1. Let \(a, b > 0 \). Determine the area of the ellipse

\[
E := \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\}.
\]

2. Let \(D \) in spherical coordinates be given as the solid lying between the spheres given by \(r = 2 \) and \(r = 4 \), above the \(xy \)-plane and below the cone given by the angle \(\theta = \frac{\pi}{3} \). Evaluate the integral \(\int_D xyz \).

3. Let \(K \subset \mathbb{R}^2 \) be the triangle with vertices \((0,0), (1,3), \) and \((0,3)\). Evaluate the line integral

\[
\int_{\partial K} x^2 y^2 \, dx + 4xy^3 \, dy
\]

where \(\partial K \) is oriented counterclockwise.

4. Let \(\emptyset \neq U \subset \mathbb{R}^3 \) be open, and let \(f, g : U \to \mathbb{R} \) be twice continuously partially differentiable. Show that \(\text{div}(\nabla f \times \nabla g) = 0 \) on \(U \), where \(\times \) denotes the cross product in \(\mathbb{R}^3 \).

5. Let

\[
f : \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z) \mapsto (x \cos^2 y + \arctan(yz), (y + e^z), z \sin^2 y).\]

Evaluate \(\int_S f \cdot n \, d\sigma \) where \(S \) is the sphere with radius \(r > 0 \) centered at the origin, and \(n \) is the outward pointing normal unit vector.

6*. Let \(D \subset \mathbb{R}^2 \) be the trapeze with vertices \((1,0), (2,0), (0,-2), \) and \((0,-1)\). Evaluate \(\int_D \exp \left(\frac{x+y}{x-y} \right) \). (Hint: Consider

\[
\phi : \mathbb{R}^2 \to \mathbb{R}^2, \quad (u, v) \mapsto \left(\frac{1}{2}(u + v), \frac{1}{2}(u - v) \right)
\]

and apply Change of Variables.)

Due Wednesday, December 2, 2020, at 10:00 a.m.; no late assignments.