Introduction to Aerosol Technology for Pulmonary Drug Delivery

Reinhard Vehring

MedImmune Vaccines, Inc. 319 North Bernardo Ave Mountain View, CA 94043 650 603 2579vehringr@medimmune.com

Sunflower, morning glory, hollyhock, lily, primrose, and caster bean http://remf.dartmouth.edu/images/botanicalPollenSEM/source/12.html

Outline

- \blacksquare Anatomy and Physiology of the Respiratory System
- $\mathbb{Z}^{\mathbb{Z}}$ Deposition and Pharmacology
- \blacksquare Delivery and Dispersion Devices
- **Powder Manufacture**
- $\mathcal{L}_{\mathcal{A}}$ Particle Engineering
	- Understanding the Spray Drying Process
	- Designing Dispersibility
	- Designing Physical Stability
	- Encapsulation

The Portal: Nose or Mouth

Nose

- п Variable anatomy
- п Warms and filters air
	- Captures > 50 % of particles with an aerodynamic diameter d a > 3 µm
	- Captures > 90 % of particles with $\textsf{d}_{\textsf{a}}^{}$ $>$ 10 μ m $\,$
- п Surface area: 150 cm²
- п Cilia and mucus transport particles down the nasal cavity to the pharnyx. Mucociliary clearance takes 15 – 20 min.

Mouth

- п Extrathoracic filter function
	- $-$ < 10 % for d_a < 3 µm
	- $-$ > 65 % for d_a > 10 µm
	- Depends on jaw and tongue position, and on breathing rate
- ▉ Extrathoracic volume: 50 cm³

Lung Anatomy - Overview

Conducting Zone

- ▉ **Trachea**
- ▉ Bronchi
- ▉ **Bronchioles**
- ▉ Terminal Bronchioles
- ▉ \blacksquare Volume: 175 cm³
- ▉ • Surface Area: 3500 cm²

Respiratory Zone

- ▉ Respiratory Bronchioles
- ▉ **Alveolar Ducts**
- ▉ Alveoli
- ▉ \blacksquare Volume: 5,000 cm³
- ▉ Surface Area: 100 m^2

Conducting Airways –Trachea and Bronchi

Structure

- п **Cartilaginous**
- п Longitudinal elastic fibers
- п Smooth muscle
- п **Ciliated**
- п Mucus layer
- п Branching with irregular dichotomy

Physiology

п Contributes most of the airway resistance

Conducting Airways - Bronchi and Bronchioles

Respiratory Zone

- Г No cartilage, cilia or mucus
- ▁ Few longitudinal elastic fibers and some smooth muscle
- Г ■ 300 million alveoli provide a large surface area (100 m²) separated from blood flow by a thin tissue layer.
- Г The entire blood volume of the body passes through the lungs each minute.

Lung Volumes

Breathing - Mechanical Analogy

Flowrate:

$$
Q = \frac{\sqrt{Pa}}{R_a}
$$

R a: Airway Resistance P p: Pleural Pressure (Drop) P a: Alveolar Pressure (Drop)

IC: Inspiratory Capacity

Inspiration through a DPI - Mechanical Analogy

Rd

Q =

Flowrate:

$$
=\frac{\sqrt{IP}}{P}\qquad \qquad, \text{Rd}>>\text{Ra}
$$

Rd: Device ResistanceR a: Airway Resistance P p: Pleural Pressure (Drop) P a: Alveolar Pressure (Drop) IP: Inspiratory Pressure (Drop) IC: Inspiratory Capacity

Breathing Profile, Flow versus Time

Outline

- Anatomy and Physiology of the Respiratory System
- $\mathcal{L}_{\mathcal{A}}$ **Deposition and Pharmacology**
- \blacksquare Delivery and Dispersion Devices
- **Powder Manufacture**
- $\mathcal{L}_{\mathcal{A}}$ Particle Engineering
	- Understanding the Spray Drying Process
	- Designing Dispersibility
	- Designing Physical Stability
	- Encapsulation

Aerosol Transport – Aerodynamic Diameter

The aerodynamic diameter , d a, of a particle is the diameter of a sphere with a density of 1 g/cm 3 having the same gravitational settling velocity as the particle.

Gravitational Force **Drag Force** (Stokes Law, Re < 1))

 $=$ m $_{p}$ g

$$
F_D = \frac{S_{\text{max}}}{C_C}
$$

 $F_{\scriptscriptstyle Gr}$

Settling velocity: Cunningham Slip Correction Factor corrects for non-continuum conditions. (P in kPa, d in μ m)

=

D C

 $F_p = \frac{3\pi\eta v d}{2}$ 3πη

g

$$
v_s = \frac{\rho_p d_g^2 g C_c}{18\eta} \qquad C_c = 1 + \frac{1}{Pd} (15.39 + 7.518e^{-0.0741Pd})
$$

 d_a is derived equating the settling velocity of the particle and the reference sphere:

$$
d_a^2 = \frac{\rho_p C_c}{\rho_{ref} C_{c,ref}} d_g^2 \qquad d_a = \sqrt{\rho_p} d_g
$$

Assuming that the slip correction factors are nearly identical and using ρ in g/cm³:

Stokes Number and Impaction Parameter

The dimensionless Stokes number is the ratio of the stopping distance and a characteristic dimension of the gas flow. It describes how well particles are able to follow the gas flow.

$$
Stk = \frac{s}{x} = \frac{v_0 \tau}{x} \qquad \tau = \frac{d_a^2 C_c}{18\eta}
$$

The stopping distance is the initial velocity of a particle times the relaxation time.

For the impaction of a gas jet onto a surface the characteristic dimension is the jet radius. The particle velocity is assumed to be the same as the gas velocity.

For lung deposition a related parameter, called impaction parameter or inertial parameter, is often used, where Q is the inspiratory flow rate. This is less accurate, because it assumes a fixed geometry.

Lung Deposition - Mechanisms

Impaction

Primary mechanism for big particles and upper airways

Sedimentation

More important in smaller airways and affected by breath-hold

Diffusion

Primary mechanism for small particles in the respiratory zone

Interception

Important for non-spherical particles

Electrostatic Precipitation

Plays a role in triboelectrically charged aerosol

Factors Affecting Lung Deposition

- Aerodynamic particle diameter
	- Primary aerodynamic particle diameter
	- State of agglomeration
	- Hygroscopic growth / droplet evaporation
- **Exercise 1** Inspiratory flow
	- Flow increase rate
	- Peak inspiratory flow rate
	- Inspiratory capacity
	- Breath hold
- **Lung volume**
- **Service Service** Aerosol concentration and initial velocity
	- Inhalation device design
	- Delivered dose

Determined by

- **Formulation**
- a
M Delivery Device
- a
M Patient
	- Gender
	- Age
	- Training
	- Disease state
	- Inspiratory Effort

Deposition as a Function of Particle Size and Flow Rate

After Clark & Egan, J Aerosol Sci., **25**, 175, 1994; ICRP Publication 66, 1994

Hygroscopicity Influences Deposition

Regional and Total Deposition Oral Breathing

Numerical model resultsTidal volume: 625 ml Breathing frequency: 15 / min Monodisperse NaCl particles

Ashgarian, B. Aerosol Sci Technol **38**, 938, 2004

Pharmacology - Systemic Drug Delivery

Transport Across the Alveolar Wall

A typical aerosol dose $(1 - 50$ mg) deposits only a few particles per alveolus onto a thin alveolar wall (200 nm)

Transport mechanisms

- • Paracellular
	- •Tight junctions - epithelium
	- •Loose junctions - endothelium
- •**Transcellular**
	- •Diffusion
	- •**Transcytosis**
	- •Receptor mediated

Absorption kinetics are fast and depend on

- •Molecular weight
- •**Solubility**
- •Partition coefficient.

Pharmacology - Local Drug Delivery

Across the Bronchiolar Epithelium

Transport mechanisms

- • Local aerosol concentration higher, because of smaller surface area
- • Diffusion in mucus layer competes with mucociliary clearance, solubility is important
- •Bioavaliability depends on location of local target
- •Larger distances favor small molecules
- • Active transport present, e.g. for immunoglobulins

Absorption Kinetics

- • Slower but targeting the conducting airways is difficult
- \bullet Interstitial tissue may act as reservoir

Pharmacology - Intranasal Drug Delivery

- •Transport competes with mucociliary clearance.
- •High bioavailability for small molecules (< 1 kDa) with rapid uptake (1 - 5 min)
- •• Low bioavailability ($\sim 1-5$ %) for large molecules (>1 kDa) coupled with small surface likely requires penetration enhancers. Slower uptake (5 – 20 min)
- •Drug delivery to the CNS via the olfactory region under investigation.
- • Optimal droplet / particle size 20 - 100 µm to avoid lung deposition or dripping. Smaller particle sizes possible with bi-directional nasal delivery.

http://casweb.cas.ou.edu/pbell/Histology/Captions/Respiratory/106.nasal.epithel.40x.html

Outline

- Anatomy and Physiology of the Respiratory System
- $\mathcal{L}_{\mathcal{A}}$ Deposition and Pharmacology
- \blacksquare **Delivery and Dispersion Devices**
- **Powder Manufacture**
- $\mathcal{L}_{\mathcal{A}}$ Particle Engineering
	- Understanding the Spray Drying Process
	- Designing Dispersibility
	- Designing Physical Stability
	- Encapsulation

Delivery Devices – Nebulizers

Omron, MicroAir; Ultrasonic / Vibrating Mesh

Delivery Devices - Nebulizers

Nebulizer Types

Boehringer Ingelheim,

www.respimat.com; www.aradigm.com/tech/aerx_tech.html; www.aerogen.com/onq/index.htm

Delivery Devices - Pressurized Metered Dose Inhalers

www.3m.com/us/healthcare/manufacturers/dds/jhtml/mdi_anatomy.jhtml; www.solvay-fluor.com

Dry Powder Inhalers - Classification

By dosage form

- –Single Dose (blister, capsule)
- –Multi-Dose (reservoir, unit packaged)
- **By source of dispersion energy**
	- –Active (compressed air)
	- – Passive (patient inspiratory effort)
		- Uncontrolled
		- With patient control or feedback

Multi-dose Dry Powder Inhaler - Reservoir

Example:

Turbuhaler (Astra Zeneca)

- \blacksquare Micronized neat drug or with lactose carrier
- $-50 200$ doses
- $\mathcal{L}_{\mathcal{A}}$ Dose counter
- п ~ 50 mg reservoir capacity
- × Flow rate dependent lung dose

Multi-dose Dry Powder Inhaler - Blister

Single-dose Dry Powder Inhaler - Capsule

Turbospin (PH&T)

SEPARATE HERE

Spiriva TIOTROPIUM $18 \mu g$:
Peel back up to lin **STOP** Peel back up to lin Push capsule out **STOP** .
Peel back up to fir
. Push capsule out 5509 el back up to lin Push capsule out **STOP** Peel back up to line Push capsule ou Boehringer Of

- П Several products in development using a similar concept
- П Capsules contain \sim 5 to 50 mg of powder
	- П Moisture protection can be achieved by secondary packaging

Example: Spiriva capsules, Boehringer Ingelheim / Pfizer

Single-dose Active Dry Powder Inhaler - Blister

Nektar PDS

- \blacksquare Decouples inspiration and dispersion
- \blacksquare Uses compressed air for dispersion
- \blacksquare Foil blisters contain 2 – 5 mg of powder
- $\mathcal{L}_{\mathcal{A}}$ Aerosol is dispersed into collapsible holding chamber

Outline

- Anatomy and Physiology of the Respiratory System
- Deposition and Pharmacology
- \blacksquare Delivery and Dispersion Devices
- \mathbb{R}^n **Powder Manufacture**
- $\mathcal{L}_{\mathcal{A}}$ Particle Engineering
	- Understanding the Spray Drying Process
	- Designing Dispersibility
	- Designing Physical Stability
	- Encapsulation

Powder Manufacturing Methods – Milling and Blending

Milling

- Jet-milling (dry)
- Homogenization (wet)
- Cryo-milling (cold)

MicronizedBudesonide

Blending

- with larger carrier particles
- with smaller "force control agents"

Lactose Blend

Powder Manufacturing Methods – Precipitation and SCF

Precipitation

Example: Mannkind Technospheres: Self Assembling Particles Precipitation induced by pH shift

Supercritical Fluid Particle Technology

Dispersion and solvent extraction by supercritical fluids

Vehring, et al., AAPS 1st Annual Pharmaceutics and Drug Delivery Conference, Arlington, VA, 2002; www.nektar.com33

Powder Manufacturing Methods – Spray Drying

Spray Drying

- •Solutions
- •Suspensions
- •Emulsion
- •Co-solvent
- •With blowing agent

Protein solution

With Blowing Agent

Nanoparticle suspension

http://people.deas.harvard.edu/~ntsapis/AIR.html

Spray Drying at Different Scales

Büchi 191Evaporates 0.5 kg / h

Benchtop Intermediate Scale

Niro Mobile MinorEvaporates 7 kg / h

(Very) Large Scale

Kaolin PlantEvaporates 16,000 kg / h

Outline

- $\mathcal{L}_{\mathcal{A}}$ Anatomy and Physiology of the Respiratory System
- $\mathcal{L}_{\mathcal{A}}$ Deposition and Pharmacology
- \mathcal{L}_{max} Delivery and Dispersion Devices
- **Powder Manufacture**
- **Particle Engineering**
	- **Understanding the Spray Drying Process**
	- **Designing Dispersibility**
	- **Designing Physical Stability**
	- **Encapsulation**

The Ideal Particle

Provides good dispersibility

Low density, rough surface, hydrophobic surface

Provides long shelf life

- **Excipients for chemical and physical stabilization**
- Provides environmental robustness
	- **Encapsulation**
	- a
Ma Reduced hygroscopicity / low tendency to crystallize
- Feasible for commercial development
	- **Reproducible, economical powder production**
	- Low product development costs

Example 1: Large Porous Particles (Alkermes / AIR)

- $D_p = 5-30 \mu m$
- **D**_a = 1-5 μ m

Service Service Large particles with small aerodynamic diameter

$$
D^{\vphantom{*}}_a = D^{\vphantom{*}}_p \sqrt{\rho^{\vphantom{*}}_e}
$$

Provide good dispersibility

- T. Lipid (DPPC) based
- T. May use additional excipients such as organic salts

Example 2: Lipid Based Particles (Nektar Therapeutics)

Small Molecule**Formulation**

- **Service Service** Small porous particles provide good dispersibility and facilitate transport to the peripheral lung
- $\mathcal{L}(\mathcal{L})$ Lipid (DSPC) based
- T. May use blowing agent to lower and control particle density

Mushroom Spore

Calcitonin

Example 3: Amino Acid / Sugar Based Particles (Nektar)

Trileucine Shell

Protein Formulation

Typical Excipients

- **Amino acids, di-, tripeptides**
- **Sugars**
- **Organic Salts**

Crystalline Amino Acid Shell

Understanding the Atomization Process

Droplets pass through a flow field with large temperature and velocity gradients.

Spray Dryer Internal Gas Flow Field

The flow field in the spray dryer is inhomogeneous.

Snyder, et al., 12th Annual Conf. on Liquid Atomization and Spray Systems. Indianapolis, IN, 1999

Studying the Particle Formation Process

The two phase flow in a spray dryer is complex. Heat and mass transfer processes are difficult to study *in situ*.

Approach:

Isolate and study relevant sub-processes in idealized environments

- **Service Service** Numerical model of droplet evaporation on single droplets in stagnant gas phase
- \blacksquare Analytical model for constant rate evaporation
- **Contract Contract Co** Experimental studies on monodisperse droplet drying in a laminar flow field

Numerical Model of Droplet Evaporation

- **Transient evaporation of a radially symmetric droplet**
- Finite difference mesh moves with interface
- F Concentration and temperature profiles in liquid and gas
- b. Temperature and concentration dependent material properties
- F Multiple solutes and solvents
- **-** Accounts for surface activity

Internal Distribution of Components

The model can be used to predict the influence of processing conditions and formulation on the structure of the dry particle

Simplifying the Theoretical Description

Analytical model provides dimensionless numbers

Diffusion equation for normalized radial coordinate, $R=r/r_s$,

$$
\frac{\partial c}{\partial t} = \frac{D}{r_s^2} \left(\frac{\partial^2 c}{\partial R^2} + \frac{2\partial c}{R\partial R} \right) + \frac{R\partial c\partial r_s}{r_s \partial R\partial t} \quad , \qquad d^2(t) = d_0^2 - \kappa t
$$

D: Diffusion coefficient, *c:* concentration, *rs*: droplet radius, *d*: droplet diameter, κ : evaporationon rate.

Solution

.

$$
c = c_m \frac{\exp(-0.5 \text{Pe} R^2)}{3 \int_0^1 R^2 \exp(-0.5 \text{Pe} R^2) dR}
$$
,
$$
P e = -\frac{r_s \partial r_s}{D \partial t} = \frac{\kappa}{8D}
$$

where the concentration is expressed as a function of the average concentration in the droplet, *^c ^m*. Pe is the Peclet number.

After: Leong, K. H., *J. Aerosol Sci* **18**, 511, (1987)

Evaporation Process for a Glycoprotein

Vehring, et al., AAAR Annual Conf., Atlanta, GA, 2004 47

Experimental Studies on Monodisperse Model Particles

Vehring, et al., AAAR Annual Conf., Atlanta, GA, 2004

Model Particles: Perfect Control of Size and Morphology

Vehring, et al., AAAR Annual Conf., Atlanta, GA, 2004

Understanding Particle Morphology

Particle density and geometric diameter as a function of processing conditions

Vehring, et al., AAAR Annual Conf., Atlanta, GA, 2004

Can a Small Molecule Encapsulate a Big Molecule ?

 $\frac{Q_0^{\frac{3}{8}}}{\frac{2}{100}}$ A small molecule
acts like a very big
molecule after
phase separation!
The Peclet number
becomes very large at this point.

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Successful Encapsulation of a Model Molecule

Spray-dried from a co-solvent system:

100 % PVP K17 90 % PVP, 10 % Amino Acid

Designing for Dispersibility

0 % Leu $_3$

15 $%$ Leu₃

Netilmicin Sulfate

Lechuga-Ballesteros, et al. 30th Annual Meeting Controlled Release Society, Glasgow, Scotland, 2003

Stability Challenges for Spray-Dried Material

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Key Stability Indicators

Glass Transition Temperature and Structural Relaxation Time

Moisture Induced Failure: Sucrose

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Failure Mode - Recrystallization

Spray-dried amino acid 95 % very small crystals

After storage at 40°C for 2 weeks 100 % crystalline

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Increasing the Glass Transition Temperature

Increasing Water Content Depresses the Tg

Example: Plasticization of amorphous sodium citrate.

Predictive Tool Assists Glass Stabilization

- Glass Stabilization:

Increase glass transition temperature **Increase glass transition temperature**
	- P) Improve plasticization properties

It is possible to develop a predictive tool for moisture sorption behavior and Tg of formulations as a function of excipient ratios and pH.

- Requires a database of excipient properties and excipient interactions.
- Coefficients for Tg models must be determined for typical formulation systems.

Designing the Amorphous Phase

Crystallization at moderate RH Much improved out-of-package stability

Exceeding the Limits of Glass Stabilization

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Excellent Out-of-Package Stability

56 % Encapsulation excipient, 20 % Saccharide 20 % low Tg API, 4 % organic salt

Lot 3909- 67

Vehring, R. IBC 4th Annual Conference, Delivery Strategies for Proteins and Peptides, Boston, MA, 2004

Particle Engineering - Conclusion

- \blacksquare Aerosol science, process development and formulation are linked and form a new discipline: Particle Engineering.
- $\mathcal{L}_{\mathcal{A}}$ Understanding of the underlying physics and physical chemistry of the evaporation and particle formation processes has led to the development of predictive particle engineering tools.
- $\mathcal{L}_{\mathcal{A}}$ Predictive tools for the design of packaging configurations, processing conditions, and formulation compositions allow rapid development and optimal product performance
- $\mathcal{L}_{\mathcal{A}}$ Spray drying is capable of economical manufacture of sophisticated particles which have the potential to enable and improve therapeutics in the future for the benefit of patients