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Spray Drying Process Development by Trial and Error ? 

There must be a better way.
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Introduction: The Spray Drying Process

 

Two-Fluid Atomizers: Examples

How can the droplet size 
distribution be predicted?

~6 in.
Laboratory scale
(<0.6 kg/hr)

Level 1 production 
scale (< 6 kg/hr)

Level 2 production scale
(< 60 kg/hr)

 

Pneumatic Atomization, Theory

Mean diameter:

Depends on relative velocity at nozzle head and the ratio of the gas and liquid
mass flows.

A, B, α, β are functions of the nozzle design and liquid properties.

Droplet size distributions for a specific nozzle need to be determined experimentally
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Masters, K.: Spray Drying. CRC Press, Cleveland, 1972

 



Atomizer Testing With Phase Doppler Methods

Snyder, et al., 12th Annual Conf. on Liquid Atomization and Spray Systems. Indianapolis, 1999
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Droplet Diameter, microns

Atomizer Test Facility

Provides droplet size distributions
for various process conditions:

 

How do particle size distribution and 
concentration of suspended particles 
and atomized droplet size affect the 
composition and particle size 
distribution of the final powder?

Feedstock

Atomized 
Droplets
(Black box)

Aerosol

Spray Drying of Suspensions

 

Stochastic Model of Suspension Atomization

Ivey, J. W., Vehring, R. AAPS Workshop on Utilization of Process Modeling and Advanced Process Control, Baltimore, 2009.

 



Droplets:
VMD: 9 µm, GSD 1.8

Suspended Particles:
VMD: 4.6 µm, GSD 1.6
Concentration: 2.45 g/l
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Example: Distribution of Particles in Droplets

Particles per Droplet

 

Propellant:
VMD: 9 µm, GSD 1.8

Suspended Particles:
VMD: 4.6 µm, GSD 1.6
Concentration: 2.45 g/l

Aerosol:
VMD: 5.2 µm, GSD 1.58

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n 

of
 P

ar
tic

le
s

 Particles per Aggregate

Example: Prediction of Powder Properties

 

Application Example: Porous Particles With Suspended Crystals

Ivey, J. W., Vehring, R. AAPS Workshop on Utilization of Process Modeling and Advanced Process Control, Baltimore, 2009.
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Full Numerical Model

Foss, W. R., Vehring, R., 23rd Annual AAAR Conference, Atlanta, GA, USA, 2004. 

 

Application Example: Surface Enrichment of  Protein

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10

RADIUS, microns

PR
O

TE
IN

 W
EI

G
H

T 
FR

A
C

TI
O

N

21.9 ms

59.1 ms

45.1 ms

65.6 ms

68.8 ms

71.2 ms

73.9 ms

76.4 ms

SURFACE
CONCENTRATION

INITIAL
CONCENTRATION

 



More Practical: Constant Rate Assumption

( ) tdtd κ−= 2
0

2

: Experiment
: Numerical Model
: Constant Rate

Vehring, R.: Particle Design using Spray Drying. The Fine Particle Society, Int. Conf. on Bio and Pharm. Science and Techn., San Diego, 2006. 

 

Dimensionless Numbers: Peclet Number and Surface Enrichment

Peclet Number:

Surface Enrichment:
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Describes balance between velocity of  surface 
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Vehring, R.  Expert Review: Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 25: 999, 2008. 

 

How to Estimate Evaporation Rate

Approximation: ( )( )∞−= YTYD es
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Even Simpler: Use Published Results

Vehring, R., Foss, W. R., Lechuga-Ballesteros, D.: Particle Formation in Spray Drying. J. Aerosol Science 38: 728, 2007. 
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Characteristic Times: Droplet Drying Time

Droplet drying time:
κ

τ
2
0

D
d
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Can be used to estimate necessary residence time in dryer.

Examples: 
a) Pulmonary drug delivery,  active not labile, d0= 5 µm, κ= 5 µm2/ms: τD= 5 ms
b) Nasal drug delivery,  active labile, d0= 30 µm, κ= 2 µm2/ms: τD= 0.45 s

 

Mass Balance Allows Prediction of Size

 Geometric Diameter

 Aerodynamic Diameter
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Predicting Particle Morphology: Sequence of  Precipitation

Time to precipitation: ( ) 
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Precipitation concentration
Dimensionless Number:

A
B

τpre,A < τpre,B τpre,B < τpre,A

 

Trehalose

Low Peclet Number (<2) and high 
solubility lead to solid particles
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Predicting Particle Density: Low Peclet Number

 

Pe = 2.7 Pe = 12.5Pe = 5.6

Vehring, R., Foss, W. R., Lechuga-Ballesteros, D.: Particle Formation in Spray Drying. J. Aerosol Science 38: 728, 2007.
F. Iskandar et al. Journal of Colloid and Interface Science 265, 296, 2003.
J. S. Patton US Patent 6,685,967, 2004.

Predicting Particle Density: High Peclet Number

Nanoparticle Composite Particles Peptide Particles

 



Cyclone Separation
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Cyclone cutoff (Leith / Licht model):

μ: Gas viscosity
dc: Cyclone diameter

: Gas flow
k: Configuration factor

Cutoff needs to be verified experimentally
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http://aerosol.ees.ufl.edu/cyclone
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Global Mass and Energy Balance
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Prediction of Outlet Temperature

Measured and predicted 
outlet temperatures agree 
within ± 2 °C.

(Graph removed)

 



Prediction of Powder Moisture Content

Combining outlet RH 
with moisture sorption 
data allows accurate 
estimate of  powder 
moisture content

(Graph removed)

 

Conclusions

 The individual steps of the spray drying process are fairly well 
understood and can be described theoretically.

 The spray drying process should be treated as a series of sub-
processes.

 Experimental work should focus on the unknown aspects of the 
process. 

 Many process and powder attributes can be predicted and don’t need 
to be determined empirically

 Using analytical approaches to spray drying saves time and cost and 
allows theoretical identification of key process and formulation 
variables leading to prudent investment in process control measures.

 Differences between observed and predicted behavior point to areas 
of future development and provide IP opportunities.

 

Outlook

 

 


