MATH 216 (Fall 2021)

Introduction to Analysis

Final Model Solutions

1. Is the function

$$f: [0,1] \to \mathbb{R}, \quad x \mapsto \left\{ \begin{array}{ll} x^2, & x \in \mathbb{Q}, \\ 1, & x \notin \mathbb{Q}, \end{array} \right.$$

Riemann integrable? If so, evaluate its Riemann integral.

Solution: Let $\psi : [0,1] \to \mathbb{R}$ be a step function with $\psi \geq f$, and let $0 = x_0 < x_1 < \cdots < x_n = 1$ be such that ψ is constant on (x_{j-1}, x_j) for $j = 1, \ldots, n$. For each $j = 1, \ldots, n$, choose $\xi_j \in (x_{j-1}, x_j) \setminus \mathbb{Q}$. It follows that

$$\int_0^1 \psi(x) \, dx = \sum_{j=1}^n \psi(\xi_j)(x_j - x_{j-1}) \ge \sum_{j=1}^n x_j - x_{j-1} = 1$$

and therefore

$$\int_{0}^{*1} f(x) \, dx \ge 1.$$

Let $\phi: [0,1] \to \mathbb{R}$ be a step function with $\phi \leq f$, and let $0 = x_0 < x_1 < \cdots < x_n = 1$ be such that ϕ is constant on (x_{j-1}, x_j) for $j = 1, \ldots, n$. Note that, for all $j = 1, \ldots, n$ and $q \in (x_{j-1}, x_j) \cap \mathbb{Q}$, we have $\phi(q) \leq q^2$. As ϕ and $[0,1] \ni x \mapsto x^2$ are continuous on (x_{j-1}, x_j) for each $j = 1, \ldots, n$, this means that $\phi(x) \leq x^2$ for all $x \in \bigcup_{j=1}^n (x_{j-1}, x_j)$. Define

$$\tilde{\phi} \colon [0,1] \to \mathbb{R}, \quad \begin{cases} x^2, & x \in \{x_0, x_1, \dots, x_n\}, \\ \phi(x), & x \in \bigcup_{j=1}^n (x_{j-1}, x_j). \end{cases}$$

It follows that $\tilde{\phi}$ is a step function with $\tilde{\phi}(x) \leq x^2$ for all $x \in [0,1]$ and $\int_0^1 \tilde{\phi}(x) dx = \int_0^1 \phi(x) dx$. We thus obtain

$$\int_0^1 \phi(x) \, dx \le \int_0^1 x^2 = \frac{1}{3}$$

and therefore

$$\int_{0}^{1} f(x) \le \frac{1}{3}.$$

Consequently, f is not Riemann integrable.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be such that there is $C \geq 0$ with

$$|f(x) - f(y)| \le C(x - y)^2$$

for all $x, y \in \mathbb{R}$. Show that f is constant.

Solution: It is clear that

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le C|x - y|$$

for all $x, y \in \mathbb{R}$ with $x \neq y$. It follows that

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le \lim_{\substack{x \to x_0 \\ x \neq x_0}} C|x - x_0| = 0$$

for all $x_0 \in \mathbb{R}$, so that $f' \equiv 0$. This means that f has to be constant.

- 3. Determine whether or not the following series converge, converge absolutely, or diverge:
 - (a) $\sum_{n=1}^{\infty} {2n \choose n} / {3n \choose n}$;
 - (b) $\sum_{\nu=1}^{\infty} \frac{(-1)^{\nu} + 2}{(-1)^{\nu-1}\nu};$
 - (c) $\sum_{m=1}^{\infty} \frac{\sin(\frac{\pi}{2} + m\pi)}{\sqrt{m}}$.

Solution:

(a) For $n \in \mathbb{N}$, set

$$a_n := {2n \choose n} / {3n \choose n} = \frac{(2n)!}{(n!)^2} \frac{n!(2n)!}{(3n)!} = \frac{(2n)!}{n!} \frac{(2n)!}{(3n)!}$$

It follows that

$$\begin{aligned} \frac{|a_{n+1}|}{|a_n|} &= \frac{(2n+2)!}{(n+1)!} \frac{(2n+2)!}{(3n+3)!} \frac{n!}{(2n)!} \frac{(3n)!}{(2n)!} \\ &= \frac{(2n+2)(2n+1)}{n+1} \frac{(2n+2)(2n+1)}{(3n+3)(3n+2)(3n+1)} \to \frac{16}{27} < 1, \end{aligned}$$

so that $\sum_{n=1}^{\infty} a_n$ converges absolutely by the Limit Ratio Test.

(b) For $\nu \in \mathbb{N}$, set $a_{\nu} := \frac{(-1)^{\nu}+2}{(-1)^{\nu-1}\nu}$. It follows that

$$a_{\nu} = -\frac{1}{\nu} + (-1)^{\nu-1} \frac{2}{\nu}$$

for all $\nu \in \mathbb{N}$. We claim that $\sum_{\nu=1}^{\infty} a_{\nu}$ diverges. Assume towards a contradiction that $\sum_{\nu=1}^{\infty} a_{\nu}$ converges. By the Alternating Series Test, $\sum_{\nu=1}^{\infty} (-1)^{\nu-1} \frac{2}{\nu}$ converges. As

$$a_{\nu} - (-1)^{\nu - 1} \frac{2}{\nu} = -\frac{1}{\nu}$$

for $\nu \in \mathbb{N}$, this would mean that $\sum_{\nu=1}^{\infty} \frac{1}{\nu}$ converges, which is clearly false.

(c) First, note that

$$\sin\left(\frac{\pi}{2} + m\pi\right) = (-1)^m$$

for all $m \in \mathbb{N}$. It follows from the Alternating Series Test that $\sum_{m=1}^{\infty} \frac{\sin(\frac{\pi}{2} + m\pi)}{\sqrt{m}}$ converges. As $\sum_{m=1}^{\infty} \frac{1}{\sqrt{m}} = \infty$, it is clear that the series does not converge absolutely.

4. Let $f, g: \mathbb{R} \to \mathbb{R}$ be differentiable functions such that

$$f(0) = 0$$
, $g(0) = 1$, $f' = g$, and $g' = -f$.

Show that

$$f(x) = \sin x$$
 and $g(x) = \cos x$

for $x \in \mathbb{R}$. (*Hint*: Consider the function

$$h: \mathbb{R} \to \mathbb{R}, \quad x \mapsto (f(x) - \sin x)^2 + (g(x) - \cos x)^2,$$

and differentiate it.)

Solution: Let h be as in the hint. Then h is clearly differentiable. Differentiating, we obtain

$$h'(x) = 2(f(x) - \sin x)(f'(x) - \cos x) + 2(g(x) - \cos x)(g'(x) + \sin x)$$

$$= 2(f(x) - \sin x)(g(x) - \cos x) + 2(g(x) - \cos x)(-f(x) + \sin x)$$

$$= 2(f(x) - \sin x)(g(x) - \cos x) - 2(g(x) - \cos x)(f(x) - \sin x)$$

$$= 0$$

for $x \in \mathbb{R}$. It follows that h is constant, and as h(0) = 0, we obtain that h(x) = 0 and, consequently,

$$f(x) = \sin x$$
 and $g(x) = \cos x$

for all $x \in \mathbb{R}$.

5. Show that

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

for all $n \in \mathbb{N}$.

Solution: Use induction on n.

n = 1 (induction anchor): In this case

$$\sum_{k=1}^{1} k^3 = 1 = \frac{1^2 \cdot 2^2}{4}$$

 $n \rightsquigarrow n+1$ (induction step): Let $n \in \mathbb{N}$ be such that

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

holds (induction hypothesis). Then

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3, \quad \text{by the induction hypothesis,}$$

$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n^2 + 4n + 4)}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4},$$

which proves the claim.

6. Let a < b, and let $f, g: [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b). Show that there is $\xi \in (a, b)$ such that

$$f'(\xi)(g(b) - g(a)) = g'(\xi)(f(b) - f(a)).$$

(*Hint*: Apply Rolle's Theorem to a suitable auxiliary function.)

Solution: Define

$$h: [a,b] \to \mathbb{R}, \quad x \mapsto f(x)(q(b)-q(a))-q(x)(f(b)-f(a)).$$

Then, clearly, h is continuous and differentiable on (a, b). It follows that

$$h(a) = f(a)(g(b) - g(a)) - g(a)(f(b) - f(a)) = f(a)g(b) - g(a)f(b)$$

and

$$h(b) = f(b)(q(b) - q(a)) - q(b)(f(b) - f(a)) = -f(b)q(a) + q(b)f(a) = h(a).$$

By Rolle's Theorem, there is $\xi \in (a, b)$ such that

$$0 = h'(\xi) = f'(\xi)(g(b) - g(a)) - g'(\xi)(f(b) - f(a)).$$

7. Let $f:[0,2] \to \mathbb{R}$ be continuous such that f(0)=f(2). Show that there are $x,y \in [0,2]$ with |x-y|=1 and f(x)=f(y). (*Hint*: Apply the Intermediate Value Theorem to the auxiliary function $[0,1] \ni x \mapsto f(x+1) - f(x)$.)

Solution: Define

$$g: [0,1] \to \mathbb{R}, \quad x \mapsto f(x+1) - f(x).$$

Then g is continuous with

$$g(0) = f(1) - f(0) = f(1) - f(2) = -(f(2) - f(1)) = -g(1).$$

This means that g(0) and g(1) have opposite signs, so that, by the Intermediate Value Theorem, there is $\xi \in [0,1]$ with $g(\xi) = 0$. Obviously, $x = \xi + 1$ and $y = \xi$ have the required properties.

8. Let a < b, let $f: [a, b] \to \mathbb{R}$ be continuously differentiable, and let

$$F: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \int_a^b f(t) \sin(xt) dt.$$

Show that $\lim_{x\to\infty} F(x) = \lim_{x\to-\infty} F(x) = 0$. (*Hint*: Integration by Parts.) Solution: Fix $x \in \mathbb{R} \setminus \{0\}$, and let

$$g: [a, b] \to \mathbb{R}, \quad t \mapsto -\frac{\cos(xt)}{x},$$

so that

$$g'(t) = \sin(xt)$$

for $t \in [a, b]$. Integration by Parts then yields

$$F(x) = \int_{a}^{b} f(t)g'(t) = -f(t)\frac{\cos(xt)}{x}\Big|_{t=a}^{t=b} + \frac{1}{x}\int_{a}^{b} f'(t)\cos(xt) dt,$$

so that

$$|F(x)| \le \frac{|f(b)|}{|x|} + \frac{|f(a)|}{|x|} + \frac{1}{|x|} \int_a^b |f'(t)| \, dt.$$

If $x \to \infty$ or $x \to -\infty$, then the right hand side of (*) tends to zero as, consequently, does the left hand side.