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Droplet Chain Technigue

Laminar gas flow,

= Droplets do not influence gas phase
= Allows measurement of evaporation rates

Vehring, et al., AAAR Annual Conf., Atlanta, GA, 2004



Monoedisperse, Monemorph Particles
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Geometric diameter and density can be correlated with drying rate
Only small quantities can be produced (< 1mg/h)
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Monodisperse Spray: Dryer
oy
Pump
Function
Generator

Drying
Gas (V,T)

Filter
::__ Exhaus

i
Sampling ¢

Collection

1000 x higher
production rates

Gas phase
conditions not
constant

No direct
observation of
evaporation process
Online measurement
of aerodynamic dry
particle diameter

Medimmune




Particles from Moenodisperse Spray Dryer

= Consistent
morphology

= Density of main
population can be
determined




Analytical Description
Analytical model provides dimensionless numbers

Diffusion equation for normalized radial coordinate, R=r/r,

D: Diffusion coefficient, c: concentration, rs: droplet radius, d: droplet
diameter, x: evaporationon rate.

Solution

exp(— 0.5PeR?
cC=cC

m 3} R? exp(- 0.5PeR? JdR
0

where the concentration is expressed as a function of the average
concentration in the droplet, c.,. Pe is the Peclet number.

After: Leong, K. H., J. Aerosol Sci 18, 511, (1987)
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Case 1. Large Molecules
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Morphology and density change with drying rate

Glycoprotein, MW: 51 kDa, D: 6 -10t! m?/s (estimate) |||
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Density Decreases with Increasing Pe-Number

Peclet Number
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Theory Predicts Surface Enrichment of Protein

Region of
Particle Fermation
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Dry particle formation coincides with predicted high
surface concentration of the protein.
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Diffusion Controlled Particle Formation
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Large Peclet Number Examples
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Polystyrene nanoparticle
(170 nm) suspension

Peptide
formulation

Salmon
Calcitonin
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N. Tsapis et al. PNAS 99, 12001 (2002); H.-K. Chan et al, AAPS annual meeting, 2002;
Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004




Case 2: Small Molecules

Density in g/cm®

Trehalose

60 70 80 90
Inlet Gas Temperature in °C

10% 90dey €

Low Peclet Number (<2) and high
b solubility leads to solid particles
> A with a density close to the

: pycnometer density (1.53 g/cmg)

C06M281.8 10.0kV 7.5mm x10.0k SE(V) -1 5.00um’



Small Molecules at High Peclet Numbers

Lactose particles, dried at high drying gas temperatures (200 °C inlet)
Peclet number range: 2-5

Saccharides can form hollow particles at high Peclet numbers

Elversson, J., et al. J. Pharm Sci, 92, 900 (2003)



Small Molecules
Low Solubility — High Surface Activity

Trileucine

Geometric Diameter Range:

—v—5.7-6.7 ym
—s—3.1-3.9 um
—4—2.4-2.8pum

0.2

™
&
o
~~
>
k=
>
=
%
c
0,
(@]

o
[

_
_—

Solubility: 8 mg/ml (25°C, pH7) e
Surface Activity: 42 mN/m (sat, 25°C)

MW: 357.5 Da | 75 100
Gas Temperature in °C

Particles with very low density can be formed from small molecules




Small Molecules
Low Solubility — Low Surface Activity

0.3

o
N

Density in g/cm3

o
=

75 100 125
Gas Temperature in °C

Surface activity is not necessary for low particle density
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Particle Formation Coincides with Supersaturation

Region of
Shell Formation
and Collapse

Surface
Concentratiop

Trileucine supersaturation, C/S
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Precipitation leads to sharp increase in Pe - number




Particle Fermation with Early Phase Separation

Bulk Precipitation

Shell
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Surface Precipitation
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Designing Structured Particles - Applications

Encapsulation
Structural layers

Improving physical stability

Improving biological /

chemical stability

Improving powder / aerosol

properties

—  Flowability

— Dispersibility

— Density / Aerodynamic
diameter

Improving delivery

—  Solubllity

— Bioadhesion

— Release




Encapsulation of a Model Malecule

100 % PVP K17 90 % PVP, 10 % Amino Acid

Amino acid selubility intentionally reduced by a co-solvent to
achieve encapsulation

Vehring, et al., US 20050003004, WO/2005/000267




Surface Modification of an Antibody Therapeutic

| Encapsulated
IgG1 - Antibody with 37.5 % amino acid

11 5.0kV 7.5mm x4.00k SE(U) | . O et e 100um

> 28 T : e %

Encapsulation improves dispersibility




Encapsulation Improves Physical Stability

56 % encapsulation excipient, 20 % saccharlde e
20 % low Tg API, 4 % organic salt .
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Vehring, R. IBC 4t Annual Conf., Deliv. Strat. Proteins & Peptides, Boston, 2004
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Structured Particle with Excellent Environmental Robustness

m=== 60 LPM Data ~ 20 °C above Tg'!

% FPD < 3.3 um

Low Tg core
protected
by a high Tg shell




Summany: and Outleok

= Particle formation can be understood in the context of
component saturation and Peclet number

=  Surface activity and other material properties may influence
particle morphology

=  Analysis of particle fermation enables rational particle design of
structured particles through formulation and process design

= Particle engineering achieves much improved particle properties,
enabling new products and improving product performance

= |More work Is necessary to understand and control
nanostructures and multiple functional layers

= Process technology and formulation science must work together
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