Spray Drying Adjuvanted Tuberculosis Vaccine Encapsulates Nano-emulsions Within a Dry Powder Inhalable Product

Mellissa Gomez¹, Joe McCollum², David Barona¹, Chester Jar¹, Mani Ordoubadi¹, Hui Wang¹, Nicholas Carrigy¹, Alana Gerhardt², Chris Press², Michelle Archer², Ryan Kramer², Christopher Fox², Reinhard Vehring¹ ¹Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada ²Infectious Disease Research Institute, Seattle, WA, USA

Introduction

- ID93+GLA-SE is a subunit vaccine developed by the Infectious Disease Research Institute (IDRI) to induce immunity against TB
 - The vaccine is a nano-emulsion where the antigen (ID93) is associated with the adjuvant emulsion droplets (GLA-SE)
 - Liquid injectable presentation is currently undergoing Phase II clinical trials [1]
- Why move to a dry powder inhalable product?
 - Eliminate the cold-chain requirement
 - Reduce risks associated with needles
 - Respiratory vaccination may also be more efficacious for respirable diseases [2]

A successful spray dried inhalable vaccine product must have several characteristics:

- 1. The microparticles must encapsulate the **<u>nano-emulsion</u>** droplets with a **<u>high retention rate</u>**
- 2. The microparticles must **<u>stabilize</u>** the **<u>biologic components</u>** ID93 and GLA at **room temperature**
- 3. The primary particle size must be within an **inhalable range** (MMAD 2-5 μ m)
- 4. The dry powder must be **<u>easily dispersible</u>**

Spray drying vaccine with trehalose encapsulates the nano-emulsion droplets within an amorphous trehalose matrix, addition of trileucine as a dispersibility enhancer to the formulation generates rugose particles

Vaccine + Trehalose

Vaccine + Trehalose + Trileucine

Comparison of chemical properties of the liquid vaccine to reconstituted spray dried powder show that vaccine integrity is preserved

Produced powders are compatible with dry powder delivery

Conclusions

- Spray drying encapsulates an adjuvanted tuberculosis vaccine within an inhalable dry powder product
 - Nano-emulsions can be spray dried into a dry powder with high encapsulation efficiency
 - Actives are stabilized within an amorphous glass matrix
 - Resulting powder with dispersibility enhancer has reasonable aerosol performance

Liquid Feedstock

Spray Dried Powder

Reconstituted Formulation

Acknowledgements

Funding provided by the Infectious Disease Research Institute

INFECTIOUS DISEASE RESEARCH INSTITUTE

