

Government of Saskatchewan

PERFORMANCE INDICATORS FOR WILDFIRE PREVENTION PROGRAM

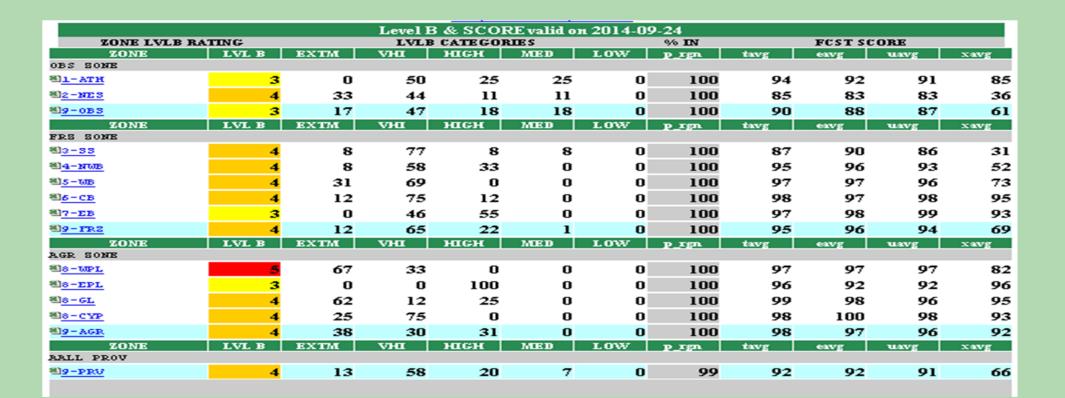
Daniel Poirier

Saskatchewan Ministry of Environment
Wildfire Management Branch

OBJECTIVES:

- Project human-caused wildfires specific to
 - Regions of Saskatchewan
 - Based on fire weather observed daily
 - Using multi-decadal years of data
- ➤ The projection is a baseline that
 - → Reflect <u>expected</u> human-caused wildfires based on historical activity for a region
 - → Varies from year to year
 - Based on observed daily fire weather
 - calendar date specific
 - using multi observations within the region

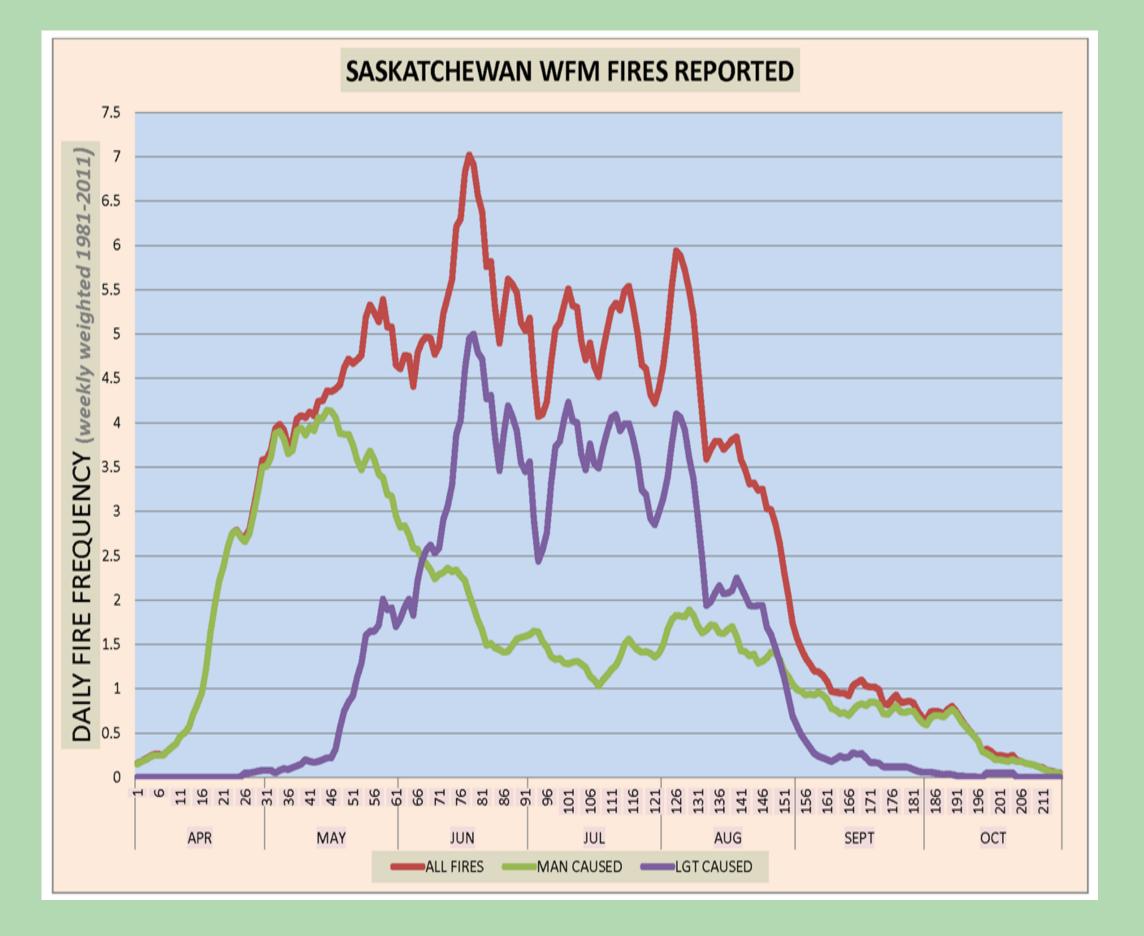
Fire Weather at locations:


Daily HFI-C2 >> PREP LEVEL

	CRITI	CAL VALUES:			
Categories	Extreme Very High		High	Moderate	Low
Prep Level	5	4	3	2	1
Head Fire Intensity	HFI > 10,000	10,000 <= HFI < 4,000	4,000 <= HFI < 2,000	2,000 <= HFI < 500	HFI <= 500

PREP levels are calculated at every weather observing location
 PREP levels are categories of Head Fire Intensity for C2

Actual Noon for All Regions valid on 2014-09-24 at 12:00														
Issued on 2014-09-24														
Station	Temp	Dew °C	<u>RH</u> %	DDir	CDir	Wspd km/h	Rn_24	FFMC	<u>DMC</u>	<u>DC</u>	<u>ISI</u>	<u>BUI</u>	<u>FWI</u>	PREP
Forest-ATH														
EDURNING	12	2	50	70	ENE	5	0.0	88	23	512	4	41	10	3
al LONDT	13	2	48	67	ENE	13	0.0	86	28	521	5	49	13	3
<u> Stnyr</u>	12	3	55	70	ENE	6	0.0	87	21	494	4	37	9	2
*BEATR	15	1	38	72	ENE	8	0.0	89	33	533	6	58	16	4
THER I	17	0	32	132	SE	9	0.0	90	33	496	6	56	17	4
a clufl	15	6	56	83	E	5	0.0	86	24	523	3	43	9	2
© GRYGT	16	2	38	125	SE	14	0.0	89	17	499	8	32	15	4
Brish	16	0	34	159	SSE	18	0.0	89	21	525	10	38	19	4


Fire Weather at Regions/Zones: PREP LEVEL >> Level-B Rankings

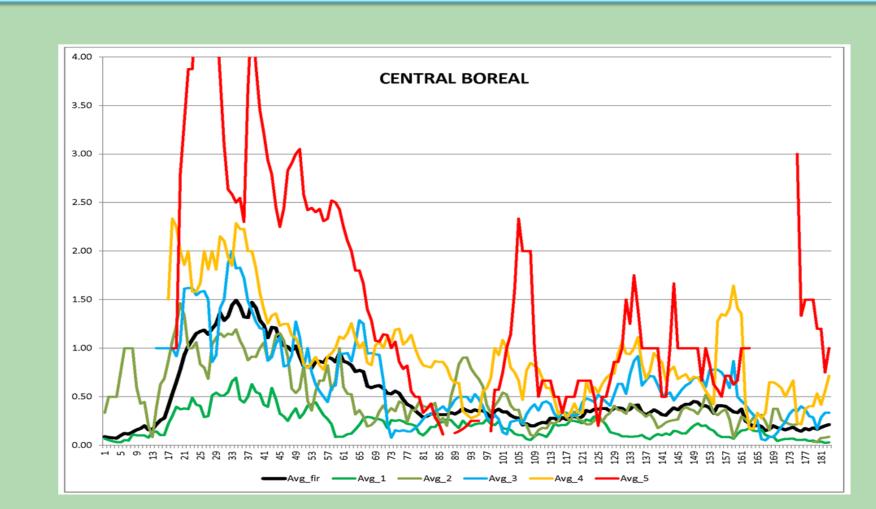
- ❖ Daily Level-B Rankings are calculated for each region/zone
 → Using algorithm of Daily PREP levels observed within that
 - → Using weighting factor of each regions within zone

d	% OF REGION HFI C2	EXTREME	VERY HIGH	HIGH	MODERATE	LOW
	CATEGORY	HFI ≥ 10,000	10,000 > HFI ≥ 4,000	4,000 > HFI ≥ 2,000	2,000 > HFI ≥ 500	HFI < 500
	LEVEL 5	> 66.66%				
φ	LEVEL 4	>50.0%				
. 1		> 6	66.66%			
LEVEI	LEVEL 3	> 33.33%				
	E LEVEL 3	>:	50.0%			
ES.	. Z		> 66.66%			
	Noisi	> 16.66%				
		> 3	3.33%			
PA	EVEL 2		> 50.0%			
PREPAREDNESS			> 66	.66%		
	LEVEL 1			REMAINDER		
	LEVEL 0		INSUFFIC	IENT OR NO FPE	B DATA	

	WEATHER REGIONS							
Full Response Zone	SS	NWB	WB	EB	СВ			
WEIGHTING FACTOR	20%	20%	20%	20%	20%			
Modified Response Zone	ATH	NES						
MEIGHTING FACTOR	E00/	F00/						

TO DEFINE THE BASELINE

DATASET YEARS: **1989-2008**


- Wildfires and Fire Weather records during the 1989-2008 years
- ➤ The dataset, much like a climate 30-years normal, should be redefined every 5 or 10 years
- The dataset should capture a slice in the gradual evolution of human activity on the landscape as well as a slow motion snapshot of the state of the fuel evolution on the landscape

NOTE: The dataset was adjusted to 1995-2008 for the Northwest Boreal weather region due to unusually high incidences of arson wildfires during the 1989-1994 years

For each weather region:

BASELINE

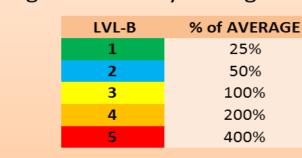
A table of <u>fireday dependant</u> and <u>Level-B dependant</u> human-caused wildfire frequency

Comparing MODELS

RAW versus	Percent-Average Models

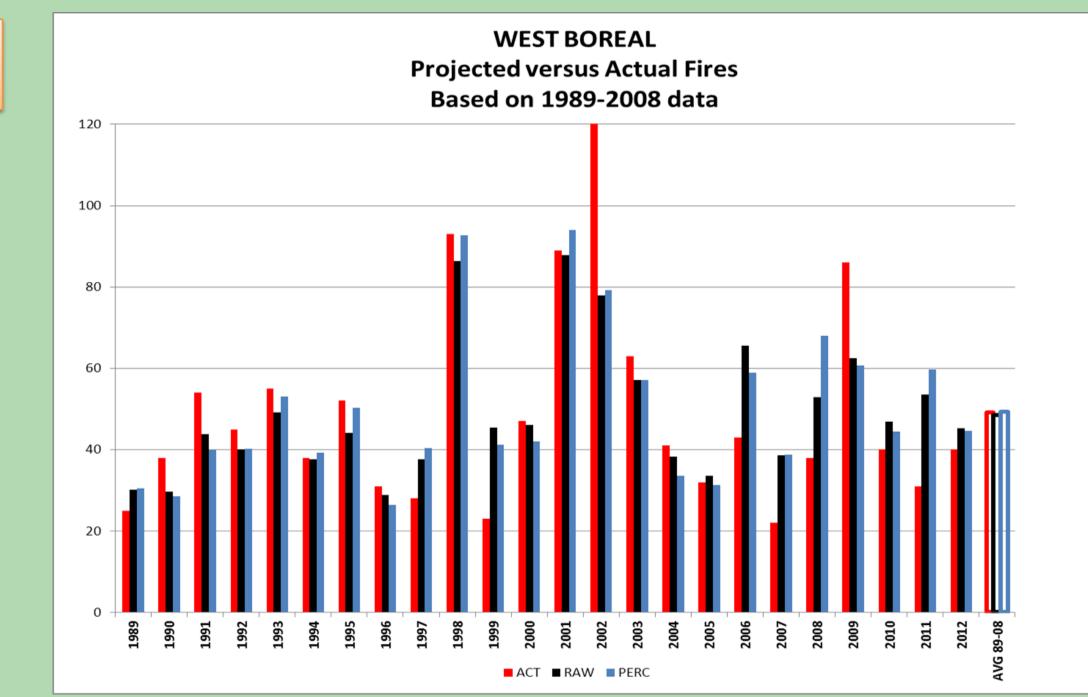
KAW Versus Percent-Average Models									
NAAV IIINI	E AVEDACE	ATU	NEC	CC.	NIMA	NA/D	CD	ED.	
	E AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB	
1989-2008	ACTUAL	6.6	7.9	31.0	17.6	28.8	49.2	12.6	
	RAW	6.2	7.5	31.6	17.4	29.4	51.3	13.2	
	PERC	8.7	8.6	37.6	18.9	35.3	61.6	13.6	
2009-2012	ACTUAL	5.8	10.5	34.0	16.3	34.8	47.8	7.8	
	RAW	10.2	7.9	30.8	23.6	34.6	44.7	10.1	
	PERC	13.7	10.3	38.6	26.4	40.8	54.1	11.4	
JULY A	VERAGE	ATH	NES	SS	NWB	WB	СВ	EB	
1989-2008	ACTUAL	2.5	2.9	8.4	3.1	3.0	9.1	1.1	
	RAW	2.2	2.8	8.1	3.0	2.9	8.9	1.0	
	PERC	3.3	2.9	6.7	2.3	1.9	6.3	0.6	
2009-2012	ACTUAL	3.0	3.0	4.0	1.3	0.0	2.8	0.0	
	RAW	2.1	2.3	6.8	2.6	2.6	8.5	1.1	
	PERC	3.3	2.9	6.2	1.8	1.2	4.4	0.6	
AUG-SEP	AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB	
1989-2008	ACTUAL	2.4	3.9	13.5	4.5	6.5	18.5	3.3	
	RAW	2.5	3.4	13.4	4.4	6.2	18.2	3.1	
	PERC	1.9	2.1	9.3	2.5	3.9	14.4	2.2	
2009-2012	ACTUAL	1.5	4.3	13.0	2.0	1.5	6.5	0.5	
	RAW	1.5	3.7	12.1	5.8	5.6	17.5	2.5	
	PERC	1.3	2.4	7.4	2.5	3.4	11.4	1.7	

HUMAN-CAUSED WILDFIRE TRIANGLE Day Seasonal Fire Weather Typical seasonal human-activity Seasonal fuel evolution Year Define a baseline that will neutralize fire **Human-Caused** weather and short-Wildfires term components from Decade year to year i-Decadal evolution of uel on the landscape luman Activity on the landscape


WEEKLY AVERAGING of FIREDAY Wildfires numbers:

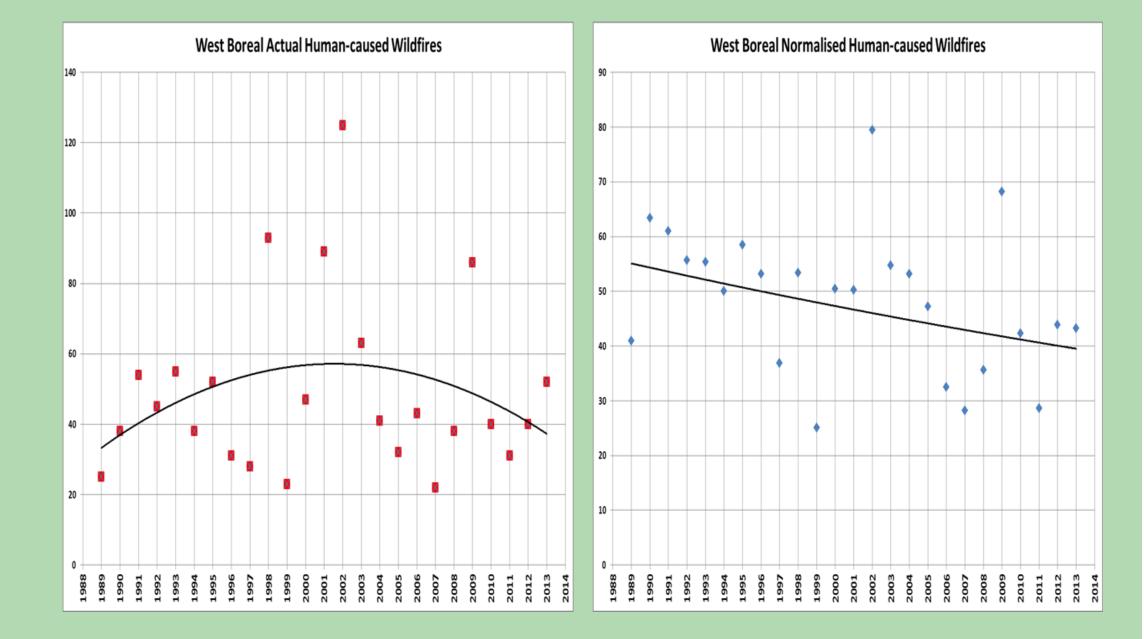
- For each fireday, human-caused wildfires recorded within ±3 firedays were compiled for the 1989-2008 period
- ➤ This result in typically 20 X 7 = 140 years of data if the dataset was complete to evaluate weekly averaged human-caused wildfires for each fireday
- ➤ The dataset was further mined to evaluate frequency of human-caused wildfires for each Level-B rankings

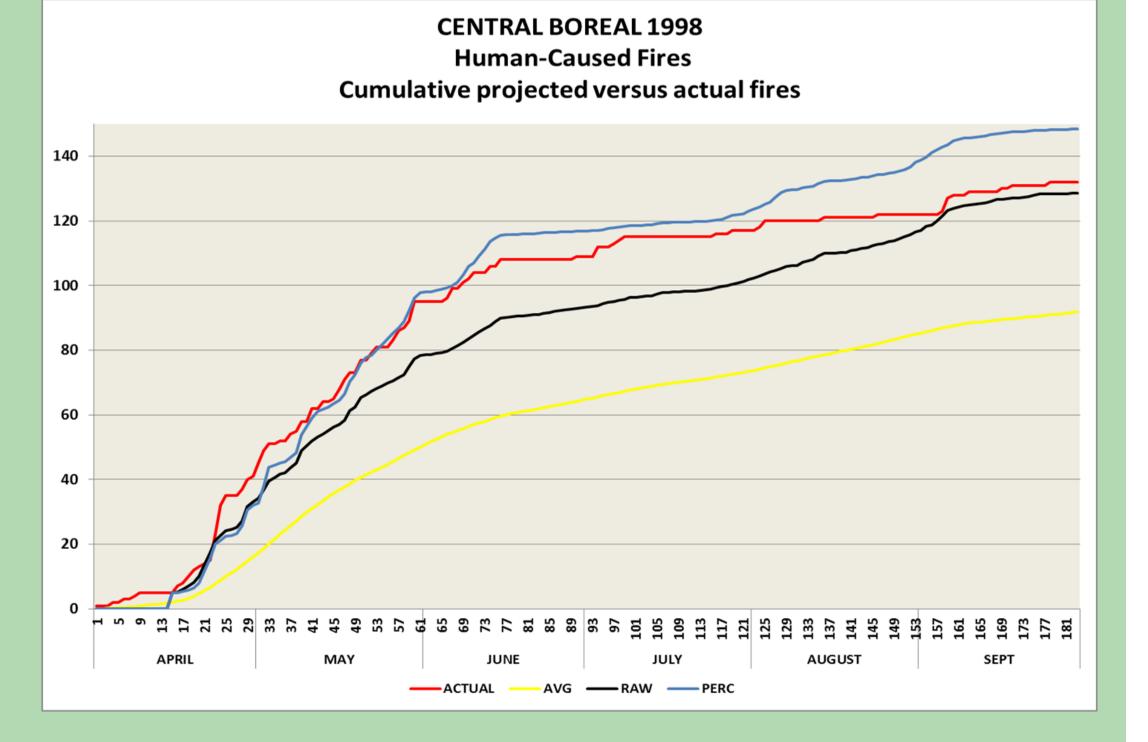
REGION	fireday	Level-B	# Years	# Fires	Daily fire frequency
6-CB	61	4	42	46	1.1
6-CB	61	5	20	45	2.25
6-CB	62	0	1	1	1
6-CB	62	1	44	5	0.11
6-CB	62	2	17	9	0.53
6-CB	62	3	20	19	0.95
6-CB	62	4	39	45	1.15
6-CB	62	5	19	40	2.11
6-CB	63	0	1	1	1


MODEL: PERCENT-AVERAGED BASELINE

Evaluate the <u>average fireday wildfire frequency</u> independently of the Level-B
 Associate a percentage of a fireday average frequency to each Level-B Rankings

- → Will associate a wildfire frequency at all fireday & Level-B cases
- → Simple methodology to implement
- → Better Representation of years outside dataset years
 → For some weather regions slightly overestimate yearly human-caused wildfires


YEARLY	AVERAGE	ATH	NES	SS	NWB	WB	СВ	EB
1989-2008	ACTUAL	11.6	14.8	55.9	29.4	49.1	92.4	21.5
	RAW	11.0	13.7	55.6	29.0	48.5	91.8	21.1
	PERC	14.0	13.7	55.3	27.0	49.3	93.7	19.0
2009-2012	ACTUAL	10.3	18.3	52.0	22.5	49.3	75.0	11.5
	RAW	13.8	13.9	50.9	33.8	52.0	84.3	17.3
	PERC	18.3	15.6	53.1	32.3	52.4	78.8	15.6



Model Applications

- Provide better in-context facts to evaluate prevention program performance objectives after individual fire season
- Provide better historical background information to identify prevention program targets and performance objectives
- Provide methodology to evaluate contribution and trends of different humancaused wildfires sources in relation to the evolution of human activities on the landscape
- ➤ In combination with fire weather observations and forecast, provide Operations with real-time estimate of potential human-caused wildfires

Model Applications: Trends

Potential Improvements:

Create a PREP Level 6 and LVL-B ranking 6 to take into consideration extreme windy spring days where RH < 20%</p>

Percent-Averaged Model (Increase complexity)

- → Could use different Percent-Average values for different weather regions
- → Could use fireday variable Percent-average values