

Introduction

Dry powder (DPIs) and pressurized metered dose (pMDIs) inhalers must operate reliably in a variety of environments and are typically only tested near laboratory conditions. Little is known about device performance at reduced pressure associated with high altitude [1,2]. Testing was conducted to determine the in vitro lung dosage of a variety of different inhaler devices at a number of different altitudes. The data collected provides a good relative understanding of how the dosage of inhaler devices will change with altitude.

Method and Materials

D pMDI Testing

- Data for five devices, Symbicort[®], AiromirTM, Ventolin[®], QVARTM, and Apo-Salvent, were collected at elevations of 670m, 2450m, 3260m, and 4300m.
- Properties of the inhalers are given in **Table 1**.
- A constant inspiratory flow rate of 30 L/min was used at all locations.
- The flow profile consisted of an initial 0.5 s period to allow for the flow stream to become uniform, followed by one actuation and a 6 second inhalation period, resulting in a total volume of 3 liters.

DPI Testing

- Data for two devices, Turbuhaler[®] and Ventolin[®] Diskus[®], were collected at elevations of 670m, 2450m, 3260m, and 4300m.
- Properties of the inhalers are given in **Table 1**.
- Since breathing profiles of patients inhaling from a DPI at reduced ambient pressure are unknown, two possible scenarios were tested:

a) Matched Flow Rate

- The volumetric flow rate was kept the same for all altitudes for each device.
- A constant inspiratory volume of 2.4 liters was used.

b) Matched Pressure Drop

- The pressure drop across each device at each altitude was kept constant at 4kPa.
- Resistance of each device was expected to change with altitude and thus the volumetric flow rate changed
- As the flow rate changed, with a 3 liter inhalation volume, the length of each test changed.
- \Box Test conditions were maintained at 22 ±1.7 °C, 49.3 ± 9.2 %RH. For simulation of aircraft cabin conditions silica gel dried air was used.

Inhaler Performance at High Altitude

Jordan T.F. Titosky, Chelsea M.D. Morin, Jonathan D. Suderman, Jason S. Olfert¹, Warren H. Finlay¹, Reinhard Vehring¹

(1) Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

pMDI shot weight and *in vitro* lung dose are unaffected by altitude

pMDI *in vitro* lung dose is maintained at aircraft cabin conditions

Table 1: Important properties of inhalers tested.

Product	Propellant	Label Dosage (µg)	Format Suspension pMDI with Povidone K25 and PEG 1000	
Symbicort	HFA 227ea	Budesonide 160 ^a Formoterol 4.5 ^a		
QVAR	HFA 134a	Beclomethasone Dipropionate 100	Solution pMDI with Ethanol	
Ventolin	HFA 134a	Salbutamol Sulfate 100 Suspension pMDI without excipit		
Airomir	HFA 134a	Salbutamol Sulfate 100 Suspension pMDI with Ethanol and Ol Acid		
Apo-Salvent	HFA 134a	Salbutamol Sulfate 100	I Sulfate 100 Suspension pMDI with Ethanol and Olei Acid	
Ventolin Diskus	NA	Salbutamol Sulfate 200	DPI with Lactose carrier	
Bricanyl	NA	Terbutaline Sulfate 500	DPI without excipients	

Absolute in vitro lung doses of pMDIs

Inhaler	Mean Dosage (µg)					
Altitude (m)	670	2450	3260	4300		
Symbicort [®] Gravimetric assay	1,140±20	1,230±30	1,030±110	1,150±60		
Symbicor [®] Chemical assay	338±27	423±28	304±38	359±22		
Ventolin®	63.8±6.5	61.0±13	61.3±10.8	53.8±9.8		
Airomir TM	56.3±3.0	57.5±2.3	57.3±6.3	51.5±4.0		
QVAR ^M	67.8±3.0	67.3±3.8	65.0±5.0	63.5±4.3		
Apo-Salvent	62.8±5.0	61.3±7.3	62.3±10.3	54.5±6.8		

Spray duration for pMDIs is unaffected by altitude

Inhaler	Tim	e (s)
Altitude (m)	670	4300
Symbicort®	0.18 ± 0.02	0.21 ± 0.02
Ventolin [®]	0.13 ± 0.01	0.15 ± 0.02
Airomir TM	0.15 ± 0.01	0.15 ± 0.01
QVAR TM	0.21 ± 0.02	0.21 ± 0.03
Apo-Salvent	0.16 ± 0.02	0.16 ± 0.01

Results

I show device dependent tion in *in vitro* lung dose for

DPI *in vitro* lung dose is unaffected by altitude for matched pressure drop

DPI device resistance is a function of ambient pressure

DPI device resistance, *R*, as a function of ambient pressure, *P*:

$$R(P) = R_{\rm ref} \sqrt{\frac{P}{P_{\rm ref}}}$$

 $P_{\rm ref}$: Standard pressure, 100 kPa (~ sea level). $R_{\rm ref}$: Device resistance at standard conditions.

Conclusion

Collected data for most of the devices tested displayed little effect of altitude on measured in vitro lung dose. Note: The effect of reduced pressure on particle size distribution of the delivered aerosol was not tested in this study.

- □ All pMDIs tested delivered *in vitro* lung doses that were within $\pm 20\%$ of nominal dosage bands.
- □ Ventolin[®] Diskus [®] displayed very consistent *in vitro* lung dose at all conditions tested.
- □ Bricanyl Turbuhaler [®] was unaffected by altitude when tested under matched pressure drop conditions.
- □ Bricanyl Turbuhaler [®] in vitro lung dose displayed a negative correlation with altitude when tested under matched flow rate.
- □ All pMDIs tested had consistent dosage when aircraft cabin conditions were simulated.
- □ Spray duration and shot weight of all pMDIs was unaffected by altitude.
- □ The device resistance of DPIs is affected by ambient pressure

References

- Röggla G, Moser B. 2006. The function of metered dose inhalers at moderate *altitude*. J Travel Med. 2006; 13(4):248–248.
- 2. Cogo A, Fiorenzano G. 2009. Bronchial asthma: advice for patients traveling to high altitude. High Alt Med Biol; 10(2):117–121.

Acknowledgement

Special thanks are given to Dr. Michael Monahan, Dr. Robert Stencel, and the staff of the University of Denver High Altitude Research Station and Mt. Evans Meyer-Womble Observatory, as well as to David Epp and the staff at the Mt. Evans Outdoor Education Laboratory School for use of their facilities.

Respiratory Drug Delivery 2014, Puerto Rico