1. Show that \(\mathbb{Z} \) is closed in \(\mathbb{R} \), but not open, and that \(\mathbb{Q} \subset \mathbb{R} \) is neither open nor closed.

2. Let \(a_1, b_1, \ldots, a_N, b_N \in \mathbb{R} \) such that \(a_j < b_j \) for \(j = 1, \ldots, n \). Show that \((a_1, b_1) \times \cdots \times (a_N, b_N) \) is open and that \([a_1, b_1] \times \cdots \times [a_N, b_N] \) is closed in \(\mathbb{R}^N \).

3. Let \(\emptyset \neq S \subset \mathbb{R}^N \) be arbitrary, and let \(\emptyset \neq U \subset \mathbb{R}^N \) be open. Show that

\[
S + U := \{x + y : x \in S, y \in U\}
\]

is open.

4. Let \(S \subset \mathbb{R}^N \). Show that \(x \in \mathbb{R}^N \) is a cluster point of \(S \) if and only if each neighbourhood of \(x \) contains an infinite number of points in \(S \).

5. Let \(S \subset \mathbb{R}^N \) be any set. Show that \(\partial S \) is closed.

6*. For \(j = 1, \ldots, N \), let \(I_j = [a_j, b_j] \) with \(a_j < b_j \), and let \(I := I_1 \times \cdots \times I_N \). Determine \(\partial I \). (Hint: Draw a sketch for \(N = 2 \) or \(N = 3 \).)

Due Monday, October 1, 2018, at 10:00 a.m.; no late assignments.