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NOISE-VANISHING CONCENTRATION AND LIMIT

BEHAVIORS OF PERIODIC PROBABILITY SOLUTIONS
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Abstract. The present paper is devoted to the investigation of noisy
impacts on the dynamics of periodic ordinary differential equations
(ODEs). To do so, we consider a family of stochastic differential equa-
tions resulting from a periodic ODE perturbed by small white noises, and
study noise-vanishing behaviors of their “steady states” that are charac-
terized by periodic probability solutions of the associated Fokker-Plank
equations. By establishing noise-vanishing concentration estimates of
periodic probability solutions, we prove that any limit measure of pe-
riodic probability solutions must be a periodically invariant measure of
the ODE and that the global periodic attractor of a dissipative ODE
is stable under general small noise perturbations. For local periodic at-
tractors (resp. local periodic repellers), small noises are constructed to
stabilize (resp. de-stabilize) them. Our study provides an elementary
step towards the understanding of stochastic stability of periodic ODEs.

1. Introduction

In the traditional mathematical modelling of real systems arising in
biology, ecology, engineering, physics, etc., ordinary differential equations
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(ODEs) of the form

ẋ = V (x, t), x ∈ U , (1.1)

where U is an open and connected subset of Rd for some d ∈ N and the
vector field V : U × R → Rd is T -periodic in t for some T > 0, are often
created according to certain biological, chemical or physical laws. The pe-
riodic time-dependence in (1.1) is frequently used to model time recurrence
or seasonal variations. However, many real systems are subject to small
perturbations either from extrinsic environments or intrinsic uncertainties.
Such small perturbations could have great impact on the dynamics of these
systems. Thus, investigating the stability of (1.1) under small perturbations
is a fundamental issue of both realistic and theoretical significance. This
problem has been extensively studied in the classical perturbation theory of
dynamical systems that particularly deals with systems under small deter-
ministic perturbations (see [18, 41, 10] and references therein).

As for (1.1) under small noise perturbations, its investigation has been
attracting a lot of attention in recent years due partly to its power in studying
noise-driven phenomena in natural sciences (see e.g. [40, 37, 17, 16, 7, 39])
and modelling complex processes such as chemical reactions (see e.g. [13, 1]),
weather-climate systems (see e.g. [19, 29, 28]) and complex fluids (see e.g.
[32, 38]). In literature, small noise perturbations are often incorporated into
(1.1) as small multiplicative white noises, leading to the following stochastic
differential equation (SDE) of Itô type:

dx = V (x, t)dt+ εG(x, t)dWt, x ∈ U , (1.2)

where the small parameter ε > 0 stands for the noise intensity, the noise
matrix G : U × R→ Rd×m is T -periodic in t for m ≥ d and W = (Wt)t∈R is
a standard m-dimensional Wiener process.

The stability of (1.1) under small noise perturbations can be considered
from either a geometric or statistical viewpoint. The former focuses on the
stochastic stability of “compact” invariant sets such as maximal periodic
attractors and maximal periodic repellers of (1.1) (see Definition 2.3), while
the latter tackles the stochastic stability of periodically invariant measures
of (1.1) (see Definition 1.3). When V (x, t) = V (x) and G(x, t) = G(x)
are time-independent, these problems have been widely studied, especially
for gradient systems (see e.g. [36, 23, 31, 3, 16, 21]). For non-gradient
systems, the authors recently investigated in [22, 27] the stochastic stability
of maximal attractors/repellers. Stochastic stability of SRB measures has
been studied for diffeomorphisms on compact manifolds (see e.g. [11, 42]). It
is worthwhile to point out that the large deviation theory (see e.g. [31, 16])
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provides finer results in the case that the unperturbed system admits a finite
number of equilibria or limit cycles. In contrast, the study of (1.2) with
general periodic coefficients lags behind although theories are being push
forward.

In the present paper, we focus on (1.2) with periodic coefficients and study
the stability of “compact” invariant sets of (1.1) under small noise pertur-
bations. More precisely, the stability of the global periodic attractor of a
dissipative system is investigated under general small noise perturbations,
while the stabilization of local periodic attractors and the de-stabilization of
local periodic repellers are examined under specific small noise perturbations.
Our approach is based on the noise-vanishing concentration of periodic prob-
ability solutions of the following Fokker-Planck equation (FPE) associated
to (1.2):

∂tu = ε2∂2
ij(a

iju)− ∂i(V iu), x ∈ U , (1.3)

where

A := (aij) =
1

2
GG>

is the diffusion matrix. Throughout the paper, we denote ∂i = ∂xi , ∂
2
ij =

∂2
xixj for i, j = 1, . . . , d, and adopt the usual summation convention whenever

applicable. It is well-known that the distribution of solutions of (1.2) is
governed by (1.3) at least when V and G are sufficiently regular.

We recall from [25] the definition of periodic probability solution of (1.3).
For each ε > 0, let

Lε2A := ∂t + ε2aij∂2
ij + V i∂i

be the differential operator associated to the dual equation of (1.3).

Definition 1.1 (Periodic probability solution). Let ε > 0. A Borel measure
µε on U × R is called a periodic probability solution of (1.3) if there is a
family of Borel probability measures {µεt}t∈R on U satisfying

µεt = µεt+T , ∀t ∈ R,

aij , V i ∈ L1
loc(U × R,dµεtdt), ∀i, j ∈ {1, . . . , d},

and ∫
R

∫
U
Lε2Aφdµεtdt = 0, ∀φ ∈ C2,1

0 (U × R), (1.4)

such that dµε = dµεtdt. In this case, we write µε = (µεt)t∈R.

The study of SDEs with periodic coefficients dates back to the pioneering
work of Khasminskii [30]. Assuming locally Lipschitz continuous coefficients
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and Lyapunov-type conditions, he was able to show the existence of peri-
odic Markov processes whose distributions are necessarily periodic proba-
bility solution of (1.3). Since then, many researchers have looked into the
existence issue as well as the global dynamics under different settings (see
[35, 24, 43, 14, 9, 8, 15] and references therein). Very recently, the authors of
the present paper explored in [25, 26] the existence and uniqueness of peri-
odic probability solutions of (1.3) with irregular coefficients, and the global
dynamics of solutions of (1.2) and (1.3) under Lyapunov-type conditions.

To investigate the stochastic stability of maximal periodic attractors/rep-
ellers of (1.1), we examine the concentration and limit behaviors of periodic
probability solutions of (1.3) as noises vanish. To be more specific, for a
family of periodic probability solutions {µε}ε>0 of (1.3), we derive concen-
tration estimates of {µε}ε>0 near maximal periodic attractors/repellers of
(1.1), and investigate possible limit behaviors of µε as ε→ 0. This gives rise
to limit measures of {µε}ε>0 defined as follows.

Definition 1.2 (Limit measure). Let {µε}ε>0 be a family of periodic prob-
ability solutions of (1.3). A Borel measure µ on U × R is called a limit
measure of {µε}ε>0 if

(1) µ(U × [0, T ]) = T , and
(2) there is a sequence {εn}n∈N ⊂ (0,∞) with εn → 0 as n → ∞ such

that µεn converges to µ under the weak*-topology as n→∞.

We refer the reader to Definition 5.1 for the definition of convergence
under the weak*-topology. Limit measures of {µε}ε>0 are later shown to be
periodically invariant measures of (1.1) as given in the following definition.
Let (ϕt,s) be the two-parameter family generated by the solutions of (1.1).

Definition 1.3 (Periodically invariant measure). A Borel measure µ on
U ×R is called a periodically invariant measure of (1.1) if there is a family
of Borel probability measures {µt}t∈R on U satisfying:

(1) µt = ϕt,s∗ µs for t > s, where ϕt,s∗ µs is the usual pushforward measure,
(2) µ0 is an invariant measure of the Poincaré map P := ϕT,0,

such that dµ = dµtdt. In this case, we write µ = (µt)t∈R.

Remark 1.1. The periodicity of (1.1) ensures that periodically invariant
measures must be periodic in the sense that if µ = (µt)t∈R a periodically
invariant measure, then µt = µt+T for all t ∈ R. Therefore, they are periodic
generalization of invariant measures and are expected to capture the “steady
states” of the system (1.1) from the distributional viewpoint.
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We point out that each periodically invariant measure naturally induces
an invariant measure of the skew product semi-flow on U × ST generated
by (1.1), where ST := R/TZ (see Remark 3.1). The skew product semi-
flow together with its invariant measures is a classical and widely accepted
approach to study the statistical behaviors of (1.1). However, as a Borel
measure on the product space U × ST , it is not clear whether an invariant
measure of the skew product semi-flow admits t-sections (µt)t∈R (see Defi-
nition 3.1), let alone µt being a Borel probability measure for each t ∈ R.
Hence, invariant measures of the skew product semi-flow are not as fine as
periodically invariant measures in characterizing the dynamics of (1.1).

We introduce some notations before stating the main results. Note that
each set Z ⊂ U × R can be written as

Z =
⋃
t∈R

(Zt × {t}) ,

where Zt = {x ∈ U : (x, t) ∈ Z} for each t ∈ R. The sets {Zt}t∈R are called
t-sections of Z.

Convention: If a set Z ⊂ U×R is given, then the notation Zt always means
the t-section of Z, unless otherwise specified.

Definition 1.4.

(1) A set Z ⊂ U × R is called periodic if Zt+T = Zt for all t ∈ R.
(2) A periodic set Z ⊂ U × R is naturally identified with the set

[Z] :=
⋃
t∈ST (Zt × {t}) in the space U × ST .

(3) A periodic set Z ⊂ U×R is compactly embedded in an open periodic

set Z ⊂ U × R, if [Z] is compact and [Z] ⊂ [Z]. As usual, we write
Z ⊂⊂ Z.

The first result concerns the concentration of {µε}ε>0 in the vicinity of
maximal periodic attractors/repellers of (1.1) under general small noise per-
turbations. The reader is referred to Subsection 2.1 for dynamical aspects
related to (1.1). From now on, we start to use some function spaces whose
notations are collected in Table 1 located at the end of this section.

Theorem A. Assume V ∈ C1,1
T (U × R). Let E be a maximal periodic

attractor (resp. maximal periodic repeller) with basin of attraction (resp.

basin of expansion) B(E). Let G ∈ CT (R,W 1,p
loc (U)) for some p > d + 2

satisfy GG> being pointwise positive definite and {µε = (µεt)t∈R}ε>0 be a
family of periodic probability solutions of (1.3). Then, the following hold.
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(1) For any periodic Borel set W ⊂⊂ B(E) \ E, there exist constants
C > 0 and ε∗ > 0 such that∫ t+T

t
µεs(Ws)ds ≤ TeCε

−2
, ∀t ∈ R and ε ∈ (0, ε∗).

(2) Any limit measure µ of {µε}ε>0 is a periodically invariant measure
of (1.1) and satisfies µ(B(E) \ E) = 0. In particular, if E is the
global periodic attractor of (1.1), then any limit measure µ of {µε}ε>0

satisfies supp(µ) ⊂ E.

Note that Theorem A(2) only asserts some properties of limit measures
of {µε}ε>0 with no guarantee of their existence. The following corollary
provides easily verifiable conditions for the existence of limit measures of
periodic probability solutions. We refer the reader to Definition 2.5 for the
definition of unbounded uniform Lyapunov functions.

Corollary A. Assume V ∈ C1,1
T (U × R). Let G ∈ CT (R,W 1,p

loc (U)) for

some p > d+2 satisfy A := 1
2GG

> being pointwise positive definite. Suppose
{Lε2A}ε>0 admits an unbounded uniform Lyapunov function in U×R. Then,
there is an ε∗ > 0 such that for each ε ∈ (0, ε∗), (1.3) admits a unique
periodic probability solution µε. Moreover, the family {µε}ε∈(0,ε∗) admits
limit measures, which are necessarily periodically invariant measures of (1.1)
and supported in the global periodic attractor of (1.1).

It is not hard to find an unbounded uniform Lyapunov function in many
situations. For instance, when the ODE (1.1) admits an unbounded Lya-
punov function U with bounded second-order partial derivatives in x, then
U is an unbounded uniform Lyapunov function with respect to {Lε2A}ε>0

for any bounded noise matrix G ∈ CT (R,W 1,p
loc (U)) with A := 1

2GG
>. As a

result of Corollary A, (1.3) admits a unique periodic probability solution µε

for each 0 < ε � 1 if in addition A is pointwise positive definite; moreover,
µε tends to concentrate on the global periodic attractor of (1.1) as ε→ 0. In
other words, the global periodic attractor of (1.1) is stable under such noise
perturbations.

In general, the global periodic attractor of a dissipative system may further
contain local periodic attractors/repellers. It is natural to ask whether they
can survive from small noise perturbations. The following two theorems
provide partial answers to this issue.

Theorem B. Assume V ∈ C1,1
T (U × R) and that (1.1) is dissipative. Let

E be a local periodic attractor. Then, there exists a noise matrix G ∈
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CT (R,W 1,p
loc (U)) with GG> being pointwise positive definite such that the fol-

lowing holds for any family of periodic probability solutions {µε = (µεt)t∈R}ε>0

of (1.3): For any periodic Borel set W ⊂⊂ (U ×R) \E, there are C1, C2 > 0
and ε∗ > 0 depending on G and W such that∫ t+T

t
µεs(Ws)ds ≤ C1e

−C2ε−2
, ∀t ∈ R and ε ∈ (0, ε∗).

In particular, each limit measure µ of {µε}ε>0 satisfies supp(µ) ⊂ E.

The above result indicates the stabilization of a local periodic attractor
by specific noise perturbations, while the next result reveals that a local
periodic repeller may not survive from some noise perturbations.

Theorem C. Assume V ∈ C1,1
T (U × R). Let E be a local periodic re-

peller with basin of expansion B(E). Then, there exists a noise matrix G ∈
CT (R,W 1,p

loc (U)) with GG> being pointwise positive definite such that the fol-
lowing holds for any family of periodic probability solutions {µε = (µεt)t∈R}ε>0

of (1.3): For any periodic Borel set W ⊂⊂ B(E), there are C1, C2 > 0 and
ε∗ > 0 depending on G and W such that∫ t+T

t
µεs(Ws)ds ≤ C1e

−C2ε−2
, ∀t ∈ R and ε ∈ (0, ε∗). (1.5)

In particular, each limit measure µ of {µε}ε>0 satisfies µ(B(E)) = 0.

The proofs of Theorem B and Theorem C rely on delicate analysis compar-
ing the strength of noises in the vicinity of a local periodic attractor/repeller
with that away from it. More precisely, in the proof of Theorem B, we find
if the strength of the noises near a given local periodic attractor is much
weaker than that away from it, then each limit measure of {µε}ε>0 is a pe-
riodically invariant measure of (1.1) and is supported in this local periodic
attractor. Similarly, in the proof of Theorem C, if the strength of the noises
near a given local periodic repeller is much stronger than that away from
it, then each limit measure of {µε}ε>0 is a periodically invariant measure of
(1.1) and vanishes on the basin of expansion of this local periodic repeller.

The rest of the paper is organized as follows. In Section 2, we recall some
preliminaries including basic dynamical aspects of periodic ODEs, equiva-
lent formalism of periodic probability solutions of (1.3), regularity theory,
Lyapunov/anti-Lyapunov functions and Harnack’s inequality. In Section
3, an equivalent characterization of periodically invariant measure is given.
This provides an easily verifiable condition for limit measures of periodic
probability solutions being periodically invariant measures. In Section 4, an
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integral identity as well as a priori estimates of periodic probability solutions
are established assuming the existence of Lyapunov functions/anti-Lyapunov
functions. In Section 5, we first construct smooth Lyapunov functions (resp.
anti-Lyapunov functions) near maximal periodic attractors (resp. local pe-
riodic repellers), which are then used to derive concentration estimates of
periodic probability solutions. Finally, we prove Theorem A and Corollary A.
Section 6 is devoted to the proof of Theorem B and Theorem C. In Section
7, we study an example to demonstrate the idea of noisy stabilization/de-
stabilization and applications of our results.

For notational simplicity, we use | · | throughout the rest of the paper to
denote the absolute value of a number, the norm of a vector, a matrix, the
Lebesgue measure of a set, etc.

Table 1. Notations

∇x,tU (∂1U, . . . , ∂dU, ∂tU)
Cc(U)/Cc(R) The space of compactly supported continuous functions

on U/R
CT (R) The space of T -periodic continuous functions on R
C∞

c (U) The space of all C∞ smooth functions in Cc(U)
C2

c (U) The space of all functions in Cc(U) that are twice
continuously differentiable

C0(U × R) The space of compactly supported continuous functions
on U × R

Cc(U × R) The space of continuous functions u : U × R→ R
such that u(t, ·) ∈ Cc(U) for each t ∈ R

CT (U × R) The space of T -periodic continuous functions on U × R
Cc,T (U × R) The space of functions in Cc(U ×R) that is T -periodic in t
Cm,n(U × R) The space of functions that have continuous derivatives

up to m-th order with respect to x and up to
n-th order with respect to t

Cm,n
c (U × R) Cm,n(U × R) ∩ Cc(U × R)

Cm,n
T (U × R) Cm,n(U × R) ∩ CT (U × R)

Cm,n
c,T (U × R) Cm,n(U × R) ∩ Cc,T (U × R)

Cm,n
0 (U × R) Cm,n(U × R) ∩ C0(U × R)

CT (R;W 1,p
loc (U)) The space of functions u ∈ CT (U × R), such that

u(t, ·) ∈W 1,p
loc (U) for all t ∈ R for some p > d+ 2

and for each subdomain Ω ⊂⊂ U , the function
t 7→ ‖u(t, ·)‖W 1,p(Ω) is continuous
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2. Preliminary

In Subsection 2.1, we recall some basic dynamical aspects of periodic
ODEs. In Subsection 2.2, we present an equivalent formalism and a regular-
ity result of periodic probability solutions. In Subsection 2.3, Lyapunov/anti-
Lyapunov functions of (1.1) and (1.3) are respectively defined in periodic do-
mains to quantify their dissipativity/anti-dissipativity. Moreover, we prove
the positive/negative invariance of the sub-level sets of Lyapunov/anti--
Lyapunov functions. In Subsection 2.4, we recall the Harnack’s inequality
for parabolic equations.

2.1. Periodic ODEs. In this subsection, we recall some dynamical aspects
of the periodic ODE (1.1). We assume V ∈ C1,1

T (U × R).
Denote by (ϕt,s) the local two-parameter family generated by the solutions

of (1.1), that is, for ξ ∈ U , ϕt,s(ξ) is the local unique solution of (1.1) with
initial condition ϕs,s(ξ) = ξ.

Definition 2.1 (Dissipativity). The system (1.1) is said to be dissipative if
there exists a periodic set K ⊂ U ×R with [K] being compact in U ×ST such
that for each ξ ∈ U , there exists some t0 = t0(ξ) > 0 such that ϕs+t,s(ξ) ∈ K
for all t ≥ t0 and s ∈ R.

Definition 2.2. A set V ⊂ U × R is called

(1) positively invariant under (ϕt,s) if ϕt,s(Vs) ⊂ Vt for all t ≥ s;
(2) negatively invariant under (ϕt,s) if ϕt,s(Vs) ⊂ Vt for all t ≤ s;
(3) invariant under (ϕt,s) if it is both positively and negatively invariant.

We suppress the term “under (ϕt,s)” in what follows whenever no confu-
sion is caused. Set

P+ := ϕT,0 and P− := ϕ−T,0.

Definition 2.3. Let V ⊂ U × R be open, connected, periodic and positively
invariant (resp. negatively invariant).

(1) A set E ⊂ V is called a maximal periodic attractor (resp. maximal
periodic repeller ) in V if it is invariant and E0 is a maximal attractor
in V0 of the discrete dynamical system generated by P+ (resp. P−).

(2) Suppose the maximal periodic attractor (resp. maximal periodic
repeller) E exists in V. If V = U × R, then E is called the the global
periodic attractor (resp. global periodic repeller). Otherwise, it is
called a local periodic attractor (resp. local periodic repeller).

Remark 2.1. We make some comments on Definition 2.3.
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• When V is positively invariant (resp. negatively invariant), P+ (resp.
P−) is well-defined and maps V0 to itself. Therefore, it is reasonable
to talk about the maximal attractor in V0 of the discrete dynamical
system generated by P+ (resp. P−), which has been extensively
studied in literature.
• Maximal periodic attractors (resp. maximal periodic repellers) de-

fined here are essentially the same as maximal attractors (resp. max-
imal repellers) of the skew-product semi-flow generated by (1.1). The
reason we choose maximal periodic attractors and maximal periodic
repellers is that they are more compatible with periodically invariant
measures given in Definition 1.3.

For a maximal periodic attractor (resp. local periodic repeller) E , its basin
of attraction (resp. basin of expansion) B(E) is defined as follows:

B(E) :=
{

(x, t) ∈ U × R : (ϕτ,t(x), τ) ∈ U × R, ∀τ ≥ t,

dist(ϕτ,t(x), Eτ )→ 0, as τ →∞
}

respectively,

B(E) :=
{

(x, t) ∈ U × R : (ϕτ,t(x), τ) ∈ U × R, ∀τ ≤ t,

dist(ϕτ,t(x), Eτ )→ 0 as τ → −∞
}
.

The proofs of the following results are standard.

Proposition 2.1. Assume V ∈ C1,1
T (U×R). Let V be as in the statement of

Definition 2.3. Suppose there exists a maximal periodic attractor (resp. the
maximal periodic repeller) E in V. Then the following hold.

(1) E is the only maximal periodic attractor (resp. local periodic repeller)
in V.

(2) E is connected, periodic and positively invariant (resp. negatively
invariant), and [E ] is compact in U × ST .

(3) B(E) is open, connected, periodic and positively invariant (resp. neg-
atively invariant).

Proposition 2.2. Assume V ∈ C1,1
T (U × R). Let E be a maximal periodic

attractor (resp. local periodic repeller). If K ⊂ U×R is periodic and satisfies
K ⊂⊂ B(E), then

lim
s→∞

sup
t∈R

distH(ϕt+s,t(Kt), Et+s) = 0
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respectively,
lim

s→−∞
sup
t∈R

distH(ϕt+s,t(Kt), Et+s) = 0,

where distH is the Hausdorff semi-distance.

Proposition 2.3. Assume V ∈ C1,1
T (U × R). Let E be a maximal periodic

attractor (resp. maximal periodic repeller) and B(E) be its basin of attraction
(resp. basin of expansion). Then, any periodically invariant measure µ of
(1.1) satisfies µ (B(E) \ E) = 0.

2.2. Equivalent formalism and regularity. The following result gives a
condition that is equivalent to (1.4).

Lemma 2.1 ([5, 6]). Let ε > 0 and µε = (µεt)t∈R be a Borel measure on
U ×R such that aij, V i ∈ L1

loc(U ×R,dµεtdt) for each i, j ∈ {1, . . . , d}. Then,

(1.4) holds if and only if for each φ ∈ C2,1
c (U × R), there exists a subset

Jφ ⊂ R satisfying |R \ Jφ| = 0 such that∫
U
φ(·, t)dµεt =

∫
U
φ(·, s)dµεs +

∫ t

s

∫
U
Lε2Aφ(·, τ)dµετdτ, ∀s, t ∈ Jφ. (2.1)

Lemma 2.2 ([25, 26]). Fix ε > 0. Let µε = (µεt)t∈R be as in Lemma 2.1. If
the function

t 7→
∫
U
φdµεt

is continuous on R for each φ ∈ C2
c (U), or µε admits a continuous density,

then (2.1) hold for all s < t.

We recall the regularity theory of periodic probability solutions of (1.3).

Recall p > d + 2. Let H1,p
0 (U × R) be the space of measurable functions

u on U × R such that u(·, t) ∈ W 1,p
0 (U) for a.e. t ∈ R and the function

t 7→ ‖u(t, ·)‖
W 1,p

0 (U)
lies in Lp(R). Let H−1,p′(U × R) be the dual space of

H1,p
0 (U × R), where p′ > 1 is such that 1

p + 1
p′ = 1.

Let H1,p
loc(U×R) be the space of measurable functions u on U×R such that

ηu ∈ H1,p
0 (U×R) and ∂t(ηu) ∈ H−1,p(U×R) for each η ∈ C1,1

0 (U×R). By [5,

Theorem 6.2.2], H1,p
loc(U × R) is continuously embedded into some function

space consisting of Hölder continuous functions on U × R.
Set H1,p

loc,T (U × R) := H1,p
loc(U × R) ∩ CT (U × R).

Theorem 2.1 ([4, 5]). Assume aij ∈ CT (R;W 1,p
loc (U)) and V i ∈ Lploc,T (U×R)

for each i, j = 1, . . . , d, where p > d + 2. Suppose A = (aij) is pointwise
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positive definite. Fix ε > 0 and let µε be a periodic probability solution of
(1.3). Then, µε admits a positive density uε ∈ H1,p

loc,T (U × R).

2.3. Lyapunov/Anti-Lyapunov functions. Following previous works
[30, 22, 25], we define Lyapunov/anti-Lyapunov functions of (1.1) and (1.3)
in periodically varying domains.

Let W ⊂ U × R be open, connected and periodic. We denote C2,1
T (W)

as the space of all continuous T -periodic functions in W that are twice
continuously differentiable in x and continuously differentiable in t.

We clarify the meaning of (x, t) → ∂W. As W is T -periodic, we can
identify it with [W] ⊂ U × ST (see Definition 1.4). Let Ed := Rd

⋃
∂Rd

be the extended Euclidean space, where ∂Rd = {x∞∗ : x∗ ∈ Sd−1} and x∞∗
denotes the infinity element of the ray through x∗. Let Bd = Bd

⋃
Sd−1 be

the closed unit ball in Rd. Define h : Ed × ST → Bd × ST as follows:

h(x, t) =

{(
x

1+|x| , t
)
, (x, t) ∈ Rd × ST ,

(x∗, t), (x, t) = (x∞∗ , t) ∈ ∂Rd × ST .

Clearly, h identifies Rd × ST with Bd × ST and ∂Rd × ST with Sd−1 × ST .
If the topology of ∂Rd × ST is defined as the one inherited from h, then h
becomes a homeomorphism.

By virtue of h, the boundary ∂[W] ⊂ Ed×ST of [W] is defined as the preim-

age of the boundary of h([W]) in Bd × ST , namely, ∂[W] = h−1(∂h([W])).
Therefore, (x, t) → ∂W if and only if (x, t mod T ) → ∂[W], if and only if
h(x, t mod T )→ ∂h([W]).

We start with the definition of compact functions.

Definition 2.4 (Compact function). A non-negative and continuous func-
tion U on W is called a compact function with the essential upper bound
ρM , if

(1) U(x, t) < ρM , for (x, t) ∈ W, and
(2) lim(x,t)→∂W U(x, t) = ρM .

For a nonnegative and continuous function U on W, we define for each
ρ > 0 and t ∈ R

Ωρ = {(x, t) ∈ W : U(x, t) < ρ} and

Ωt
ρ = {x ∈ Wt : U(x, t) < ρ}
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to be the ρ-sublevel set of U and its t-section, respectively. Note that the no-
tation for the t-sections of Ωρ does NOT follow the Convention mentioned
right above Definition 1.4.

Definition 2.5 (Lyapunov/Anti-Lyapunov function). A compact function

U ∈ C2,1
T (W) is called

(1) a Lyapunov function (resp. an anti-Lyapunov function) of (1.1) in
W, if there exist γ > 0, called a Lyapunov constant (resp. an anti-
Lyapunov constant) of U , and ρm ≥ 0, called an essential lower
bound of U , such that

L0U ≤ −γ (resp. ≥ γ) in W \ Ωρm ,

where L0 := ∂t + V i∂i and Ωρm := {(x, t) ∈ W : U(x, t) < ρm};
(2) a Lyapunov function (resp. an anti-Lyapunov function) with respect

to Lε2A in W, where ε > 0 is fixed, if there exist γ > 0, called
a Lyapunov constant (resp. an anti-Lyapunov constant) of U , and
ρm ≥ 0, called an essential lower bound of U , such that

Lε2AU ≤ −γ (resp. ≥ γ) in W \ Ωρm ; (2.2)

(3) a uniform Lyapunov function (resp. uniform anti-Lyapunov function)
with respect to {Lε2A}ε>0 in W if there exist positive constants ε∗,
ρm and γ > 0 such that (2.2) holds for all ε ∈ (0, ε∗).

Next, we show that the sublevel sets of Lyapunov functions (resp. anti-
Lyapunov functions) of (1.1) are positively invariant (resp. negatively in-
variant).

Proposition 2.4. Assume V ∈ C1,1
T (U ×R). Let U be a Lyapunov function

(resp. an anti-Lyapunov function) of (1.1) in W with essential upper bound
ρM and essential lower bound ρm. Then, Ωρ is positively invariant (resp.
negatively invariant) for all ρ ∈ [ρm, ρM ].

Proof. We only prove the result when U is a Lyapunov function; the other
case can be treated in a similar manner. Let γ > 0 be the Lyapunov constant
of U .

Fix ρ ∈ [ρm, ρM ] and (x, t) ∈ Ωρ. We need to show that U(ϕt+τ,t(x), t +
τ) < ρ for all τ ≥ 0. Suppose for contradiction that this fails. Then,

τ∗ := min
{
τ > 0 : U(ϕt+τ,t(x), t+ τ) = ρ

}
is well-defined and finite. Moreover, U(ϕt+τ∗,t(x), t+ τ∗) = ρ. Clearly,

U(ϕt+τ,t(x), t+ τ) = U(x, t) +

∫ τ

0
L0U(ϕt+s,t(x), t+ s)ds
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≤ U(x, t)− γτ, ∀τ ≤ τ∗.

It follows that

U(ϕt+τ∗,t(x), t+ τ∗) ≤ U(x, t)− γτ∗ < ρ,

which leads to a contradiction. Hence, (ϕt+τ,t(x), t+τ)∈Ωρ for all τ ≥ 0. �

2.4. Harnack’s inequality. Consider the parabolic equation

∂tu = ∂i(α
ij∂ju− βiu), (x, t) ∈ U × R, (2.3)

where αij and βi are continuous functions and T -periodic in t for each
i, j = 1, . . . , d. Assume (αij) is pointwise positive definite. Let W ⊂ U × R
be bounded. Denote by λW and ΛW respectively the largest and smallest
positive constants such that

λW |ξ|2 ≤ αij(x, t)ξiξj ≤ ΛW |ξ|2, ∀(x, t) ∈ W and ξ ∈ Rd.

Proposition 2.5 (Harnack’s inequality). Let u ∈ H1,p
loc(U×R), for some p >

d+ 2, be a non-negative solution of (2.3) in U ×R. Then for any connected
and bounded subdomains U1 ⊂⊂ U2 ⊂⊂ U and s < s1 < t1 < s2 < t2 < t,
there exists C > 0, depending only on n, s1, s2, t1, t2, U1 and U2, such that

sup
U1×[s1,t1]

u ≤ CM inf
U1×[s2,t2]

u,

where

M = ΛU2×[s,t] + λ−1
U2×[s,t]

(
1 +

d∑
i=1

sup
U2×[s,t]

|βi|2
)
.

Proposition 2.5 is a special case of [2, Theorem 3]. The explicit expression
of the constant M follows from the calculations done in [2, 33, 34].

3. Characterization of periodically invariant measures

In this section, we prove an equivalent characterization of periodically in-
variant measures of (1.1), which provides a convenient way to test that limit
measures of periodic probability solutions of (1.3) are periodically invariant
measures of (1.1).

We recall from [25] the definition of t-sections for σ-finite Borel measures
on U × R.
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Definition 3.1 (t-sections). A σ-finite Borel measure µ on U ×R is said to
admit t-sections, if there exists a family of σ-finite Borel measures {µt}t∈R
on U such that dµ = dµtdt, namely,∫∫

U×R
φdµ =

∫
R

∫
U
φ(·, t)dµtdt, ∀φ ∈ C0(U × R).

In this case, we denote µ = (µt)t∈R. Moreover, (µt)t∈R is called

(1) T -periodic or simply periodic, if µt = µt+T for t ∈ R;
(2) continuous, if the function

t 7→
∫
U
gdµt

is continuous on R for each g ∈ C∞c (U).

Proposition 3.1. Assume V ∈ C1,1
T (U × R). Let µ be a Borel measure on

U × R. If µ satisfies the following conditions:

(1) µ(U × [0, T ]) = T ;
(2) µ admits continuous and periodic t-sections (µt)t∈R;
(3) for each bounded φ ∈ CT (U × R), there holds∫ T

0

∫
U
φ(ϕs+t,s(·), s+ t)dµsds =

∫ T

0

∫
U
φ(·, s)dµsds, ∀t ∈ [0,∞),

then µ = (µt)t∈R is a periodically invariant measure of (ϕt,s).

Proof. By Definition 1.3, it suffices to show that

(a) µt = ϕs+t,s∗ µs for all s ∈ R and t ∈ [0,∞);

(b) µ0 = ϕT,0∗ µ0;
(c) µt(U) = 1 for all t ∈ R.

To prove (a), we set φ = gη in (3.1), where g ∈ C∞c (U) and η ∈ CT (R),
to find∫ T

0
η(s+ t)

∫
U
g ◦ ϕs+t,sdµsds =

∫ T

0
η(s)

∫
U
gdµsds, ∀t ∈ [0,∞). (3.1)

It follows from the periodicity of µ = (µt)t∈R and η that∫ T

0
η(s)

∫
U
gdµsds =

∫ T

0
η(s+ t)

∫
U
gdµs+tds, ∀t ∈ [0,∞).

Hence,∫ T

0
η(s+ t)

∫
U
g ◦ ϕs+t,sdµsds =

∫ T

0
η(s+ t)

∫
U
gdµs+tds, ∀t ∈ [0,∞).
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Fix t ∈ [0,∞) and g ∈ C∞c (U). Since the functions

s 7→
∫
U
g ◦ ϕs+t,sdµs and s 7→

∫
U
gdµs+t

are continuous on R, and η ∈ CT (R) is arbitrary, we deduce∫
U
g ◦ ϕs+t,sdµs =

∫
U
gdµs+t, ∀s ∈ [0, T ].

The above identity actually holds for all s ∈ R as µ = (µt)t∈R is periodic.
It then follows from the arbitrariness of g ∈ C∞c (U) and the density of
C∞c (U) in Cc(U) that (a) holds. The properties (b) and (c) follow readily
from the periodicity of (µt)t∈R, the property (a) and the condition (1) in the
statement. �

Remark 3.1. Note that Proposition 3.1 (3) is equivalent to say that µ,
being identified with a Borel measure on U ×ST , is invariant under the skew
product semi-flow (Φτ ). Recall that (Φτ ) is a semi-flow generated by the
following system: {

x′ = V (x, t),

t′ = 1 mod T,
(x, t) ∈ U × ST ,

where x′ = dx
dτ and t′ = dt

dτ .

The equivalent characterization is given in the following result. Recall
that

L0 := ∂t + V i∂i.

Proposition 3.2. Assume V ∈ C1,1
T (U × R). Let µ be a Borel measure on

U × R with t-sections (µt)t∈R. Then, µ is a periodically invariant measure
of (1.1) if and only if the following hold:

(1) µ(U × [0, T ]) = T ;
(2) (µt)t∈R is continuous and periodic;
(3) there holds∫ T

0

∫
U
L0φ(·, s)dµsds = 0, ∀φ ∈ C1,1

c,T (U × R).

Proof. Necessity. Suppose µ = (µt)t∈R is a periodically invariant mea-
sure of (1.1). Then, (1) and (2) follow immediately from its definition (see
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Definition 1.3) and the continuity of (ϕt,s). It remains to show (3). Note
that∫
U
φ(·, t)dµt =

∫
U
φ(ϕt,s(·), t)dµs, ∀φ ∈ Cc,T (U × R), s ∈ R and t ≥ s.

As a result, for each φ ∈ C1,1
c,T (U × R), the function

fφ : R→ R, t 7→
∫
U
φ(·, t)dµt

is T -periodic and continuously differentiable, and satisfies

f ′φ(t) =
d

dt

∫
U
φ(·, t)dµt =

d

dt

∫
U
φ(ϕt,s(·), t)dµs

=

∫
U

(
∂tφ+ V i∂iφ

)
(ϕt,s(·), t)dµs =

∫
U
L0φ(·, t)dµt, ∀t ∈ (s,∞).

Integrating the above equality over [t, t+ T ], we find

f(t+ T )− f(t) =

∫ t+T

t
f ′φds =

∫ T

0

∫
U
L0φ(·, s)dµsds, ∀t ∈ R.

Remark 1.1 and the periodicity of φ give

f(t+ T ) =

∫
U
φ(·, t+ T )dµt+T =

∫
U
φ(·, t)dµt = f(t), ∀t ∈ R.

Hence, ∫ T

0

∫
U
L0φ(·, s)dµsds = 0

and (3) follows.

Sufficiency. By Proposition 3.1, it suffices to show∫ T

0

∫
U
φ(ϕs+t,s(·), s+ t)dµsds =

∫ T

0

∫
U
φ(·, s)dµsds, (3.2)

∀φ ∈ Cc,T (U × R) and t ∈ [0,∞). Thanks to the density of C1,1
c,T (U × R) in

Cc,T (U × R), we only need to show (3.2) for all φ ∈ C1,1
c,T (U × R).

Fix φ ∈ C1,1
c,T (U × R). Obviously, the function

t 7→
∫ T

0

∫
U
φ(ϕs+t,s(·), s+ t)dµsds
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is continuously differentiable on [0,∞) and satisfies

d

dt

∣∣∣∣
t=0

∫ T

0

∫
U
φ(ϕs+t,s(·), s+ t)dµsds =

∫ T

0

∫
U
L0φ(·, s)dµsds = 0, (3.3)

where we used the condition (3) in the last equality.
Define

φ̃t′(x, s) := φ(ϕs+t
′,s(x), s+ t′), (x, s) ∈ U × R and t′ ∈ [0,∞).

Clearly, φ̃t′ ∈ C1,1
c,T (U ×R) for each t′ ∈ [0,∞). An application of (3.3) yields

d

dt

∣∣∣∣
t=0

∫ T

0

∫
U
φ̃t′(ϕ

s+t,s(·), s+ t)dµsds = 0, ∀t′ ∈ [0,∞). (3.4)

Note that ∫ T

0

∫
U
φ̃t′(ϕ

s+t,s(·), s+ t)dµsds

=

∫ T

0

∫
U
φ(ϕs+t+t

′,s+t ◦ ϕs+t,s(·), s+ t+ t′)dµsds

=

∫ T

0

∫
U
φ(ϕs+t+t

′,s(·), s+ t+ t′)dµsds, ∀t′ ∈ [0,∞).

Thus,

d

dt

∣∣∣∣
t=0

∫ T

0

∫
U
φ̃t′(ϕ

s+t,s(·), t+ s)dµsds

=
d

dt′

∫ T

0

∫
U
φ(ϕs+t

′,s(·), s+ t′)dµsds, ∀t′ ∈ [0,∞).

This together with (3.4) gives

d

dt′

∫ T

0

∫
U
φ(ϕs+t

′,s(·), s+ t′)dµsds = 0, ∀t′ ∈ [0,∞),

which yields (3.2). �

4. Integral identity and measure estimates

In this section, we first prove an integral identity for periodic probability
solutions of (1.3). It is then applied to derive a priori estimates for periodic
probability solutions in periodic subdomains of U×R assuming the existence
of Lyapunov/anti-Lyapunov functions.
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For clarity, we focus on the Fokker-Planck equation (1.3) with ε = 1, that
is,

∂tu = ∂2
ij(a

iju)− ∂i(V iu) in U × R. (4.1)

The corresponding results for (1.3) follows with aij replaced by ε2aij . Denote

LA := ∂t + aij∂2
ij + ∂iV

i.

Throughout this section, we assume

• aij ∈ CT (R,W 1,p
loc (U)) and V i ∈ C1,1

T (U × R) for all i, j ∈ {1, . . . , d};
• (aij) is pointwise positive definite;
• W is an open and periodic subset of U × R.

The integral identity, generalizing the one in [20] for stationary measures,
is given in the next result.

Theorem 4.1. Let U ∈ C2,1
T (W) be a compact function with essential upper

bound ρM > 0 and satisfy ∇x,tU 6= 0 on ∂Ωρ for some ρ ∈ (0, ρM ). If
µ = (µt)t∈R is a periodic probability solution of (4.1) with a density u ∈
H1,p
loc,T (U × R), then∫ t+T

t

∫
Ωsρ

LAUdµsds =

∫
∂Ωρ∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s, ∀t ∈ R,

where dSx,s denotes the Lebesgue measure on ∂Ωρ ∩ (U × [t, t+ T ]).

Proof. Since ∇x,tU 6= 0 on ∂Ωρ, the implicit function theorem ensures that
∂Ωρ is a C1 hypersurface in W. Define

Ũ(x, t) :=

{
U(x, t)− ρ, (x, t) ∈ Ωρ,

0, (x, t) ∈ W \ Ωρ.

Obviously, Ũ ∈ CT (W) is supported in Ωρ and ∂tŨ , ∂iŨ , i, j = 1, . . . , d are
essentially bounded.

Let η ∈ C∞c (Rd+1) be nonnegative and satisfy∫∫
Rd+1

ηdxdt = 1.

For 0 < ε� 1, we define

ηε(x, t) = ε−(d+1)η
(x
ε
,
t

ε

)
for (x, t) ∈ Rd+1.

Set Ũε = Ũ ∗ ηε. Then Ũε is a periodic smooth function supported in a
neighbourhood Ω∗ of Ωρ for all 0 < ε� 1, and satisfies
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• Ũε → Ũ in CT (Ω∗) under the maximum norm as ε→ 0;

• ∂tŨε → ∂tŨ , ∂iŨε → ∂iŨ in Lq(Ω∗) as ε→ 0 for any q > 1.

We see from Lemma 2.1, Lemma 2.2 and the periodicity of Ũε that for
each 0 < ε� 1,∫ t+T

t

∫
U

(
∂tŨε + aij∂2

ijŨε + V i∂iŨε

)
udxds (4.2)

=

∫
U
Ũε(·, t+ T )u(·, t+ T )dx−

∫
U
Ũε(·, t)u(·, t)dx = 0, ∀t ∈ R.

Since u ∈ H1,p
loc,T (U × R), we pass to the limit ε → 0 to find that for each

t ∈ R, ∫ t+T

t

∫
U
aij∂2

ijŨεudxds = −
∫ t+T

t

∫
U
∂j(a

iju)∂iŨεdxds (4.3)

→ −
∫ t+T

t

∫
Ωsρ

∂j(a
iju)∂iUdxds.

Integration by parts yields that

−
∫ t+T

t

∫
Ωsρ

∂j(a
iju)∂iUdxds (4.4)

= −
∫
∂(

⋃
s∈(t,t+T )(Ω

s
ρ×{s}))

aij∂iUν̃judSx,s +

∫ t+T

t

∫
Ωsρ

aij∂2
ijUudxds,

where dSx,s denotes the Lebesgue measure on ∂(
⋃
s∈(t,t+T )(Ω

s
ρ × {s})) and

ν̃j is the j-th component of the unit outward normal vector field ν̃ along the
boundary of

⋃
s∈(t,t+T )(Ω

s
ρ × {s}). Since

∂
( ⋃
s∈(t,t+T )

(Ωs
ρ × {s})

)
= Ωt

ρ

⋃
Ωt+T
ρ

⋃
(∂Ωρ ∩ (U × [t, t+ T ]))

and

ν̃j(x, s) =

{
0, ∀(x, s) ∈ Ωt

⋃
Ωt+T ,

∂jU
|∇x,sU | , ∀(x, s) ∈ ∂Ωρ ∩ (U × [t, t+ T ]),

there holds

−
∫
∂(

⋃
s∈(t,t+T )(Ω

s
ρ×{s}))

aij∂iUν̃judSx,s = −
∫
∂Ωρ∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s,



Concentration and limit behaviors 293

which together with (4.3) and (4.4) yields∫ t+T

t

∫
U
aij∂2

ijŨεudxds→ −
∫ t+T

t

∫
Ωsρ

∂j(a
iju)∂iUdxds (4.5)

= −
∫
∂Ωρ∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s +

∫ t+T

t

∫
Ωsρ

aij∂2
ijUudxds,

as ε→ 0.
For other terms on the left hand side of (4.2), it is easy to see that∫ t+T

t

∫
U

(
∂tŨε + V i∂iŨε

)
udxds→

∫ t+T

t

∫
Ωsρ

(
∂tU + V i∂iU

)
udxds, (4.6)

as ε→ 0. The theorem follows from (4.5) and (4.6). �

We apply the integral identity in Theorem 4.1 to derive a priori estimates
for periodic probability solutions of (4.1).

Theorem 4.2. Let U ∈ C2,1
T (W) be a Lyapunov function (resp. an anti-

Lyapunov function) with respect to LA in W with essential upper bound
ρM > 0, essential lower bound ρm ≥ 0 and Lyapunov constant (resp. anti-
Lyapunov constant) γ > 0. Suppose that ∇x,tU 6= 0 on ∂Ωρ for a.e. ρ ∈
(ρm, ρM ). The following statements hold for any periodic probability solution

µ = (µt)t∈R of (4.1) with a density in H1,p
loc,T (U × R).

(1) If U is a Lyapunov function, then∫ t+T

t
µs(Ws \ Ωs

ρ)ds ≤ Te
−γ

∫ ρ
ρm

1
H(s)

ds
, ∀ρ ∈ (ρm, ρM ) and t ∈ R,

where

H(ρ) := sup
∂Ωρ

aij∂iU∂jU for ρ ∈ (ρm, ρM ).

(2) If U is an anti-Lyapunov function, then∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρm)ds ≥ eγ
∫ ρ1
ρ0

1
H(s)

ds
∫ t+T

t
µs(Ω

s
ρ0
\ Ωs

ρm)ds,

∀ρm < ρ0 < ρ1 < ρM and t ∈ R.

Proof. Let u ∈ H1,p
loc,T (U × R) be the density of µ. Denote by I the set of

all ρ ∈ (ρm, ρM ) satisfying ∇x,tU 6= 0 on ∂Ωρ. Apparently, |I| = ρM − ρm
and I is dense in (ρm, ρM ).
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(1) Fix t ∈ R and take ρ, ρ1 ∈ I with ρ < ρ1. Applying Theorem 4.1, we
find ∫ t+T

t

∫
Ω
s
ρ1
\Ωsρ
LAUdµsds

=
(∫

∂Ωρ1∩(U×[t,t+T ])
−
∫
∂Ωρ∩(U×[t,t+T ])

)aij∂iU∂jU
|∇x,sU |

udSx,s.

Since LAU ≤ −γ in W \ Ωρ and (aij) is non-negative definite, we deduce

−γ
∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds ≥ −
∫
∂Ωρ∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s,

which leads to∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds ≤
1

γ

∫
∂Ωρ∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s

≤ H(ρ)

γ

∫
∂Ωρ∩(U×[t,t+T ])

u

|∇x,sU |
dSx,s.

As I is dense in (ρm, ρM ), letting ρ1 ∈ I → ρM in the above inequality
results in∫ t+T

t
µs(Ws \Ωs

ρ)ds ≤
H(ρ)

γ

∫
∂Ωρ∩(U×[t,t+T ])

u

|∇x,sU |
dSx,s, ∀ρ ∈ I. (4.7)

Set

f(ρ) :=

∫ t+T

t
µs(Ws \ Ωs

ρ)ds =

∫ t+T

t

∫
Ws\Ωsρ

udxds, ∀ρ ∈ (ρm, ρM ).

The coarea formula ensures that

f ′(ρ) = −
∫
∂Ωρ∩(U×[t,t+T ])

u

|∇x,sU |
dSx,s, ∀ρ ∈ I.

It follows from (4.7) that

f(ρ) ≤ −H(ρ)

γ
f ′(ρ), ∀ρ ∈ I.

Applying the Gronwall’s inequality, we conclude from the continuity of f
on (ρm, ρM ) that

f(ρ) ≤ f(ρ′)e
−γ

∫ ρ
ρ′

1
H(s)

ds ≤ Te−γ
∫ ρ
ρ′

1
H(s)

ds
, ∀ρ, ρ′ ∈ (ρm, ρM ) with ρ′ < ρ,
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which is the same as∫ t+T

t
µs(Ws \ Ωs

ρ)ds ≤ Te
−γ

∫ ρ
ρ′

1
H(s)

ds
, ∀ρ, ρ′ ∈ (ρm, ρM ) with ρ′ < ρ.

Letting ρ′ → ρm concludes the result.

(2) Fix t ∈ R and take ρ, ρ1 ∈ I satisfying ρ1 > ρ. We apply Theorem 4.1
to find ∫ t+T

t

∫
Ω
s
ρ1
\Ωsρ
LUdµsds

=
(∫

∂Ωρ1∩(U×[t,t+T ])
−
∫
∂Ωρ∩(U×[t,t+T ])

)aij∂iU∂jU
|∇x,sU |

udSx,s.

Since LU ≥ γ in W \ Ωρ and (aij) is non-negative definite, we have

γ

∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds ≤
∫
∂Ωρ1∩(U×[t,t+T ])

aij∂iU∂jU

|∇x,sU |
udSx,s,

which yields∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds ≤
H(ρ1)

γ

∫
∂Ωρ1∩(U×[t,t+T ])

u

|∇x,sU |
dSx,s. (4.8)

Set

f(ρ1) :=

∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds =

∫ t+T

t

∫
Ωsρ1\Ω

s
ρ

udxds, ∀ρ1 ∈ (ρ, ρM ).

Applying the coarea formula, we find

f ′(ρ1) =

∫
∂Ωρ1∩(U×[t,t+T ])

u

|∇x,sU |
dSx,s, ∀ρ1 ∈ I ∩ (ρ, ρM ).

It follows from (4.8) that

f(ρ1) ≤ H(ρ1)

γ
f ′(ρ1), ∀ρ1 ∈ I ∩ (ρ, ρM ).

The Gronwall’s inequality and the continuity of f in (ρ, ρM ) ensure

f(ρ1) ≥ f(ρ0)e
γ
∫ ρ1
ρ0

dρ
H(ρ) , ∀ρ1 > ρ0 > ρ,

namely,∫ t+T

t
µs(Ω

s
ρ1
\ Ωs

ρ)ds ≥ e
γ
∫ ρ1
ρ0

dρ
H(ρ)

∫ t+T

t
µs(Ω

s
ρ0
\ Ωs

ρ)ds, ∀ρ1 > ρ0 > ρ.
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Letting ρ→ ρm, we arrive at the result. �

5. Quantitative concentration

In Subsection 5.1, we construct uniform Lyapunov functions (resp. uni-
form anti-Lyapunov functions) with respect to {Lε2A}ε>0 in neighbourhoods
of maximal periodic attractors (resp. maximal periodic repellers). We then
apply Theorem 4.2 to prove Theorem A and Corollary A in Subsection 5.2.

5.1. Uniform Lyapunov/anti-Lyapunov functions. Throughout this
subsection, let E be a maximal periodic attractor (resp. maximal periodic
repeller) and B(E) be its basin of attraction (resp. basin of expansion).

Theorem 5.1. Assume V ∈ C1,1
T (U ×R). Let V1 and V2 be open, connected

and periodic subsets of U×R and satisfy E ⊂⊂ V1 ⊂⊂ V2 ⊂⊂ B(E). Suppose
V2 is positively invariant (resp. negatively invariant). Then, the following
statements hold.

(1) There exist an open, connected and positively invariant (resp. nega-
tively invariant) set W ⊂ B(E), and a bounded C∞ Lyapunov func-
tion (resp. anti-Lyapunov function) U of (1.1) in W with essential
upper bound ρM > 0, essential lower bound ρm > 0 and Lyapunov
constant (resp. anti-Lyapunov constant) γ > 0. Moreover, the fol-
lowing properties hold:
• E ⊂⊂ Ωρm ⊂⊂ V1 ⊂⊂ V2 ⊂⊂ W,
• ∇x,tU 6= 0 on ∂Ωρ for a.e. ρ ∈ (ρm, ρM ), where

Ωρ := {(x, t) ∈ W : U(x, t) < ρ}.

(2) Let G ∈ CT (R,W 1,p
loc (U)) and A := 1

2GG
>. Then, there exists some

ε∗ > 0, depending on γ, G|W and U , such that U is a uniform Lya-
punov function (resp. uniform anti-Lyapunov function) with respect
to {Lε2A}ε>0 with essential lower bound ρm and Lyapunov constant
(resp. anti-Lyapunov constant) γ

2 .

We prove two lemmas before proving the above theorem.

Lemma 5.1. Assume V ∈ C1,1
T (U × R). Let V ⊂ U × R be open and

connected, and satisfy E ⊂⊂ V ⊂⊂ B(E). Then the following hold.

(1) For each (x, t) ∈ B(E), there is a τ∗ ≥ 0 (resp. τ∗ ≤ 0) such that
(ϕt+τ,t(x), t+ τ) ∈ V for all τ ≥ τ∗ (resp. τ ≤ τ∗).

(2) Let W ⊂ U × R be positively invariant (resp. negatively invariant)
and satisfy V ⊂ W ⊂ B(E). Then, W is connected.
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Proof. (1) It is a simple consequence of Proposition 2.2. (2) For any (x, t) ∈
W, (1) ensures that the forward orbit (resp. backward orbit) of (1.1) starting
at (x, t) enters V after some finite time. Given the positive invariance (resp.
negative invariance) of W, its connectedness follows from that of V. �

Lemma 5.2. Assume V ∈ C1,1
T (U × R). Let V ⊂ U × R be open, connected

and periodic, and satisfy E ⊂⊂ V ⊂⊂ B(E). Then, there exists an open, con-
nected, periodic and positively invariant set (resp. negatively invariant set)
W satisfying V ⊂⊂ W ⊂⊂ B(E). Moreover, W is connected and positively
invariant (resp. negatively invariant).

Proof. We prove the lemma when E is a maximal periodic attractor; the
other case follows in the same manner. Since V ⊂⊂ B(E), there exists an
open, connected and periodic set V1 satisfying V ⊂⊂ V1 ⊂⊂ B(E). Define

W :=
⋃

τ∈[0,∞)

⋃
t∈R

(
ϕt+τ,t(V1

t )× {t+ τ}
)
.

Obviously, V ⊂⊂ W and W is periodic and positively invariant. Hence, the
connectedness of W follows from Lemma 5.1 (2).

To show the openness of W, we consider the skew product semi-flow cor-
responding to (ϕt,s) (see Remark 3.1):

Φτ ((x, t)) :=
(
ϕt+τ,t(x), (t+ τ) mod T

)
, ∀(x, t) ∈ U × ST , τ ≥ 0.

Then, W can be identified with
⋃
τ≥0 Φτ (V1). Applying the semi-flow prop-

erty of (Φτ ), we see that for each τ ≥ 0, Φτ (V1) is open in U × ST . Hence,⋃
τ≥0 Φτ (V1) is open in U × ST . The openness of W in U × R follows.

We show W ⊂⊂ B(E). By Proposition 2.2, there holds

lim
τ→∞

sup
t∈R

distH(ϕt+τ,t(V1
t ), Et+τ ) = 0,

which yields the existence of τ0 > 0 such that

W≥τ0 :=
⋃

τ∈[τ0,∞)

⋃
t∈R

(ϕt+τ,t(V1
t )× {t+ τ}) ⊂⊂ B(E).

Since V1 ⊂⊂ B(E) and B(E) is positively invariant, we see that

W<τ0 :=
⋃

τ∈[0,τ0)

⋃
t∈R

(ϕt+τ,t(V1
t )× {t+ τ}) ⊂⊂ B(E).

It follows from W =W<τ0

⋃
W≥τ0 that W ⊂⊂ B(E).

Obviously, W is periodic, compact and positively invariant. The connect-
edness of W then follows from Lemma 5.1 (2). �
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Now, we prove Theorem 5.1.

Proof of Theorem 5.1. We only prove the case when E is a maximal pe-
riodic attractor; the case of a maximal periodic repeller can be treated in
the same manner.

We start with (1). By Lemma 5.2, there is an open, connected, periodic
and positively invariant set W2 satisfying V2 ⊂⊂ W2 ⊂⊂ B(E). Moreover,

W2 is connected and positively invariant. Applying Proposition 2.2 to W2,
we find

lim
τ→∞

sup
t∈R

distH

(
ϕt+τ,t(W2

t ), Et+τ
)

= 0.

Since E ⊂⊂ V1, there exists τ∗ > 0 such that

W1 :=
⋃
τ≥τ∗

⋃
t∈R

(ϕt+τ,t(W2
t )× {t+ τ}) ⊂⊂ V1.

Clearly, W1 is connected, periodic and positively invariant. The openness of
W1 follows from arguments as in the proof of Lemma 5.2.

We finish the proof of (1) within two steps.

Step 1. We generalize the integral approach in [27] to construct a contin-
uously differentiable function U∗ : B(E) → [0,∞) satisfying the following
properties:

(a) There holds

sup
V2

U∗ < inf
∂W2

U∗. (5.1)

(b) There exists an open, connected and periodic set W̃1 satisfying

W1 ⊂⊂ W̃1 ⊂⊂ V1 such that

sup
W̃1

U∗ < inf
∂V1

U∗. (5.2)

(c) There exists some γ > 0 such that

L0U∗ ≤ −2γ in W2 \ W̃1. (5.3)

Let δ ∈ (0, 1) be such that

(∂W2)δ := {(x, t) ∈ U × R : dist
(
(x, t), ∂W2

)
< δ} ⊂⊂ B(E)

and (∂W2)δ ∩ V2 = ∅.
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Since W1 and (∂W2)δ are periodic, we can find non-negative and T -
periodic functions ζ, η ∈ C∞(U × R) satisfying

ζ(x, t)

{
= 0, (x, t) ∈ W1,

> 0, otherwise,
and η(x, t)

{
> 0, (x, t) ∈ (∂W2)δ,

= 0, otherwise.

For each n ∈ N, define

Un(x, t) :=

∫ τ∗

0
(ζ + nη)(ϕt+τ,t(x), t+ τ)dτ, ∀(x, t) ∈ B(E).

Obviously, Un is well-defined, nonnegative and continuously differentiable.
We claim that there exists some n∗ ∈ N such that

sup
V2

Un∗ < inf
∂W2

Un∗ .

Note that for any (x, t) ∈ ∂W2, there is τ(x,t) > 0 such that (ϕt+τ,t(x), t+τ) ∈
(∂W2) δ

2
for all τ ∈ [0, τ(x,t)). The continuity of (ϕt,s) and the compactness of

∂W2 then ensure the existence of some τ0 > 0 such that (ϕt+τ,t(x), t+ τ) ∈
(∂W2) δ

2
for all (x, t) ∈ ∂W2 and τ ∈ [0, τ0). As a result, for any n ∈ N,

there holds

Un(x, t) =

∫ τ∗

0
(ζ + nη)(ϕt+τ,t(x), t+ τ)dτ (5.4)

≥
∫ τ0

0
(ζ + nη)(ϕt+τ,t(x), t+ τ)dτ ≥ nτ0 min

(∂W2) δ
2

η, ∀(x, t) ∈ ∂W2.

As V2 is positively invariant, we deduce

Un(x, t) =

∫ τ∗

0
(ζ + nη)(ϕt+τ,t(x), t+ τ)dτ (5.5)

=

∫ τ∗

0
ζ(ϕt+τ,t(x), t+ τ)dτ ≤ τ∗ sup

V2

ζ, ∀(x, t) ∈ V2 and n ∈ N.

The claim follows readily from (5.4) and (5.5).
Set U∗ := Un∗ . We show that U∗ satisfies the expected properties (a), (b)

and (c).
(a) It is trivial.
(b) As W1 is positively invariant under (ϕt,s), the definitions of ζ, η and

Un∗ ensure that U∗ ≡ 0 on W1. Obviously, inf∂V1 U∗(x, t) > 0. Hence, (b)
follows from W1 ⊂⊂ V1 and the continuity of (ϕt,s).
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(c) Direct calculations give

L0U∗(x, t) =
d

dτ
U∗(ϕ

t+τ,t(x), t+ τ)
∣∣∣
τ=0

=
d

dτ

∫ τ∗

0
(ζ + n∗η)(ϕt+τ+τ1,t(x), t+ τ + τ1)dτ1

∣∣∣
τ=0

=
d

dτ

∫ τ∗+τ

τ
(ζ + n∗η)(ϕt+τ1,t(x), t+ τ1)dτ1

∣∣∣
τ=0

.

As the definition of W1 ensures

(ϕt+τ,t(x), t+ τ) ∈ W1, ∀(x, t) ∈ W2 and τ ≥ τ∗,

it follows from ζ = 0 and η = 0 on W1 that∫ τ∗+τ

τ
(ζ + n∗η)(ϕt+τ1,t(x), t+ τ1)dτ1 =

∫ τ∗

τ
(ζ + n∗η)(ϕt+τ1,t(x), t+ τ1)dτ1.

As a result, we arrive at

L0U∗(x, t) =
d

dτ

∫ τ∗

τ
(ζ + n∗η)(ϕt+τ1,t(x), t+ τ1)dτ1

∣∣∣
τ=0

= −(ζ + n∗η)(x, t), ∀(x, t) ∈ W2.

Setting

γ :=
1

2
min
W2\W̃1

(ζ + n∗η) > 0

in the above equality, we find

L0U∗ ≤ −2γ in W2 \ W̃1.

This proves (c).

Step 2. We use Morse functions to construct a smooth Lyapunov function
of (1.1).

Clearly, we can extend U∗ to be a function in C1,1
T (U × R). As Morse

functions are dense in C1,1
T (U ×R) ≈ C1(U × ST ), there exists a sequence of

Morse functions

{Ũn}n∈N ⊂ C∞(U × ST ) ≈ C∞T (U × R)

such that

lim
n→∞

max
W2

(
|Ũn − U∗|+ |∂tŨn − ∂tU∗|+

d∑
i=1

|∂iŨn − ∂iU∗|
)

= 0.
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Since

lim
n→∞

sup
V2

Ũn = sup
V2

U∗ and lim
n→∞

inf
∂W2

Ũn = inf
∂W2

U∗,

we find from (5.1) the existence of some n1 ∈ N such that

sup
V2

Ũn < inf
∂W2

Ũn, ∀n ≥ n1. (5.6)

Similarly, it follows from (5.2) that there is an n2 ∈ N such that

sup
W̃1

Ũn < inf
∂V1

Ũn, ∀n ≥ n2. (5.7)

Since (5.3) and

max
W2\W̃1

|L0Ũn − L0U∗| → 0 as n→∞,

we can find some n3 ∈ N such that

L0Ũn ≤ −γ in W2 \ W̃1, ∀n ≥ n3. (5.8)

Let N = max{n1, n2, n3} and U := ŨN . Then (5.6), (5.7) and (5.8) hold

with Ũn replaced by U .
Fix ρm ∈ (supW̃1 U, inf∂V1 U). Clearly,

W̃1 ⊂⊂ Ωρm := {(x, t) ∈ W2 : U(x, t) < ρm}.

We show Ωρm ⊂⊂ V1. Suppose on the contrary that there exists (x, t) ∈
W2 \ V1 such that U(x, t) ≤ ρm. Set

τ ′ := inf
{
τ ≥ 0 : (ϕt+τ,t(x), t+ τ) ∈ V1

}
.

We apply Lemma 5.1 (with V replaced by V1) to find τ ′ <∞. The continuity

of (ϕt,s) and the pre-compactness of V1 then lead to (ϕt+τ
′,t(x), t+τ ′) ∈ ∂V1.

It follows that

inf
∂V1

U ≤ U(ϕt+τ
′,t(x), t+ τ ′)

= U(x, t) +

∫ τ ′

0
L0U(ϕt+τ,t(x), t+ τ)dτ ≤ ρm − γτ ′,

which leads to a contradiction.
Clearly, (5.6) yields the existence of some ρM ∈ (supV2 U, inf∂W2 U) such

that V2 ⊂⊂ ΩρM ⊂⊂ W2. We then see from (5.8) that U is a Lyapunov
function of (1.1) in W := ΩρM with essential upper bound ρM , essential
lower bound ρm > 0 and Lyapunov constant γ > 0.



302 Min Ji, Weiwei Qi, Zhongwei Shen, and Yingfei Yi

Lemma 5.1 and Proposition 2.4 ensure thatW is connected and positively
invariant. Finally, we see that ∇x,tU 6= 0 inW except for finite points, which
is a property of U being a Morse function on U × ST . This proves (1).

Now, we prove (2). Setting

ε∗ := sup

{
ε > 0 : ε2 sup

W
|aij∂2

ijU | ≤
γ

2

}
,

we find

Lε2AU = ∂tU + V i∂iU + ε2aij∂2
ijU ≤ −

γ

2
(resp. ≥ γ

2
), ∀ε ∈ (0, ε∗).

Thus, U is a uniform Lyapunov function (resp. uniform anti-Lyapunov func-
tion) with respect to {Lε2A}ε>0 with essential upper bound ρM , essential
lower bound ρm and Lyapunov constant γ

2 . �

Corollary 5.1. Assume V ∈ C1,1
T (U ×R). Let G ∈ CT (R,W 1,p

loc (U)) be such

that A := 1
2GG

> is pointwise positive definite, and U , ρm, ρM , γ and ε∗ be
as in Theorem 5.1. The following statements hold for any family of periodic
probability solutions {µε = (µεt)t∈R}ε>0 of (1.3).

(1) If E is a maximal periodic attractor, then for any ρ0, ρ1, ρ2 ∈ (ρm, ρM ]
with ρ0 < ρ1 < ρ2 there holds∫ t+T

t
µεs(Ω

s
ρ2
\ Ωs

ρ1
)ds ≤ Te−Cε−2

, ∀t ∈ R and ε ∈ (0, ε∗),

where

C :=
γ(ρ0 − ρm)

2 maxΩρ0
aij∂iU∂jU

> 0.

(2) If E is a maximal periodic repeller, then for any ρ1, ρ2, ρ3 ∈ (ρm, ρM ]
with ρ1 < ρ2 < ρ3 there holds∫ t+T

t
µεs(Ω

s
ρ1
\Ωs

ρm)ds ≤ e−Cε−2

∫ t+T

t
µεs(Ω

s
ρ3
\Ωs

ρm)ds, ∀t ∈ R and ε ∈ (0, ε∗),

where

C :=
γ(ρ3 − ρ2)

2 maxΩρ3\Ωρ2
aij∂iU∂jU

.

Proof. (1) We apply Lemma 4.2 (1) to find∫ t+T

t
µεs(Ω

s
ρ2
\ Ωs

ρ1
)ds ≤ Te−

γ
2

∫ ρ1
ρm

ds
ε2H(s) ≤ Te−

γ
2

∫ ρ0
ρm

ds
ε2H(s) ,
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∀t ∈ R and ε ∈ (0, ε∗), where

H(ρ) := sup
∂Ωρ

aij∂iU∂jU for ρ ∈ (ρm, ρM ).

Setting

C :=
γ(ρ0 − ρm)

2 maxΩρ0
aij∂iU∂jU

≤ γ

2

∫ ρ0

ρm

ds

H(s)
,

we arrive at the result.
(2) Applying Lemma 4.2 (2), we find∫ t+T

t
µεs(Ω

s
ρ1
\ Ωs

ρm)ds ≤ e−
γ
2

∫ ρ3
ρ1

ds
ε2H(s)

∫ t+T

t
µεs(Ω

s
ρ3
\ Ωs

ρm)ds,

∀t ∈ R and ε ∈ (0, ε∗). Setting

C :=
γ(ρ3 − ρ2)

2 max(Ωρ3\Ωρ2 ) a
ij∂iU∂jU

≤ γ

2

∫ ρ3

ρ2

ds

H(s)
,

we derive the result. �

Corollary 5.2. Assume V ∈ C1,1
T (U ×R). Let G ∈ CT (R,W 1,p

loc (U)) be such

that A := 1
2GG

> is pointwise positive definite. If {µε = (µεt)t∈R}ε>0 is a
family of periodic probability solutions of (1.3), then for any periodic Borel
set W ⊂⊂ B(E) \ E, there are C > 0 and 0 < ε∗ � 1 such that∫ t+T

t
µεs(Ws)ds ≤ Te−Cε

−2
, ∀t ∈ R and ε ∈ (0, ε∗).

Proof. Let W be as in the statement. There exist open, connected and
periodic sets V1 and V2 in B(E) such that W ⊂ V2 \ V1. By Lemma 5.2, we
may assume, without loss of generality, that V2 is positively invariant.

Set A := 1
2GG

>. Theorem 5.1 ensures that {Lε2A}ε>0 admits a uniform
Lyapunov function (resp. uniform anti-Lyapunov function) U in a neigh-
bourhood of V2 with essential upper bound ρM > 0 and essential lower
bound ρm > 0. Moreover, Ωρm ⊂⊂ V1. Clearly, there are ρ1, ρ2 ∈ (ρm, ρM )
such that Ωρ1 ⊂⊂ V1 ⊂⊂ V2 ⊂⊂ Ωρ2 . Hence, W ⊂ Ωρ2 \ Ωρ1 .

Corollary 5.1 yields the existence of positive constants C and ε∗ such that∫ t+T

t
µεs(Ws)ds ≤

∫ t+T

t
µεs(Ω

s
ρ2
\Ωs

ρ1
)ds ≤ Te−Cε−2

, ∀t ∈ R and ε ∈ (0, ε∗).

This completes the proof. �



304 Min Ji, Weiwei Qi, Zhongwei Shen, and Yingfei Yi

5.2. Concentration of periodic probability solutions. We prove The-
orem A and Corollary A in this subsection.

We recall the convergence under the weak*-topology for a family of Borel
measures on U × R.

Definition 5.1. A sequence of Borel measures {µn : n ∈ N} on U×R is said
to converge to some Borel measure µ on U ×R under the weak*-topology as
n→∞ if

lim
n→∞

∫∫
U×R

φdµn =

∫∫
U×R

φdµ, ∀φ ∈ C0(U × R).

Remark 5.1. We emphasize that a limit measure µ of a family of periodic
probability solutions {µε}ε>0 of (1.3) (see Definition 1.2) is not only a limit
point of {µε}ε>0 under the weak*-topology, but also satisfies the condition
µ(U × [0, T ]) = T .

We turn to the proof of Theorem A.

Proof of Theorem A. We only prove the results when E is a maximal
periodic attractor; the case when E is a local periodic repeller can be treated
in the same way.

(1) Fix a periodic Borel set W ⊂⊂ B(E) \ E . There exist open, connected
and periodic sets V1 and V2 satisfying E ⊂⊂ V1 ⊂⊂ V2 ⊂ B(E) and W ⊂⊂
V2 \V1. Lemma 5.2 yields the existence of an open, connected, periodic and

positively invariant set Ṽ such that V2 ⊂⊂ Ṽ ⊂⊂ B(E).
Applying Theorem 5.1, we find a uniform Lyapunov function U with re-

spect to {Lε2A}ε>0 in a neighbourhood of Ṽ with essential upper bound
ρM > 0, essential lower bound ρm > 0 and Lyapunov constant γ > 0. More-
over, Ωρm ⊂⊂ V1. For ρ0, ρ1 ∈ (ρm, ρM ) with ρ0 < ρ1 such that Ωρ1 ⊂ V1,
Corollary 5.1 (1) yields the existence of some ε∗ > 0 such that∫ t+T

t
µεs(Ω

s
ρM
\ Ωs

ρ1
)ds ≤ Te−Cε−2

, ∀t ∈ R and ε ∈ (0, ε∗),

where

C :=
γ

2 maxΩρ0
aij∂iU∂jU

> 0.

Due to W ⊂ V2 \ V1, Ωρ1 ⊂ V1 and V2 ⊂ ΩρM , we arrive at∫ t+T

t
µεs(Ws)ds ≤

∫ t+T

t
µεs(Ω

s
ρM
\Ωs

ρ1
)ds ≤ Te−Cε−2

, ∀t ∈ R and ε ∈ (0, ε∗).
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(2) Let µ be a limit measure of {µε}ε>0. It follows from (1) and the
Portmanteau theorem that µ(B(E) \ E) = 0. It remains to show µ is a
periodically invariant measure of (1.1). This is finished within two steps.
We may assume, without loss of generality, that µε → µ under the weak*-
topology as ε→ 0.

Step 1. We prove that µ admits periodic and continuous t-sections (µt)t∈R.

According to Theorem 2.1, µε admits a density uε ∈ H1,p
loc,T (U ×R). Then,

Lemma 2.1 and Lemma 2.2 ensures for each ε > 0,∫
U
φdµεt =

∫
U
φdµεs +

∫ t

s

∫
U
Lε2Aφdµετdτ, ∀φ ∈ C2

c (U) and t > s, (5.9)

where dµεt := u(x, t)dx for t ∈ R.
Fix φ ∈ C2

c (U). For each ε > 0, we define

f εφ(t) :=

∫
U
φdµεt, t ∈ R.

Obviously, f εφ is T -periodic and satisfies |f εφ|∞ ≤ |φ|∞ for all ε > 0. It follows

from (5.9) that for each ε ∈ (0, 1),

|f εφ(t)− f εφ(s)| =
∣∣∣ ∫ t

s

∫
U
Lε2Aφdµετdτ

∣∣∣ ≤ max
U×R
|Lε2Aφ| × (t− s)

≤
(

max
supp(φ)×R

|aij∂2
ijφ|+ max

supp(φ)×R
|V i∂iφ|

)
× (t− s), ∀s < t.

Thus, the family {f εφ}ε∈(0,1) is uniformly bounded and equicontinuous. Ap-

plying the Arzelà-Ascoli theorem, we find a subsequence {f εjφ }j∈N, where

limj→∞ εj = 0, that uniformly converges to some fφ ∈ CT (R). Obviously,
|fφ|∞ ≤ |φ|∞.

For each η ∈ Cc(R), the dominated convergence theorem yields that

lim
j→∞

∫
R
η

∫
U
φdµ

εj
t dt = lim

j→∞

∫
R
ηf

εj
φ dt =

∫
R
ηfφdt.

Since µε converges to µ under the weak*-topology as ε→ 0, there holds

lim
j→∞

∫
R
η

∫
U
φdµ

εj
t dt =

∫∫
U×R

ηφdµ, ∀η ∈ Cc(R).

Hence, ∫
R
ηfφdt =

∫∫
U×R

ηφdµ, ∀η ∈ Cc(R). (5.10)
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Note that fφ must be the unique periodic continuous function on R satisfying
(5.10). Following an argument almost the same as that in the proof of [25,
Lemma 4.2], we find a family of σ-finite Borel measures {µt}t∈R such that

fφ(t) =

∫
U
φdµt, ∀φ ∈ C2

c (U) and t ∈ R.

It follows from (5.10) that∫
R

∫
U
ηφdµtdt =

∫∫
U×R

ηφdµ, ∀η ∈ Cc(R) and φ ∈ C2
c (U). (5.11)

Since the set{ n∑
k=1

ckηkφk : n ∈ N, {ck}nk=1 ⊂ R, {ηk}nk=1 ⊂ Cc(R) and {φk}nk=1 ⊂ C2
c (U)

}
is dense in C0(U × R), (5.11) ensures∫

R

∫
U
φ(·, t)dµtdt =

∫∫
U×R

φdµ, ∀φ ∈ C0(U × R),

that is, {µt}t∈R are t-sections of µ, or µ = (µt)t∈R.
Moreover, as fφ is T -periodic and continuous for each φ ∈ C2

c (U), the
periodicity and continuity of (µt)t∈R follows.

Step 2. We prove that∫ t+T

t

∫
U
L0φ(·, s)dµsds = 0, ∀t ∈ R and φ ∈ C1,1

c,T (U × R). (5.12)

Proposition 3.2 then ensures that µ = (µt)t∈R is a periodically invariant
measure of (1.1).

We claim that∫
R

∫
U
L0φ(·, t)dµtdt = 0, ∀φ ∈ C2,1

0 (U × R). (5.13)

Fix φ ∈ C2,1
0 (U × R). As µε = (µεt)t∈R is a periodic probability solution of

(1.3), there holds ∫
R

∫
U
Lε2Aφ(·, t)dµεtdt = 0. (5.14)

Since µε converges to µ under the weak*-topology as ε → 0 and L0φ ∈
C0(U × R), we find∣∣∣ ∫

R

∫
U
L0φ(·, t)dµεtdt−

∫
R

∫
U
L0φ(·, t)dµtdt

∣∣∣→ 0 as ε→ 0.
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As ∫
R

∫
U
|Lε2Aφ(·, t)− L0φ(·, t)| dµεtdt ≤ |Lε2Aφ− L0φ|∞ × µε(supp(φ))

≤ ε2 max
supp(φ)

|aij∂2
ijφ| × µε(supp(φ))→ 0 as ε→ 0,

we derive∣∣∣ ∫
R

∫
U
Lε2Aφ(·, t)dµεtdt−

∫
R

∫
U
L0φ(·, t)dµtdt

∣∣∣
≤
∫
R

∫
U

∣∣∣Lε2Aφ(·, t)− L0φ(·, t)
∣∣∣dµεtdt+

∣∣∣ ∫
R

∫
U
L0φ(·, t)dµεtdt

−
∫
R

∫
U
L0φ(·, t)dµtdt

∣∣∣→ 0 as ε→ 0.

Letting ε→ 0 in (5.14), we conclude (5.13).
Since (µt)t∈R is continuous, Lemma 2.1 and Lemma 2.2 ensure that∫

U
φ(·, t)dµt =

∫
U
φ(·, s)dµs +

∫ t

s

∫
U
L0φdµτdτ,

∀φ ∈ C2,1
c (U ×R) and t > s. It follows from the T -periodicity of (µt)t∈R that∫ t+T

t

∫
U
L0φdµτdτ = 0, ∀t ∈ R and φ ∈ C2,1

c,T (U × R).

Since C2,1
c,T (U × R) is dense in C1,1

c,T (U × R), (5.12) follows. This completes
the proof. �

Proof of Corollary A. Let U be the unbounded uniform Lyapunov func-
tion and ρm be its essential lower bound. We apply [25, Theorem A] and
[26, Theorem A] to find an ε∗ > 0 such that (1.3) admits a unique periodic
probability solution µε = (µεt)t∈R for each ε ∈ (0, ε∗). Theorem 4.2 (1) gives∫ t+T

t
µεs(U \ Ωs

ρm)ds ≤ Te−γ
∫∞
ρm

1
ε2H(s)

ds
, ∀t ∈ R and ε ∈ (0, ε∗), (5.15)

where
H(ρ) := max

∂Ωρ
aij∂iU∂jU for ρ ∈ (ρm, ρM ).

Since
sup

ε∈(0,ε∗)
µε(K) <∞

for any compact set K ⊂ U×R, we apply [12, Corollary A2.6.V.] to conclude
the existence of a subsequence of {µε}ε∈(0,ε∗), denoted by {µεj}j∈N, that
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converges to some σ-finite Borel measure µ on U × R under the weak*-
topology. Here, limj→∞ εj = 0. Following the arguments as in the proof of
Theorem A, we conclude that µ admits periodic and continuous t-sections
(µt)t∈R and satisfies (5.12). By Proposition 3.2, µ is a periodically invariant
measure of (1.1) if we can show µ(U × [0, T ]) = T .

The continuity of (µt)t∈R and the Portmanteau theorem lead to∫ t+T

t
µs(U)ds = µ(U × (t, t+T )) ≤ lim inf

j→∞
µεj (U × (t, t+T )) = T, ∀t ∈ R.

As

lim
ε→0

γ

∫ ∞
ρm

1

ε2H(s)
ds =∞,

we find from (5.15) that for any δ > 0, there exists ε∗∗ > 0 such that∫ t+T

t
µεs(U \ Ωs

ρm)ds < δ, ∀t ∈ R and ε ∈ (0, ε∗∗).

This together with the Portmanteau theorem yields∫ t+T

t
µs(Ω

s
ρm)ds ≥ lim sup

j→∞

∫ t+T

t
µ
εj
s (Ω

s
ρm)ds > T − δ, ∀t ∈ R.

It follows from the arbitrariness of δ > 0 that µ(U × [t, t + T ]) = T for all
t ∈ R. This completes the proof. �

6. Noisy stabilization/de-stabilization

This section is devoted to the proof of Theorem B and Theorem C. For
G ∈ CT (R,W 1,p

loc (U)) with GG> being pointwise positive definite, we define

λB := inf
(x,t)∈B

inf
ξ∈Rd\{0}

aij(x, t)ξiξj

|ξ|2
, ΛB := sup

(x,t)∈B
sup

ξ∈Rd\{0}

aij(x, t)ξiξj

|ξ|2
,

∀B ⊂⊂ U × R, where (aij) = 1
2GG

>.

Proof of Theorem B. Let W ⊂⊂ (U × R) \ E be a periodic Borel set.
Arguing as in the proof of Theorem A, we could apply Theorem 5.1 to E
to find a Lyapunov function U of (1.1) in some neighbourhood of E with
essential upper bound ρM > 0, essential lower bound ρm > 0 and Lyapunov
constant γ > 0. Moreover, E ⊂⊂ Ωρm and W ⊂⊂ (U × R) \ Ωρm , where
Ωρ := {(x, t) : U(x, t) < ρ} for ρ ∈ (0, ρM ]. Let ρi, i = 0, 1, 2, 3 be such that
ρm < ρ0 < ρ1 < ρ2 < ρ3 < ρM and W ⊂ (U × R) \ Ωρ2 .
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The proof is finished within two steps. In Step 1, we establish estimates
for {µε}ε>0 in W for a general G ∈ CT (R,W 1,p

loc (U)) with A := 1
2GG

> being
pointwise positive definite, where {µε}ε>0 is a family of periodic probability

solutions of (1.3). In Step 2, a special noise matrix G∗ ∈ CT (R,W 1,p
loc (U))

is designed according to such estimates to meet the requirements of the
theorem.

As (1.1) is assumed to be dissipative, the global periodic attractor A
exists.

Step 1. Let G ∈ CT (R,W 1,p
loc (U)) be such that A := 1

2GG
> is pointwise

positive definite and {µε = (µεt)t∈R}ε>0 be a family of periodic probability

solutions of (1.3). Let Ṽ ⊂ U × R be an open, connected and periodic

neighbourhood of A, and satisfy ΩρM ⊂⊂ Ṽ. Obviously,

W ⊂
(
W \ Ṽ

)⋃(
Ṽ \ Ωρ3

)⋃
(Ωρ3 \ Ωρ2) .

We derive estimates for {µε}ε>0 in the domainsW\Ṽ, Ṽ \Ωρ3 and Ωρ3 \Ωρ2 .

Since W \ Ṽ ⊂⊂ (U × R) \ A, we apply Corollary 5.2 (with E and W
replaced by A and W \ Ṽ respectively) to find positive constants C1 and ε1
such that∫ t+T

t
µεs(Ws \ Ṽs)ds ≤ Te−C1ε−2

, ∀t ∈ R and ε ∈ (0, ε1). (6.1)

Corollary 5.1 ensures the existence of an ε2 > 0 such that∫ t+T

t
µεs(Ω

s
ρ3
\ Ωs

ρ2
)ds ≤ Te−C2ε−2

, ∀t ∈ R and ε ∈ (0, ε2), (6.2)

where

C2 :=
γ(ρ0 − ρm)

2 maxΩρ0
aij∂iU∂jU

.

It remains to estimate
∫ t+T
t µεs(Ṽs \ Ωs

ρ3
)ds. This is done by a delicate

analysis of {uε}ε>0 in a neighbourhood of Ṽ \Ωρ3 , where uε is the density of
µε for each ε > 0.

Since Ṽ \ Ωρ2 needs not be connected, we denote by {Vk : k = 1, . . . , N}
the connected components of Ṽ \ Ωρ2 . As Ṽ \ Ωρ2 is periodic, so is Vk for
each k ∈ {1, . . . , N}.

We show that

Vk ∩ (Ωρ3 \ Ωρ2) 6= ∅, ∀k ∈ {1, . . . , N}. (6.3)
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Fix k ∈ {1, . . . , N} and some point (x, t) ∈ Vk. The connectedness of Ṽ yields

the existence of a continuous curve Γ : [0, 1] → Ṽ connecting (x, t) = Γ(0)
and some point Γ(1) ∈ Ωρ2 . Set

s∗ := inf {s ∈ (0, 1) : Γ(s) ∈ Ωρ2} .
Clearly, s∗ ∈ (0, 1), Γ([0, s∗)) ⊂ Vk and Γ(s∗) ∈ ∂Ωρ2 . As Ωρ2 ⊂⊂ Ωρ3 and
Γ is continuous, there exists some 0 < δ∗ � 1 such that

Γ(s) ∈ (Ωρ3 \ Ωρ2) ∩ Vk, ∀s ∈ (s∗ − δ∗, s∗).
This proves (6.3).

Let Ṽ1 ⊂ U × R be open, connected and periodic, and satisfy Ṽ ⊂⊂
Ṽ1. Obviously, Ṽ \ Ωρ2 ⊂⊂ Ṽ1 \ Ωρ1 . Set ε∗ := min{ε1, ε2, 1}. For each
k ∈ {1, . . . , N} and 0 < ε < ε∗, Harnack’s inequality (see Proposition 2.5)

applied to uε in Ṽ1 \ Ωρ1 gives

sup
Vk

uε = sup⋃
t∈[0,T ](Vkt ×{t})

uε ≤ DMε
k inf⋃

t∈[2T,3T ](Vkt ×{t})
uε = DMε

k inf
Vk
uε, (6.4)

where Dk = Dk(Vk, Ṽ1 \ Ωρ1 , d, T ) and Mε = ε2Λ(Ṽ1\Ωρ1 ) + ε−2Nελ
−1
(Ṽ1\Ωρ1 )

.

In which,

Nε = 1 +

d∑
i=1

sup
(Ṽ1\Ωρ1 )

(ε4|∂jaij |2 + |V i|2).

It follows from (Ṽ \ Ωρ2) =
⋃N
k=1 Vk that∫ t+T

t
µεs(Ṽs \ Ωs

ρ2
)ds =

N∑
k=1

∫ t+T

t
µεs(Vks )ds ≤

N∑
k=1

sup
Vk

uε
∣∣∣ ⋃
s∈[0,T ]

(Vks × {s})
∣∣∣

≤
N∑
k=1

DMε
k × inf

Vk
uε ×

∣∣∣ ⋃
s∈[0,T ]

(Vks × {s})
∣∣∣. (6.5)

Note that (6.2) gives

inf
Vk
uε ≤ inf

Vk∩(Ωρ3\Ωρ2 )
uε

≤ 1∣∣∣⋃s∈[0,T ][(Vks ∩ (Ωs
ρ3
\ Ωs

ρ2
))× {s}]

∣∣∣
∫ t+T

t
µεs(Vks ∩ (Ωs

ρ3
\ Ωs

ρ2
))ds

≤ 1∣∣∣⋃s∈[0,T ][(Vks ∩ (Ωs
ρ3
\ Ωs

ρ2
))× {s}]

∣∣∣
∫ t+T

t
µεs(Ω

s
ρ3
\ Ωs

ρ2
)ds
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≤ Te−C2ε−2∣∣∣⋃s∈[0,T ][(Vks ∩ (Ωs
ρ3
\ Ωs

ρ2
))× {s}]

∣∣∣ , ∀ε ∈ (0, ε∗),

which, together with (6.5), yields∫ t+T

t
µεs(Ṽs \ Ωs

ρ2
)ds ≤ Te−C2ε−2

N∑
k=1

DMε
k

∣∣∣⋃s∈[0,T ](Vks × {s})
∣∣∣∣∣∣⋃s∈[0,T ][(Vks ∩ (Ωs

ρ3
\ Ωs

ρ2
))× {s}]

∣∣∣
= C3D

Mε
∗ e−C2ε−2

, ∀t ∈ R and ε ∈ (0, ε∗), (6.6)

where D∗ = max {Dk, k = 1, . . . , N} and

C3 = T
N∑
k=1

∣∣∣⋃s∈[0,T ](Vks × {s})
∣∣∣∣∣∣⋃s∈[0,T ][(Vks ∩ (Ωs

ρ3
\ Ωs

ρ2
))× {s}]

∣∣∣ .
Step 2. We look for a noise matrix G∗ ∈ CT (R;W 1,p

loc (U)) giving∫ t+T

t
µεs(Ṽs \ Ωs

ρ3
)ds ≤ eC4−C5ε−2

, ∀t ∈ R and ε ∈ (0, ε∗) (6.7)

for some positive constants C4 and C5, where {µε := (µεt)t∈R}ε>0 is a family
of periodic probability solutions of (1.3) with (aij) := 1

2G∗G
>
∗ . Consequently,

the estimate (6.7), together with (6.1) and (6.2), yields the desired estimate∫ t+T

t
µεs(Ws)ds ≤ C̃1e

−C̃2ε2 , ∀t ∈ R and ε ∈ (0, ε∗),

where C̃1 := max{T, eC4} and C̃2 := min{C1, C2, C5}.
To find such a G∗, we take the logarithm on both sides of (6.6) to deduce

ln

∫ t+T

t
µεs(Ṽs \ Ωs

ρ2
)ds ≤ lnC3 +Mε lnD∗ − C2ε

−2

= lnC3 + lnD∗

(
ε2Λ(Ṽ1\Ωρ1 ) + ε−2Nελ

−1
(Ṽ1\Ωρ1 )

)
− γ(ρ0 − ρm)ε−2

2 maxΩρ0
aij∂iU∂jU

≤ C4 − C5ε
−2, ∀t ∈ R and ε ∈ (0, ε∗),

where
C4 = | lnC3|+ | lnD∗|Λ(Ṽ1\Ωρ1 )

and

C5 = −| lnD∗|N∗λ−1
(Ṽ1\Ωρ1 )

+
γ(ρ0 − ρm)

2 maxΩρ0
aij∂iU∂jU

.



312 Min Ji, Weiwei Qi, Zhongwei Shen, and Yingfei Yi

In which,

N∗ = 1 +

d∑
i=1

sup
(Ṽ1\Ωρ1 )

(|∂jaij |2 + |V i|2).

Hence, C5 > 0 if and only if

max
Ωρ0

aij∂iU∂jU <
γ(ρ0 − ρm)

2| lnD∗|N∗
λ(Ṽ1\Ωρ1 ). (6.8)

As Ωρ0 ∩ (Ṽ1 \ Ωρ1) = ∅, there must exist a G∗ ∈ CT (R,W 1,p
loc (U)) such

that (6.8) holds with (aij) := 1
2G∗G

>
∗ being pointwise positive definite. It

then follows from (6.6) that∫ t+T

t
µεs(Ṽs \ Ωs

ρ2
)ds ≤ eC4−C5ε−2

, ∀t ∈ R and ε ∈ (0, ε∗).

This together with Ṽ \ Ωρ3 ⊂ Ṽ \ Ωρ2 leads to (6.7). �

Proof of Theorem C. Let W ⊂⊂ B(E) be a periodic Borel set. Arguing
as in the proof of Theorem A, we could apply Theorem 5.1 to find an anti-
Lyapunov function U of (1.1) in some neighbourhood of E with essential
upper bound ρM > 0, essential lower bound ρm > 0 and anti-Lyapunov
constant γ > 0. Moreover, E ⊂⊂ Ωρm andW ⊂⊂ ΩρM , where Ωρ := {(x, t) :
U(x, t) < ρ} for ρ ∈ (0, ρM ]. Let ρi, i = 0, 1, 2, 3 be such that

ρm < ρ0 < ρ1 < ρ2 < ρ3 < ρM and W ⊂ Ωρ0 .

We break the rest of the proof into two steps. In Step 1, we establish esti-
mates for {µε}ε>0 in W for a general noise matrix G ∈ CT (R,W 1,p

loc (U)) with

A := 1
2GG

> being pointwise positive definite, where {µε}ε>0 is a family of
periodic probability solutions of (1.3). Step 2 is devoted to the construction

of a special noise matrix G∗ ∈ CT (R,W 1,p
loc (U)) based on estimates estab-

lished in Step 1 to finish the proof.

Step 1. Let G ∈ CT (R,W 1,p
loc (U)) be such that A := 1

2GG
> is pointwise

positive definite, and {µε = (µεt)t∈R}ε>0 be a family of periodic probability
solutions of (1.3). Denote by {uε}ε>0 the densities of {µε}ε>0.

For ε > 0, we apply Harnack’s inequality (see Proposition 2.5) to uε in
Ωρ1 to find

sup
Ωρ0

uε = sup⋃
t∈[0,T ](Ω

t
ρ0
×{t})

uε ≤ CMε
1 inf⋃

t∈[2T,3T ](Ω
t
ρ0
×{t})

uε = CMε
1 inf

Ωρ0

uε,
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where C1 = C1(Ωρ0 ,Ωρ1 , d, T ) and Mε = ε2ΛΩρ1
+ ε−2Nελ

−1
Ωρ1

. In which,

Nε = 1 +
d∑
i=1

sup
Ωρ1

(ε4|∂jaij |2 + |V i|2).

It follows that∫ t+T

t
µεs(Ωρ0)ds ≤ sup

Ωρ0

uε ×
∣∣∣ ⋃
s∈[0,T ]

(Ωs
ρ0
× {s})

∣∣∣ (6.9)

≤ CMε
1 × inf

Ωρ0

uε ×
∣∣∣ ⋃
s∈[0,T ]

(Ωs
ρ0
× {s})

∣∣∣.
Note that Corollary 5.1 ensures the existence of some ε∗ > 0 such that∫ t+T

t
µεs(Ω

s
ρ0
\ Ωs

ρm)ds ≤ Te−C2ε−2
, ∀t ∈ R and ε ∈ (0, ε∗), (6.10)

where

C2 =
γ(ρ3 − ρ2)

2 max(Ωρ3\Ωρ2 ) a
ij∂iU∂jU

.

It follows that

inf
Ωρ0

uε ≤ inf
Ωρ0\Ωρm

uε ≤ 1∣∣∣⋃s∈[0,T ][(Ω
s
ρ0
\ Ωs

ρm)× {s}]
∣∣∣
∫ T

0
µεs(Ω

s
ρ0
\ Ωs

ρm)ds

≤ Te−C2ε−2∣∣∣⋃s∈[0,T ][(Ω
s
ρ0
\ Ωs

ρm)× {s}]
∣∣∣ , ∀ε ∈ (0, ε∗).

This together with (6.9) yields∫ t+T

t
µεs(Ωρ0)ds ≤ C3C

Mε
1 e−C2ε−2

, ∀t ∈ R and ε ∈ (0, ε∗), (6.11)

where

C3 :=
T
∣∣∣⋃s∈[0,T ](Ω

s
ρ0
× {s})

∣∣∣∣∣∣⋃s∈[0,T ][(Ω
s
ρ0
\ Ωs

ρm)× {s}]
∣∣∣ .
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Step 2. We show the existence of some G∗ ∈ CT (R;W 1,p
loc (U)) such that∫ t+T

t
µεs(Ws)ds ≤ (C3e

C4)eC5ε−2
, ∀t ∈ R and ε ∈ (0, ε∗), (6.12)

where ε∗ > 0 is fixed, and {µε := (µεt)t∈R}ε>0 is a family of periodic proba-
bility solutions of (1.3) with (aij) := 1

2G∗G
>
∗ .

Taking the logarithm on both sides of (6.11), we deduce

ln

∫ t+T

t
µεs(Ωρ0)ds ≤ lnC3 +Mε lnC1 − C2ε

−2

= lnC3 + lnC1

(
ε2ΛΩρ1

+ ε−2Nελ
−1
Ωρ1

)
− C2ε

−2 ≤ C4 − C5ε
−2,

where C4 = | lnC3|+ | lnC1|ΛΩρ1
and

C5 = −| lnC1|N∗λ−1
Ωρ1

+
γ(ρ3 − ρ2)

2 max(Ωρ3\Ωρ2 ) a
ij∂iU∂jU

.

In which,

N∗ = 1 +
d∑
i=1

sup
Ωρ1

(|∂jaij |2 + |V i|2).

Clearly, C5 > 0 if and only if

max
(Ωρ3\Ωρ2 )

aij∂iU∂jU ≤
γ(ρ3 − ρ2)

2| lnC1|N∗
λΩρ1

. (6.13)

Since Ωρ1 ∩ (Ωρ3 \ Ωρ2) = ∅, there exists a G∗ ∈ CT (R,W 1,p
loc (U)) such that

(6.13) holds, where (aij) := 1
2G∗G

>
∗ is pointwise positive definite. It follows

from W ⊂ Ωρ0 and (6.11) that (6.12) holds. �

7. An example

In this section, we demonstrate the noisy stabilization/de-stabilization
and applications of concentration estimates of periodic probability solutions
by the following stochastic planar system:

dx1 =
{
x1

[
b(t)− (x2

1 + x2
2)
]
− x2

}
dt+ εg11(x1, x2, t)dW

1
t

+εg12(x1, x2, t)dW
2
t ,

dx2 =
{
x2

[
b(t)− (x2

1 + x2
2)
]

+ x1

}
dt+ εg21(x1, x2, t)dW

1
t

+εg22(x1, x2, t)dW
2
t ,

(7.1)

where 0 < ε � 1, b : R → R is a Lipschitz continuous, positive and T -
periodic function for some T > 0, G := (gij) : R2 × R → R2×2 belongs
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to CT (R,W 1,p
loc (R2)) for some p > 4, is such that GG> is pointwise positive

definite, and satisfies

|G(x1, x2, t)| ≤ C
(
x2

1 + x2
2

)
, ∀(x1, x2, t) ∈ R2 × R

for some constant C > 0, and W 1 and W 2 are independent one-dimensional
Wiener processes.

It is not hard to construct an unbounded uniform Lyapunov function for
the system (7.1), and therefore, (7.1) admits a unique periodic probability
solution for each 0 < ε � 1 (see the proof Theorem 7.1). To study the
concentration and limit behaviors of these periodic probability solutions as
ε→ 0, we need to explore the dynamics of the unperturbed system:{

ẋ1 = x1

[
b(t)− (x2

1 + x2
2)
]
− x2,

ẋ2 = x2

[
b(t)− (x2

1 + x2
2)
]

+ x1.
(7.2)

It is more convenient to study (7.2) in polar coordinates (x1 = r cos θ and
x2 = r sin θ): {

ṙ = r
[
b(t)− r2

]
, r ≥ 0,

θ̇ = 1 mod 2π.

(7.3a)

(7.3b)

Lemma 7.1. The following hold.

(1) The equation (7.3a) admits a unique positive T -periodic solution,
denoted by r∗(t), that attracts solutions of (7.3a) with positive initial
data.

(2) The system (7.3a)-(7.3b) admits a unique local T -periodic repeller
Rpolar = {0} × S2π × R with basin of expansion

B(Rpolar) =
⋃
t∈R

([0, r∗(t))× S2π × {t}) .

(3) The system (7.3a)-(7.3b) admits a unique local T -periodic attractor

J polar =
⋃
t∈R

({r∗(t)} × S2π × {t})

with basin of attraction B(J polar) = (0,∞)× S2π × R. Moreover,
– (the non-resonance case) if T

2π is irrational, then J polar con-
sists of quasi-periodic solutions of (7.3a)-(7.3b) with the same

frequencies; each of them, when identified as an orbit in J polarT ,

is dense in J polarT , where J polarT =
⋃
t∈ST ({r∗(t)} × S2π);
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– (the resonance case) if T
2π = m

n for some relatively prime positive

integers m and n, then J polar consists of Tsol-periodic solutions
of (7.3a)-(7.3b), where Tsol = nT = 2mπ.

Proof. Note that the system (7.3a)-(7.3b) is decoupled. Obviously, r ≡
0 is an unstable solution of (7.3a). This together with (7.3b) gives the
unique local T -periodic repellerRpolar. By the classical comparison principle
and contraction arguments, it is not hard to show that (7.3a) admits a
unique positive T -periodic solution r∗(t) that attracts solutions of (7.3a)
with positive initial data. This together with (7.3b) gives the unique local
T -periodic attractor J polar. It is easy to determine the basin of expansion
of Rpolar and the basin of attraction of J polar.

It remains to explore the structure of J polar. Note that the dynamics of
(7.3a)-(7.3b) on J polar are equivalent to those of the following system:{

ṙ = 1 mod T,

θ̇ = 1 mod 2π.
(7.4)

It is well-known that if T
2π is an irrational number, then each orbit of (7.4) is

quasi-periodic and dense in ST × S2π; moreover, these quasi-periodic orbits
have the same frequencies. If T

2π = m
n is a rational number for some relative

prime positive integers m and n, then each orbit of (7.4) is Tsol-periodic,
where Tsol = nT = 2mπ. This completes the proof. �

The next result follows readily from Lemma 7.1.

Proposition 7.1. Let r∗(t) be the unique positive T -periodic solution of
(7.3a) given in Lemma 7.1. Then, the following hold.

(1) The system (7.2) admits a unique local T -periodic repeller R =
{(0, 0)} × R with basin of expansion

B(R) =
{

(x1, x2, t) ∈ R× R× R : x2
1 + x2

2 < r∗(t)
2
}
.

(2) The system (7.2) admits a unique local T -periodic attractor

J =
{

(x1, x2, t) ∈ R× R× R : x2
1 + x2

2 = r∗(t)
2
}

with basin of attraction B(J ) =
(
R2 \ {0}

)
× R. Moreover,

– (the non-resonance case) if T
2π is irrational, then J consists of

quasi-periodic solutions of (7.2) with the same frequencies; each
of them, when identified with an orbit in JT , is dense in JT ,
where JT =

{
(x1, x2, t) ∈ R× R× ST : x2

1 + x2
2 = r∗(t)

2
}

;
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– (the resonance case) if T
2π = m

n for some relatively prime positive
integers m and n, then J consists of Tsol-periodic solutions of
(7.2), where Tsol = nT = 2mπ.

Now, we turn to the stochastic system (7.1). Denote

V = (V 1, V 2)> =

(
x1

[
b(t)− (x2

1 + x2
2)
]
− x2

x2

[
b(t)− (x2

1 + x2
2)
]

+ x1

)
.

The Fokker-Planck equation associated to (7.1) reads

∂tu = ε2∂2
ij(a

iju)− ∂i(V iu), (x, t) ∈ R2 × R, (7.5)

where A = (aij) := 1
2GG

> and ∂2
ij = ∂2

xixj for i, j = 1, 2.

Theorem 7.1. The following statements hold.

(1) For each 0 < ε � 1, the stochastic system (7.5) admits a unique
T -periodic probability solution µε = (µεt)t∈R. Moreover, the set of
limit measures of {µε}0<ε�1, denoted by M, is nonempty, and each
element in M is a T -periodically invariant measure of (7.2) and is
supported in J .

(2) If, in addition, T
2π is irrational, thenM = {µ}, where µ is the unique

T -periodically invariant measure of (7.2) on R2\{(0, 0)} and satisfies
supp(µ) = J . In particular, µε → µ under the weak*-topology as
ε→ 0.

Proof. (1) For each 0 < ε� 1, denote

Lε2A := ∂t + ε2aij∂2
ij + V i∂i.

We construct an unbounded uniform Lyapunov function with respect to
{Lε2A}0<ε�1. Define

U(x, t) :=
|x|2

2
, ∀(x, t) ∈ R2 × R,

where x = (x1, x2)> and |x| :=
√
x2

1 + x2
2. Obviously, U is an unbounded

C2 compact function. We calculate

Lε2AU = |x|2(b(t)− |x|2) + ε2(a11 + a22), ∀(x, t) ∈ R2 × R.

Since

|A| = 1

2

∣∣∣GG>∣∣∣ ≤ 1

2
C2|x|4,
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it is not hard to find positive constants ε0, C1 and R0 such that for each
ε ∈ (0, ε0), there holds

Lε2AU ≤ −C1|x|4, ∀|x| ≥ R0 and t ∈ R.

That is, U is an unbounded uniform Lyapunov function with respect to
{Lε2A}0<ε�1.

It follows from Corollary A that for each 0 < ε � 1, (7.5) admits a
unique periodic probability solution µε = (µεt)t∈R. Moreover, M 6= ∅ and
each element in M is a T -periodically invariant measure of (7.2) and is
supported in the global T -periodic attractor of (7.2).

It remains to show that each µ ∈ M satisfies supp(µ) ⊂ J . Fix an
arbitrary µ ∈M and let {εj}j∈N ⊂ (0, 1) be such that εj → 0 as j →∞ and
µεj → µ under the weak*-topology as j → ∞. Proposition 2.3 yields that
supp(µ) ⊂ R ∪ J . Thus, it suffices to prove µ(R) = 0.

Since A = (aij) is pointwise positive definite and [B(R)] is bounded in
R2 × ST , there exists some λ > 0 such that

aij(x, t)ξiξj ≥ λ|ξ|2, ∀(x, t) ∈ B(R) and ξ ∈ R2.

Set

DL :=
{

(x, t) ∈ R2 × R : |x| < L
}
,

where

L := min
t∈R

min {r∗(t), b(t)} .

Obviously, DL ⊂ B(R). Direct calculations give

Lε2AU(x, t) = |x|2(b(t)− |x|2) + ε2(a11 + a22)(x, t) ≥ 2ε2λ, ∀(x, t) ∈ DL.

That is, U is an anti-Lyapunov function with respect to Lε2A in DL with
essential upper bound 1

2L
2, essential lower bound 0 and anti-Lyapunov con-

stant 2ε2λ.
Recall that Ωρ is the ρ-sublevel set of U , and Ωt

ρ is its t-section. Note that

Ω0 = ∅. Hence, for fixed ρ1 ∈ (0, 1
2L

2), we can apply Lemma 4.2 (2) to find
that∫ t+T

t
µεs(Ω

s
ρ)ds =

∫ t+T

t
µε(Ωs

ρ \ Ωs
0)ds

≤ e−2λ
∫ ρ1
ρ

1
H(s)

ds
∫ t+T

t
µε(Ωs

ρ1
\ Ωs

0)ds ≤ Te−2λ
∫ ρ1
ρ

1
H(s)

ds
,
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∀t ∈ R and ρ ∈ (0, ρ1), where

H(ρ) := sup
∂Ωρ

aij∂iU∂jU.

It is easy to verify that

H(ρ) ≤ Λ sup
∂Ωρ

|∇U |2 ≤ 2Λρ, ∀ρ ∈ [0,
1

2
L2],

where Λ := supDL |A|. Hence,∫ t+T

t
µεs(Ω

s
ρ)ds ≤ Te

− λ
Λ

∫ ρ1
ρ

1
s

ds, ∀t ∈ R.

Since µεj → µ under the weak*-topology as j → ∞, the Portmanteau
theorem yields

µ
( ⋃
s∈(t,t+T )

(Ωs
ρ × {s})

)
≤ lim inf

j→∞

∫ t+T

t
µ
εj
s (Ωs

ρ)ds ≤ Te
− λ

Λ

∫ ρ1
ρ

1
s

ds, ∀t ∈ R.

Letting ρ→ 0 in the above inequality, we conclude µ(R) = 0.
(2) If T

2π is irrational, then the system (7.4) is uniquely ergodic. This
leads to the unique ergodicity of the skew product semi-flow generated by
(7.2) on R2 \ {(0, 0)}. As any element in M, considered as a T -periodically
invariant measure of (7.2), can be identified with an invariant measure of
the skew product semi-flow, we conclude that M is a singleton set, that is,
M = {µ}, where µ is the unique T -periodically invariant measure of (7.2)
on R2 \ {(0, 0)}. The fact that supp(µ) = J and the convergence of µε to µ
under the weak*-topology as ε→ 0 follow readily. �

Remark 7.1. Theorem 7.1 (1) asserts that the local T -periodic repeller
R and the local T -periodic attractor J are respectively de-stabilized and
stabilized by any noise described at the beginning of this section.

In the case that T
2π = m

n is a rational number for some relatively prime
positive integers m and n, Lemma 7.1 (3) says that the local T -periodic at-
tractor J consists of Tsol-periodic solutions of (7.2). As a result, the system
(7.2) admits many T -periodically invariant measures who are candidates for
elements in the set of limit measuresM given in Theorem 7.1 (1). It remains
an interesting problem to investigate finer structures of M.
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