

Introduction

Design Targets for inhalable particles

i- Desired final dry particle properties *ii*- Desired solid state *iii*- Desired layered structure for stabilization or controlled release

Design Options

i- Empirical Approach - time and resources consuming *ii*- Numerical models - long implementation time *iii*- Analytical models - limited accuracy

New approach present here:

A hybrid numerical-analytical model - **easy-to-use without** numerical model development with improved accuracy.

Methodology

I- Numerically solve a normalized version of the diffusion equation in spherical coordinates for a range of Péclet numbers relevant to suspensions and large molecule formulations (Pe > 25), under the following assumptions.

i- Diffusion is the main mechanism of mass transport. *ii*- Constant evaporation rate. *iii*- Constant diffusion coefficient.

$$\alpha = \frac{c}{c_o}$$
$$R = \frac{r}{r_s(t)}$$
$$\tau = \frac{t}{\tau_D}$$

II- Fit the normalized numerical results with simple analytical equations.

III- Derive the final dry particle properties (i.e. volume equivalent diameter, particle density, shell thickness for high *Pe* number formulations) and iterate *in silico* if necessary.

A Particle Design Model for Spray Drying of Suspensions and Large Molecule Formulations

Mohammed A. Boraey and Reinhard Vehring

Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

Results

Conclusion

This model has a wider range of usability. It has the ability to predict the following final dry particle properties without numerical model development.

Model outcomes:

-Final dry particle volume equivalent diameter (assuming a spherical particle).

-Particle aerodynamic diameter

-Particle density

-Shell thickness

-Radial composition and solid state of components.

-Shell composition for multi-component formulations.

-Shell thickness for nanoparticles suspension formulations.

Model advantages

- Easy to use, does not require lengthy implementation.

- Well suited for the design of structured, multi-layered and

multi-component formulations.

-Good accuracy

-Accelerates respirable dosage form design significantly (see poster # 8).

References

-Vehring, R: Pharmaceutical particle engineering via spray drying, Pharmaceutical Research, 2008, 25: 999-1022. (Ref.4)

-Gardner, C: Asymptotic concentration distribution of an involatile solute in an evaporating drop, *International Journal of Heat and Mass Transfer*, 1965, 8: 667-68.(Ref.5)

-Lin, J-C, Gentry, JW: Spray drying drop morphology: Experimental study, Aerosol Science and Technology, 2003, 37: 15-32.(Ref.6) -Widiyastuti, W, Wang, WN, Lenggoro, IW, Iskandar, F, Okuyama, K: Simulation and experimental study of spray pyrolysis of polydispersed droplets, Journal of Materials Research, 2007, 22: 1888-98.(Ref.7)

Acknowledgement

Respiratory Drug Delivery 2013, Berlin, Germany