

Introduction

A Particle Design Model for Spray Drying of Suspensions and Large Molecule Formulations

Mohammed A. Boraey and Reinhard Vehring

Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

i- Empirical Approach - time and resources consuming ii- Numerical models - long implementation time iii- Analytical models - limited accuracy

Design Targets for inhalable particles

i- Desired final dry particle properties *ii*- Desired solid state *iii*- Desired layered structure for stabilization or controlled release

I- Numerically solve a normalized version of the diffusion equation in spherical coordinates for a range of Péclet numbers relevant to suspensions and large molecule formulations ($Pe > 25$), under the following assumptions.

Design Options

III- Derive the final dry particle properties (i.e. volume equivalent diameter, particle density, shell thickness for high Pe number formulations) and iterate *in silico* if necessary.

New approach present here:

A hybrid numerical-analytical model - **easy-to-use without numerical model development with improved accuracy.**

Methodology

i- Diffusion is the main mechanism of mass transport. *ii*- Constant evaporation rate. *iii*- Constant diffusion coefficient.

-Accelerates respirable dosage form design significantly (see poster $\# 8$).

II- Fit the normalized numerical results with simple analytical equations.

This model has a wider range of usability. It has the ability to predict the following final dry particle properties without numerical model development.

Results Conclusion d_D/d_o (exp, Ref.[6]) /d_o (model, present) d_0/d_0 (model, Ref.[5]) $0.9 -$ ಕೆ $\frac{5}{\sigma}$ 0.8 *the normalized drying time* \Box **Predicted volume equivalent diameter** 12 **Peclet Number, Pe [4]** d_{sh}/d_{p} (exp, Ref. [7]) d_{sh}/d_p(model,present) d_{sh}/d_{p} (num, Ref.[7]) 0.9_o $\frac{e^{20.8}}{25}$
 0.7 $0.6 -$ *Predicted shell thickness* 2.4 2.6 2.8 2.2 1.2 1.6 1.8 \cdot 4 Dry particle size, d_p (µm) 2 \mathbf{D} 3 $(Pe_i) = 1 + \frac{1}{5} + \frac{1}{100} - \frac{1}{400}$, $Pe_i < 20[4]$ **Results Calculate transient Calculate shell surface enrichment (***E)* **formation time** (τ_{sat}) - **Size** $\left[1 - (S_{o,i} E_i)^{\frac{2}{3}}\right]$ 10 $\overline{2}$ $\left|-\right|\frac{Pe_i}{2}$ $\left|\frac{Pe_i}{2} - \frac{10}{9}\right|$ $(Pe_i, \tau) = \left[\frac{Pe_i}{2} - \frac{1}{9} \right] - \left[\frac{Pe_i}{2} - \frac{10}{9} \right] e^{-1.2\tau}, Pe_i >$ $=\left|\frac{I_{i}e_{i}}{2}-\frac{1}{2}\right|-\left|\frac{I_{i}e_{i}}{2}-\frac{10}{2}\right|e^{-1.2\tau},Pe_{i}$ $, Pe_i > 25$ $\tau_{\text{sat},i} = \tau_{D} \left(1 - (S_{o,i} E_{i})^{\frac{2}{3}} \right)$ ⎥ 9 | 2 9 $\vert \mathcal{I}_{sat,i}=\mathcal{I}_{D}\vert$ -**Density** \lfloor $\overline{}$ (Iteratively) -**Aerodynamic Estimate the critical diameter**

Model outcomes:

-Final dry particle volume equivalent diameter (assuming a spherical particle).

-Particle aerodynamic diameter

-Particle density

-Shell thickness

-Radial composition and solid state of components.

-Shell composition for multi-component formulations.

-Shell thickness for nanoparticles suspension formulations.

Model advantages

- Easy to use, does not require lengthy implementation.

- Well suited for the design of structured, multi-layered and

multi-component formulations.

-Good accuracy

References

-Vehring, R: Pharmaceutical particle engineering via spray drying, *Pharmaceutical Research, 2008,* 25: 999-1022. (Ref.4)

-Gardner, C: Asymptotic concentration distribution of an involatile solute in an evaporating drop, *International Journal of Heat and Mass Transfer,* 1965, 8: 667-68.(Ref.5)

-Lin, J-C, Gentry, JW: Spray drying drop morphology: Experimental study, *Aerosol Science and Technology,* 2003, 37: 15-32.(Ref.6) -Widiyastuti, W, Wang, WN, Lenggoro, IW, Iskandar, F, Okuyama, K: Simulation and experimental study of spray pyrolysis of polydispersed droplets, *Journal of Materials Research,* 2007, 22: 1888-98.(Ref.7)

Acknowledgement

Respiratory Drug Delivery 2013, Berlin, Germany

-**Shell thickness**

$$
\alpha = \frac{c}{c_o}
$$

$$
R = \frac{r}{r_s(t)}
$$

$$
\tau = \frac{t}{\tau_D}
$$

Optimize the

formulation