Transient Thermal Conduction Example

Introduction

This tutorial was created using ANSYS 7.0 to solve a simple transient conduction problem. Special thanks to Jesse Arnold for the analytical solution shown at the end of the tutorial.

The example is constrained as shown in the following figure. Thermal conductivity (k) of the material is 5 W/m*K and the block is assumed to be infinitely long. Also, the density of the material is 920 kg/m^3 and the specific heat capacity (c) is 2.040 kJ/kg*K.

It is beneficial if the [Thermal-Conduction](#) tutorial is completed first to compare with this solution.

ANSYS Command Listing

```
finish
/clear
/title, Simple Conduction Example
/PREP7 ! Enter preprocessor

! define geometry

length=1.0
height=1.0
blc4,0,0,length, height ! area - one corner, then width and height
```
! mesh 2D areas

ET,1, PLANE55 ! Thermal element only
MP,Dens,1,920 ! Density
mp,c,1,2.040 ! Specific heat capacity
mp,kxx,1,5 ! Thermal conductivity
ESIZE,0.05 ! Element size
AMESH,ALL ! Mesh area
FINISH
/SOLU

ANTYPE,4 ! Transient analysis

time,300 ! Time at end = 300
nropt,full ! Newton Raphson = full
lumpm,0 ! Lumped mass approx off
nsubst,20 ! 20 substeps
neqit,100 ! Max no. of iterations = 100
autots,off ! Auto time search on
lnsrc, on ! Line search on
outres, all, all ! Output data for all substeps
kbc,1 ! fixed temp BC's

NSEL,S,LOC,Y,height ! select nodes on top with y=height
D,ALL,TEMP,500 ! apply fixed temp of 500K
NSEL,ALL
NSEL,S,LOC,Y,0 ! apply fixed temp of 100K
D,ALL,TEMP,100
NSEL,ALL
IC,all,Temp,100 ! Initial Conditions: 100K

SOLVE
FINISH
/POST1

/CONT,1,8,100,500 ! Define a contour range
PLNSOL,TEMP ! Plot temperature contour
ANTIME,20,0.5,0,2,0,500 ! Animate temp over time