MATH 216 (Fall 2021)

Introduction to Analysis

Midterm #1 Practice Problems

1. Let

$$S:=\left\{(-1)^n\left(1-\frac{1}{n}\right):n\in\mathbb{N}\right\}.$$

Determine $\sup S$ and $\inf S$.

Solution: As

$$\left| (-1)^n \left(1 - \frac{1}{n} \right) \right| = 1 - \frac{1}{n} \le 1$$

for $n \in \mathbb{N}$, it is clear that sup $S \leq 1$ and inf $S \geq -1$.

Assume that $\sup S<1$. Then, by the Archimedian Property, there is $n\in\mathbb{N}$ such that $\frac{1}{n}<2(1-\sup S)$ and therefore

$$\sup S < 1 - \frac{1}{2n} = (-1)^{2n} \left(1 - \frac{1}{2n} \right),$$

which is a contradiction. It follows that sup S=1.

Similarly, one shows that inf S = -1.

2. Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be convergent sequences in \mathbb{R} such that $x_n < y_n$ for $n \in \mathbb{N}$. Does this entail that $\lim_{n \to \infty} x_n < \lim_{n \to \infty} y_n$?

Solution: Of course, not.

For $n \in \mathbb{N}$, set

$$x_n := 0$$
 and $y_n := \frac{1}{n}$,

so that $x_n < y_n$ for all $n \in \mathbb{N}$, but $\lim_{n \to \infty} x_n = 0 = \lim_{n \to \infty} y_n$.

3. Let p be a non-zero polynomial. Show that $\lim_{n\to\infty} \frac{p(n+1)}{p(n)} = 1$;

Solution: We can suppose that p is not constant. Then there are $c_k, \ldots, c_1, c_0 \in \mathbb{R}$ with $k \in \mathbb{N}$ and $c_k \neq 0$ such that

$$p(x) := c_k x^k + \dots + c_1 x + c_0.$$

It follows that

$$p(x+1) := c_k \sum_{j=0}^k {k \choose j} x^j + \text{terms of degree} \le k-1,$$

i.e., there are $d_{k-1}, \ldots, d_0 \in \mathbb{R}$ such that

$$p(x+1) := c_k x^k + d_{k-1} x^{k-1} + \dots + d_1 x + d_0.$$

We conclude that, for $n \in \mathbb{N}$ with $p(n) \neq 0$,

$$\frac{p(n+1)}{p(n)} = \frac{c_k n^k + d_{k-1} n^{k-1} + \dots + d_0}{c_k n^k + c_{k-1} n^{k-1} + \dots + c_0}$$

$$= \frac{c_k + \frac{d_{k-1}}{n} + \dots + \frac{d_0}{n^k}}{c_k + \frac{c_{k-1}}{n} + \dots + \frac{c_0}{n^k}}$$

$$\xrightarrow{n \to \infty} \frac{c_k}{c_k}$$

$$= 1.$$

4. In class, we have used the symbol \sum for finite sums. There is a similar notation for finite products. Let $m, n \in \mathbb{N}$ be such that $m \leq n$, and let $a_m, a_{m+1}, \ldots, a_n \in \mathbb{R}$. Then we define

$$\prod_{k=m}^{n} a_k := a_m a_{m+1} \cdots a_n.$$

Show that

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) = \frac{n+1}{2n}$$

for all $n \geq 2$.

Solution: We use induction on n.

n=2: In this case, we have

$$\prod_{k=2}^{2} \left(1 - \frac{1}{k^2} \right) = \frac{3}{4} = \frac{2+1}{2 \cdot 2}.$$

 $n \leadsto n+1$: Let $n \ge 2$ be such that

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) = \frac{n+1}{2n}$$

(induction hypothesis). We obtain

$$\begin{split} \prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2}\right) &= \left(\prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)\right) \left(1 - \frac{1}{(n+1)^2}\right) \\ &= \frac{n+1}{2n} \left(1 - \frac{1}{(n+1)^2}\right), \qquad \text{by the induction hypothesis,} \\ &= \frac{n+1}{2n} \frac{n^2 + 2n}{(n+1)^2} \\ &= \frac{n+2}{2(n+1)}, \end{split}$$

which proves the claim.

5. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R} with limit x. Show that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k = x.$$

(This problem is way too difficult for an actual exam question, but it's a lovely—and important!—result.)

Solution: Let $\epsilon > 0$. As $\lim_{n \to \infty} x_n = x$, there is $n_1 \in \mathbb{N}$ such that

$$|x_n - x| < \frac{\epsilon}{2}$$

for $n \geq n_1$. Choose $n_2 \in \mathbb{N}$ such that

$$\left| \frac{1}{n_2} \left| \sum_{k=1}^{n_1 - 1} (x_k - x) \right| < \frac{\epsilon}{2}.$$

Set $n_{\epsilon} := \max\{n_1, n_2\}$. For $n \geq n_{\epsilon}$, we then have

$$\left| \frac{1}{n} \sum_{k=1}^{n} x_k - x \right| = \left| \frac{1}{n} \sum_{k=1}^{n} (x_k - x) \right|$$

$$\leq \frac{1}{n} \left| \sum_{k=1}^{n_1 - 1} (x_k - x) \right| + \frac{1}{n} \sum_{k=n_1}^{n} |x_k - x|$$

$$\leq \frac{1}{n_2} \left| \sum_{k=1}^{n_1 - 1} (x_k - x) \right| + \frac{1}{n} \sum_{k=n_1}^{n} |x_k - x|$$

$$\leq \frac{\epsilon}{2} + \underbrace{\frac{\epsilon}{2}}_{\leq 1} + \underbrace{\frac{\epsilon}{2}}_{\leq 1} + \underbrace{\frac{\epsilon}{2}}_{\leq 1}$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

This proves the claim.