Inhaler Performance at High Altitude

Jordan T.F. Titosky, Chelsea M.D. Morin, Jonathan D. Suderman, Jason S. Olfert, Warren H. Finlay, Reinhard Vehring
(1) Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

Introduction

Dry powder (DPIs) and pressurized metered dose (pMDIs) inhalers must operate reliably in a variety of environments and are typically only tested near laboratory conditions. Little is known about device performance at reduced pressure associated with high altitude [1,2]. Testing was conducted to determine the in vitro lung dosage of a variety of different inhaler devices at a number of different altitudes. The data collected provides a good relative understanding of how the dosing of inhaler devices will change with altitude.

Method and Materials

- **pMDI Testing**
 - Data for five devices, Symbicort®, Airomir™, Ventolin®,QVAR™, and Apo-Salvent, were collected at elevations of 670m, 2450m, 3260m, and 4300m. Properties of the inhalers are given in Table 1.
 - A constant inspiratory flow rate of 30 L/min was used at all locations.
 - The flow profile consisted of an initial 0.5 s period to allow for the flow stream to become uniform, followed by one actuation and a 6 second inhalation period, resulting in a total volume of 3 liters.

- **DPI Testing**
 - Data for two devices, Turbuhaler® and Ventolin® Diskus®, were collected at elevations of 670m, 2450m, 3260m, and 4300m. Properties of the inhalers are given in Table 1.
 - Since breathing profiles of patients inhaling from a DPI at reduced ambient pressure are unknown, two possible scenarios were tested:
 - **Matched Flow Rate**
 - The volumetric flow rate was kept the same for all altitudes for each device.
 - A constant inspiratory volume of 2.4 liters was used.
 - **Matched Pressure Drop**
 - The pressure drop across each device at each altitude was kept constant at 4kPa.
 - Resistance of each device was expected to change with altitude and thus the volumetric flow rate changed.
 - As the flow rate changed, with a 3 liter inhalation volume, the length of each test changed.

- Test conditions were maintained at 22 ±1.7 °C, 49.3 ± 9.2 %RH. For simulation of aircraft cabin conditions silica gel dried air was used.

<table>
<thead>
<tr>
<th>Product</th>
<th>Propellant</th>
<th>Labeling (mg)</th>
<th>Format</th>
</tr>
</thead>
</table>

Results

- **pMDI shot weight and in vitro lung dose are unaffected by altitude**

- **DPI show device dependent reduction in in vitro lung dose for matched volumetric flow rate**

- **DPI device resistance is a function of ambient pressure**

Conclusion

Collected data for most of the devices tested displayed little effect of altitude on measured in vitro lung dose. Note: The effect of reduced pressure on particle size distribution of the delivered aerosol was not tested in this study.

- All pMDIs tested delivered as in vitro lung doses that were within ±20% of nominal dosage bands.
- Ventolin® Diskus® displayed very consistent in vitro lung dose at all conditions tested.
- Bricanyl Turbuhaler® was unaffected by altitude when tested under matched pressure drop conditions.
- Bricanyl Turbuhaler® in vitro lung dose displayed a negative correlation with altitude when tested under matched flow rate.
- All pMDIs tested had consistent dosage when aircraft cabin conditions were simulated.
- Spray duration and shot weight of all pMDIs was unaffected by altitude.
- The device resistance of DPIs is affected by ambient pressure.

Table 1: Important properties of inhalers tested.

- **Absolute in vitro lung doses of pMDIs**

- **In vitro lung dose for matched pressure drop**

- **DPI device resistance, R, as a function of ambient pressure, P:**

\[
R(P) = R_0 \left(\frac{P}{P_0} \right) \quad P_0 = \text{Standard pressure, } 100 \text{kPa (± sea level), } R_0 = \text{Device resistance at standard conditions.}
\]

References

Acknowledgement

Special thanks are given to Dr. Michael Monahan, Dr. Robert Stencel, and the staff of the University of Denver High Altitude Research Station and Mt. Evans Meyer-Womble Observatory, as well as to David Epp and the staff at the Mt. Evans Outdoor Education Laboratory School for use of their facilities.