Comparison of Three Aqueous Aerosol Inhalation Devices for Delivering Anti-tuberculosis Bacteriophage D29

Nicholas Carrigy

Bacteriophage: An Alternative to Antibiotics

- Antibiotic-resistance is a threat to global health
 - 480,000 new multidrug-resistant tuberculosis cases in 2015, 9.5% further classified as extensively drug-resistant [1]
 - Few new antibiotics are being developed
- Bacteriophage (phage) are an alternative
 - They can infect antibiotic-resistant bacteria

[1] WHO. Multidrug-resistant tuberculosis (MDR-TB) 2016 Update. From: http://www.who.int/tb/challenges/mdr/mdr_tb_factsheet.pdf Images from: https://cdn.ibdnewstoday.com/wp-content/uploads/2015/07/shutterstock_103632251.jpg https://www.gov.uk/government/publications/health-matters-antimicrobial-resistance/health-matters-antimicrobial-resistance

What is a Phage? – A Virus that Infects Bacteria

Image on right adapted from: Sabehi G. *et al.* (2012) PNAS 109(6):2037-2042.

Phage Therapy

Why phage therapy?

- Lytic phage can infect antibiotic-resistant bacteria
- High specificity, not harmful to beneficial bacteria
- Few if any side effects; phage are everywhere Will it work?
- Human phage therapy done in Eastern Europe
 - Phage cocktails available over-the-counter
 - Efficacy reports are generally positive
- Phage used in food production and compassionate care in the USA
 - Human clinical trials ongoing including PhagoBurn here in France and AmpliPhi in the USA
- Success of phage aerosol delivery to mice to clear antibiotic-resistant BCC lung infections requires that many active phage reach the lungs relative to the bacterial count [2]

OLUTION FOR ORAL AND TOPICAL II

PYO

HAGE

Why Test Phage D29?

- Phage D29 infects *M. tuberculosis* [3]
 - It also infects *M. smegmatis*, which is biosafety level 1
 - Its genome has been sequenced, and it has well-established amplification and assay protocols

TEM of phage D29, which lyses *M. tuberculosis*

Plaque assay determines number of active phage in a sample

[3] Froman S et al. (1954) Am J Public Health Nations Health 44(10): 1326-1333.

Image on right from: phagesdb.org/workflow

Phage Deactivation due to Aerosolization

<u>Tested inhalation devices</u> 1) Vibrating Mesh Nebulizer

2) Jet Nebulizer

3) Soft Mist Inhaler

- Deactivation = (1 output titer / input titer) * 100%
 - Input titer = # active phage in saline phage preparation input to each inhalation device
 - Output titer = # active phage captured on filter after aerosolization

Images from: https://www.inspiration-medical.de/Bilder/Aerogen%20Solo%20Vernebler%20ex%20Aeroneb.jpg https://online.ebos.co.nz/images/product/22143069%20-%20BOY%20SX.jpg http://d3hjf51r9j54j7.cloudfront.net/wp-content/uploads/sites/5/2008/01/spiriva_respimatw_image1_3.jpg

Difference in Phage Deactivation between Devices

Inhalation Device	Deactivation (%) *	Active Phage Delivery Rate
Jet Nebulizer	99.981 ± 0.005	7.1x10 ⁴ ± 1.7x10 ⁴ pfu/min
Vibrating Mesh Nebulizer	60 ± 11	3.3x10 ⁸ ± 0.8x10 ⁸ pfu/min
Soft Mist Inhaler	72 ± 14	4.6x10 ⁶ ± 2.0x10 ⁶ pfu/dose

* < 90% deactivation is acceptable

- Vibrating mesh nebulizer delivered active phage D29 ~5000 times faster than the jet nebulizer
- A single 11.6 ± 1.6 µL ex-actuator dose from the soft mist inhaler delivered about as many active phage D29 as 1 hour of delivery with the jet nebulizer, which would require about 10 mL of formulation

Reason for Titer Reduction with the Jet Nebulizer

- Likely stress during baffle impaction and renebulization
 - Previously reported to deactivate liposomes & large molecules [4]

[4] Lentz YK et al. (2005) J Aerosol Sci 36(8): 973-990.

Renebulization with the Jet Nebulizer – A Mathematical Model

- 99% of aerosol was renebulized in each cycle
 - Equivalent of entire 8 mL recirculated every 30 seconds, in agreement with literature [5]
 - Large cumulative stress on phage

[5] May KR. (1973) J Aerosol Sci. 4(3):235-243.

Vibrating Mesh Nebulizer and Soft Mist Inhaler

 Droplet production mechanisms with the vibrating mesh nebulizer (left) and soft mist inhaler (right) were relatively unharmful to phage D29

Conclusions

- Pulmonary delivery of anti-tuberculosis phage D29 at high titers requires a prudent choice of inhalation device
 - Titer reduction is inhalation device- and phage strain-dependent
- Jet nebulizer
 - Not recommended for phage therapy with D29 substantial titer reduction
- Vibrating mesh nebulizer
 - Recommended for animal studies small titer reduction, high active phage delivery rate
- Soft mist inhaler
 - Recommended for self-administration small titer reduction, pocket-sized, multidose
- Aerosol delivery of phage is feasible, and promising

Acknowledgements

University of Alberta

Prof. Reinhard Vehring Prof. Warren H. Finlay Prof. Dominic Sauvageau Melissa Harrison <u>University of Sydney</u>

Prof. Hak-Kim Chan

Prof. Warwick J. Britton

Dr. Sharon S.Y. Leung

University of Pittsburgh

Prof. Graham F. Hatfull

Dr. Rachel Y. Chang

Prof. Welkin H. Pope

Zaritza Petrova

<u>Funding</u>

Australian Research Council Discovery Project DP150103953 Natural Sciences and Engineering Research Council of Canada Alberta Innovates Technology Futures University of Alberta Scholarships & Awards

Australian Government Australian Research Council

