 0 as n → ∞. It follows from Corollary 3.1 that there exist 
positive constants ρ0 > ρm and C > 0 independent of n ∈ N such that

μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
(Ωs

ρn \ Ωs
ρ0

) × {s}
)⎞⎠ ≤ Cμn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠ ,

for all n � 1, where dμn = dμn
t dt = un(x, t)dxdt in Ωρn . Thus, for each t ∈ R there 

holds

T = μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρn × {s}
)⎞⎠

= μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρn \ Ωs
ρ0

)
× {s}

⎞
⎠+ μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠

≤ Cμn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠+ μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠
→ 0 as n → ∞,

which leads to a contradiction.
Step 3. We show that there is C > 0 such that 

´
U u(x, t)dx = C for all t ∈ R. Thus, 

the measure μ̃, defined by dμ̃ := 1
Cudxdt, is a periodic probability solution to (1.3).

Let us fix s ∈ R. Following the arguments in [36, Proposition 2.8], we can find a 
non-negative function Ũ ∈ C2,1

T (U ×R) satisfying

(1)
´
U Ũ(x, s)u(x, s)dx < ∞;

(2) inf(U\Un)×R Ũ → ∞ as n → ∞;
(3) LŨ ≤ 0 in (U ×R) \ Ω̃ρ̃m

for some ρ̃m > 0, where Ω̃ρ̃m
=
{
(x, t) ∈ U ×R : Ũ(x, t) <

ρ̃m
}
.

Indeed, suppose for the moment that there is a non-negative function θ ∈ C2([0, ∞))
satisfying

θ(0) = 0, lim
r→∞

θ(r) = ∞, 0 ≤ θ′(r) ≤ 1, θ′′(r) ≤ 0 and
ˆ

θ(U(x, s))u(x, s)dx < ∞.
U
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We show Ũ := θ(U) satisfies required conditions. Properties (1) and (2) follow readily. 
For (3), we see from LU ≤ −γ in (U ×R) \ Ωρm

that

LŨ = θ′(U)LU + θ′′(U)aij∂iŨ∂jŨ ≤ −γθ′(U) ≤ 0 in (U ×R) \ Ωρm
,

where we recall that Ωρm
= {(x, t) ∈ U ×R : U(x, t) < ρm}. Since Ũ satisfies (2), there 

must exist some ρ̃m > 0 such that Ωρm
⊂⊂ Ω̃ρ̃m

, which yields (3).
It remains to construct the function θ. Note that σ := μs ◦ U−1(·, s) is a finite Borel 

measure on [0, ∞), where dμs = u(x, s)dx. It is not hard to find an increasing sequence 
of numbers {zk}k∈N∪{0} satisfying

z0 = 0, zk+1 − zk ≥ zk − zk−1 ≥ 1 and σ([zk,∞)) ≤ 1
2k for all k ∈ N.

Let θ0 : [0, ∞) → [0, ∞) be linear on each interval [zk, zk+1] and satisfy θ0(zk) = k for 
all k ∈ N ∪ {0}. It is easy to check that θ0 is an σ-integrable, increasing and concave 
function on [0, ∞). Let g ∈ C1([0, ∞)) satisfy

g′(z) ≤ 0 and g(z) = θ′0(z) if z ∈
(
zk + 1

k + 3 , zk+1 −
1

k + 3

)
for all k ∈ N ∪ {0}.

The function θ(z) :=
´ z

0 g(s)ds for z ∈ [0, ∞) meets the requirements.
Next, we show that μt(U) ≥ μs(U) for all t ≥ s. We see from Step 1, Corollary 2.1

and Remark 2.1 that

ˆ

U

φ(x, t)dμt =
ˆ

U

φ(x, s)dμs +
tˆ

s

ˆ

U

Lφdμτdτ, ∀φ ∈ C2,1
c (U ×R), t > s. (3.8)

Fix ρ0 > ρ̃m and set N0 = [ρ0] +1, where [ρ0] is the integer part of ρ0. Let {ζN}N≥N0

be a family of smooth non-decreasing functions on [0, ∞) satisfying

ζN (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [0, ρ̃m],
t, t ∈ [ρ0, N ],
N + 1, t ∈ [N + 2,∞),

and ζ ′′N ≤ 0 on [N,N + 2].

In addition, we let the functions {ζN}N≥N0 coincide on [0, ρ0].
Obviously, ζN (Ũ) − (N + 1) ∈ C2,1

c (U ×R). Setting φ = ζN (Ũ) − (N + 1) in (3.8), we 
find
ˆ

U

(
ζN (Ũ) − (N + 1)

)
dμt

=
ˆ (

ζN (Ũ) − (N + 1)
)
dμs +

tˆ ˆ (
ζ ′N (Ũ)LŨ + ζ ′′N (Ũ)aij∂iŨ∂jŨ

)
dμτdτ.

(3.9)
U s U
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Since ζ ′N = 0 on [0, ρ̃m], ζ ′N ≥ 0 and LŨ ≤ 0 in (U×R) \Ω̃ρ̃m
, it follows that ζ ′N (Ũ)LŨ ≤ 0

in U ×R. Similarly, as ζ ′′N �≡ 0 on [ρ̃m, ρ0], ζ ′′N ≤ 0 on [N, N + 2] and ζ ′′N = 0 otherwise, 
we find from the non-negative definiteness of (aij) that

ζ ′′N (Ũ)aij∂iŨ∂jŨ ≤
{
C∗ supΩ̃ρ0

aij∂iŨ∂jŨ =: M, in Ωρ0 ,

0, otherwise,

where C∗ = maxt∈[ρ̃m,ρ0] ζ
′′
N is independent of N due to the construction of {ζN}N≥N0

and Ω̃ρ0 =
{
(x, t) ∈ U ×R : Ũ(x, t) < ρ0

}
. We then deduce from (3.9) that

ˆ

U

(
ζN (Ũ) − (N + 1)

)
dμt ≤

ˆ

U

(
ζN (Ũ) − (N + 1)

)
dμs + M(t− s), ∀t > s,

which gives

0 ≤
ˆ

U

ζN (Ũ)dμt ≤
ˆ

U

ζN (Ũ)dμs +(N +1) [μt(U) − μs(U)]+M(t− s), ∀t > s. (3.10)

If μt(U) < μs(U), then (N+1) [μt(U) − μs(U)] → −∞ as N → ∞, while the construction 
of Ũ yields lim supN→∞

´
U ζN (Ũ)u(x, s)dx < ∞. This leads to a contradiction. Thus, 

μt(U) ≥ μs(U) for all t > s.
Since s ∈ R is arbitrary and (μt)t∈R is T -periodic, there must hold μt(U) = μs(U) for 

all t ≥ s. Let C = μt(U). Then, C > 0 thanks to Step 2. This completes the proof.

4. Proof of Theorem B

In Subsection 4.1, we introduce the concept of weak periodic probability measures. In 
Subsection 4.2, we study the limiting properties of weak periodic probability measures 
under the weak*-topology. The proof of Theorem B is given in Subsection 4.3.

4.1. Weak periodic probability measure

We introduce the following weak version of periodic probability measures.

Definition 4.1 (Weak periodic probability measure). A σ-finite Borel measure μ on U ×R

is called a weak periodic probability measure (with period T ) if

(1) for each η ∈ Cc(R), there holds 
˜

U×R ηdμ =
´
R ηdt;

(2) for each φ ∈ Cc(U ×R) ∩ CT (U ×R), there exists Cφ ∈ R such that
¨

U×[t,t+T )

φdμ = Cφ, ∀t ∈ R.
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Let MT (U × R) be the set of all weak periodic probability measures on U × R as in 
Definition 4.1. For convenience, we introduce the following notion.

Definition 4.2. A σ-finite Borel measure μ on U ×R is said to admit t-sections, denoted 
by (μt)t∈R, if there are σ-finite Borel measures {μt, t ∈ R} on U such that dμ = dμtdt, 
namely,

¨

U×R

φ(x, t)dμ =
ˆ

R

ˆ

U

φ(x, t)dμtdt, ∀φ ∈ C0(U ×R).

The next result justifies the notion of weak periodic probability measures.

Lemma 4.1. Let μ be a σ-finite Borel measure on U ×R. If μ admits t-sections (μt)t∈R, 
then μ ∈ MT (U ×R) if and only if μt+T = μt and μt(U) = 1 for a.e. t ∈ R.

Proof. The sufficiency is obvious. We show the necessity. If μ = (μt)t∈R ∈ MT (U ×R), 
then conditions (1)-(2) in Definition 4.1 read

(1) for each η ∈ Cc(R), 
´
R η(t)μt(U)dt =

´
R ηdt;

(2) for each φ ∈ Cc(U ×R) ∩ CT (U ×R), there is a constant Cφ ∈ R such that

t+Tˆ

t

ˆ

U

φ(x, s)dμsds = Cφ, ∀t ∈ R.

Set f(t) := μt(U) for t ∈ R. We see from (1) that f ∈ L1
loc(R) and h �→

´
R η(t +

h)f(t)dt =
´
R ηdt is a constant function on R, and hence, 

´
R η′(t + h)f(t)dt = 0 for all 

h ∈ R. Since η ∈ Cc(R) is arbitrary, the distributional derivative of f is 0, implying the 
existence of some c > 0 such that f(t) = c for a.e. t ∈ R. Thus, (1) reads 

´
R cη(t +h)dt =´

R ηdt, which implies c = 1. That is, μt(U) = 1 for a.e. t ∈ R.
Let φ ∈ Cc(U), which can be seen as an element in Cc(U ×R) ∩CT (U ×R). Obviously, 

the function t �→
´
U φ(x)dμt is locally integrable. Thus, the functions t �→

´ t

0
´
U φdμτdτ

and t �→
´ t

−T

´
U φdμτ+Tdτ are absolutely continuous on R, and hence, there exist subsets 

J1
φ, J

2
φ ⊂ R satisfying |R \ J1

φ| = 0 and |R \ J2
φ| = 0 such that

d
dt

tˆ

0

ˆ

U

φdμτdτ =
ˆ

U

φdμt, ∀t ∈ J1
φ

and

d
dt

tˆ ˆ
φdμτ+Tdτ =

ˆ
φdμt+T , ∀t ∈ J2

φ.
−T U U
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It follows that for each t ∈ Jφ := J1
φ ∩ J2

φ there holds

ˆ

U

φdμt+T −
ˆ

U

φdμt = d
dt

⎛
⎝ tˆ

−T

ˆ

U

φdμτ+Tdτ −
tˆ

0

ˆ

U

φdμτdτ

⎞
⎠

= d
dt

t+Tˆ

t

ˆ

U

φdμτdτ (4.1)

= 0,

where we used (2) in the last equality.
Let D be a countable basis of Cc(U). For each φ ∈ D, there is a set Jφ ⊂ R satisfying 

|R \Jφ| = 0 such that (4.1) holds for all t ∈ Jφ. Setting J := ∩φ∈DJφ, we find |R \J | = 0
and

ˆ

U

φdμt+T =
ˆ

U

φdμt, ∀φ ∈ D, t ∈ J. (4.2)

For each φ ∈ Cc(U), there is a sequence {φn}n∈N ⊂ D such that φn converges to φ
uniformly in U as n → ∞. It then follows from (4.2) that 

´
U φ(x)dμt+T =

´
U φ(x)dμt

for all t ∈ J , which yields μt = μt+T for all t ∈ J . This completes the proof. �
The following result is a simple consequence of Lemma 4.1.

Corollary 4.1. Let μ be a σ-finite Borel measure on U × R. If μ admits a density u ∈
C(U×R), then μ ∈ MT (U×R) if and only if u ∈ CT (U×R) and satisfies 

´
U u(x, t)dx = 1

for a.e. t ∈ R.

The next result shows that any σ-finite Borel measure on U×R satisfying an additional 
condition admits t-sections.

Lemma 4.2. Let μ be a σ-finite Borel measure on U ×R satisfying
¨

U×R

ηdμ =
ˆ

R

ηdt, ∀η ∈ Cc(R).

Then, μ admits t-sections (μt)t∈R. Moreover, μt(U) = 1 for a.e. t ∈ R.

Proof. For φ ∈ Cc(U), let Lφ be the functional on Cc(R) defined by

Lφη =
¨

φ(x)η(t)dμ, ∀η ∈ Cc(R).

U×R
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Obviously, Lφ is continuous and linear. The Riesz representation theorem yields the 
existence of a signed Borel measure νφ on R such that

¨

U×R

φ(x)η(t)dμ =
ˆ

R

ηdνφ, η ∈ Cc(R). (4.3)

Moreover, νφ is a Borel measure if and only if φ is non-negative. We see from (4.3) that
∣∣∣∣∣∣
ˆ

R

η(t)dν|φ|

∣∣∣∣∣∣ ≤ |φ|∞
¨

U×R

|η|dμ = |φ|∞
ˆ

R

|η|dt, ∀η ∈ Cc(R), (4.4)

which implies that both ν|φ| and νφ have no atom. By the Radon-Nikodym theorem, there 
exists a unique fφ ∈ L1

loc(R) such that dνφ = fφ(t)dt. Clearly, fφ is non-negative if and 
only if φ is non-negative. It follows from (4.4) that |fφ|∞ ≤ |φ|∞, namely, fφ ∈ L∞(R). 
Thus, there is a subset Jφ ⊂ R satisfying |R \ Jφ| = 0 such that |fφ(t)| ≤ |φ|∞ for all 
t ∈ Jφ.

Set C+
c (U) := {φ ∈ Cc(U) : φ ≥ 0}. Let C∗(U) be the completion of Cc(U) under the 

supremum norm. It is well known that C∗(U) is a separable metric space. As subspaces 
of C∗(U), both C+

c (U) and Cc(U) are also separable.
Let D+ be a countable basis of C+

c (U). We extend D+ to be a countable basis, denoted 
by D, of Cc(U). For each φ ∈ D, there exists a subset Jφ satisfying |R \ Jφ| = 0 such 
that |fφ(t)| ≤ |φ|∞ for all t ∈ Jφ. Setting J := ∩φ∈DJφ, it follows that |R \ J | = 0 and 
|fφ(t)| ≤ |φ|∞ for all φ ∈ D and t ∈ J .

Fix t ∈ J and define the functional Kt on D by setting

Ktφ = fφ(t), ∀φ ∈ D.

Since Kt is linear and |Ktφ| ≤ |fφ(t)| ≤ |φ|∞ for all φ ∈ D, Kt can be extended to be a 
continuous and linear functional Kt on Cc(U). Moreover, Kt is positive. To see this, let 
φ ∈ C+

c (U). As D+ is dense in C+
c (U), there exists a sequence {φn}n ⊂ D+ such that 

φn uniformly converges to φ in U as n → ∞. Thus,

Kt(φ) = lim
n→∞

Kt(φn) = lim
n→∞

fφn
(t) ≥ 0.

We then apply Riesz representation theorem to find a Borel measure μt on U such that

Ktφ =
ˆ

U

φdμt, ∀φ ∈ Cc(U).

For t∗ ∈ R \J , we define μt∗ to be the zero measure on U . We claim that dμ = dμtdt, 
that is, μ admits t-sections. Indeed, for any φ ∈ D, we see from the definition of {μt, t ∈
R} that
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ˆ

U

φ(x)dμt =
{
fφ(t), t ∈ J,

0, t ∈ R \ J.

As |R \ J | = 0, we find for each η ∈ Cc(R)

ˆ

R

ˆ

U

φ(x)η(t)dμtdt =
ˆ

R

η(t)
ˆ

U

φ(x)dμtdt =
ˆ

R

η(t)fφ(t)dt,

which together with the definition of fφ imply that

ˆ

R

ˆ

U

φ(x)η(t)dμtdt =
¨

U×R

φ(x)η(t)dμ. (4.5)

Let

F =
{

n∑
k=1

ckφkηk : n ∈ N, {φk}nk=1 ⊂ D, {ηk}nk=1 ⊂ C0(R) and {ck}nk=1 ⊂ R

}
.

As D is dense in Cc(U), F is dense in C0(U ×R). We conclude from (4.5) that

ˆ

R

ˆ

U

ψ(x, t)dμtdt =
¨

U×R

ψ(x, t)dμ, ∀ψ ∈ C0(U ×R),

that is, dμ = dμtdt. Thus,

ˆ

R

ηdt =
¨

U×R

ηdμ =
ˆ

R

ημt(U)dt, ∀η ∈ Cc(R),

which implies that μt(U) = 1 for a.e. t ∈ R. This completes the proof. �
As a simple consequence of Lemma 4.1 and Lemma 4.2, we have the following result.

Corollary 4.2. Let μ ∈ MT (U ×R). Then μ admits t-sections (μt)t∈R and there exists a 
subset J ⊂ R satisfying |R \ J | = 0 such that μt+T = μt and μt(U) = 1 for all t ∈ J .

4.2. Limiting properties of weak periodic probability measures

We recall the weak*-topology for Borel measures on U ×R.

Definition 4.3. A sequence of σ-finite Borel measures {μn, n ∈ N} on U × R is said to 
converge to a σ-finite Borel measure μ on U ×R under the weak*-topology as n → ∞ if
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lim
n→∞

¨

U×R

φdμn =
¨

U×R

φdμ, ∀φ ∈ C0(U ×R).

Lemma 4.3. Let {μn, n ∈ N} and μ be σ-finite Borel measures on U × R. Assume that 
μn converges to μ under the weak*-topology as n → ∞. Then for each φ ∈ Cc(U × R), 
there is a set Jφ ⊂ R such that R \ Jφ is at most countable, in particular |R \ Jφ| = 0, 
and ¨

U×[s,t)

φdμ = lim
n→∞

¨

U×[s,t)

φdμn, ∀s, t ∈ Jφ, s < t.

Proof. Let us fix φ ∈ Cc(U × R) and consider the measures ν and {νn, n ∈ N} on R
defined by

ν(I) =
¨

U×I

φdμ, νn(I) =
¨

U×I

φdμn, I ∈ B(R),

where B(R) is the Borel σ-algebra on R. As μn converges to μ under the weak*-topology 
as n → ∞, we deduce that νn converges to ν under the weak*-topology as n → ∞, 
that is, limn→∞

´
R ηdνn =

´
R ηdν for all η ∈ Cc(R). As a measure on R, ν admits 

at most countably many atoms. Let Sφ be the set of atoms of ν. We see that if s, 
t /∈ Sφ, namely, [s, t) is a continuous set of ν, then the Portmanteau theorem implies 
that limn→∞ νn([s, t)) = ν([s, t)). Setting Jφ := R \ Sφ, the conclusion follows. �

In the next result, we show that any limiting measure under the weak*-topology of a 
sequence of measures in MT (U ×R) is periodic in the sense of Definition 4.1 (2).

Lemma 4.4. Let {μn, n ∈ N} ⊂ MT (U × R) and μ be a σ-finite Borel measure on 
U ×R. If μn converges to μ under the weak*-topology as n → ∞, then for each bounded 
φ ∈ CT (U ×R), there exists a constant Cφ ∈ R such that

¨

U×[t,t+T )

φdμ = Cφ, ∀t ∈ R. (4.6)

In particular, μ(U × (a, b)) < ∞ for all −∞ < a < b < ∞.

Proof. Clearly, it suffices to prove (4.6) for non-negative and bounded functions φ ∈
CT (U ×R).

We first prove (4.6) for non-negative functions φ ∈ Cc(U × R) ∩ CT (U × R). By 
Definition 4.1 (2), for each n ∈ N and φ ∈ Cc(U × R) ∩ CT (U × R) there is Cn,φ ∈ R

such that ¨
φdμn = Cn,φ, ∀t ∈ R.
U×[t,t+T )
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Let us fix a non-negative function φ ∈ Cc(U × R) ∩ CT (U × R) and let Jφ be as in 
Lemma 4.3. Let J̃φ := Jφ ∩ (Jφ − T ). Then |R \ J̃φ| = 0 and for any t ∈ J̃φ, we have 
t ∈ Jφ and t + T ∈ Jφ. Applying Lemma 4.3, we find some Cφ ≥ 0 such that

¨

U×[t,t+T )

φdμ = lim
n→∞

¨

U×[t,t+T )

φdμn = lim
n→∞

Cn,φ =: Cφ, (4.7)

holds for all t ∈ J̃φ.
Next, we show that (4.7) holds for all t ∈ R. Let t∗ ∈ R \ J̃φ. Since J̃φ is dense in R, 

there is an increasing sequence {tn}n∈N ⊂ J̃φ such that tn → t∗ as n → ∞. Define the 
Borel measure νφ on R by setting

νφ(I) =
¨

U×I

φdμ, ∀I ∈ B(R).

Clearly, νφ is σ-finite. Applying the dominated convergence theorem to the sequence 
t �→ 1[tn,tn+T )(t), we deduce from (4.7) that

νφ([t∗, t∗ + T )) = lim
n→∞

νφ([tn, tn + T )) = Cφ.

Hence, (4.7) holds for all t ∈ R. That is, (4.6) holds for all non-negative φ ∈ Cc(U ×R) ∩
CT (U ×R).

Finally, for any non-negative and bounded φ ∈ CT (U ×R), there is a non-decreasing 
sequence of non-negative functions {φn}n ⊂ Cc(U × R) ∩ CT (U × R) such that φn

converges locally uniformly in U × R to φ as n → ∞. As 
˜

U×[t,t+T ) φdμ is finite, we 
apply the monotone convergence theorem to find

¨

U×[t,t+T )

φdμ = lim
n→∞

¨

U×[t,t+T )

φndμ = lim
n→∞

Cφn
, ∀t ∈ R.

This completes the proof. �
4.3. Proof of Theorem B

Let U be an unbounded Lyapunov function with respect to L with an essential lower 
bound ρm and a Lyapunov constant γ. The proof is done within six steps. To highlight 
the dependence of L on A and V , we write LA,V for L.

Step 1. We construct a candidate measure on U ×R.
Since A = (aij) is semi-positive definite, the matrix A +εI is locally uniformly positive 

definite for any ε > 0, where I is the d × d identity matrix.
We identify C∞

T (U × R) with C∞(U × ST ) and write C∞
T (U × R) ≈ C∞(U × ST ), 

where ST = R/TZ. By a partition of unity (see e.g. [27]), there exist a locally finite open 
cover (Vβ)β∈B of U × ST and functions (fβ)β∈B ⊂ C∞

c (U × ST ) such that



M. Ji et al. / Journal of Functional Analysis 277 (2019) 108281 25
(1) supp(fβ) ⊂ Vβ for all β ∈ B;
(2) 0 ≤ fβ(x, t) ≤ 1 for all (x, t) ∈ U × ST and β ∈ B;
(3)

∑
β∈B fβ(x, t) = 1 for all (x, t) ∈ U × ST .

Set Cβ := γ
2(1+maxVβ

|D2U |) , where D2U denotes the Hessian of U . For n ∈ N, let

εn(x, t) := 1
n

∑
β∈B

fβ(x, t)Cβ, (x, t) ∈ U × ST .

Clearly, εn ∈ C∞(U × ST ) ≈ C∞
T (U × R) for each n. Moreover, εn converges locally 

uniformly in U ×R to 0 as n → ∞ and εn
∑d

i=1 ∂
2
iiU ≤ γ

2 in U ×R for all n ∈ N. Then, 
for each n ∈ N, writing An = (aijn ) := A + εnI, we have

LAn,V U ≤ −γ

2 in (U ×R) \ Ωρm
. (4.8)

That is, U is an unbounded Lyapunov function with respect to LAn,V for each n ∈ N

with a uniform essential lower bound ρm and a uniform Lyapunov constant γ2 .
Applying Theorem A, we find that for each n ∈ N, there exists a periodic probability 

solution μn to (1.3) with A replaced by An. We see that supn μ
n(K) < ∞ for any 

compact set K ⊂ U×R. Then, we apply [17, Corollary A2.6.V.] to conclude the existence 
of a subsequence, still denoted by {μn}n, such that μn converges to some σ-finite Borel 
measure μ on U×R under the weak*-topology as n → ∞. The measure μ is the candidate.

We apply Lemma 4.4 to conclude that for each φ ∈ Cc(U × R) ∩ CT (U × R), there 
exists Cφ ∈ R such that

¨

U×[t,t+T )

φdμ = Cφ, ∀t ∈ R. (4.9)

Step 2. We show that μ is a measure solution to (1.3) in U ×R. Since μn is a periodic 
probability solution to (1.3) with A replaced by An, there holds

¨

U×R

LAn,V φdμn = 0, ∀φ ∈ C2,1
0 (U ×R).

Fix φ ∈ C2,1
0 (U ×R). As maxsupp(φ) |LAn,V φ− LA,V φ| → 0 as n → ∞, we find

∣∣∣∣∣∣
¨

U×R

(LAn,V φ− LA,V φ)dμn

∣∣∣∣∣∣≤|LAn,V φ− LA,V φ|∞×sup
n

μn(supp(φ)) → 0 as n → ∞.

Since LA,V φ ∈ C0(U × R) and μn converges to μ under the weak*-topology as n → ∞, 
we find



26 M. Ji et al. / Journal of Functional Analysis 277 (2019) 108281
¨

U×R

LA,V φdμ = lim
n→∞

¨

U×R

LA,V φdμn.

Thus,
¨

U×R

LA,V φdμ = lim
n→∞

¨

U×R

LAn,V φdμn = 0.

Since φ ∈ C2,1
0 (U ×R) is arbitrary, we conclude that μ is a measure solution to (1.3) in 

U ×R.
Step 3. We show that μ is non-trivial. Suppose on the contrary that μ is the zero 

measure so that limn→∞ μn(K) = 0 for each compact set K ⊂ U ×R.
Fix ρ0 > ρm. Due to (4.8), we can apply Theorem 2.2 to each μn on Ωρ1 for ρ1 ∈

(ρ0, ∞) and then take ρ1 → ∞ to find

μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
(U \ Ωs

ρ0
) × {s}

)⎞⎠

≤ C∗
γ

(
max
Ωρ0

aijn ∂iU∂jU

)
μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠ , ∀t ∈ R,

where C∗ > 0 depends only on ρm and ρ0.
As An converges locally uniformly in U ×R to A as n → ∞, there holds

max
Ωρ0

aijn ∂iU∂jU → max
Ωρ0

aij∂iU∂jU as n → ∞.

Thus, there is C > 0 independent of n such that

μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
(U \ Ωs

ρ0
) × {s}

)⎞⎠ ≤ Cμn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠ , ∀t ∈ R.

Then, for each t ∈ R,

T = μn

⎛
⎝ ⋃

s∈[t,t+T ]

(U × {s})

⎞
⎠

= μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
U \ Ωs

ρ0

)
× {s}

⎞
⎠+ μn

⎛
⎝ ⋃

s∈[t,t+T ]

(
Ωs

ρ0
× {s}

)⎞⎠

≤ (1 + C)μn

⎛
⎝ ⋃ (

Ωs
ρ0

× {s}
)⎞⎠
s∈[t,t+T ]
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→ 0 as n → ∞,

which leads to a contradiction.
Step 4. We show that for any η1, η2 ∈ Cc(R) with max supp(η1) < min supp(η2), there 

holds
¨

U×R

φ(x, t2)η2(t2)dμ
ˆ

R

η1(t1)dt1

=
¨

U×R

φ(x, t1)η1(t1)dμ
ˆ

R

η2(t2)dt2 +
ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμ

⎤
⎥⎦ η1(t1)dt1η2(t2)dt2.

(4.10)

As μn, with a continuous density, is a periodic probability solution to (1.3) with A
replaced by An, we see from Corollary 2.1 and Remark 2.1 that for each φ ∈ C2,1

c (U×R), 
there holds

ˆ

U

φ(x, t2)dμn
t2 =

ˆ

U

φ(x, t1)dμn
t1 +

t2ˆ

t1

ˆ

U

LAn,V φdμn
τ dτ, ∀t1 < t2.

Multiplying the above equality by η1(t1) and then integrating the resulting equality with 
respect to t1 over R, we arrive at

ˆ

R

⎡
⎣ˆ
U

φ(x, t2)dμn
t2

⎤
⎦ η1(t1)dt1

=
ˆ

R

⎡
⎣ˆ
U

φ(x, t1)dμn
t1

⎤
⎦ η1(t1)dt1

+
ˆ

R

⎡
⎣ t2ˆ

t1

ˆ

U

LAn,V φdμn
τ dτ

⎤
⎦ η1(t1)dt1, ∀t2 > max supp(η1).

Multiplying the above equality by η2(t2) and then integrating the resulting equality with 
respect to t2 over R, we deduce

ˆ

R

ˆ

R

⎡
⎣ˆ
U

φ(x, t2)dμn
t2

⎤
⎦ η1(t1)dt1η2(t2)dt2

=
ˆ ⎡
⎣ˆ φ(x, t1)dμn

t1

⎤
⎦ η1(t1)dt1η2(t2)dt2
R U
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+
ˆ

R

ˆ

R

⎡
⎣ t2ˆ

t1

ˆ

U

LAn,V φdμn
τ dτ

⎤
⎦ η1(t1)dt1η2(t2)dt2,

that is,
¨

U×R

φ(x, t2)η2(t2)dμn

ˆ

R

η1(t1)dt1

=
¨

U×R

φ(x, t1)η1(t1)dμn

ˆ

R

η2(t2)dt2

+
ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

(LAn,V φ− LA,V φ)dμn

⎤
⎥⎦ η1(t1)dt1η2(t2)dt2

+
ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμn

⎤
⎥⎦ η1(t1)dt1η2(t2)dt2.

(4.11)

Since μn converges to μ under the weak*-topology as n → ∞, we find
¨

U×R

φ(x, t2)η2(t2)dμn →
¨

U×R

φ(x, t2)η2(t2)dμ

and
¨

U×R

φ(x, t1)η1(t1)dμn →
¨

U×R

φ(x, t1)η1(t1)dμ,

as n → ∞. Since
¨

U×[t1,t2)

|LAn,V φ− LA,V φ|dμn ≤ |LAn,V φ− LA,V φ|∞ × (t2 − t1),

we find

lim
n→∞

ˆ

R

ˆ

R

¨

U×[t1,t2)

|LAn,V φ− LA,V φ|dμnη1(t1)dt1η2(t2)dt2 = 0.

As LA,V φ ∈ Cc(U × R), we apply Lemma 4.3 to find a subset set J ⊂ R (depending 
on LA,V φ) satisfying |R \ J | = 0 such that

lim
n→∞

¨
LA,V φdμn =

¨
LA,V φdμ, ∀t1, t2 ∈ J with t1 < t2,
U×[t1,t2) U×[t1,t2)
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which enables us to use the dominated convergence theorem to obtain

lim
n→∞

ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμn

⎤
⎥⎦ η1(t1)dt1η2(t2)dt2

= lim
n→∞

ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμn

⎤
⎥⎦1{(s,t)∈R×R:s<t}(t1, t2)η1(t1)dt1η2(t2)dt2

=
ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμ

⎤
⎥⎦1{(s,t)∈R×R:s<t}(t1, t2)η1(t1)dt1η2(t2)dt2

=
ˆ

R

ˆ

R

⎡
⎢⎣ ¨

U×[t1,t2)

LA,V φdμ

⎤
⎥⎦ η1(t1)dt1η2(t2)dt2.

Thus, letting n → ∞ in (4.11), we find (4.10).
Step 5. We show the existence of some C > 0 such that

¨

U×R

ηdμ = C

ˆ

R

ηdt, ∀η ∈ Cc(R). (4.12)

Clearly, it suffices to show that (4.12) holds for any η ∈ C+
c (R), where C+

c (R) is the 
set of non-negative functions in Cc(R).

We first claim that for any η ∈ C+
c (R) satisfying |supp(η)| < T , there holds

¨

U×R

ηdμ ≤
¨

U×R

η(· − δ)dμ, ∀δ > T. (4.13)

To see this, let us fix s ∈ R and h ∈ (0, T ). Arguing as in Step 3 in the proof of 
Theorem A, we find a non-negative function Ũ ∈ C2,1

T (U ×R) satisfying

(1)
˜

U×[s,s+h] Ũdμ < ∞;
(2) inf(U\Un)×R Ũ → ∞ as n → ∞;
(3) LA,V Ũ ≤ 0 in (U × R) \ Ω̃ρ̃m

for some ρ̃m > 0, where Ω̃ρ̃m
=
{
(x, t) ∈ U × R :

Ũ(x, t) < ρ̃m
}
.

Fix ρ0 > ρ̃m and set N0 = [ρ0] +1, where [ρ0] is the integer part of ρ0. Let {ζN}N≥N0

be a family of smooth and non-decreasing functions on [0, ∞) satisfying
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ζN (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [0, ρ̃m],
t, t ∈ [ρ0, N ],
N + 1, t ∈ [N + 2,∞),

and ζ ′′N ≤ 0 on [N,N + 2].

In addition, we let the functions {ζN}N≥N0 coincide on [0, ρ0].
Obviously, ζN (Ũ) − (N + 1) ∈ C2,1

c (U ×R). Let η ∈ Cc(R) be non-negative, non-zero 
and satisfy supp(η) ⊂ [s, s + h]. Setting φ = ζN (Ũ) − (N + 1) in (4.10) with η1 = η and 
η2 = η(· − δ) for δ > T , we find

¨

U×R

[
ζN (Ũ) − (N + 1)

]
η2dμ

ˆ

R

η1(t1)dt1

=
¨

U×R

[
ζN (Ũ) − (N + 1)

]
η1dμ

ˆ

R

η2(t2)dt2 (4.14)

+
ˆ

R

ˆ

R

⎛
⎜⎝ ¨

U×[t1,t2)

[
ζ ′N (Ũ)LA,V Ũ + ζ ′′N (Ũ)aij∂iŨ∂jŨ

]
dμ

⎞
⎟⎠ η1(t1)dt1η2(t2)dt2.

Since ζ ′N = 0 on [0, ρ̃m], ζ ′N ≥ 0 and LŨ ≤ 0 in (U ×R) \ Ω̃ρ̃m
, we have ζ ′N (Ũ)LŨ ≤ 0

in U × R. As ζ ′′N �≡ 0 on [ρ̃m, ρ0], ζ ′′N ≤ 0 on [N, N + 2] and ζ ′′N = 0 otherwise, we find 
from the non-negative definiteness of (aij) that

ζ ′′N (Ũ)aij∂iŨ∂jŨ ≤
{
C∗ supΩ̃ρ0

aij∂iŨ∂jŨ =: M, in Ωρ0 ,

0, otherwise,

where C∗ = maxt∈[ρ̃m,ρ0] ζ
′′
N is independent of N due to the construction of {ζN}N≥N0

and Ω̃ρ0 =
{
(x, t) ∈ U ×R : Ũ(x, t) < ρ0

}
. As η1 and η2 are compactly supported, we see 

from Lemma 4.4 that there is C̃ > 0 such that μ(U × [t1, t2)) ≤ C̃ for all t1 ∈ supp(η1)
and t2 ∈ supp(η2). We then deduce from (4.14) that

¨

U×R

[
ζN (Ũ) − (N + 1)

]
η2dμ

ˆ

R

η1(t1)dt1

≤
¨

U×R

[
ζN (Ũ) − (N + 1)

]
η1dμ

ˆ

R

η2(t2)dt2 + MC̃

ˆ

R

ˆ

R

η1(t1)dt1η2(t2)dt2,

which gives

¨
ζN (Ũ)η2dμ

ˆ
η1(t1)dt1
U×R R
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≤
¨

U×R

ζN (Ũ)η1dμ
ˆ

R

η2(t2)dt2 + (N + 1)

⎛
⎝¨

U×R

η2dμ
ˆ

R

η1dt−
¨

U×R

η1dμ
ˆ

R

η2dt

⎞
⎠

+ MC̃

ˆ

R

ˆ

R

η1(t1)dt1η2(t2)dt2.

Since 
´
R η1dt =

´
R η2dt =

´
R ηdt > 0, we find

0 ≤
¨

U×R

ζN (Ũ)η2dμ ≤
¨

U×R

ζN (Ũ)η1dμ + (N + 1)

⎛
⎝¨

U×R

η2dμ−
¨

U×R

η1dμ

⎞
⎠

+ MC̃

ˆ

R

ηdt

(4.15)

As Ũ is integrable with respect to μ over U × [s, s + h], there holds
lim supN→∞

˜
U×R ζN (Ũ)η1dμ < ∞. If 

˜
U×R η1dμ >

˜
U×R η2dμ, a contradiction is 

easily derived by letting N → ∞ in (4.15). Thus, 
˜

U×R η1dμ ≤
˜

U×R η2dμ.
As s ∈ R and h ∈ (0, T ) are arbitrary, we see that for any η ∈ C+

c (R) satisfying 
|supp(η)| < T , there holds (4.13).

Next we claim that for any η ∈ C+
c (R) satisfying |supp(η)| < T , there holds

¨

U×R

ηdμ =
¨

U×R

η(· − δ)dμ, ∀δ > T. (4.16)

Let η ∈ C+
c (R) satisfy |supp(η)| < T and δ > T . Let k0 be a positive integer such that 

k0T − δ > T . Applying (4.13) to η and η(· − δ) respectively, we find
¨

U×R

ηdμ ≤
¨

U×R

η(· − δ)dμ ≤
¨

U×R

η(· − k0T )dμ.

The claim follows if we can show
¨

U×R

ηdμ =
¨

U×R

η(· − k0T )dμ. (4.17)

We show (4.17). Let [a, b] satisfy b − a < T and supp(η) ⊂ [a, b]. Define η̃ ∈ CT (R) by 
setting

η̃(t) =
{
η(t− kT ), t ∈ [a + kT, b + kT ] and k ∈ Z

0, t ∈ R \
⋃

k∈Z[a + kT, b + kT ].

It is straightforward to check that
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¨

U×[a,a+T )

η̃dμ =
¨

U×R

ηdμ and
¨

U×[a+k0T,a+(k0+1)T )

η̃dμ =
¨

U×R

η(· − k0T )dμ

By Lemma 4.4, there holds
¨

U×[a,a+T )

η̃dμ =
¨

U×[a+k0T,a+(k0+1)T )

η̃dμ,

which indicates 
˜

U×R η(t)dμ =
˜

U×R η(t − k0T )dμ. The claim thus follows.
Now we show that (4.16) actually holds for all η ∈ C+

c (R) and δ ∈ R, namely,
¨

U×R

ηdμ =
¨

U×R

η(· − δ)dμ, ∀η ∈ C+
c (R), δ ∈ R. (4.18)

Let η ∈ C+
c (R). By a partition of unity (see e.g. [27]), there exists a locally finite open 

cover {Iβ}β on R and functions {fβ}β satisfying

• for each β, Iβ is an open interval satisfying |Iβ | < T ;
• supp(fβ) ⊂ Iβ and 

∑
β fβ(t) = 1 for t ∈ R

Define ηβ := ηfβ . Then ηβ ∈ C+
c (R) and |supp(ηβ)| < T . Applying (4.16) to each ηβ

and then summarizing the resulting equalities, we find

∑
β

¨

U×R

ηβdμ =
∑
β

¨

U×R

ηβ(· − δ)dμ, ∀δ > T.

Applying Fubini’s theorem, we find
¨

U×R

ηdμ =
¨

U×R

η(· − δ)dμ, ∀δ > T. (4.19)

For δ ≤ T , let δ1 > T . We then apply (4.19) to find
¨

U×R

η(· − δ)dμ =
¨

U×R

η(· − δ − δ1)dμ =
¨

U×R

ηdμ.

Thus, (4.18) holds.
Finally, we show the existence of some C > 0 such that (4.12) holds. Let us consider 

the functional L on Cc(R) defined by

Lη =
¨

ηdμ, η ∈ Cc(R).

U×R



M. Ji et al. / Journal of Functional Analysis 277 (2019) 108281 33
Clearly, L is linear, continuous and positive. Applying Riesz representation theorem, 
there exists a σ-finite Borel measure ν on R such that 

´
R ηdν =

˜
U×R ηdμ for all 

η ∈ Cc(R). It follows from (4.18) that
ˆ

R

ηdν =
ˆ

R

η(· − δ)dν, ∀η ∈ Cc(R), δ ∈ R,

which implies that ν is translation-invariant. By [18, Theorem 0.1], there is a constant 
C ≥ 0 such that dν = Cdt leading to 

˜
U×R ηdμ = C

´
R ηdt for all η ∈ Cc(R). As μ is 

non-trivial, it follows that C > 0.
Step 6. Let C > 0 be as in (4.12). Define μ̃ := 1

Cμ. It follows from (4.12) and (4.9)
that μ̃ ∈ MT (U × R). We show that μ̃ admits t-sections (μ̃t)t∈R satisfying μ̃t = μ̃t+T

and μ̃t(U) = 1 for all t ∈ R.
Applying Corollary 4.2, we find μ̃ admits t-sections (μ̃t)t∈R satisfying μ̃t = μ̃t+T and 

μ̃t(U) = 1 for all t ∈ J0, where J0 ⊂ R satisfies |R \ J0| = 0.
By Step 2, μ̃ (or equivalently μ) is a measure solution to (1.3) in U×R. By Corollary 2.1

and Remark 2.1, we find a subset J̃ ⊂ R satisfying |R \ J̃ | = 0 such that

ˆ

U

φ(x)dμ̃t =
ˆ

U

φ(x)dμ̃s +
tˆ

s

ˆ

U

LA,V φdμ̃τdτ, ∀φ ∈ C2
c (U) and s, t ∈ J̃ . (4.20)

Since LA,V φ ∈ Cc(U) is bounded, we see from (4.20) that
∣∣∣∣∣∣
ˆ

U

φ(x)dμ̃t −
ˆ

U

φ(x)dμ̃s

∣∣∣∣∣∣ ≤ |LA,V φ|∞ |t− s|, ∀s, t ∈ J̃ .

Thus, the function t �→
´
U φ(x)dμ̃t : J̃ → R has a unique periodic and continuous 

extension to R. We denote this extension by Fφ.
For each t∗ ∈ R \ J̃ , let us consider the functional Kt∗ on Cc(U) defined by

Kt∗φ = Fφ(t∗), φ ∈ Cc(U).

As |Fφ(t∗)| = | limJ̃�t→t∗

´
U φ(x)dμ̃t| ≤ |φ|∞, we see that Kt∗ is linear, continuous and 

positive. Applying Riesz representation theorem, we find a σ-finite Borel measure ν̃t∗
satisfying

ˆ

U

φdν̃t∗ = Kt∗(φ), ∀φ ∈ Cc(U).

Redefine μ̃t∗ := νt∗ . We see from 
´
U φ(x)dμ̃t∗ = Fφ(t∗) = limJ̃�t→t∗

´
U φ(x)dμt that 

(4.20) holds for all s, t ∈ R. Clearly μ̃t = μ̃t+T for all t ∈ R and μ̃t(U) = 1 for t ∈ J0.



34 M. Ji et al. / Journal of Functional Analysis 277 (2019) 108281
Note that the arguments in Step 3 in the proof of Theorem A do not require (aij) to 
be non-degenerate. Thus, we can follow the lines to argue that μ̃t(U) = 1 for all t ∈ R.

This completes the proof.

5. Applications

In this section, we apply our results to study stochastic damping Hamiltonian systems 
and stochastic differential inclusions in Subsection 5.1 and Subsection 5.2, respectively.

5.1. Stochastic damping Hamiltonian system

Consider the following stochastic damping Hamiltonian system:

{
dx = ydt,
dy = − [b(x, y)y + ∇V (x, t)] dt + σ(x, y, t)dWt,

(x, y) ∈ Rd ×Rd, (5.1)

where the damping b = (bij) : Rd × Rd �→ Rd×d is continuous, the potential V : Rd ×
R �→ (0, ∞) is twice continuously differentiable in its first variable and continuously 
differentiable and T -periodic in its second variable, the noise intensity σ : Rd×Rd×R �→
Rd×m belongs to C(R, W 1,p

loc (Rd × Rd)) and is T -periodic in its third variable, where 
p > d + 2 and m ≥ d are fixed, and (Wt)t∈R is the standard m-dimensional Wiener 
process.

The Fokker-Planck equation associated to (5.1) reads

L∗
Hu := − ∂tu + ∂2

yiyj
(aiju) − ∂xi

(yiu)j
+ ∂yi

(
(bijy + ∂xi

V )u
)

= 0, (x, y, t) ∈ Rd ×Rd ×R, (5.2)

where the diffusion matrix (aij) := σσ�

2 is semi-positive definite. Let

LH := ∂t + aij∂2
yiyj

+ yi∂xi
− (bijyj + ∂xi

V )∂yi

be the L2-formal adjoint of L∗
H .

We make the following assumptions on the coefficients.

(H1) There is b0 > 0 such that bijyiyj ≥ b0|y|2 for all y ∈ Rd.
(H2) The functions σ and ∂tV are uniformly bounded on Rd × Rd × R and Rd × R, 

respectively.
(H3) There exists a lower bounded function Φ ∈ C2(Rd) such that

sup
(x,y)∈Rd×Rd

d∑
i,j=1

∣∣∣∣−bji(x, y) xj

|x| + ∂xi
Φ(x)

∣∣∣∣ < ∞.
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(H4) ∇xV · x
|x| → ∞ as |x| → ∞.

We remark that (H1) says that the system (5.1) is actually damped. When b(x, y) is 
bounded, the function Φ in (H3) can be taken to be 0.

Theorem 5.1. Suppose (H1)-(H4). Then, (5.2) admits a periodic probability solution.

Proof. We first follow [43,13] to construct an unbounded Lyapunov function with respect 
to LH . Define

E(x, y, t) = |y|2
2 + V (x, t), (x, y, t) ∈ Rd ×Rd ×R,

G(x, y) = η(|x|)x · y
|x| , (x, y) ∈ Rd ×Rd,

where η ∈ C∞([0, ∞)) satisfies

η(t) =
{

0, t ≤ 1
2 ,

1, t > 1.

Let α, β > 0 (to be chosen) and define

U(x, y, t) = exp {αE(x, y, t) + β (G(x, y) + Φ(x))} , (x, y, t) ∈ Rd ×Rd ×R,

where Φ is as in (H3). Clearly, U ∈ C2,1
T (Rd × Rd × R) is positive and satisfies 

supt∈R U(x, y, t) → ∞ as |x| +|y| → ∞. For the last property of U , the lower boundedness 
of Φ is used. In particular, U satisfies (1.4).

We claim the existence of some γ > 0 such that

sup
t∈R

LHU(x, y, t) ≤ −γ, ∀|x| + |y| � 1, (5.3)

which implies that U is an unbounded Lyapunov function with respect to L. We compute

LHU

U
= αLHE + βLH(G + Φ) + aij (α∂yi

E + β∂yi
G)

(
α∂yj

E + β∂yj
G
)

= αLHE + βLH(G + Φ) + aij
(
αyi + β

xi

|x|

)(
αyj + β

xj

|x|

)

= αLHE + βLH(G + Φ) + α2aijyiyj + 2αβaij xiyj
|x| + β2aij

xixj

|x|2 ,

∀|x| > 1 and y ∈ Rd.
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Direct calculations show that

LHE = ∂tV − bijyiyj +
d∑

i=1
aii,

LHΦ = yi∂xi
Φ,

LHG = LH

(
x · y
|x|

)
= −

(
bijyj + ∂xi

V
)
· xi

|x| + |y|2
|x| − xixjyiyj

|x|3 , ∀|x| > 1 and y ∈ Rd.

As 
∑

ij xixjyiyj = [
∑

i(xiyi)]2 ≥ 0, we see that

LHG ≤ −
(
bijyj + ∂xi

V
)
· xi

|x| + |y|2, ∀|x| > 1 and y ∈ Rd.

Thus,

LHU

U
≤ α

(
∂tV − bijyiyj +

d∑
i=1

aii

)

+ β

[
−
(
bijyj + ∂xi

V
)
· xi

|x| + |y|2 + yi∂xi
Φ
]

+ α2aijyiyj + 2αβaij xiyj
|x| + β2aij

xixj

|x|2 , ∀|x| > 1 and y ∈ Rd.

Setting

(I) := −αbijyiyj + β

(
−bji

xj

|x| + ∂xi
Φ
)
yi + β|y|2 + α2aijyiyj + 2αβaij xiyj

|x| ,

(II) := α∂tV + α
d∑

i=1
aii − β∂xi

V
xi

|x| + β2aij
xixj

|x|2 ,

we find LHU
U ≤ (I) + (II).

Set

M1 := sup
Rd×Rd×R

|σσ�|
2 , M2 := sup

Rd×R
|∂tV | and

M3 := sup
Rd×Rd

d∑
i,j=1

∣∣∣∣−bji(x, y) xj

|x| + ∂xi
Φ(x)

∣∣∣∣ .
Due to (H2) and (H4), M1, M2 and M3 are finite. For (I), we see from (H1) and the 
definitions of M1, M2 and M3 that
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(I) ≤ −αb0|y|2 + βM3|y| + β|y|2 + α2M1|y|2 + 2αβM1|y|
≤ (−αb0 + α2M1 + β)|y|2 + βM3|y| + 2αβM1|y|.

Let us fix 0 < α < b0
M1

and then choose β > 0 so small that −αb0 + α2M1 + β < 0. It is 
clear that there exists δ1 > 0 such that (I) ≤ −1 for all |y| ≥ δ1. Similarly, we find

(II) ≤ αM2 + α
√
dM1 + β2M1 − β∂xi

V
xi

|x| .

It is easy to see from (H4) that there is δ2 > 1 such that (II) ≤ −1 for |x| ≥ δ2. Thus,

LHU

U
≤ −2, ∀(x, y, t) ∈ {(x, y, t) : |x| ≥ δ1, |y| ≥ δ2} =: U∗,

which implies that

LHU ≤ −γ on U∗,

where γ = 2 infU∗ U > 0. This proves the claim (5.3).
Thus, we apply Theorem B to find a periodic probability solution to (5.2). �

5.2. Stochastic differential inclusion

Let (Ω, F , {Ft}t∈R, P ) be a filtered probability space satisfying the usual conditions. 
Let Cl(Rd) and Cl(Rd×m) denote the class of all closed subsets in Rd and Rd×m, re-
spectively.

We consider the following stochastic differential inclusion (SDI)

dx ∈ B(x, t)dt + Σ(x, t)dWt, (x, t) ∈ U ×R, (5.4)

where B : U × R → Cl(Rd) and Σ : U × R → Cl(Rd×m) are set-valued functions and 
(Wt)t∈R is the standard m-dimensional Wiener process. We assume both B and Σ are 
T -periodic in their second variables.

A stochastic process x = (xt)t∈R adapted to (Ft)t∈R is called a solution to (5.4) if for 
any s < t, there holds

xt − xs ∈
tˆ

s

B(xτ , τ)dτ +
tˆ

s

Σ(xτ , τ)dWτ , P -a.s.. (5.5)

We refer the reader to [30,31] for the definition of the integrals on the right hand side of 
(5.5). It is worthwhile to point out that if there are continuous selections b and σ from 
B and Σ, respectively, then a solution x = (xt)t∈R to the SDE

dx = b(x, t)dt + σ(x, t)dWt, x ∈ U
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must be a solution to (5.4). According to this, we can study the long-time behavior of 
the distribution of x = (xt)t∈R. Given this, we define periodic probability solutions to 
(5.4) as follows.

Definition 5.1. A σ-finite Borel measure μ is called a periodic probability solution to (5.4)
if there are T -periodic selections b = (bi) ∈ B and σ ∈ Σ such that μ is a periodic 
probability solution to the Fokker-Planck equation

∂tu = ∂2
ij(aiju) − ∂i(biu), (x, t) ∈ U ×R,

where A = (aij) = σσ�

2 .

Definition 5.2. A non-negative function U ∈ C2,1
T (U × R) is called an unbounded Lya-

punov function for (5.4) if U is an unbounded Lyapunov function with respect to LA,b

for all T -periodic selections σ and b from Σ and B, respectively, where A = σσ�

2 .

We recall the following definitions from [3].

Definition 5.3. Let X be a Polish space, and F : U ×R → 2X be a set-valued function.

(1) F is called lower semi-continuous if for each fixed (x0, t0) ∈ U × R, the following 
holds: for any y0 ∈ F (x0, t0) and any neighborhood Ny0 of y0 in X, there is a 
neighborhood N(x0,t0) of (x0, t0) such that F (x, t) ∩Ny0 �= ∅ for all (x, t) ∈ Nx0,t0 .

(2) F is called Lipschitz continuous in Q ⊂ U ×R if there is LQ > 0 such that

sup
yi∈F (xi,ti),i=1,2

|y1 − y2| ≤ LQ|(x1, t1) − (x2, t2)|, ∀(xi, ti) ∈ Q, i = 1, 2.

F is called locally Lipschitz continuous in U × R if for any bounded subdomain 
Q ⊂⊂ U ×R, F is Lipschitz continuous in Q.

Lemma 5.1. Let B be a lower semi-continuous function from U ×R to the class of closed 
convex subsets of Rd and be T -periodic in its second variable. Then, a function b ∈
CT (U ×R) can be selected from B.

Proof. Arguing as in the proof of the Michael’s selection theorem (e.g., [3, Section 1.11, 
Theorem 1]), we can construct a sequence of continuous functions {bn}n on U × R

such that bn converges locally uniformly to some b ∈ C(U × R) as n → ∞, and 
sup(x,t)∈U×R d(bn(x, t), B(x, t)) ≤ 2−n for all n � 1. Since B is periodic, we can cer-
tainly construct bn to be T -periodic in its second viable for each n. As a result, b is 
T -periodic in its second variable. �
Lemma 5.2. Let Σ be a locally Lipschitz continuous function from U ×R to the class of 
compact convex subsets of Rd×m and be T -periodic in its second variable. Then, a locally 
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Lipschitz continuous function σ on U × R that is T -periodic in its second variable can 
be selected from Σ.

Proof. Let Ũ ⊂ U be a bounded subdomain. We claim that if Σ̃ is a Lipschitz continuous 
function from Ũ ×R to the class of compact convex subsets of Rd×m, and is T -periodic 
in its second variable, then a Lipschitz continuous function σ̃ on Ũ ×R that is T -periodic 
in its second variable can be selected from Σ̃. Indeed, as in the proof of the barycentric 
selection theorem (e.g., [3, Theorem 1, Section 1.9]), the function

σ̃(x, t) := 1
λd×m(Σ̃(x, t) + B0(1))

¨

Σ̃(x,t)+B0(1)

ydλd×m(y), (x, t) ∈ Ũ ×R

is a Lipschitz continuous selection from Σ̃, where λd×m is the Lebesgue measure on Rd×m

and B0(1) is the unit ball in Rd×m centered at the origin. It is clear that σ̃ is T -periodic 
in the second variable.

Now, let {Un}n∈N be an increasing sequence of bounded domains in U satisfying 
U := ∪∞

n=1Un. For each n ∈ N, define Σn(x, t) = Σ(x, t) for all (x, t) ∈ Un × R. Then 
Σn is Lipschitz continuous in Un × R due to the T -periodicity in its second variable. 
Applying the claim, we see that there is a T -periodic Lipschitz continuous selection σn

from Σn. It is clear that σm = σn on Un × R for m > n. Then, σ(x, t) := σn(x, t) for 
(x, t) ∈ Un ×R and n ∈ N, is a T -periodic locally Lipschitz continuous selection from Σ
as required. �
Theorem 5.2. Let B be a lower semi-continuous function from U×R to the class of closed 
convex subsets in Rd, and Σ be a locally Lipschitz continuous function from U × R to 
the class of compact convex subsets of Rd×m. Suppose B and Σ are T -periodic in their 
second variables. If (5.4) admits an unbounded Lyapunov function U , then (5.4) admits 
a periodic probability solution.

Proof. Applying Lemma 5.1 and Lemma 5.2, respectively, we see that there exist a 
T -periodic continuous selection b from B and a T -periodic locally Lipschitz continuous 
selection σ from Σ.

Clearly, A = (aij) = σσ�

2 is semi-positive definite and locally Lipschitz continuous. 
Thus, we apply Theorem B to conclude the existence of a periodic probability solution 
to (5.4). �
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