Comparison of Three Aqueous Aerosol Inhalation Devices for Delivering Anti-tuberculosis Bacteriophage D29

Nicholas Carrigy
Bacteriophage: An Alternative to Antibiotics

- Antibiotic-resistance is a threat to global health
 - 480,000 new multidrug-resistant tuberculosis cases in 2015, 9.5% further classified as extensively drug-resistant [1]
 - Few new antibiotics are being developed

- Bacteriophage (phage) are an alternative
 - They can infect antibiotic-resistant bacteria

What is a Phage? – A Virus that Infects Bacteria

![Phage Diagram](https://en.wikipedia.org/wiki/Bacteriophage)

Phage
- DNA-filled capsid
- Sheath through which DNA is injected to bacteria
- Tail fibers with bacterial wall receptors
- Base plate

Lytic Cycle
- Uninfected cell
- Phage adsorption
- Cell lysis
- Viral release

Image on left adapted from: https://en.wikipedia.org/wiki/Bacteriophage
Phage Therapy

Why phage therapy?
- Lytic phage can infect antibiotic-resistant bacteria
- High specificity, not harmful to beneficial bacteria
- Few if any side effects; phage are everywhere

Will it work?
- Human phage therapy done in Eastern Europe
 - Phage cocktails available over-the-counter
 - Efficacy reports are generally positive
- Phage used in food production and compassionate care in the USA
 - Human clinical trials ongoing including PhagoBurn here in France and AmpliPhi in the USA
- Success of phage aerosol delivery to mice to clear antibiotic-resistant BCC lung infections requires that many active phage reach the lungs relative to the bacterial count [2]

Why Test Phage D29?

- Phage D29 infects *M. tuberculosis* [3]
 - It also infects *M. smegmatis*, which is biosafety level 1
 - Its genome has been sequenced, and it has well-established amplification and assay protocols

TEM of phage D29, which lyses *M. tuberculosis*

Plaque assay determines number of active phage in a sample

Image on right from: phagesdb.org/workflow
Phage Deactivation due to Aerosolization

Tested inhalation devices

1) Vibrating Mesh Nebulizer

2) Jet Nebulizer

3) Soft Mist Inhaler

- Deactivation = (1 – output titer / input titer) * 100%
 - Input titer = # active phage in saline phage preparation input to each inhalation device
 - Output titer = # active phage captured on filter after aerosolization

Images from: https://www.inspiration-medical.de/Bilder/Aerogen%20Solo%20Vernebler%20ex%20Aeroneb.jpg
https://online.ebos.co.nz/images/product/22143069%20-%20BOY%20OSX.jpg
http://d3hjf51r9j54j7.cloudfront.net/wp-content/uploads/sites/5/2008/01/spiriva_respmatw_image1_3.jpg
Difference in Phage Deactivation between Devices

<table>
<thead>
<tr>
<th>Inhalation Device</th>
<th>Deactivation (%) *</th>
<th>Active Phage Delivery Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Nebulizer</td>
<td>99.981 ± 0.005</td>
<td>7.1x10^4 ± 1.7x10^4 pfu/min</td>
</tr>
<tr>
<td>Vibrating Mesh Nebulizer</td>
<td>60 ± 11</td>
<td>3.3x10^8 ± 0.8x10^8 pfu/min</td>
</tr>
<tr>
<td>Soft Mist Inhaler</td>
<td>72 ± 14</td>
<td>4.6x10^6 ± 2.0x10^6 pfu/dose</td>
</tr>
</tbody>
</table>

* < 90% deactivation is acceptable

- Vibrating mesh nebulizer delivered active phage D29 ~5000 times faster than the jet nebulizer
- A single 11.6 ± 1.6 µL ex-actuator dose from the soft mist inhaler delivered about as many active phage D29 as 1 hour of delivery with the jet nebulizer, which would require about 10 mL of formulation
Reason for Titer Reduction with the Jet Nebulizer

- Likely stress during baffle impaction and renebulization
- Previously reported to deactivate liposomes & large molecules [4]

99% of aerosol was renebulized in each cycle

- Equivalent of entire 8 mL recirculated every 30 seconds, in agreement with literature [5]
- Large cumulative stress on phage
Vibrating Mesh Nebulizer and Soft Mist Inhaler

- Droplet production mechanisms with the vibrating mesh nebulizer (left) and soft mist inhaler (right) were relatively unharmful to phage D29
Conclusions

- Pulmonary delivery of anti-tuberculosis phage D29 at high titers requires a prudent choice of inhalation device
 - Titer reduction is inhalation device- and phage strain-dependent

- Jet nebulizer
 - Not recommended for phage therapy with D29 - substantial titer reduction

- Vibrating mesh nebulizer
 - Recommended for animal studies - small titer reduction, high active phage delivery rate

- Soft mist inhaler
 - Recommended for self-administration - small titer reduction, pocket-sized, multidose

- Aerosol delivery of phage is feasible, and promising
Acknowledgements

University of Alberta
Prof. Reinhard Vehring Prof. Warren H. Finlay
Prof. Dominic Sauvageau Melissa Harrison

University of Sydney
Prof. Hak-Kim Chan Prof. Warwick J. Britton
Dr. Rachel Y. Chang Dr. Sharon S.Y. Leung

University of Pittsburgh
Prof. Graham F. Hatfull Prof. Welkin H. Pope
Zaritza Petrova

Funding
Australian Research Council Discovery Project DP150103953
Natural Sciences and Engineering Research Council of Canada
Alberta Innovates Technology Futures
University of Alberta Scholarships & Awards